
Under review as submission to TMLR

Minimizing Self-Intersections of 3-dimensional Immersions
of 5-dimensional Cubical Surfaces with Reinforcement
Learning

Anonymous authors
Paper under double-blind review

Abstract

A closed cubical surface is a 2-dimensional cubical complex (analogous to a simplicial com-
plex but with a cubical structure) such that each of its points has an open neighborhood
homeomorphic to a disk. Aveni et al. (2024) proved that up to isomorphism 2690 connected
closed cubical surfaces can be built from the faces of a 5-cube (sometimes called a penteract)
and give a classification for closed orientable and non-orientable cubical surfaces. It is well
known that non-orientable surfaces (of any kind) cannot be embedded in R3; their immersion
will always have some self-intersection and in the context of cubical surfaces this also seems
to be the case for some orientable surfaces. Therefore, given a cubical surface it is natural to
ask: What is the smallest number of self-intersections it can have for any immersion in R3

using perspective projection and without deforming the 5-cube? Given an initial immersion,
can we calculate a sequence of 5-dimensional rotations or perspective projections step-wise
minimizing self-intersections efficiently? These questions are addressed using Reinforcement
Learning and animation sequences are created to visualize the minimization strategies found
by the agent.

1 Introduction

Compact Surfaces are 2-dimensional topological manifolds and are completely classified. There are two
infinite families of compact surfaces, Σg (g ≥ 1), the orientable surface of genus g, which is a torus with
g "handles", and Nk (k ≥ 1), the non-orientable surface of demigenus k. There is also the sphere which
we denote by Σ0 since it is orientable and has no "handles". Topological manifolds are often too general
to work with them directly, for this reason it is often essential to assume the triangulability of manifolds.
The problem of finding minimal triangulation of manifolds has been widely studied and has been completely
solved for compact surfaces. In the context of simplicial surfaces, a minimal triangulation can be defined
as a triangulation using the minimal number of vertices, edges, and faces. It can be shown using Euler
characteristic that the minimal triangulation in each of these three meanings of minimality is realized by
the same triangulation up to isomorphism. Aveni et al. (2024) consider Cubical Surfaces (see Section 2.1)
instead of simplicial ones which can be thought of as two-dimensional sub-complexes of the n-dimensional
cube homeomorphic to compact surfaces. They give a complete classification up to dimension n = 6 in terms
of their genus g for orientable cubical surfaces and their demigenus k for the non-orientable; in particular
they found that non-orientable cubical surfaces first appear for n = 5. One can ask what is the minimal
cubical embedding of a given cubical surface but here minimality has to be specified more carefully since
minimizing a cubical embedding can refer to vertices, edges, faces or the dimension of the cube. In this
paper, the word minimal refers to minimality with respect to the number of faces needed to be realized in
the 5-dimensional cube Q5.

A (topological) immersion is a continuous function that is locally an homeomorphism while an embedding
is an homeomorphism onto its image. From algebraic topology we know that all orientable surfaces can be
embedded in R3, while non-orientable can be embedded in R4 but only immersed in R3. Consequently for any
non-orientable cubical surface, any projection in R3 will have some positive number of face-intersections while

1

Under review as submission to TMLR

for orientable cubical surfaces face-intersections can be completely cleared in some cases. Some examples of
polyhedral immersions of simplicial surfaces have been studied by Cervone (2001).

Here, a cubical surface is immersed to R3 via perspective projections as explained in Section 2.3. We assume
that for a given initial orientation of the cubical surface around the origin in R5; the n-dimensional camera
point is set at a position c5 ∈ R5 from which projection rays extend to the 5-dimensional surface onto a
projection hyperplane p5 ∈ R5. The result of this first projection is a surface in R4 so we can repeat the
same process with a camera c4 ∈ R4 and a hyperplane p4 ∈ R4 to obtain a surface in R3.

The initial projection has some number of self-intersections; the number of pairings of projected faces inter-
secting in R3 which we simply call face-intersections. One can apply a 5-dimensional rotation or change the
projection distances on the perspective projection and modify the number of face-intersections sequentially.
The immersions here studied are always perspective projections of an unitary 5-cube; meaning the unitary
5-cube is never deformed. In this paper a Reinforcement Learning (RL) agent is trained to find a sequence
of 5-dimensional rotation matrices or perspective projection modifications (see Section 2.2) which applied to
the cubical surface sequentially minimize its number of face-intersections. This is addressed by formulating
the face intersection minimization problem as a Markov Decision Process (MDP) as explained in Section 3.

