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Abstract

Finding realizations in R? of polyhedral maps on compact connected surfaces is considered a
hard problem in discrete geometry because of the lack of general solution methods. Heuristic
approaches have been proven efficient in finding polyhedral embeddings of orientable vertex-
minimal surfaces of genus g by minimizing their intersection length; however, they can still
be challenging to implement due to large configuration spaces, and can struggle avoiding
local minima.

This article studies closed connected cubical surfaces; surfaces made from a collection of
faces of a 5-dimensional cube. The author proposes a Reinforcement Learning (RL) algo-
rithm to minimize the number of face intersections of orientable and non-orientable cubical
surfaces through 5-dimensional rotations or modifications on the perspective projection dis-
tances; yielding immersions that are perspective projections of a unitary 5-dimensional cube.
Polyhedral embeddings of orientable cubical surfaces of genus ¢ = 1,2 and realizations of
the Projective Plane and the Klein Bottle with the smallest possible number of face inter-
sections are obtained. The agent’s optimal strategy is visualized using three-dimensional
animations.

1 Introduction

1.1 Polyhedral Realizations by Triangles

Compact Surfaces are 2-dimensional topological manifolds and are completely classified. There are two
infinite families of compact surfaces, the orientable surfaces of genus g > 1, which are torus with g
"handles", and the non-orientable surfaces of demigenus k£ > 1. There is also the sphere which is orientable
and has no "handles". Topological manifolds are often too general to work with directly; for this reason, it is
often essential to assume the triangulability of manifolds. The problem of finding a minimal triangulation
of manifolds has been widely studied and has been completely solved for compact surfaces. In the context of
simplicial surfaces, a minimal triangulation can be defined as a triangulation using the minimal number
of vertices, edges, and faces. It can be shown using Euler characteristic that the minimal triangulation in
each of these three meanings of minimality is realized by the same triangulation up to isomorphism.

A polyhedral map on a surface is a finite set of polygons with at least three sides (usually triangulations)
such that the intersection of any two distinct faces is either empty, a common vertex, or a common edge.
Given a polyhedral map, it is natural to try to visualize it in R? as a three-dimensional polyhedron or as a
projection of a polytope in R™ such that every polygon is the convex hull of its vertices and two polygons are
either: disjoint in R™, they intersect at a common edge and are not coplanar, or they intersect at a common
vertex. This polyhedron is called a polyhedral realization.

A (topological) embedding is a continuous mapping that is a homeomorphism onto its image, while an
immersion is a continuous mapping that is locally a homeomorphism. The image of an embedding doesn’t
have self-intersections, while the image of an immersion may have. From algebraic topology we know
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that all orientable surfaces can be embedded in R®, while non-orientable surfaces can be embedded in R*
but only immersed in R3; however, for an orientable polyhedral surface, its embeddability depends on its
defining triangulation; certain triangulations of orientable surfaces (usually minimal triangulations) are not
realizable in R® as shown by Bokowski & Guedes de Oliveira| (2000). Consequently, in R3, any polyhedral
realization of a non-orientable surface will have self-intersections, while polyhedral realizations of orientable
surfaces without self-intersections are in some cases possible.

Hougardy et al.| (2006]) found polyhedral embeddings of surfaces of genus g = 3,4 and examples of polyhedral
realizations of genus g = 5 with 12 vertices. Their approach minimizes an intersection segment functional,
which is the sum of the lengths of all face intersection lines occurring in the realization. Their technique can
be described as a local search process, meaning that the final embedding is at most T steps away from the
initial immersion. For a given triangulation, the algorithm consists of assigning its vertices random integer
coordinates in R?, ensuring they are in general position to avoid degenerate triangle intersections. Then, a
vertex v € R? is randomly selected as well as a coordinate direction +X,+Y or +Z in which v is moved an
integer step. If the resulting set of coordinates is in general position and the new value of the intersection
segment functional is strictly smaller than before, the movement is accepted and the next step is executed;
otherwise, the movement is discarded and the process is repeated with the previous set of coordinates. The
algorithm ends if the intersection segment length drops to zero, which means that a realization has been
found. If after T steps no realization has been found, then the vertices are assigned new initial random
coordinates in R3 and the algorithm resets.

Brehm & Leopold| (2016)) extend this algorithm to find realizations of non-orientable surfaces; that is
immersions with flat full-dimensional faces. Their improvement consists of modifying the objective function
to minimize the edge intersection length of the faces contradicting an immersion, precisely the intersections
of faces adjacent to a vertex. Such a vertex is called a pinch-point; a kind of surface singularity that
violates the definition of an immersion. With this methodology and imposing suitable symmetry conditions
that reduce the number of parameters and speed up the search, they found numerous new realizations of
non-orientable surfaces with the minimal (or few) number of vertices. Some of them include the Projective
Plane with one or two handles and the Klein Bottle with one or two handles. Before this improvement, the
only vertex-minimal realizations of non-orientable surfaces were obtained by explicit construction; [Brehm
(1990) constructed examples for the projective plane with 9 vertices, and (Cervone| (2001) found examples of
the Klein Bottle using 9 vertices; both proving that realizations with fewer vertices can’t be constructed.

It is natural to ask whether it is always convenient to follow a greedy strategy or if, for certain surfaces and
initial vertex coordinates, a solution can not be found without needing to increase the intersection length
functional at some step. Here is where the idea of using Reinforcement Learning (RL) comes into play,
because this technique can capture whether, in the long run, it is worth increasing the intersection segment
to find a better realization or an embedding.

1.2 Polyhedral Realizations by Quadrilaterals

In their article on polyhedral surfaces of high genus, [Ziegler| (2008)) study in particular cubical surfaces;
two-dimensional cubical complexes of the n-dimensional cube homeomorphic to compact surfaces.

Govc| (2024) gives a complete classification for n = 6 in terms of their genus g for orientable cubical surfaces
and their demigenus k for the non-orientable. Non-orientable cubical surfaces first appear for the cube of
dimension n = 5, however they appear also as surfaces in the 6-cube with one coordinate fixed. As with
triangulations of closed surfaces, one can ask what the minimal cubical embedding of a given cubical surface
is. Still, here minimality has to be specified more carefully since minimizing a cubical embedding can refer
to vertices, edges, faces, or the dimension of the cube. In the following, a minimal cubical surface will
refer to a surface that can not be realized with less faces from the n-dimensional cube Q™.

Quadrilateral realizations in R3 of orientable and non-orientable 5-dimensional cubical surfaces are not
yet studied. In this article, following the ideas in [Hougardy et al.| (2006)), the author proposes a first approach
using RL to realize perspective projections of 5-dimensional cubical surfaces in R? with the smallest number
of face intersections in R3, that is, the smallest number of pairwise intersecting quadrilaterals in R3.
Polyhedral embeddings for orientable cubical surfaces of genus g = 1,2 are obtained. Since the objective
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is to minimize face intersections, pinch-points are allowed; such a realization is instead called a singular
realization. Singular realizations are obtained for orientable cubical surfaces with ¢ = 3,4,5 and non-
orientable surfaces with demi-genus k& = 1,2,3. In particular, the Projective Plane (k = 1) and the Klein
Bottle (k = 2) here obtained can not be realized with less face intersections. They can be thought of as
quadrilateral models of the cross-cap disk and the pinched torus Klein Bottle respectively, coming
from perspective projections of a unitary 5-dimensional cube.

The realizations are obtained by projecting a realization on the 5-dimensional unitary cube to R? via suc-
cessive perspective projection maps. We assume that for a given initial rotational orientation of the
cubical surface around the origin in R®?, the n-dimensional camera is set at a position ¢; € R®; from
which projection rays extend to the 5-dimensional realization onto a projection hyperplane ps; € R>. The
result of this first projection is a realization in R*, therefore, we can repeat the same process with a camera
¢4 € R* and a hyperplane p; € R?* to obtain a realization in R3.

The initial projection in R3 has an initial number of face intersections. The RL agent’s actions consist of
applying a 5-dimensional rotation or changing the camera positions (¢5 and ¢4) in the perspective
projections, sequentially modifying the number of face intersections. Since the realizations here obtained
are always perspective projections of faces of a unitary 5-cube, vertices of the unitary 5-cube do not move
individually and in integer steps, like in [Hougardy et al. (2006) and Brehm & Leopold| (2016)); instead,
they move according to a 5-dimensional e-degree rotation around some rotation plane in R°. However, this
restriction on the movement of the vertices yields polyhedral realizations with notable symmetries, although
deformed by perspective projection.

1.3 Main Contributions

The main contributions of this study are the following:

1. Reinforcement Learning algorithm to minimize face intersections of a quadrilateral
realization. The author proposes an RL approach to find realizations (allowing pinch-points) of
5-dimensional orientable and non-orientable closed cubical surfaces with the minimum number of
face intersections.

2. Singular quadrilateral realizations of the minimal cubical Projective Plane and the cubical
Klein Bottle with the minimum number of face intersections achievable (3) and quadrilateral
embeddings of minimal orientable cubical surfaces of genus g = 1,2 are found.

