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Abstract

While deep reinforcement learning has shown important empirical success, it
tends to learn relatively slow due to slow propagation of rewards information and
slow update of parametric neural networks. Non-parametric episodic memory,
on the other hand, provides a faster learning alternative that does not require
representation learning and uses maximum episodic return as state-action values
for action selection. Episodic memory and reinforcement learning both have their
own strengths and weaknesses. Notably, humans can leverage multiple memory
systems concurrently during learning and benefit from all of them. In this work,
we propose a method called Two-Memory reinforcement learning agent (2M) that
combines episodic memory and reinforcement learning to distill both of their
strengths. The 2M agent exploits the speed of the episodic memory part and the
optimality and the generalization capacity of the reinforcement learning part to
complement each other. Our experiments demonstrate that the 2M agent is more
data efficient and outperforms both pure episodic memory and pure reinforcement
learning, as well as a state-of-the-art memory-augmented RL agent. Moreover, the
proposed approach provides a general framework that can be used to combine any
episodic memory agent with other off-policy reinforcement learning algorithms.

1 Introduction

Deep reinforcement learning (DRL) achieves impressive results in a wide range of domains. It reaches
super-human performance in games such as Atari [13], Go [18] and Gran Turismo [20]. Recently, it
also has shown promise in scientific applications such as controlling nuclear plasma fusion [4] and
discovering new matrix multiplication algorithms [6]. However, DRL is well-known for being data
inefficient, since back-propagation of reward signals and learning updates (including representation
learning) can be slow.

In contrast to such parametric learning approaches, non-parametric episodic memory approaches
maintain a memory buffer to store high-rewarded trajectories for either action selection [3, 15] or for
enhancing other reinforcement learning methods [11, 9, 7]. These papers have been demonstrated
to outperform conventional reinforcement learning methods in certain tasks, such as Atari [2], and
Labyrinth [12]. In episodic memory, reward signals are back-propagated considerably faster than in
one-step temporal difference (TD) learning that is commonly used in reinforcement learning. In addi-
tion, one-step TD learning is further slowed down by representation learning and the use of function
approximation. A potential problem of episodic memory is that fast back-propagation is problematic
in stochastic tasks, and the lack of learnable feature representations can make generalization difficult
in episodic memory. The question therefore becomes: can we combine the best of both approaches in
a single algorithm?

Evidence from neuroscience shows that multiple memory systems are activated when humans are
learning, and these also interact with each other [14, 17]. Previous research [11, 9, 7] has shown
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Figure 1: The workflow of the 2M agent. Before the episode starts, the 2M agent selects one type
of memory for action selection in the next episode, which could either be episodic control (EC)
or parametric reinforcement learning (RL). The data subsequently collected is used to update the
EC solution (directly), and also enters an experience replay buffer (B) for future updating of the
parametric RL solution.

that integrating episodic memory and reinforcement learning can improve overall performance. In
these works, episodic memory is mainly used to provide learning signals for DRL methods, but they
again face the same challenges that are inherent to DRL. To fully capitalize on the advantages of
episodic memory and reinforcement learning, we propose a novel approach called Two-Memory
reinforcement learning (2M), in which both approaches complement eachother.

The workflow of the 2M agent is shown in Fig. 1. The 2M agent maintains two memories, namely
‘episodic control’ (episodic memory for control) (2M-EC) and ‘reinforcement learning’ (2M-RL). In
the beginning, the 2M agent decides which memory to employ for action selection in the upcoming
episode. Then the collected episodic data is pushed into the experience replay buffer where data for
training 2M-RL is sampled from occasionally. Meanwhile, episodic trajectories are used to update
2M-EC.

The intuition is that after 2M-EC discovers high-reward trajectories, the 2M agent is able to retrieve
these trajectories quickly although they might be suboptimal. However, at this stage, 2M-RL still has
not learned anything substantial due to the one-step reward backup and the slow updates required
with function approximation (in DRL). Thus, the 2M agent should prefer to use 2M-EC initially. As
the amount of data collected increases and training continues, 2M-RL becomes increasingly good at
dealing with stochasticity and developing better feature representations; the 2M agent should then
gradually switch to 2M-RL. This is the conceptual approach we study in this work.