3. Animations of multiple face-minimization sequences. For each cubical surface C, the trained
models return a sequence of steps consisting either of a camera modification or a 5-dimensional
rotation, which can be used to build animations. The optimal strategy has the property that it
allows a face intersection increase if necessary to find a realization. The author gives a link to the
animation sequences in Section

2 Background

2.1 Cubical Complexes and Surfaces

Cubical complexes have their origin in the beginning of the 20th century, with the
work of Henri Poincaré and Solomon Lefschetz. The main definitions on cubical
complexes and cubical homology can be consulted in Kaczynski et al.| (2004), they
serve as the mathematical foundations to define a cubical surface; a type of closed
polyhedral surface made out from faces of an n-dimensional cube studied by
(2008). To define formally a cubical surface, denote the n-dimensional unit cube by
Q" = [0,1]" = [0,1] x -+ x [0,1] (n times), and its set of vertices by Qf. Each
vertex v € Q" can be represented by an element of the set of all n-tuples with binary
entries {0,1}", for example, the vertices of the unit square are represented by the
set of tuples {(0,0),(0,1),(1,0),(1,1)} € R2. The one-skeleton Q7 is a graph with

Figure 1: F, on a 4-
3 d Cubical Surface home-
omorphic to a sphere.
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vertex set Qf with an edge e € Q7 between two vertices if and only if they differ in exactly one coordinate.
Regarded as a set, Q7 consists of the set of vertices v and edges e of Q™. The two-dimensional skeleton
of Q™ is denoted by )% and consists of the set of vertices @, the one-dimensional skeleton @7, and all
its two-dimensional faces f € Q™. This construction can be continued up to the n-cube itself @}, and the
elements of all the preceding sets are called the cells of Q™. Every cell of Q™ is a product of vertices and
intervals, and therefore can be represented combinatorially as an element of {0, 1,2}"™, where a 2 in an entry
implies that in the product, the whole unit interval is considered. Thus, every sub-complex of Q" can be
represented as a subset of {0,1,2}™. A subset of Q% is called a two-dimensional cubical complex which
in the following is denoted by C, with sets of vertices, edges, and faces denoted by Cy, C1, and Cs respectively.
The vertex figure F, of a vertex v € Cy is the graph whose nodes are the edges in C; having v as an
endpoint and where two nodes e, e’ € C; are joined by an edge if there is a face f € Cy with ¢, e’ as two of
its edges. A closed cubical surface is a two-dimensional cubical complex C in which every point has an
open neighborhood homeomorphic to an open disk. This condition is equivalent to requiring the following
two conditions on C: (1) Every edge is shared by exactly two faces, i.e., for all e € Cy, F. = 2. (2) The vertex
figure F, of any vertex v € Cy is a cyclic graph.

For dimension n = 4 only orientable cubical surfaces can exist, and the quadrilateral realizations in R3 of
each cubical surface representative can be consulted in Estévez et al.| (2023). In Section [5] realizations (some
of them with pinch-points) of the perspective projections of minimal 5-dimensional cubical surfaces for genus
g (1 < ¢ <5)and demigenus k (1 < k < 3) are presented. Non-orientable surfaces with k = 1 and k = 2 are
equivalent to the Projective Plane and the Klein Bottle.

2.2 Face-Intersection minimization Process

In this work, given a 5-dimensional cubical surface C projected to R® by perspective projection, the author
finds quadrilateral realizations (allowing pinch-points) that minimize the face intersection number; that is
the number of pairs of faces that have a non-empty intersection. This is a slightly different approach from
the one from [Hougardy et al.| (2006]), where the intersection segment functional is the quantity to minimize.
However, instead of minimizing the face intersection number by moving the vertices v € C individually, here
they move according to the following kinds of linear transformations.

Rotations are an example of an isometry, they preserves Euclidean distances, so after applying a unitary
5-cube some rotation, the result is a unitary 5-cube. Consider two canonical vectors e, el?) € R5 and let
X;; C R™ be their span. In R™ there are () = n(n — 1)/2 possible pairings e, e() € R® or equivalently
possible rotation planes X; ; yielding 10 possible X;; for n = 5. A 5-dimensional rotation by an angle
¢ € [0,27) fixing the plane X; ; is called a 5-dimensional elemental rotation and can be represented by
an elemental rotation matrix R; j(¢) € SO(5); elemental rotations generate all possible rotations in R?, and

some aspects like their non-commutativity or Gimbal-Lock are discussed in Appendix

Perspective projection is used to visualize n-dimensional objects in R3 preserving linear segments from
the n-dimensional object; it projects edges (line segments) e € Q7 into line segments L C R? and faces (plane
segments) f € Cy into plane segments 7' C R3. It is a natural choice when intersections from projected line or
plane segments in R? must be computed. From a camera position c,, € R", it maps a vector a € R" \ {c}
to an orthogonal hyperplane p € R", returning a projected vector b € R"~!. Perspective projection is then
denoted by Pr,(a,,c,,e,) : R — R*"1 mapping (a,, c,, e,) — b and its associated linear transformation
is calculated as in Algorithm [2] Note that projected vertices v € C move when affecting the camera position
cs € R (resp. ¢4 € R*). A further discussion can be found in Appendix

After rotating C by a "small" e-degree rotation R; ;(€) or affecting the camera positions c5 +8e® or ¢y +6e®
by a "small" distance d, the projection of C has a new orientation encoded by a vector s; € R?7 (see Section
B) and some face intersection number Facelnts, parametrized by s;. The task is to find a sequence
of transformations leading to a final state s where Facelnts, < FExp, where Exp € Z" is the expected
minimum number of face intersections. Moreover, the realization must have non-overlapping edges Qf
(see Section . Figure [2| shows an initial realization of cubical Projective Plane with Facelnts, = 17
being transformed into a realization with FacelInts, = 3 shown in Figure [26] which is the smallest number
of face intersections possible for this cubical surface. This discussion will be formalized in Section [4]



Under review as submission to TMLR

., Y Y .
—R;13(5) —Ri13(5) —Ra13(5) —Ri13(5) —Ri3(5)

FaceIntsO =17 FaceIntS1 =20 FaceInts2 =18 Facelnts3 =17 Face]nt34 =17

S

R13(5) R13(5

7R13 C4[3]+5 RO4(5
Facelnts; = 16 Facelntsg = 16 Facelnts, = 16 Facelntsg = 15 Facelntsy =13
C4[3]+6 —R04 —Ro4 —R04 04(5
Facelnts,, = Facelnts;, = Facelnts,, = Facelnts,, = Facelnts,, =
16 16 14 12 11
" — “ 7 ‘ — ‘ — ‘ —
—R;13(5) —Ro4(5) —Roa(5) ca3]+0 —Ro4(5)
Facelntg = Facelntg =
llace Mls1s uace Nts1e Facelnts,, =4 Facelnts,; g =4 Facelnts,, = 4
‘ — ‘ — — =
—Ro4(5) —Roa(1) —Ro4(1) —Ro4(1)
Facelnts,, =4 Facelnts,, =3 Facelnts,, =3 Facelnts,, =3 Facelnts,, =3



Under review as submission to TMLR

Figure 27: Cubical surface with g = 5 and Facelnts;, =16  Figure 28: Cubical surface with g = 5 and Facelnts, = 16
(side view). (top view).

2.3 Orientable Cubical Surfaces

Orientability of a polyhedral surface does not imply its realizability in R?, the latter depends also on the
number of faces building it. An orientable cubical surface with g = 1 can be realized in the 4-cube as shown
in [Estévez et al. (2023)), so it can also be realized in the 5-cube as in Figure This serves as a first test
for the algorithm here presented. On the other hand, a cubical surface with g = 2 can only be constructed
on cubes of dimension n > 5, and the RL algorithm successfully finds a polyhedral embedding in R? shown

in Figure

Figures [27] and [28| show a singular realization of a cubical surface with ¢ = 5. This is a (double) perspective
projection of a unitary 5-cube, and despite being a singular realization it has some similarities with the
"deformed" realization of a g = 5 cubical surface built by (2008), where "deformed" means that the
realization does not come from a perspective projection of a unitary 5-dimensional cube since some vertices
are allowed to move independently. The deformation induced by perspective projection also plays a role in
impeding some faces from intersecting. This was already noted by Hammack] (2024)) who builds a realization
of a g = 5 cubical surface by introducing an "informal perspective" in which instead of calculating perspective
projection with one camera point, it is allowed to "split" into two camera points.

2.4 Non-Orientable Cubical Surfaces

2.4.1 The Real Projective Plane

The real Projective Plane is a closed non-orientable surface that classifies all the lines in R3 passing through
the origin. There are multiple singular and non-singular immersions of this surface in R? like the Boy’s
surface or the Cross-cap disk model which is a singular immersion because it contains two pinch-points.
However, the cross-cap disk model has a relevant property for this work; it is the singular realization that
minimizes the intersection-line components having just one component. It can be built by gluing the bound-
ary of a cross-cap with a sphere with a disk removed as explained by [Francis & Weeks| (1999). One can expect
that the singular realizations of the cubical projective plane minimizing face intersections are quadrilateral
realizations of a cross-cap disk model, and this is the case of the realization found by the RL algorithm in
Figure [32] This singular realization is built gluing a quadrilateral cross-cap shown in Figures [29] and [30]
with a quadrilateral "disk" shown in Figure [31] Note that in this singular realization there exist only one
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Figure 32: A cubical
cross-cap disk model of the
Projective Plane.

Figure 29: A cubical Figure 30: A cubical Figure 31: Three faces
cross-cap (front). cross-cap (back). homeomorphic to a disk.

intersection-line component composed of 3 line segments, that is Facelnts, = 3, and by the discussion in
Appendix [A7] this is the lowest number of face intersections that can be obtained for any realization of the
cubical Projective Plane.

2.4.2 The Klein Bottle

The Pinched-Torus Klein bottle is a singular realization of a Klein Bottle in R? which can be thought
of as a genus-1 torus whose boundary is flattened, allowing its external side to connect with the internal
side through the intersection-line. Another interesting construction consists on joining two Mobius Strips
along their boundaries. Figure [33] shows a cubical Mébius Strip made up from 6 faces of the 5-cube. It is
possible to find a Mobius Strip in the 4-cube as shown in Estévez et al. (2023), however the Klein Bottle
can only be built in cubes of dimension n > 5. Figure [35] shows the two disjoint Md&bius strips in Figure
joined along their boundaries by the faces in gray. Note that in this singular realization there exist only one
intersection-line component composed of 3 line segments, that is Facelnts, = 3, and by the discussion in
Appendix [A7] this is the lowest number of face intersections that can be obtained for any realization of the
cubical Klein Bottle.

3 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning technique proposed by |Sutton et al.|(2018). In RL, an
algorithm called an agent interacts with its environment £ by performing a sequence of actions maximizing
a cumulative reward based on feedback received for each action taken. More specifically, at each time-step
t the agent takes as input information from the environment called a state s; € S (this is the information
that the agent knows about £) and outputs an action a; € A which is then passed to &; returning a new
state s;11 € S and a reward r; for taking a; at s;. Future rewards are multiplied by a discount factor
v € [0,1) at each step. The expected discounted return at step ¢ is defined as R; = Zz::t At A
policy 7 : § — P(A) is a map from the states to the set of probability distributions over actions mapping

Figure 33: A 6-faced cu- Figure 34: Two disjoint .F‘l.gure 35:. Both coples F.lgure 36: ‘Cublcal
bical Moebius Strip cubical Moebius Strips join to build a cubical pinched-torus Klein Bot-
’ ’ pinched-torus Klein Bottle. tle.
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s — 7(a|s), where 7(a|s) is the conditional probability of selecting the action a at the state s. The state-
value function following a policy 7 is then defined as v,(s) = E, [rt + yrip1 + WQTHQ + st = s]; that is
the expected value of R; by following . The action-value function following a policy 7 defined as

Qﬂ(&a) = E‘ﬂ' [Rt|$t = S,a¢t = (1,7'('] , At ~ 7T('|St) (1)

is the expected value of R; by taking an action a € A and following 7 afterwards. Let II be the set of all
policies, the optimal action-value function is the maximum expected value of R; achievable by following
any 7 € IT after performing a € A at s € S; that is Q*(s,a) = mazren{Ex [Re|s: = s,at = a, 7|}, ar ~ 7(+]sz).

3.1 Proximal Policy Optimization

Proximal Policy Optimization Algorithms (PPO) are a family of RL algorithms that compute an estimation of
the policy gradient and plug it into a stochastic gradient ascent algorithm. Among this family of algorithms,
we use the Clipped Surrogate Objective algorithm proposed by |Schulman et al| (2017)), which attempts to
maximize the objective function LEFF () with actor network weights 6 and critic network weights ¢. The
actor network takes as input a state s; and outputs an action as41, while the critic network takes as input a
state s; and outputs the value V,(s;) of the state s;. Let V,,(s;) be the this state-value function v, (s), and
ry = mo(ae|st)/mo,,,(ai|s:) the probability ratio, the advantages at state s; are calculated as

At = Qﬂ%ld (Stv at) - ‘/9014 (St)7 (2)

and the clip objective function to maximize is
LEEIP(9) = By [min(ri(0) Ay, clip(re(6),1 — €, 1 4 €) A,)], (3)

where in common practice € = 0.2. The actor and critic network weights are updated independently by
stochastic gradient descent; in this case ADAM optimizer by Kingma & Ba| (2017)).

4 Minimizing Self-Intersections of Cubical Surface Realizations

A Markov Decision Process (MDP) is a tuple M = (S, A, R, P,7) where S is a state space, A an action
space, P a transition probability function, R a reward function and € [0, 1) a future reward discount factor.
Solving M means finding a policy 7 over A yielding the supremum of Ry, that is finding 7 maximizing at
each state the state-value function v,(s).

Finding quadrilateral realizations of n-dimensional cubical surfaces minimizing face intersections can be
formulated as an MDP. For the rest of this article, fix n = 5 and consider a 5-dimensional cubical surface
C. The quadrilateral realization of a cubical surface C in R? is expected to have a positive number of face
intersections, especially if C is non-orientable. To minimize them, at each state s; € S, the face intersection
number Facelnts, € Z7" is calculated as in Algorithm It determines whether the projection of two faces
f1, f2 € C intersect by dividing the projection of each face into two triangles {17, T4} for each f; and
using triangle collision detection for each possible pairing of triangles T}, sz. Appendix describes the
Algorithm by [Méller| (1997) determining whether two triangles T7,T> C R3 intersect and the coordinates of
their intersection line or point. A Python implementation of the algorithm by [NeonRice| (2020) is used in this
work. In general, for C orientable or non-orientable, it is unknown how few face intersections one can achieve;
however an expected minimum face intersection number Ezp € Z™ can be set as an objective. At s; the
agent attempts to modify Facelnts, with respect to the previous number of face intersections Facelnts,
from two different approaches, depending on the exact parameter Exact. If the parameter Exact = True,
the agent attempts to strictly set Facelnt,, = Exp, otherwise it is enough to set Facelnts, < Exzp. If some
of these conditions is achieved, the task enters a final stage. Consider the edges e € Q} of the 1-skeleton.
After projecting each edge, the resulting line segments are assigned a width w > 0 € R and two projected
edges Ly 2, L34 C R3 overlap if the shortest line segment connecting them Loy C R3 has length [Lap| <w. A
formal definition of the number of edge overlaps Overlap,, € Z™ at state s; is presented in Appendix
The agent attempts to find a state s; at which Overlaps, = 0 and (Facelnts, = Exp or Facelnt,, < Exp).
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4.1 State Space

The parameters needed to build the realization of a 5-dimensional cubical surface C in R? are of two kinds.
The 5-dimensional (resp. 4-dimensional) camera distance ds € [—15, —2] € R (resp. d4 € [—15,—2] € R) is
a scalar value representing the 5-dimensional (resp. 4-dimensional) camera position ¢5 = (0,0,0,0,ds) € R®
(resp. ¢4 = (0,0,0,d4) € R*). The surface C is projected to R? as explained in Algorithm [2] by fixing the
projection hyperplane at the position es = (0,0,0,0,0) € R® (resp. e4 = (0,0,0,10) € R*) with respect
to the origin. Appendix [A-3] describes how the orientation of C around the origin in R™ is described by a
general 5 by 5 rotation matrix R = (R, ;) € SO(5) with entries (—1 < R; ; < 1). Therefore, at any
time-step ¢ the projection of C is parameterized by a state

sy = (ds,dy, Ry 1, Ry 2,..., Rs. 4, Rs 5) € R*", (4)

where the first two entries give the agent information about the camera distances and the rest are the entries
of the general rotation matrix R = (R; ;) (see Appendix |A.3]).

4.2 Action Space

The action space A describes how the agent can interact with its environment £. The agent receives a state
s¢ € S from & and selects one of the possible actions a € A which then takes it to a new state syy1. This
action space used here consists on the discrete set A := {0, 1, ..., 17}; each number executes either a camera
modification or a 5-dimensional elemental rotation. An elemental rotation is a rotation around one
of the 10 rotation planes in R%; and they are explained in detail in Appendix Each action a € A is then
identified with a vector as follows:

ActVec ={0: 6eM) 1: —geM, 2:6e? 3: —je? 4:ee® 5: —ee®, ... 16:ee1? 17: —ce1?}, (5)

where e, (1 <i < 12,i # 3,4,7) are the canonical basis vectors in R'2, and d,¢ > 0 € R are small positive
real numbers. The actions corresponding to ¢ = 3,4,7 are discarded, because they correspond to rotations
in planes X1, Xo,2, X1,2 (equivalently Z,Y, X) which don’t yield any change on Facelnt,, or Overlaps,.

Actions a € {0,1} (resp. a € {2,3}) modify the distance ds (resp. d4) of the 5-d (resp. 4-d) camera by a
small distance § > 0 € R. To modify the 5-d (resp. 4-d) camera position we add +§ to the last coordinate
of the camera vector, that is cs5[4] < c5[4] + ActVecla][0] (resp. c4[3] < ca[3] + ActVecla][1]).

Actions a € {4, ..., 17} apply a small rotation-step e > 0 € R in one of the planes X, ; C R®. The rotation-
step is taken as € = « degrees if at the current state s; it holds that FaceInt,, > Exp and € = 1 degree if
at the current state s; it holds that Facelnts, < Exp. Section [5| shows training plots for each surface with
a =1,2,5 each, which allow to determine the best rotation-step size for each of the surfaces we study here.
The change from € = o to € = 1 is intended to explore the environment in a wider extent but switching
to small steps when the agent is close to a solution. To rotate C by an action a € {4,...,17} the entries
describing the elemental rotation ActVecla][2,:] € R0 are selected, and the corresponding elemental rotation
matrix S = RotMat(ActVeclal[2,:]) is calculated as in Algorithm [1] Then S is multiplied from the left of
the previous rotation matrix R, and R < S - R is assigned. The new entries (R, ;) are passed to the next
state s¢41 € S as in Equation [4]

4.3 Reward Functions

Sparse rewards are received by the agent after achieving a polyhedral realization while dense rewards are
received at each step for approaching it. In this work a combination of both is used and the reward function
is the sum of the following.

Reward [f] prevents the agent from taking two consecutive inverse actions ay, a;41 that yield no change in the
state; for example rotating +e¢ after rotating —e on the same plane X ;. If this is the case the agent receives
areward r; = —1.