In short, our work makes two main contributions:

• We propose a novel framework called 2M that combines episodic control and reinforcement
learning methods, exploiting the strengths from both sides. The framework can be used with
any type of EC method and any type of off-policy RL method.

• We conduct experiments showing that 2M outperforms state-of-the-art baselines, and we
also include ablation studies that examine when the 2M works well, and where it may still
be improved.

2 Background

We will first introduce the formal problem definition and the two main approaches combined in
this paper: parametric reinforcement learning (in the form of deep Q-learning) and non-parametric
episodic memory.

2.1 Markov Decision Process

We follow standard definitions [19] and define decision making problems as a Markov Decision
Process (MDP) represented by ⟨S,A,R, P, γ⟩. S denotes the state space, A denotes the action space,
R denotes the reward function and P denotes the dynamic transition. γ is the discount factor, which
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is usually close to 1. The agent interacts with the environment by taking action at ∈ A according to
some policy π given the current state st ∈ S at time step t, then the next state st+1 ∼ P (·|st, at) and
reward rt = R(st, at, st+1) is returned by the environment. A policy π maps a state to a distribution
over actions. The agent will then take the next action at+1 based on the new state st+1. This process
repeats until the terminal time step T . The goal of the agent is to learn a policy π that maximizes the
expected cumulative reward: Est+1∼P (·|st,at),at∼π(·|st),rt∼R(·|st,at)[

∑T
t=0 γ

t · rt].

2.2 Deep Q-Learning

Define the state-action value function Q(st, at) as the expected cumulative reward the agent will
receive by starting from state st and taking action at. Q-learning is an algorithm to learn the optimal
Q value function, it updates the state-action value function by iteratively following the Bellman
equation. The update rule of Q-learning is:

Q(st, at)← Q(st, at) + α(rt + γmax
a′∈A

Q(st+1, a
′)−Q(st, at))

where α is the learning rate and γ is the discount factor. The solution of Q-learning is generally
stored in a table. When the state space is large, storing all possible states becomes infeasible. We
may then use a neural network to approximate the state-action value function. The update rule of
deep Q network [18] is:

y(st)← rt−1 + γmax
a′∈A

Q(st, a
′)

minimizeEst,at,rt,st+1∈D(y(st+1)−Q(st, at))
2 (1)

where D is the sampled data for training. After we have the state-action value function, the policy is
exacted by always taking the action with the highest state-action value greedily in every state.

2.3 Episodic Control

Episodic control refers to a class of methods that directly use non-parametric episodic memory for
action selection [3, 15]. It is generally implemented as a table (Qec), and rows represent different
actions while columns represent different states. Each entry is associated with a state-action (st, at)
pair and denotes the highest encountered episodic return (Gt =

∑T
k=t γ

k−trk) after taking action at
in the state st. The update only occurs after one episode has terminated, which is similar to tabular
Monte-Carlo back-up but with a more aggressive update rule. Instead of incrementally updating
state-action values, episodic control replaces the stored episodic return with the best value observed
so far. The update rule of episodic control is:

Qec(st, at)←
{
Gt if (st, at) /∈ Qec,

max{Gt, Q
ec(st, at)} otherwise

(2)

During action selection, if the queried state already has Q values for all actions, we take the action
that is with the highest Q value. Otherwise, missed Q values are estimated by averaging over the
queried state’s K-nearest neighbors’ Q values. When the memory is full, the least updated entry will
be dropped from the table.

3 Related Work

We will first discuss previous work on episodic control, and how it has been used as a training target
for deep reinforcement learning. This last approach differs from our work, where EC is used for
action selection (see Fig. 1). Afterwards, we also briefly discuss related work on experience replay,
since it plays a central role in our approach as well (see Fig. 1).