The camera parameters d4 and ds can range in the closed interval [—15, —2] € R. Similarly any rotation
matrix R = (R, ;) € SO(5) has entries within the interval [—1,1] (see Section [A.3). The observation
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space is the box ObsSpace := [—15, —2] x [-15, —2] x [-1,1]*® € R?". The second reward function has to do
with it, whenever the agent chooses a; such that the next state s;11 ¢ ObsSpace, then it receives a reward
r9 = —1 and no reward for staying inside the bounds (see Algorithm |§[)

At each step, the agent attempts to reduce Facelnts, (see Algorithm with respect to FaceInts, ,. The
reward in Algorithmm is given to the agent if Facelnts, > Exp for Exact = False (resp. Facelnts, # Exp
for Exact = True). If Facelnts, < Exp for Exzact = False (resp. Facelnts, = Exp for Exact = True) the
agent does not get this reward. This reward is intended to make the agent to transition into states at which
Facelnts, is closer to Exp by monotonically decreasing Facelnts,; although in some cases Facelnts, needs
to increase in order to reach better minima like in the first row in Figure [46]

For a cubical surface C the task has two types of solutions depending on the Ezact parameter. If Ezact =
False, the agent’s task is to set Overlap = 0 (see Algorithm if Facelnts, < Exp, meaning that a
realization with at most Exp face intersections and without edge overlaps has been found. If Fxact = True
it must set Overlap = 0 if Facelnt;, = Exp (see Algorithm , meaning that a realization with exactly
FExp face intersections and without edge overlaps has been found. In both cases the agent receives a reward
r4 = 10. Note that the agent will tend to find solutions (terminal states sr) requiring less steps because the

penalization given by the future discount reward ' ~* will be less penalized in R; = Eg::t Aty

4.4 Reinforcement Learning Formulation

Figure [37 shows the RL formulation of the face-intersection minimization task, showing the different flows
for a e-degree rotation R;j(e) in R® or a 5-d (resp. 4-d) camera modification c5[4] < c5[4] &6 (resp.
c4[3] < €4[3]£9). It represents a complete episode in which for a cubical surface C on the left, Facelnty, = 48
is sequentially minimized to FacelInts, = 16 with the expected face-intersection Fxp = 16. To keep the flow
diagram compact, the conditions depending on the Exact parameter (represented by rhomboids in gradient)
can take two different criterions. A detailed pseudo-code of the environment £ can be consulted in in Section

[A77 Algorithms [0 [I0] and [T1]

Compute elemental
rotation marix (1deg)

Compute
rotation matrix
R_t=R*R_{t-1}

Input: . Get current Compute new
Surface C, State, s_t camera position:

Orientation .
. Zenform - c5MA1+=8 B Facelnt(s_t) \QUENM Retim:
i ction ifa=0 B (=or =) Exp . End
¢ - i Realization i
d a"in the set or L and Episode
g ‘ {0,1,..,17} OvaibEe.0) ) Reward =10
Facelnt(s_0) 01, .., c5[4]1=6 verlap(s_t p(s_t)

Overlap(s_0) ifa=1 0 A

Compute new

camera position: i Overlap(s_t)
c 43]+=8
ifa=2

or
c_4B31-=6
ifa=3

Facelnt
(gor=)

Algorithm 7 (Appendix A.6)
Reward =
r3(Facelnt(s_t), Facelnt(s_t-1), Exact)

[ Rotation action
Wl Camera modification action -
et:
M “="for Exact=True or “<" for Exact=False t=t+1 < <
[ RL Agent - MaxSteps M8

Figure 37: Episode flow diagram

4.5 The Agent

PPO (Clip) samples a size N > 0 batch of s, as, w(a¢|st), r+ by following an initial policy myq. If Done =
True, the future discounted reward R; is calculated as in Section [4 and the episode length is saved. The

10
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R, estimate the action-value functions Q™% (s,a) used to calculate the advantages A, in Equation In
practice, a MinibatchSize > 0 of elements is sampled form the memory of size N. According to Keskar et al.|
a larger MinibatchSize tends to find sharper minima (leading to poor generalization), while small
batch sizes tend to find flat minima (allowing better generalization); here a MinibatchSize = 32 is used
to achieve enough generalization. Algorithm 1 in [Schulman et al| (2017) shows the PPO (clip) algorithm
workflow. The models were trained using Stable-Baselines 3, an implementation by [Raffin et al.| (2021).

5 Experiments

Recall from Section [4| that the rotation-step ¢ € R7T is specified by the user. A small ¢ will not be the
best way to explore the entire configuration space but will be efficient to explore a particular configuration
locally. On the other hand, a large € will be better to explore the whole configuration space but can miss
good configurations between steps. Each of the eight minimal cubical surfaces here presented is trained for
204800 steps with different rotation-step sizes, namely e = 1 (red), e = 2 (blue) and € = 5 (orange) degrees
to find the best € parameter for each surface. The number of steps sampled on the rollout function is set
to Updates = 2048 from where a MiniBatchSize = 32 is sampled. During training, the initial state sg
is fixed for each cubical surface and specified in Table [2] along with the initial and final Facelnts, and
Overlaps, values and whether the final realization is minimal in terms of FaceInts,. The expected number
of face intersections Fxp > 0 is specified for each surface depending on the minimum Facelnts, observed
in previous runs; if during training a Facelnts, < Exp is detected, then the training is repeated with the
smallest Ezp found. The remaining training parameters are taken as: § = .5, Fzxact = False, w = .05,
MazSteps = 100, and v = .99.

920
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Figure 38: Genus-1 torus with Exzp = 0. Left: Episode Figure 39: Genus-2 torus with Ezp = 0. Left: Episode
length mean. Right: Episode reward mean. length mean. Right: Episode reward mean.
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Figure 40: Genus-3 torus with Exp = 9. Left: Episode Figure 41: Genus-4 torus with Exp = 12. Left: Episode
length mean. Right: Episode reward mean. length mean. Right: Episode reward mean.
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Figure 42: Genus-5 torus with Fxp = 16. Left: Episode Figure 43: Projective Plane with Faxp = 3. Left: Episode
length mean. Right: Episode reward mean. length mean. Right: Episode reward mean.
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Figure 44: Klein Bottle with Exp = 3. Left: Episode length Figure 45: K-3 surface with Exp = 6. Left: Episode length
mean. Right: Episode reward mean. mean. Right: Episode reward mean.

5.1 An Optimization Sequence

Figure [46] shows the face intersection minimization sequence giving special emphasis on the intersection-lines
for the genus-2 cubical surface in FigureFi;glwith € = 5. In this case, Facelnts, is increased only once in Figure
while in all other steps Facelnt,,,, < Facelnt,, holds. The edge overlap minimization sequence is not
presented since it is hard to appreciate it in a 2-dimensional plot. Each of the 25 steps the agent performs
is a frame in an animation sequence; this allows capturing the movements induced by the 5-d rotations and
perspective projections that transform sy into sy in a realistic way. Creating this animation only with the
initial and final immersions (without any intermediate ones) would only yield a linear vertex displacement
from their initial to the final locations, which would not correspond to the action of a 5-dimensional rotation.

5.2 Initial and Final Immersions of some Cubical Surfaces

The initial orientation of a cubical surface is determined from the list of angles ¢5 =
(00,1, P02, $0,3, P04, P1,2, P13, P1.4, P2,3, P2,4, P3.4) sorted in lexicographic order (Section . For each cu-
bical surface and choice of rotation-step e € {1,2,5} the last trained model saved is tested. Having a high
mean episode reward translates into finding a solution in less steps. Table [1| shows the number of steps
each trained model needs to find a solution, showing better results for a rotation step of € = 5 degrees for
almost all cubical surfaces tested. Table [2| compares the initial values Facelnts, and Overlapss, with the
optimized Facelnts, and Overlapss, and whether the polyhedral realization is the minimal with respect
to Facelnts, (under this problem’s setup) or this is yet unknown.

Surface e=1]e=2 |e=5
Genus-1 > 100 35 13
Genus-2 > 100 | > 100 25
Genus-3 > 100 | > 100 11
Genus-4 > 100 56 39
Genus-5 > 100 | > 100 57
Projective Plane | > 100 45 25
Klein Bottle 9 15 14
K-3 > 100 39 19

Table 1: Number of time-steps required to find a solution for a rotation step size e.

g/k Initial Orientation (¢5) | Facelnts, | Facelnts, | Overlaps, | Overlaps, | Minimal | Figure
g=1/(0,0,%,%50,5.5 56 5) 6 0 2 0 yes 47
g=211(0,0,%,505.5 56 5) 23 0 2 0 yes 48
g=3| (0,0,0,0,0,0,%,%,%:5) 20 9 0 0 unknown 49
g=41(0,0,%5055 565 36 10 2 0 unknown 50
g= (0,0,%,%:0, 5,556 6) 48 16 2 0 unknown 51
k=1|(0,0,%,% 0,2 % % = %) 17 3 2 0 yes 52
k=211(0,0,%5,%5,0,5,55 % 5) 9 3 2 0 yes 53
k=311(0,0,%,%:0,5,5 535 6) 23 6 2 0 unknown 54

Table 2: Results for various orientable and non-orientable cubical surfaces.

12
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(m) Facelnt = 13, Overlap = 6 (n) FaceInt = 13,Overlap =4 (o) Facelnt =9, Overlap =7

(a) FaceInt =9,0verlap =2 (r) Facelnt =7,0verlap =2 (s) Facelnt =7,0verlap =0 (t) Facelnt =0, Overlap =3

Figure 46: Face optimization stage for the orientable g = 2 cubical surface in Figure with Ezp = 0 and € = 5 degrees
rotation-step. Faces are shown in red and face intersections in blue. The 5-cube’s 1-skeleton is rendered in light gray.

13
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5.3 Realizations of Orientable and Non-Orientable Cubical Surfaces

b4

Figure 47: Genus-1 torus (16 faces). Left: Initial with  Figure 48: Genus-2 torus (26 faces). Left: Initial with
Facelnt = 6. Right: Optimized with Faceint = 0. Facelnt = 23. Right: Optimized with Faceint = 0.

Figure 49: Genus-3 torus (36 faces). Left: Initial with  Figure 50: Genus-4 torus (38 faces). Left:Initial with
FacelInt = 20. Right: Optimized with Facelnt = 9. FacelInt = 36. Right: Optimized with Facelnt = 10.

Figure 51: Genus-5 torus (40 faces). Left: Initial with  Figure 52: Projective Plane (20 faces). Left: Initial with
FaceInt = 48. Right: Optimized with Facelnt = 16. FaceInt = 17. Right: Optimized with Facelnt = 3.

0P e®

Figure 53: Klein Bottle (24 faces). Left: Initial with Figure 54: K-3 surface (30 faces). Left: Initial with
FacelInt = 9. Right: Optimized with Facelnt = 3. FaceInt = 23. Right: Optimized with Facelnt = 6.
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6 Conclusions

This article introduces the first RL approach to find quadrilateral realizations (allowing pinch-points) of
5-dimensional orientable and non-orientable closed cubical surfaces with the smallest number of face inter-
sections. Unlike the algorithm proposed by Hougardy et al.| (2006|) where the "actions" consist on moving
each vertex individually in £X,4Y or £7, in this work the vertices move according to the action induced
by a 5-dimensional rotation or by affecting the camera vectors ¢; € R® and ¢4 € R%.