3.1 Episodic Control

Model Free Episodic Control (MFEC) [3] is the first episodic control method and it is implemented
as a table with untrainable features. Thus, it enjoys limited generalization over either a randomly
projected or pre-trained feature space. Neural Episodic Control (NEC) [15] solves this limitation by
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maintaining a differentiable table to learn features while using the same update and action selection
rule (shown in Eq. 2) as MFEC but achieves better performance. Since Monte-Carlo returns must be
stored for each state-action pair, episodic control methods can not deal with continuous action spaces
naturally. Continuous Episodic Control (CEC) [21] extends episodic memory to select actions directly
in continuous action space. The 2M agent integrates MFEC as a core component, and partially uses it
for action selection.

3.2 Episodic Memory for Learning

While using episodic memory for control is fast, reinforcement learning methods might still be
preferred in the long run due to their strength. Many approaches use the returns stored in episodic
memory to provide richer learning targets for reinforcement learning methods. Episodic Memory
Deep Q Network (EMDQN) [11] uses returns in episodic memory to enhance learning targets in
deep Q-Learning. Episodic Memory Actor-Critic (EMAC) [9] and Generalizable Episodic Memory
(GEM) [7] uses episodic returns to enhance learning targets in actor-critic methods to solve tasks with
continuous action space. Episodic Backward Update (EBU) [10] utilizes structural information of
states that are in the same episode and executes a one-step backup for each state along the trajectory.
The aforementioned methods take advantage from richer learning signals of episodic memory, but
underlying neural network training still progresses slowly. Thereby, the benefit of the EC solution
will not affect action selection quickly. In contrast, the 2M agent does use episodic memory for action
selection, which may give it a fast head-start. As a second difference, in 2M the collected data is also
used to train the 2M-RL agent (in contrast to previous methods).

3.3 Experience Replay

Experience replay was originally proposed to improve data efficiency and break correlations of
training data for off-policy reinforcement learning methods. Uniform sampling is the most naive
and commonly used way to sample data from the replay buffer for training, where transitions are
sampled at the same frequency as they were experienced regardless of their significance [16]. To
address this limitation, prioritized Experience Replay (PER) [16] prioritizes transitions that have
larger TD errors during the training, and samples these transitions more often because larger TD
errors indicate there is more information to learn. Hindsight Experience Replay (HER) [1] is proposed
for the multi-goal/goal-conditioned RL setting; it treats states that the agent actually achieves as
desired goals and learns from failures. Since not all failures are equally important, Curriculum-guided
Hindsight Experience Replay (CHER) [5] adaptively replays failed experiences according to their
similarities to true goals. An event table [8] is defined as a buffer to store transitions related to
important events. The authors theoretically proved that sampling more data from the event table will
lead to better performance. Although the 2M agent doesn’t employ any special sampling strategies
to sample from the replay buffer, the data stored in the buffer is actually from two different sources
(2M-EC and 2M-RL). We can thus vary sampling preference by pushing different amounts of data
from different sources.

4 Two-Memory Reinforcement Learning (2M)

We will now formally introduce the 2M framework. It consists of two ‘memories’, where one
represents a fast learning memory (episodic control agent) and another one represents a slow learning
memory (reinforcement learning agent, in our work we use 1-step (deep) Q-learning). Intuitively,
we should prefer to use the fast (but sub-optimal) learning memory initially, then gradually switch
to the slow (but with better asymptotic performance) learning memory. In this section, we will first
motivate this intuition by using a very simple example (Sec. 4.1). Then we explain the designs of
the proposed approach. Since we combine two different methods and want to switch between them,
we also need to discuss a scheduling mechanism to decide when to switch (section 4.2) and need to
decide how to utilize collected data (section 4.3). The overall algorithm is detailed in Alg. 1 in the
Appendix. At the beginning of each episode, 2M-EC or 2M-EC is selected and will be used for action
selection in the whole episode. Collected data is stored into the replay buffer used for training 2M-RL
which happens every N steps. 2M-EC is trained after every episode is finished. Eventually, the one
performs better during the training will be used for evaluation.
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Figure 2: A motivating example with seven states in the state space and two actions in the action space.
After the agent discovers all possible trajectories (from s1 to all possible terminal states), EC (orange)
finds the sub-optimal solution while one-step off-policy RL (grey) only back-propagates reward
signals to direct predecessor states and thus does not change the estimates at the root state. However,
after many iterations, off-policy RL will converge to the true optimal values (preferring action left
followed by action left), while EC will commit to a suboptimal solution (action left followed by
action right). Colour shading indicates the preferred solution path for each method after a single visit
to every possible path.