Singular quadrilateral realizations of the minimal cubical projective plane and the cubical Klein Bottle with
the minimum number of face intersections (3), and quadrilateral embeddings of minimal orientable cubical
surfaces of genus g = 1,2 are found. For orientable cubical surfaces with g = 3,4, 5 and non-orientable with
k = 3, the models here presented are candidates of singular realizations with the minimal number of face
intersections. However there is no framework to prove this strictly as done here with the Klein Bottle and
the Projective Plane.

For each cubical surface C, the trained models return a sequence of steps consisting either of a camera
modification or a 5-dimensional rotation, which are used to build animations. The optimal strategy has the
property that it allows a face intersection increase if necessary to find a realization, still a small number of
steps is required to find a realization.

7 Further directions

For orientable cubical surfaces with ¢ = 3,4, 5, our RL algorithm can not reduce Facelnt,, below the results
shown in Section [§] even though these surfaces are orientable and could be embedded allowing the unitary
5-cube to be deformed in some way. A possible solution could be a combination of the approach by [Hougardy
et al.| (2006 in which vertices move individually in +X,4+Y or +Z with RL. This would allow increasing
the intersection segment functional when necessary in order to find a realization.

For all non-orientable cubical surfaces, a natural direction of interest is finding realizations of cubical
surfaces without pinch-points as studied in [Brehm & Leopold| (2016|) for triangulations of non-orientable
surfaces with the minimal (or few) number of vertices. The modification in our algorithm would consist on
finding realizations by minimizing only the face number of face intersections of faces that share a vertex which
are precisely the face intersections that yield pinch-points. However, for this work the author’s focus was
focusing in the minimality of face intersections in general before experimenting with clearing pinch-points.

The RL algorithm is being tested with the 6-dimensional cubical surfaces from the GitHub repository by
Govcl (2024). Here there exist representatives of orientable surfaces with genus g = 3 that can be embedded
in R3. For non-orientable cubical surfaces with k = 1,2 we still observe that FaceInt = 3 which is still the
minimum number of face intersections achievable for Q.

8 Supplements
If the reader wishes to explore the cubical surfaces here presented more closely, their 3-d models and
animation sequences can be consulted and downloaded from Sketchfab [Estevez (2025a).

If the reader wishes to minimize a particular cubical surface or take a deeper look into the Python imple-
mentation visit the following GitHub repository |Estevez| (2025b)).

Some 3-d prints of 5-dimensional cubical surfaces can be consulted in [Estévez et al.| (2024)).
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A Appendix

A.1 Face Intersections

Let C be a cubical surface and consider projections Fy, F» C R? of faces fi, fo € C. Projected edges e; C fi
and ey C fy are denoted by Ey, Es C R3. If f, fo € C share a vertex v it means that v € Q™ is one of the
four vertices building f; and fo. Note that if fi, fo share three or more vertices, then f; = fs. The author
claims that if Fy N Fy # 0, then there exist at least 3 face intersections.

1. If F}, and F5 share exactly two vertices, then the following cases can occur:

(a) If the shared vertices are common to an edge, then F; and F» are adjacent; an adjacency is not
counted as a face intersection.

(b) If the shared vertices don’t share any edge, then F; and F» must intersect along their diagonal;
however, this is impossible for faces fi, fo € C because there is a unique face connecting such
two vertices.

2. If F1 and F3; share exactly one vertex v, then the following cases can occur:

(a) Fy N Fy, =wv with v an adjacent vertex; this is not counted as an intersection.
(b) Fi N Fy =L, where L is a line segment.

i. The boundaries of F; and F5 intersect at some point other than v. This is not a valid
intersection for our realization because some pair of edges would overlap as explained in
Section See Figure

ii. The edges of F; and F5 do not intersect at other point than v. Since the faces come from
a projection of an n-dimensional cube, there can’t be a third face intersecting as in Figure
so WLOG F; crosses the boundary of F» through edge Es C Fy. From (1) for a cubical
surface, every edge shares exactly 2 faces, so in addition to F} N Fy a second face F} adjacent
to Es intersects F; and by the observation above Fj must intersect some face F| adjacent
to Fy. This gives at least 3 pairs of face intersections as in Figures [06| and

3. If Iy and F; have no adjacent vertices, and F; N Fy # (), then the following cases can occur:

(a) v € F1 N Fy with v a non-adjacent vertex. From (2) of a cubical surface, F, is a connected
cyclic graph, then every vertex is shared by at least 3 faces. See Figure [59]

(b) For a pair of edges F1 C Fy, Ey C F> it holds that £y N Fy # 0 and Fy N Fy # (. In addition to
Fy N Fy # () which can be a line L or a point P; from (1) of a cubical surface every edge shares
exactly 2 faces. Then Ej N Fy gives another intersection of Fy with some other face adjacent to
FE, and Es N Fy gives a third one of F; with some face adjacent to Fs. See Figure [60] and

(¢c) For a pair of edges Ey C Fy, F{ C F) it holds that Fy N Fy # () and B} N Fy # (. In addition to
Fy N Fy # () which can be a line L or a point P; from (1) of a cubical surface every edge shares

exactly 2 faces. Then Ej N F, gives another intersection of Fy with some other face adjacent to
E; and Ej N Fy gives a third one of F» with some face adjacent to Ej. See Figure [62| and
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X X ¢ ¢

Figure 55: Fy N F> = L shar- _,, . _ . . _
ing a vertex; case not allowed Flgure 56: F1 N Fy = L shar- Figure 57: Fy N Fy = L shar-

by edge overlaps. ing a vertex. ing a vertex.

Figure 58: F} N F> = L shar-
ing a vertex; case not allowed
by definition of a face.

Ve Dd>

Figure 59: 1 N Fy =
v with v a non-adjacent
vertex.

Figure 60: E; N Fy # Figure 61: E1 N Fy # Figure 62: E1 NFy # Figure 63: E1 NFy #
@ and E2 N Fy # 0. @ and E2 N Fy # 0. 0 and Ef N Fy # 0. 0 and Ej N Fa # 0.

A.2 Edge Overlaps

Intersections between two line segments resulting from the perspective projection of two edges e1,e2 € Q3
(although more unlikely) can also occur. To model and easily visualize the projected line segments, they are
assigned a "small" edge-width w > 0 € R. Consider points Py, P», P3, P, € R? and (infinite) lines L; » and
L3 4 passing through P;, P, and Ps, Py respectively. If L) o and L34 are co-planar and not parallel, then
they intersect. However, if they are not co-planar, there exists a unique shortest line segment L,, C R3
connecting them which is perpendicular to both lines with P, € L1 and P, € L3 4. The Algorithm by
described in Section computes the length of the line |L,;| > 0 € R and whether P,
(resp. Pp) is between points P, P, € L1 o (vesp. P3, Py € L3 4). Given an edge-width w, two line segments
L1, L34 have an edge overlap if P, # Py, Py, P, # P3, Py, P, € L12, Py, € L34, and |P, | < 2w. The
number of edge overlaps at state s; denoted by Overlaps, is calculated using Algorithm This name
is chosen to distinguish this criterion from an edge intersection; however, both have the same meaning if
w = 0.

Figure 64: An edge overlap for edge Figure 65: 3-d perspective projection
radius w > 0 € R. of Qi’ with Overlap = 0 for w = 0.5.
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A.3 N-dimensional Rotations & Gimbal-Lock

Algorithm 1: RotMat(¢,,)

Data: Dimension n € N and angle list ¢,, := (¢;; : (i, ) € (5)).
Result: General rotation matrix R € SO(n,R).

Comba(n) < (3);
R+ I,;

for (i,7) € Comby(n) do
S« I,;

Si,i — COS((ﬁiJ‘);

Sj.j = cos(¢i;);

Sij = —sin(¢i;);
Sji = sin(¢i;);
R+~S R

end

In R3, elemental rotations by angles ¢g 1,02 and ¢1 2 in planes Z =0, Y = 0 and X = 0 correspond to ele-
mental rotation matrices Ry 1(¢0,1), Ro,2(Po,2), R1,2(¢1,2) respectively. For any angle ¢ € [0, 27), elemental
rotation matrices satisfy the relationships R; ;(¢) = R, i(—¢), R;jl(qi)) =R, i(¢), and R; ;(0O)R;,(9) = I,
and they can be constructed as follows:

Ry, = cos(¢) ifk=1
Ry = cos(¢) ifl=3j
Ry, = —sin(¢) ifk=iandl=j

(
R, () =
! ((b) Ry = Sin((b) ifk=diandl =7
Rpp=1 ifk#£iork=#j
Ry, =0 otherwise.

n

Consider a list of angles ¢, = (¢5; : (4,7) € (2)) with the rotation angles in each plane X;; ordered
lexicographically, that is (i,5) < (k,1) if ¢ < k or (i = k and j < [). A general rotation matrix
R € SO(n,R) by angles ¢,, can be calculated by multiplying elemental rotation matrices R,; ;(¢; ;) for each
angle ¢; ; € ¢, on the left with respect to the order given by ¢,, as shown in Equation @ Since elemental
rotation matrices generally do not commute, the order of the factors is crucial.

R(¢n) == Rp—2pn—1(¢n—2n-1) - Ro2(¢0,2)Ro1(do,1)- (6)

However, when calculating general rotation matrices, some considerations must be taken into account. For
example, lets consider the list of angles ¢35 = (¢0,1, 0.2, ¢12) = (o, —7/2,7) in R3. Computing the corre-
sponding general rotation matrix results:

1 0 0 cos(n/2) 0 sin(n/2)| [cos(a) —sin(a) O
R(¢n) = |0 cos(y) —sin(y) 0 1 0 sin(a)  cos(a) O
0 sin(y)  cos(y) —sin(7w/2) 0 cos(w/2) 0 0 1

[ 0 0 1

sinfa++v)  cos(a+7v) O

—cos(a+7v) sin(a+v) 0

Note that by setting § = —7/2, affecting « or v yields the same change in the rotation matrix; moreover
for any values of o and « the matrix R(¢3) fixes the plane Z = 0 and a rotation in the plane X = 0 is no
longer possible. We have then lost a degree of freedom, and in order for o and  to have again different
effects the values 8 = +7/2 should be avoided. This phenomenon is called Gimbal-Lock and appears in
higher dimensions as well. Since in our algorithm, the rotations (see Section [4)) performed by the agent
step-wise are in just one plane X; ; C R™ one can still use Euler angles and avoid Gimbal-Lock as explained
by |Shehata| (2020) for cases n = 3,4. The strategy is to use the action of SO(n) in R® when actualizing
the rotation matrix at each step. By the compatibility axiom of group action, for any two rotation matrices
R, S € SO(n) and any vector € R™ the property S-(R-x) = (S-R)-x holds. Instead of adding the angle
¢;,; to the corresponding coordinate in the list ¢,, and recalculating R(¢y,), let R = R(¢,) be the previous
rotation matrix and S = R; j(¢; ;) be the elemental rotation matrix for the rotation at the current step
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and assigning R + S - R. Algorithm [1| describes how to calculate a general rotation matrix R(¢,) given an
ordered list of angles ¢,, as in Equation [6] It will be used to construct the initial embedding of the surface
C in Algorithm [ and after each step in Algorithm successfully avoiding Gimbal-Lock.

A.4 N-dimensional Perspective Projection

Algorithm 2: Pr,(a,c,p)
Data: Point to project a € R™, Camera position ¢ € R", Projection Plane position p € R".
Result: Projected point b € R"~ 1.
d<+ a-—c;
M +~ I,;
for i,(0<i<n-—1)do
| M, + pli]/pln);
end
M, ., < 1/p[n};
f+« M.d,
< f/fnl;
b (f1],.... fln —1]);

Algorithm 3: ProjSegList(n, R,Q}, cn, Pn, ..., C4,Pa).

Data: Point to project a; € R?, n-dimensional Rotation Matrix R, n-dimensional Edges Q7, Camera
position ¢; € R?, Orthogonal distance from origin to projection plane p > 0 € R.
Result: list(tuple : b € R3)
SegList < list();
for e € Q7 do
VitxList < list();
for v e edo
a+ R-v;
N + n;
while N > 3 do
a <« Pry(a,cn,pN);
N+ N-—-1;
end
VitxList.append(a);
end
SegList.append(VitaList);
end

If R € SO(n) is an n-dimensional rotation matrix, then the edges e € QF and faces f € Co
can be rotated in R"™ applying R to each of its building vertices v. The rotated edges R - e C
R™ or faces R - f C R" can then be projected to R® via a sequence of perspective projections
Pry(-- - (Prp_1((Prp(v,cn,€n),Cn1,€n_1), -+ ),Cs,e4) : R® — R3.  After each mapping the points
b € Pri(a;,ci,e;) C R*~! should always map to the same side of the camera ¢;—; € R*™! in the next
perspective projection; otherwise they would be inverted in the next projection. Cubical surfaces are faces
on the 5-dimensional cube Q° centered at the origin with unit-length edges. It’s vertices are of the form
(£1/2,41/2,+1/2,4+1/2,4+1/2) € R® and lay on the boundary of the 5-dimensional sphere S° of radius
rs = +/5(£1/2)2 = \/5/4 = 1/5/2; or for the n-dimensional case in the boundary of the sphere S™ of
radius r, = y/n/2. The camera position ¢5 € R is limited to move in the line segment (0,0,0,0,ds) € R®
with ds € [—15,—2] so the furthest a point can be projected to R* occurs when the camera position is
cs = (0,0,0,0,—2). Consider the 4-dimensional sphere S°, one must know how far from the origin can any
point a € S® project so the range within ¢4, € R* can move can be determined. Assume the projection line
L C R® is contained in the plane X2 spanned by axes X, Xy C RS (therefore X3, X4, X5 = 0) and has
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equation X9 — mX; + 2 = 0. The plane X o intersects the 5-sphere in a circle of radius r5 = \/5/2 with
equation X7 + X2 — r2 = 0; we want to minimize the projection of the line L parametrized by m onto the
line X5 = 0. For any point 2 = (r5 cos(f), r5 sin(#)) in this circle with § € (—m, 7), the line passing through z
and (0, —2) has slope m = (15 sin(6) — (—2))/(r5 cos(8) — 0)(r5 sin(0) + 2) /15 cos(0) = tan(0) +2/(rs cos(9)),
and substituting the value of m in the equation of L yields Xo — (tan(f) 4+ 2/r5 cos(6)) X1 +2 = 0. This line
intersects the line Xy = 0 at the point X; = 2/(tan(f) + 2/r5 cos(f)). As a function defined in the interval
(—m,m) C R it achieves a maximum value X; = 1.348 at § = —.5932 ~ —n/5 radians, so the projected
points a € R* would not map behind the camera ¢4 = (0,0,0,—2) € R*; the 4-dimensional camera can be
set as ¢y = (0,0,0,dy) with dy € [-15,—2] € R. After applying the sequence of perspective projections as in
Section[A.4] the resulting line segments (resp. plane segments) are stored in a list SegList (resp. FaceList).
This process is detailed in Algorithm [3] and in Appendix [A] the process of determining whether edges in
SegList (resp. faces in FaceList) intersect in R3 is explained. For the list of projected edges SegList, we
assign its elements an edge radius w > 0 € R and determine if the resulting cylindrical segments intersect in
pairs.

A.5 Termination Criteria

Algorithm 4: Done(Facelnt, Exp, Overlap, Counter, Exact)

Data: (int,int, int,int, bool); (Facelnt, Exp, Overlap, Counter, Exact)
Result: bool : Done

Done + False;
if Exact; // D
then
if Overlap = 0 and Facelnt = Exp then
‘ Done + True;
end
else
if Overlap =0 and Facelnt < Exp then
‘ Done < True;
end
end
if Counter = MaxSteps; // (2)
then
‘ Done < True;
end

There are two termination criteria. The first one has to do with finding a realization. Given a cubical
surface C the task has two types of solutions depending on the Fxact parameter. If Exact = True, then
the objective of the agent is arriving to a terminal state sy at which Overlaps, = 0 and Facelnts, = Exp;
otherwise will be arriving to a terminal state sy at which Overlap,, = 0 and Facelnts, < Exp. This is
formalized in Algorithm [} The second termination criteria is an episode truncation which ends the episode
once the agent exceeds a maximum number of steps MaxzSteps > 0 € Z. For some surfaces we must
allow the agent to explore the environment further by increasing the allowed MazSteps. In this work a
MazSteps = 100 is tested.

A.6 Reward Functions
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Algorithm 5: r1(PrevAction, Action)

Data: (int,int) : (PrevAction, Action)
Result: r; € R
r1 < 0;
if Counter > 1 then
if ActVec[PrevAction] + ActVec[Action] = 0 then
‘ riry—1
end

[ I N

end

Algorithm 6: ry(State, Action)

Data: (tuple,int) : (State, Action)
Result: 7, € R

1 79 < 0

2 if State[0] + ActVec[Action][0] ¢ ObsSpace[0] and State[l] + ActVec[Action|[1] ¢ ObsSpace[l] then
3 ‘ ro <— 19 — 1;

4 end

Algorithm 7: r3(Facelnt, PrevFacelnt, Exact)

Data: (int,int,bool) : (Facelnt, PrevFacelnt)
Result: r3 € R

1 if Ezact then
2 if Facelnt = Exp then
3 ‘ rg < 0;
4 else
5 if |FaceInt — Exp| < |PrevFaceInt — Exp| then
6 ‘ rg <1
7 end
8 if |FaceInt — Exp| = |PrevFacelnt — Exp| then
9 ‘ r3 < 0
10 end
11 if |FaceInt — Exp| > |PrevFaceInt — Exp| then
12 ‘ rg < —1
13 end
14 end
15 else
16 if Facelnt > Exp then
17 if Facelnt < PrevFacelnt then
18 ‘ rg <1
19 end
20 if Facelnt = PrevFacelnt then
21 ‘ r3 < 0
22 end
23 if Facelnt > PrevFacelnt then
24 ‘ rg < —1
25 end
26 else
27 ‘ rs < 0;
28 end
29 end
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Algorithm 8: Rewards(Facelnt, PrevFacelnt, Overlap, PrevOverlap, Exact)

Data: (int,int,int,int,bool) : (Facelnt, PrevFacelnt, Overlap, PrevOverlap, Ezact)
Result: r, € R
1 if Exact then

2 if Facelnt = Exp then
3 if Overlap = 0 or PrevOverlap = 0 then
4 | ry 10
5 else
6 if Overlap < PrevOverlap then
7 ‘ rg 1
8 end
9 if Overlap = PrevOwverlap then
10 | 7440
11 end
12 if Overlap < PrevOverlap then
13 ‘ T4 —1
14 end
15 end
16 end
17 else
18 if Facelnt < Exp then
19 if Overlap = 0 or PrevOverlap = 0 then
20 | Rewardy < 10;
21 else
22 if Overlap < PrevOwverlap then
23 | a1
24 end
25 if Overlap = PrevOverlap then
26 ‘ rg <0
27 end
28 if Overlap > PrevOwverlap then
29 | a1
30 end
31 end
32 end
33 end
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A.7 Environment Logic

Algorithm 9: Hypercube Environment

Data: Camera distances ds, dy € [—15,—2], ¢; € [0,7/2]; Step size ,e >0 € R; Exp > 0 € Z;
Exact = bool; w > 0 € R; Cubical surface C = list(tuple).