Figure 3: The five MinAtar games used in the experiments (from left to right): Breakout, Space
Invaders, Asterix, Seaquest, Freeway.

4.1 A Motivating Example

We first consider a very simple example domain shown in Fig. 2, circles with numbers represent
different states while smaller circles represent actions. There are seven states in the state space:
S = {s1, s2, s3, s4, s5, s6, s7}, two actions (left and right) in the action space: A = {a1, a2}. Most
of dynamic transitions are deterministic, except in state s2, after taking action a2, there is 50%
probability the next state ends up with s5 and 50% probability ends up with s6: P (s2, a2, s5) =
P (s2, a2, s6) = 0.5. Leaf nodes (s4, s5, s6, s7) are terminal states where the agent will receive a
reward: R(s2, a1, s4) = +10, R(s2, a2, s5) = −10, R(s2, a2, s6) = +20, and R(s3, a2, s7) = −20.
Color shading indicates the decisions that different agents will make after a single visit to every
possible trajectory (orange for episodic control and grey for 1-step Q-learning). We can see that
after the agent discovers all possible trajectories, the episodic control agent is already able to follow
a sub-optimal trajectory starting from the initial state. However, the 1-step Q-learning agent only
back-propagates the reward signal from terminal states to their predecessors, which means the 1-step
Q-learning agent still is not able to make decisions in the initial state. The optimal policy for this
MDP is to take a1 in s1 and take a1 in s2 as well. By definition, episodic control will converge to a
sub-optimal policy that always takes a2 in s2 (shown in Eq. 3). With more updates, 1-step Q-learning
will learn the optimal state-action value (shown in Eq. 4) for each state-action pair, which will result
in the optimal policy.

Qec(s2, a1) = 10, Qec(s2, a2) = 20 (3)

Q∗(s2, a1) = 10, Q∗(s2, a2) = 5 (4)

Thus, we conclude that episodic control is fast but sub-optimal, and reinforcement learning (1-step
Q-learning in our case) is slow but optimal. There should exist an intersection point between these
two different methods where reinforcement learning surpasses episodic memory. One might ask why
we do not compare with (full-episode) Monte-Carlo backup. The 1-step back-up can utilize off-policy
learning to learn from data collected by other policies, which is more data efficient. We therefore aim
to combine the fast learning of EC with the data efficiency of 1-step off-policy learning.
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4.2 Switching

The previous example highlighted that EC may learn a solution faster, while RL may eventually
converge to a better solution. Therefore, we ideally want a switching mechanism, that transitions
from EC action selection to RL action selection. We need to decide both when and how to switch
between the two different ‘memories’.

Regarding the ‘when’, we propose to decide which memory to use for every episode. This way, we
ensure that action selection within the episode stays consistent. To determine which memory we will
use in a particular episode, we need to define a probability pec that specifies the probability that we
will use EC in the next episode. Obviously, we then select 2M-RL with probability 1− pec. Since we
favor the use of 2M-EC at the beginning and 2M-RL near the end, we want to gradually decay pec

from a high value to a lower value according to the equation:

pec ← pe + (ps − pe) · e−i/τ (5)

where ps and pe are starting value and end value of pec, i is the number of steps the agent takes
so far and τ is the temperature that controls the speed of decay. Smaller τ decays pec faster while
lager τ decays pec slower. In the ablation experiments, we also experiment with different scheduling
mechanisms.