1 class Hypercubeb{

2 Counstructor(ds, dy, ¢1, ..., P10, 0, €, Exp, Exact, Co, w)

3 Q} + EdgeCoordinates(Q3);

4 f + FaceCoordinates(C);

5 ActVec + {0:5eM) 1: —seM) 2:6e? 3: —5e? 4:ee®) 5: —ce, .. 23: —ce(1?};

6 Action < (0, ..., 17);

7 ObsSpace < ([-15,-2],[-15,-2],[-1,1],...,[-1,1]);

8 R RotMat(¢y, ..., 10); // Algorithm
9 State +— (d5,d4,R171,R1)2,"' ,R574,R5)5);

10 cs + State[0]e(®); // Camera positions.
11 cy + State[l]e™);

12 ps «— —State0]e® + e®) ; // Hyperplane positions relative to camera.
13 ps + —State[l]e™® + 10e™;

14 SegList + ProjSegList(5, R, Q3, cs, D5, C4,P4); // Algorithm
15 FaceList < ProjSegList(5, R, f, c5,Ps5,C4,P4); // Algorithm
16 Overlaps < Edgelntersections(w, SegList); // Algorithm
17 PrevOverlaps < Overlaps;

18 Facelnt < Facelnt(FaceList); // Algorithm
19 PrevFacelnt < Facelnt;
20 MinFacelnt < PrevFacelnt;
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Algorithm 10: Step function

Step(Action) :

Counter < Counter + 1;
PrevOverlap < Overlap;
PrevFacelnt + Facelnt;

Ry + Reward, (PrevAction, Action); // Algorithm
Ry + Reward;(State, Action); // Algorithm |6]
if Action € {0,1} and c5[4] + ActVec[Action][0] € [-15, —2] then

‘ cs < c5 + ActVec|Action][0]e®); // 5-dimensional camera.
else if Action € {2,3} and c4[3] + ActVec|Action][1] € [-15,—2] then

‘ ¢y + ¢4 + ActVec[Action][1]eV; // 4-dimensional camera.
else

S < RotMat(ActDir[Action][2,:]); // Algorithm
R+« S R;

State < (c5[4], ea[3], Ri1, Ra2, -+, R 4, R 5);
ps < —State[0]e® + e ; // Hyperplane positions relative to camera.
py <+ —State[l]e® + 10e®;
SegList < ProjSegList(5, R, Q3},cs5,Ps,C4,D4); // Algorithm
FaceList < ProjSegList(5, R, f, c5,P5, Ca,P4); // Algorithm
Overlaps < Edgelntersections(w, SegList); // Algorithm
Facelnt < Facelnt(FaceList); // Algorithm
MinFacelnt <+ min(MinFacelnt, Facelnt);
R3 < Rewards(Facelnt, PrevFacelnt); // Algorithm
Ry + Rewardy(Facelnt, PrevFacelnt, Overlap, PrevOverlap); // Algorithm ﬁ
Reward < Ry + Ro + R3 + Ry;
Done <+ Done(Facelnt, Exp, Overlap, Counter, Exact); // Algorithm EI

Algorithm 11: Reset function

Reset(Done) :

R« RotMat(¢y, ..., 10); // Algorithm
State (d5, d47 1‘_1),1717 Rl)g, N ,.R,5747 R5)5);

cs + State[0]e®); // Camera positions.
cy + State[l]e™);

ps «— —State[0]e® + e®) ; // Hyperplane positions relative to camera.
py +— —State[1]e® + 10e™);

SegList + ProjSegList(5, R, Q3, cs, 5, C4,P1); // Algorithm
FaceList < ProjSegList(5, R, f,c5,Ps5,C4,P4); // Algorithm
Overlaps < Edgelntersections(w, SegList); // Algorithm
PrevOverlaps < Overlaps;

Facelnt < Facelnt(FaceList); // Algorithm

PrevFacelnt < Facelnt;
MinFacelnt < PrevFacelnt;
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A.8 Edge Collision Detection

Here, the algorithm by Bourke| (1998) to compute the shortest line between two line segments in R? is
presented. Two lines L1 C R® and L34 C R3 passing through points P, P> € R® and P, P, € R3
respectively generally do not intersect. If L; o and L34 are not parallel and they are co-planar, then they
must intersect. However, if they are not co-planar, they can be connected by a unique shortest line segment
Loy C R3 perpendicular to both lines with P, € Lio and Py, € Lz 4. The algorithm calculates the points
P, and P, defining L, 3, and determines whether the point P, (resp. P;) lies between the points P; and P,
(resp. Ps and Py) or not. First note that any point P € L1 o (resp. P’ € L3 4) between P, and Py (resp.
P53, Py) is of the form

P =P +mg(P,— P),

(resp. P’ = Py +my(Py — Ps)) for some real number 0 < m, < 1 (resp. 0 < m; < 1). Since the shortest line
segment L, , between two lines L; o and L3 4 is perpendicular to both of them, the dot product must satisfy
(Py — Pa) - (P2 — P1) =0 (vesp. (P, — P,) - (P4 — P3) =0). By taking P, — P; = (i — z;,yi — Y5, 2 — 2j),
and setting

dijri (P, Py, Py, Pr) i= (Pi — Pj) - (Pr, — P) = (v — w5) (v — 1) + (Y — ¥5) (e — 1) + (20 — 25) (2x — 21),
expanding the dot product we get

(Po—=Py) - (Po=P) = (Pr+mg(Py—P1)— P3s—my(Py— P3))- (P, — Pr)
((P1—P3)+ma(P2—P1)—mb(P4—P3))-(PQ—Pl)

= di321 + Mado121 — Mpdazai,

therefore we get the equality

dy321 + Madai21 — Mpdazar = 0, (7)
and similarly for segments L3 4 and L,
d1343 + Mqadazar — Mpdyzaz = 0. (8)

Solving for m; in Equation |8| yields mp = (d1343 + Madas21)/dasas, and substituting the expression for my in
Equation yields my = (d1343d4321 — d1321d4343)/(d2121d4343 — (d4321)2) . Note that d4343 75 0 if and only if
P4 7£ P3, therefore lets analyze when can d2121d4343 — (d4321)2 =0. Let u = P2 - P1 and v = P4 — P’37 and
recall that u - v = ||ul|||v]| cos(#), where 0 is the angle between u and v. Substituting in the denominator
on Equation and since u # 0 and v # 0 we get

doo1dazas — (dasa1)® = (u-w)(v-v) — (u-v)’
[[ul[[[o][* = (||w]l]|v]| cos(6))?
= lul?[[v]|* = ||ul]?[|v]|? cos*(0)
[Ju||[[v]|*(1 = cos®(6))

= 0,

if and only if 6 = 0 or § = 7, that is if and only if w and v are parallel. Algorithm [12| determines whether
line segments L; o and L3 4 intersect for a given edge-with w.
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Algorithm 12: IntersectionLine(w, Py, Py, Ps, Py)

Data: Edge radius w > 0 € R and points Py, Py, P3, P, € R3 with (P, — Py), (Py — P3) # 0.

Result: (bool : Intersects, float : distance, tuple : Py, tuple : Py)

Intersects < False;
u =P — P
v = P; — Ps;
di343 < dijpi(Py, P3, Py, Ps);
dago1 < dijii(Py, Py, Pa, Pr);
di321 < dijri(P1, P3, Py, Pp);
dazas < dijii (P, Py, Py, Ps3);
b < (d2121d4343 — da321d4321);
ifb=0;
then
w = P3 — Pl;
z =P, — Py;
Pru(PLS) = Hzll s wj
pro(Py) = om - %
then
distance = H—ZH X w;
if distance < 2w then
‘ Intersects < True
end
end
else
My < (di343d4321 — d1321d4343) /b;
mpy < (d1343 + Madas21)/d4343;
P, + P + myu;
Pb — P3 + mypv;
if (0 <mg <1) and (0 <mp < 1) then
distance < || P, — Pyull;
if distance < 2w then
‘ Intersects < True;
end
end
end

// Lines are parallel.

if 1(|lul| < pro(Ps) Allu|] < pro(Py) V pro(Ps) < 0Apry(Py) <0) // Lsa projects out of L.

Algorithm 13: Edgelntersections(w, SegList)

Data: Edge radius w > 0 € R, list : SegList.
Result: int : Overlaps

EdgeCombinations < Combinations(SegList,2);
Overlaps < 0;

for Fdgel, Edge2 in EdgeCombinations do

Intersection, Distance, Py, P, < IntersectionLine(w, Edgel|0], Edgel[l], Edge2[0], Edge2[1]);

if Intersection then
‘ Owverlaps < Overlaps + 1;
end
end
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A.9 Face Collision Detection

The algorithm by [Moller| (1997)) to calculate whether two triangles Ty, T C R3 intersect is presented. If they
intersect, it also returns the coordinates of their intersection line or point. Denote the vertices of 77 and T5
by Vi, Vit, Vgt and V2, V2, V2 respectively; and the planes they lie in by m; and 7 respectively. Consider
vectors ug = (V2 — ViZ) and vy = (Vi — Vi?), then for any point = € 73 the plane equation satisfies

ot No-x4+dy =0, 9)

where Ny = us X v and do = —Ns - VO2 the projection distance of the vertex V02 over the vector —N5. The
signed (perpendicular) distances from the vertices V;!',i = 0,1,2 of the triangle 7} to the plane 72 can be
computed by inserting the vertices into the equation [0 yielding

dyr = No - V! +ds,i=0,1,2.

For triangle 77 and plane 7o, two possible situations can occur:

1. If dy1 # 0 for some i € {0, 1,2} then the possible sub-cases can occur:

a) If all dy1 # 0,7 € {0, 1,2} have the same sign, then all vertices of T3 lie on the same side of the
\%
plane 7, so in particular 77 and T> C e don’t intersect.

(b) If any of the dy1 = 0,4 € {0,1,2}, or has a different sign with respect to the other dy1,j # 1,
then 77 and the plane 75 intersect.

2. If all dy1» =0,2=0,1,2, then 77 and 7% are co-planar.

Suppose both pairs (T1,72) and (T, 1) are on the situation 1(b) described above, then there exist a line
L C R3 in the direction of D := Nj x Ny such that LN T} # ) and L NTy # () with equation L = O + tD,
where O is some point on L and ¢t € R. Moreover, for triangle T3 there must be a vertex V! lying on the other
side of 7y (or in 7o) with respect to the remaining vertices le, j # i (otherwise we would have T} Ny = ),
which we already discarded). To keep notation simple we suppose this vertex is Vi (resp. Vi?) for 11 (resp.
for T3), and we consider the edges Ej, and Ej, of Ty (resp. Eg, and Ef, of Ty). The goal is to compute
a scalar parameter value t; for B = E&l N L =0 +t1D. First consider the projections of the vertices onto
L, that is
pvi=D- (V' =0),i=0,1,2.

Let K} be the projection of V;' onto my and note that the triangles AVy BK} and AV! BK] are similar,
therefore we get the following equation:

dy:

t1=pyp + (pyy —pvol)m- (10)

Similar calculations are done to compute a scalar parameter ¢y for Ej, N L = O 4 toD. Without loss of
generality we can suppose t; < to and therefore these two parameters yield a closed interval [t1,t2] C R
describing the intersection of 77 with L. By computing the corresponding interval for 75, the intersection
between T and T5 is computed by the intersection of both intervals.

On the other hand, if both pairs (77, m2) and (T, 1) are on the situation 2, start by projecting the triangles
onto the axis where their area is maximized. A 2-dimensional triangle-triangle intersection is performed,
that is checking if any edge of 77 intersects some edge of Th; if any intersection is found then 77 and T3
intersect. Otherwise it only remains to check if 7; is totally contained in T} by checking if some point of T;
lies inside the triangle T}; then all the vertices of T should lie inside 7} otherwise T; and T} should have
an edge to edge intersection which we had already discarded. This Algorithm has the following Python
implementation |NeonRice| (2020), which we name here as TriTrilntersect and use in Algorithm [14| which
counts the number of face intersections of the projected faces.
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Algorithm 14: Facelnt(FaceList)

Data: list : FaceList.
Result: (int : Facelnt,list : IntersectionLine)
FaceCombinations < Combinations(FaceList,2);
Facelnt + 0;
VitxList < list();
IntersectionLine < list();
for Facel, Face2 in FaceCombinations do
FaceTrianglesl < Combinations(Facel, 3);
FaceTriangles2 < Combinations(Face2,3);
TriangleIntersections < 0;
Count + 0;
for vertex in Facel do
if vertex not in Face2 then
‘ Count < Count + 1;
end

end
if Count = 3 and vertex not in VtzList then

| VtaxList.append(vertex);
end
for T1 in FaceTriangles! do
for T2 in FaceTriangles? do
if Count > 3 then

end

end

end

end

if TriangleIntersections > 0 then
‘ Facelnt < Facelnt + 1;

end

end

// Combinations of triangles in Facel.
// Combinations of triangles in Face2.

// Avoid co-planar face intersections.

Resl, Res2, Intersects < TriTrilntersect(T1[0],T1[1], T1[2], T2[0], T2[1],T2[2]);
if Intersects and |Res2][0] — Res2[1]| > 1le — 10 then
TriangleIntersections < TriangleIntersections + 1;
IntersectionLine.append([Res2[2], Res2[3]]);
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A.10 Notation of quadrilateral realizations
Figure [47| shows the initial (left) and optimized (right) immersions of the g = 1 cubical surface:

{ (0,0,0,2,2),(0,0,1,2,2),(0,0,2,0,2),(0,0,2,1,2),(0,1,0,2,2), (0,1, 1,2,2),(0,1,2,0,2),(0,1,2,1,2),
(0,2,0,2,0),(0,2,0,2,1),(0,2,1,2,0),(0,2,1,2,1),(0,2,2,0,0), (0,2,2,0, 1), (0,2,2,1,0), (0,2, 2,1, 1)}

Figure 48| shows the initial (left) and optimized (right) immersions of the g = 2 cubical surface:

{ (0,0,0,2,2),(0,0,1,2,2),(0,0,2,0,2),(0,0,2,1,2),(0,1,0,2,2), (0, 1, 1, 2, 2), (0, 2,0, 2,0), (0, 2,0,2,1), (0, 2,1,2,0), (0,2,1,2, 1),
(0,2,2,0,0),(0,2,2,0,1),(0,2,2,1,0),(0,2,2,1,1),(1,1,0,2,2),(1,1,1,2,2),(1,1,2,2,0),(1,1,2,2,1),(2,1,0,0,2),(2,1,0,1,2),
(2,1,1,0,2),(2,1,1,1,2),(2,1,2,0,0),(2,1,2,0,1),(2,1,2,1,0),(2,1,2,1, 1)}

Figure |49 shows the initial (left) and optimized (right) immersions of the g = 3 cubical surface:

{ (0,0,0,2,2),(0,0,2,0,2),(0,0,2,1,2),(0,0,2,2,0),(0,1,0,2,2),(0,1,2,0,2),(0,1,2,1,2),(0,2,0,2,1), (0,2,1,0,2),(0,2,1, 1, 2),
(0,2,1,2,0),(0,2,1,2,1),(1,0,0,2,2),(1,0,2,0,2),(1,0,2,1,2),(1,0,2,2,0), (1,1,0,2,2),(1,1,2,0,2),(1,1,2,1,2),(1,2,0,2,1),
(1,2,1,0,2),(1,2,1,1,2),(1,2,1,2,0),(1,2,1,2,1),(2,0,1,2,1), (2,0,2,0,1), (2,0,2,1,1), (2,1,0,2,0), (2,1, 1,2,0), (2,1, 1, 2, 1),
(2,1,2,0,0),(2,1,2,0,1),(2,1,2,1,0),(2,1,2,1,1),(2,2,0,0,1),(2,2,0,1,1) }

Figure [50| shows the initial (left) and optimized (right) immersions of the g = 4 cubical surface:

{ (0,0,0,2,2),(0,0,1,2,2),(0,0,2,0,2),(0,0,2,1,2),(0,1,0,2,2),(0,1,1,2,2),(0,1, 2,1, 2), (0, 2,0, 2,0), (0, 2,0, 2,1), (0,2,1, 2,0),
(0,2,1,2,1),(0,2,2,0,0), (0,2,2,0,1),(1,0,0,2,2),(1,0,1,2,2),(1,0,2,0,2),(1,0,2,1,2),(1,1,0,2,2),(1,1,1,2,2),(1,1,2,1,2),
(1,2,0,2,0),(1,2,0,2,1),(1,2,1,2,0),(1,2,1,2,1),(1,2,2,0,0), (1,2,2,0,1), (2,0,2,1,0), (2,0,2,1,1), (2,1,0,0, 2), (2,1,1,0, 2),
(2,1,2,0,0),(2,1,2,0,1),(2,1,2,1,0),(2,1,2,1,1),(2,2,0,1,0),(2,2,0,1,1),(2,2,1,1,0),(2,2,1,1,1)}

Figure [51] shows the initial (left) and optimized (right) immersions of the g = 5 cubical surface:

{ (0,0,0,2,2),(0,0,1,2,2),(0,0,2,0,2),(0,0,2,1,2),(0,1,0,2,2), (0,1, 1, 2,2), (0,1, 2,0, 2), (0,1, 2,1, 2), (0, 2,0, 2,0), (0, 2,0,2,1),
(0,2,1,2,0),(0,2,1,2,1),(1,0,0,2,2),(1,0,1,2,2),(1,0,2,0,2),(1,0,2,1,2),(1,1,0,2,2),(1,1,1,2,2), (1,1, 2,0, 2), (1,1,2,1,2),
(1,2,0,2,0),(1,2,0,2,1),(1,2,1,2,0),(1,2,1,2,1),(2,0,2,0,0),(2,0,2,0,1),(2,0,2,1,0),(2,0,2,1,1),(2,1,2,0,0), (2,1,2,0, 1),
(2,1,2,1,0),(2,1,2,1,1),(2,2,0,0,0),(2,2,0,0,1),(2,2,0,1,0), (2,2,0,1,1),(2,2,1,0,0), (2,2,1,0,1),(2,2,1,1,0), (2,2,1,1, 1)

Figure |52 shows the initial (left) and optimized (right) immersions of the k = 1 cubical surface:

{ (0,0,0,2,2),(0,0,1,2,2),(0,0,2,0,2),(0,0,2,2,0),(0,1,2,1,2),(0,2,0,1,2),(0,2,1,2,1),(0,2,2,1,0),(0,2,2,1,1), (1,0, 2,2, 1),
(1,2,1,1,2),(1,2,1,2,1),(2,0,0,2,1),(2,0,1,1,2),(2,0,2,0,1),(2,0,2,1,1),(2,1,1,1,2),(2,1,1,2,1),(2,2,1,0,1), (2,2, 1,1,0)}

Figure [53| shows the initial (left) and optimized (right) immersions of the k = 2 cubical surface:

{ (0,0,0,2,2),(0,0,2,0,2),(0,0,2,1,2),(0,0,2,2,0),(0,1,2,0,2),(0,1,2,1,2),(0,1,2,2,0), (0,1,2,2, 1),
(0,2,0,2,1),(0,2,1,0,2),(0,2,1,1,2),(0,2,1,2,0),(0,2,1,2,1),(1,0,2,2,1), (1,1,0,2,2),(1,2,0,2, 1),
(2,0,1,2,1),(2,0,2,0,1),(2,0,2,1,1),(2,1,0,0,2), (2, 1,0, 1,2),(2,1,0,2,0),(2,2,0,0,1),(2,2,0, 1, 1) }.

Figure [54] shows the initial (left) and optimized (right) immersions of the k& = 3 cubical surface:

{ (0,0,0,2,2),(0,0,2,0,2),(0,0,2,1,2),(0,0,2,2,0),(0,1,2,0,2), (0,1, 2,2,0), (0,1,2,2,1),(0,2,0,2,1), (0,2, 1,0, 2), (0,2,1,1,2),
(0,2,1,2,0),(0,2,1,2,1),(1,0,2,1,2),(1,1,0,2,2),(1,1,2,2,1),(1,2,0,1,2),(1,2,1,1,2),(1,2,1,2,1),(1,2,2,0,1), (1,2,2,1,0),
(2,0,1,2,1),(2,0,2,0,1),(2,0,2,1,1),(2,1,0,0,2),(2,1,0,2,0),(2,1,1,1,2),(2,1,2,1,0), (2, 1,2,1,1),(2,2,0,0,1),(2,2,0, 1, 1) }
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