During evaluation, we exploit knowledge stored in both memories in a greedy manner. However, we
still need to decide which memory to use during evaluation. The scores 2M-RL and 2M-EC obtained
during training are used as metrics to evaluate their respective performances, and the memory with
the higher recent score is selected for action selection during evaluation. More specifically, we keep
track off cumulative rewards of both memories during training, and the score (srl and sec for 2M-RL
and 2M-EC, respectively) is defined as the average cumulative reward over the last n episodes per
memory method. We fix n = 50 in this work. Thus, the 2M agent will choose among two memories
using Eq. 6.

2M←
{

2M-RL if srl ≥ sec,

2M-EC otherwise

(6)

4.3 Learning

To foster mutual improvement of the two memories, the collected data is shared between 2M-EC and
2M-RL. Regardless of which memory the data is collected by, it is used to update 2M-EC according
to Eq. 2, ensuring that 2M-EC is always up to date. On the other hand, since we use off-policy
reinforcement learning methods, data collected by 2M-EC can also be used to update 2M-RL. This is
implemented by maintaining a replay buffer, and all data collected during the training will be pushed
into it. 2M-RL is then trained (Eq. 1) every x timesteps (we use x = 10) by sampling minibatches
from the buffer. It should be noted that the value of pec indirectly determines the amount of data in
the replay buffer originating from 2M-EC, and thereby the proportion of such data used for training
2M-RL.

5 Experiments

We first present experimental results on a simple WindyGrid environment to demonstrate the efficiency
of the proposed 2M agent. Subsequently, we perform extensive experiments on five MinAtar [22]
games, namely Breakout, SpaceInvaders, Asterix, Seaquest, Freeway, as illustrated in Fig. 3. These
games present diverse challenges, such as exploration (Seaquest and Freeway), classical control
tasks (Breakout and SpaceInvaders), and so on. MinAtar is a simplified version of Atari Learning
Environment [2], which simplifies representations of games while still capturing general mechanics.
This allows the agent to focus on behavioural challenges rather than representation learning. Finally,
an ablation study is conducted to investigate the crucial choices of the proposed method.
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Figure 4: Left: An illustration of the WindyGrid environment. The agent (smile face) needs to
navigate from the starting point to the given goal (star). There is the stochastic wind that will (black
column with up arrows) blow the agent up and the agent gets a penalty when it reaches the trap (red
cell). Mid: Evaluation returns of different agents, EC learns very fast but converges to local optima
while RL learns slowly but converges to global optima. 2M learns faster (compare to RL) at the
beginning and has better asymptotic performance (compare to EC). Colors in the background indicate
memories used during evaluation, orange and grey represent the use of 2M-EC and 2M-RL. Right:
Learned Q-values summed across the entire state-action space, 2M-RL learns Q-values faster than
pure RL which is trained using monotonic RL data.

5.1 Proof of Concept Under Tabular RL Setting

The 2M agent integrates tabular 1-step Q-learning with episodic control to solve a WindyGrid task
(shown in Fig. 4). The WindyGrid instance we use here is 7 × 10 large, with a stochastic wind in
the 7th row and a trap where the agent will get a large penalty. The agent needs to navigate from the
initial state (3, 0) to the terminal state (3, 7).

The results presented in Fig. 4 demonstrate the performance of various agents. The mid figure shows
returns the agent obtains during the evaluation, while the right figure shows learned Q-values summed
across the whole state-action space. The orange line represents the EC agent, which achieves quick
learning and decent performance from the start but only has sub-optimal asymptotic performance.
In contrast, the grey line corresponds to the RL agent, which initially performs poorly but gradually
improves and eventually converges to the optimal solution. The blue line corresponds to the 2M agent,
which learns faster at the beginning compared to RL and achieves better asymptotic performance
compared to EC. The background colors indicate the use of different memories by the 2M agent
during the evaluation, with the agent using 2M-EC (orange) for evaluation at the beginning and then
switching to 2M-RL (grey) after approximately 25k steps.

Since the memories 2M-RL and 2M-EC share data, and 2M-RL is trained on data collected by both
of them, we investigate whether this approach has a positive impact compared to training solely on
data collected by pure RL. As Varun et al. [8] demonstrated theoretically and experimentally, learning
from data correlated to the optimal policy will results in lower complexity (which is an intuitive
result). If we assume the EC data is at least somewhat correlated to the optimal policy, we expect that
use of EC data in RL updates will lead to faster learning. We experimentally test this idea in Fig. 4.
The right panel of Fig. 4 shows that using mixed data to train the RL agent (2M-RL) can indeed result
in faster learning of state-action values compared to using data solely collected by RL. This suggest
EC data may actually improve RL sample efficiency.

5.2 Results on MinAtar Games

Next, we perform experiments on five MinAtar games, which also vary in the amount of stochasticity.
We optimize hyper-parameters over the values shown in Tab. 1, where the settings used for the final
results are highlighted in bold.

In the results presented in Fig. 5, the top rows depict the various memories the 2M agent selected
during the evaluation, whereas the bottom rows display the returns agents obtain. The performance of
EC (orange lines) and DQN (grey lines) is consistent with the findings observed in the toy example,
where EC learns quickly at the beginning but converges to sub-optimal solutions while DQN learns
slowly but has better asymptotic performance. 2M agents (blue lines) perform the best (comparably
to EC) at the beginning on all five games, and in most games, they also exhibit better asymptotic
performance (or at least equally good performance) compared to other baselines (except maybe for
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ϵ (for exploration) 0.1, 0.9
k (for k-NN in EC) 1,3, 10

ps → pe (for switching) 0.9→ 0.1,0.1→ 0.1,0.1→ 0.9
learning rate 0.001, 0.0001

Table 1: Tuned hyper-parameters, where the ones we use for the final experiments are highlighted in
bold. ps is the starting value from Eq.5

Figure 5: Results on MinAtar games: Breakout, SpaceInvaders, Asterix, Seaquest, Freeway. The top
row shows the relevant memory that the 2M agent chooses for evaluation: orange represents 2M-EC
and grey represents 2M-RL. The bottom row shows the returns obtained during training (running
independent evaluation epsisodes). The 2M agent either outperforms or is on par with all baseline
comparisons (EC, DQN and EMDQN). EC generally learns fast, but then reaches a plateau. 2M
learns equally fast initially, but then adopts the better long-term performance of RL.

Asterix). In Asterix, the 2M agent underperforms EMDQN (green lines), but is still better than DQN
and EC.

During the evaluation, most 2M agents demonstrate a preference for using 2M-EC initially and
then switching to 2M-RL over time. In Freeway, the agent continually switches between 2M-EC
and 2M-RL, suggesting a mutually beneficial relationship between these two memories. However,
in Breakout, the agent consistently favors to use 2M-EC. This may be attributed to the fact that
stochastic dynamic transitions have a less pronounced impact on performance in this game, with
the most critical time step being the one at which the paddle must bounce the ball. We hypothesize
2M-RL can help 2M-EC escape local optima and then 2M-EC can rapidly learn improved solutions
and continue to progress. To test this hypothesis, we need to check whether a 2M agent that does not
share collected data between both memories indeed 1) has worse performance, and 2) prefers RL in
the long run, instead of getting to a more optimal EC solution.

Fig. 6 shows the performance of an 2M agent with data sharing enabled and disabled. With data
sharing (2Mw/DaS), the agent mostly prefers to use EC during evaluation (top-left figure), as expected
from Fig. 5. When we deactivate data sharing (2Mw/oDaS, two memories are only trained using
data collected by the corresponding memory separately), the 2M agent only prefers 2M-EC at the
beginning and then sticks to 2M-RL (bottom-left graph of the figure). The performance graph on
the right of the figure confirms these results. Without data sharing, 2M does not reach the same
performance (blue line stays above the orange line). The circles show the performance of 2M-EC
at the end of training for both methods. Without data sharing, 2M-EC (the orange circle in Fig. 6)
converges to a sub-optimal solution. With data sharing enabled, 2M-EC (the blue circle in Fig. 6) has
a way higher performance. This observation provides evidence to support the aforementioned notion
that 2M-RL and 2M-EC complement eachother.

We also conduct two groups of ablation experiments to study the design choices in our work. First, we
would like to investigate the impacts of data sharing. Deactivating data sharing (2Mw/oDS), resulting
in 2M-RL being solely trained on data collected by 2M-RL and 2M-EC being solely trained on data
collected by 2M-EC. This transforms our proposed method becomes a ‘scheduler’ that schedules the
training between two distinct models and uses the better one for evaluation. Second, we aim to study
different ways of scheduling pec. Specifically, we examine three different scheduling approaches:
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Figure 6: Left: Switching schedule of 2M
agent with data sharing (top) and without
data sharing (bottom) during evaluation on
Breakout. Right: Returns two different 2M
agents are able to get in evaluation. The
final performance of 2M-EC is represented
by coloured circles. We see that with data
sharing, EC reaches a return of 6, while
without data sharing, EC only manages to
reach a return of 3.

decayed scheduling (2Mw/DS), constant scheduling (2Mw/CS) and increased scheduling (2Mw/IS).
Detailed results can be found in Fig. 7 in Appendix B.

To sum up, our experimental results demonstrate that the 2M agent surpasses its constituent com-
ponents, i.e. a pure reinforcement learning approach (Q-learning in tabular settings and DQN [13]
in deep RL settings) and a pure episodic memory approach (MFEC [3] in both tabular and deep
RL settings). Furthermore, our proposed method exhibits better performance than a state-of-the-art
memory-augmented reinforcement learning method EMDQN [11]. Since the proposed framework
allows for the integration of various pure EC and RL methods, we only compare the performance
of the 2M agent with those methods that are integrated into it in this work. Therefore, we do not
compare our results with other pure episodic memory and reinforcement learning approaches. Lastly,
we conduct ablation studies to investigate the impact of two essential design choices: the utilization
of data sharing for the mutual improvement of the memories, and the scheduling of pec for switching
between the two memories.

6 Conclusion and Future Work

In this work, we proposed a novel approach, termed Two-Memory (2M) reinforcement learning
agent, which integrates two distinct learning methods, namely non-parametric episodic memory
and (parametric) reinforcement learning. This approach capitalizes on the advantages of both
methods by leveraging the episodic memory’s rapid starting and the reinforcement learning’s superior
generalization and optimality to create an agent that achieves higher data efficiency than the individual
methods. Experimental results show that 2M matches or outperforms both DQN and EMDQN on
a range of MinAtar games. In addition, we show that these two distinct memory modules may
complement eachother, leading to even better final performance.

For future work, it would be interesting to automatically determine when data sharing is useful, for
example based on the discrepancy between both memories. Another clear direction to improve the
2M agent could be an adaptive scheduling mechanism to switch between 2M-EC and 2M-RL, instead
of the hand-designed decay schedules used in this work. Moreover, combining stronger episodic
memory methods (such as NEC) with off-policy reinforcement learning methods could lead to further
improvements in performance. In our work, we uniformly replay data from the replay buffer to
train the 2M-RL component, but a more sophisticated replay strategy, such as prioritized experience
replay (PER), may further enhance performance. Overall, our proposed approach provides a general
framework for combining two fundamentally different approaches to sequential decision-making,
combining their respective strengths.
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A 2M algorithm

Algorithm 1: Two-Memory Reinforcement Learning

Input: Environment env, non-parametric episodic control agent ec, parameterized reinforcement
learning agent rl, Two-memory agent 2M, replay buffer B, probability pec, exploration factor ϵ
Gec ← [ ] {initialize return list of ec}
Grl ← [ ] {initialize return list of rl}
2M-RL← rl
2M-EC← ec
while training budget left do
s← reset the env
done = false
τ ← [ ] {initialize episodic trajectory}
if ∆ ∼ U(0, 1) < pec then

2M← 2M-EC {2M switches to EC}
else

2M← 2M-RL {2M switches to RL}
end if
G← 0
while not done do

execute action a selected by 2M based on s with ϵ-greedy exploration
observe reward r and next state s′ in env
store (s, a, r, s′) to B and τ
s← s′

G← G+ r
update 2M-RL using D according to (1) if needed, D ∼ B

end while
update 2M-EC using τ according to (2)
if 2M is 2M-RL then

add G to Grl

else
add G to Gec

end if
update pec {decay or increase or consistent}

end while

B Ablation study

Intuitively, data sharing can be helpful since each memory will get different data from another memory,
hopefully, they could also learn from each other. It should result in a better performance compared
to only training the agent on its own collected data. In fact, such sharing has different impacts on
different games, shown in Fig. 7. In Seaquest, data sharing improves 2M agent’s performance, and
harms the performance of the agent in Asterix. To understand the reasons for these opposite impacts,
we separately track the performance of 2M-EC and 2M-RL during the training, and final performance
are represented by circles and triangles in Fig. 7 and larger size represents more use of 2M-EC (larger
ps) during the training. In Asterix, data sharing pulls down the performance of 2M-RL (blue triangles
are always below orange ones), and training 2M-RL on more data collected by 2M-EC leads to even
worse performance (the large blue triangle is way below the large orange one), indicating that data
collected by 2M-EC is actually harmful for training 2M-RL in this game. Conversely, in Seaquest, data
sharing improves the performance of 2M-EC (blue circles are always above orange ones), which again
indicates that 2M-RL can help 2M-EC escape from local optima. However, overusing data collected
by 2M-EC to train 2M-RL also leads to worse performance (the large blue triangle is way below the
large orange one). All in all, 2M-RL should not use too much data collected by 2M-EC. Although
we show that such training is helpful to learn the optimal state-action values when collected data is
correlated to the optimal policy, this assumption is not always satisfied. Meanwhile, 2M-RL can help
2M-EC escape from local optima but not always. We presume it helps when stochastic transitions

11



have fewer negative impacts, then 2M-EC is able to catch improved solutions provided by 2M-RL. For
example, in Asterix, there are many enemies and the agent dies immediately when it touches enemies,
meaning the agent will more likely die if a single wrong (sub-optimal) action is made. Therefore,
once 2M-EC discovers a sub-optimal trajectory with a very high return (luckily manage to survive for
a long time, like ending up with s6 in the motivating example in Fig. 2) with a tiny probability, it will
stick to it. Then it is difficult for 2M-EC to escape from local optima even though improved solutions
are provided. We leave more systematic investigations on this phenomenon for future work.

Figure 7: Performance of 2M agents with and without data sharing on Asterix (left) and Seaquest
(mid). Results are averaged over 2 different settings, one is with larger pec and one is with smaller
pec. Data sharing has different impacts on these two games. Circles represent the final performance
of 2M-EC while triangles represent the performance of 2M-RL. The larger size means the larger value
of pec during the training. Right: Performance of 2M agents with different scheduling mechanisms
on Seaquest. The one with the decayed scheduling mechanism works the best while other two
mechanisms have similar performance.

Next we examine how different scheduling mechanisms affect performance. The 2M agent with
decayed scheduling (2Mw/DS) will initially give a higher preference to use 2M-EC for data collection
during the training, then gradually shifts towards 2M-RL. On the contrary, increased scheduling
(2Mw/IS) will start with a strong preference for using 2M-RL, then gradually switch to 2M-EC.
Constant scheduling maintains a constant preference for 2M-EC and 2M-RL throughout the training
process. Given that 2M agents with 2Mw/DS perform the best or one of the best on all games, we only
present the performance on Seaquest as a representative in Fig. 7 (right). The results demonstrate that
the agent with 2Mw/DS outperforms the other two scheduling mechanisms explicitly.
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