Section 3.5 explains the algorithm for the environment and Section 3.6 the algorithm for the agent. Experi-
ments and the resulting optimized immersions and embeddings of some cubical surfaces are shown in Section
4. A complete face intersection minimization sequence is shown in Section 4.2; however in Section 7 the
reader can find a link to the 3-d animated models of the cubical surfaces here presented. Animations help
as a tool to visualize the agent’s learned strategy to minimize the face-intersections of each of the surfaces.
The main objectives of this study are the following:

1. Given cubical surface, find an optimized immersion minimizing the number of self-intersections by
applying a sequence of transformations consisting of either 5-d rotations or perspective projection
camera modifications.

2. The sequence of actions transforming the initial into the optimized immersion must decrease the
number of face-intersections as monotonically as possible and in the smallest number of steps pos-
sible.

2 Background

2.1 Cubical Surfaces

Figure 1: Fv on a 4-
d Cubical Surface home-
omorphic to a sphere.

Cubical complexes have its origin in the beginning of the XX century with the work
of mathematicians like Henry Poincare or Solomon Lefschetz. They have become
an important tool in Topological Data Analysis (TDA) and applied topology since
the 90’s because squares or cubes are natural building blocks in areas like robotics,
materials science and engineering, image analysis among others. Some of the main
definitions of cubical complexes and cubical homology can be consulted in the work
of Kaczynski et al. (2004). In particular, cubical surfaces introduced by Aveni et al.
(2024) are two-dimensional cubical complexes topologically equivalent to a closed
surface which are formally introduced below.

Denote the n-dimensional unit cube by Qn = [0, 1]n = [0, 1] × · · · × [0, 1] (n times),
and its set of vertices by Qn

0 . Each vertex of Qn can be represented by an element
of the set of all n-tuples with binary entries {0, 1}n, for example the vertices of the
unit square are represented by the tuples {(0, 0), (0, 1), (1, 0), (1, 1)} ∈ R2. The one-
dimensional skeleton of Qn is denoted by Qn

1 and consists of the set of vertices v and edges e of Qn. The
one-skeleton Qn

1 can also be regarded as a graph with vertex set Qn
0 with an edge between two vertices if

and only if they differ in exactly one coordinate. Similarly, the two-dimensional skeleton of Qn is denoted
by Qn

2 and consists of the set of vertices Qn
0 , the one-dimensional skeleton Qn

1 , and all its two-dimensional
faces f ∈ Qn. We can continue this construction up to the n-cube Qn

n and name the elements of all the

2

Under review as submission to TMLR

preceding sets the cells of Qn. Every cell of Qn is a product of vertices and intervals, and therefore can be
encoded combinatorially as an element of {0, 1, 2}n. Here a 2 in an entry implies that in the product, the
whole interval I is considered. Thus, every sub-complex of Qn can be represented as a subset of {0, 1, 2}n.
We refer to a subset of Qn

2 as a two-dimensional cubical complex which in the following we denote by C and
whose set of vertices, edges and faces are denoted by C0, C1, and C2 respectively. The vertex figure Fv of a
vertex v is the graph whose nodes are the edges in C1 having v as an endpoint and where two nodes e, e′ ∈ C1
are joined by an edge if there is a face f ∈ C2 with e, e′ as two of its edges. A closed cubical surface is
a two-dimensional cubical complex C in which every point has an open neighborhood homeomorphic to an
open disk. This condition is equivalent to requiring C to fulfill the following two conditions:

1. Every edge is shared by exactly two faces, i.e., for all e ∈ C1, Fe = 2.

2. The vertex figure Fv of any vertex v ∈ C0 is a cyclic graph.

For the case n = 4 only orientable cubical surfaces can exist, and the 3-dimensional embeddings of each
cubical surface representative can be consulted in the paper by Estévez et al. (2023). In Section 4 some 3-d
models of the perspective projections of minimal 5-dimensional cubical surfaces for genus g (1 ≤ g ≤ 5) and
demigenus k (1 ≤ k ≤ 3) are presented; where in the non-orientable case k = 1 is equivalent to a Projective
Plane and k = 2 to a Klein Bottle.

2.2 N-dimensional Rotations & Gimbal-Lock

Consider two canonical vectors e(i), e(j) ∈ Rn and let Xi,j ⊂ Rn be their spanned plane. In Rn there
are

(
n
2
)

= n(n − 1)/2 possible pairing of canonical vectors e(i), e(j) or equivalently possible planes Xi,j . A
rotation by an angle ϕ ∈ [0, 2π) in the plane Xi,j is called an elemental rotation, and can be represented
by an elemental rotation matrix Ri,j(ϕ); elemental rotations will allow us to generate all possible rotations
in Rn. In R3, elemental rotations by angles ϕ0,1, ϕ0,2 and ϕ1,2 in planes Z = 0, Y = 0 and X = 0
correspond to elemental rotation matrices R0,1(ϕ0,1), R0,2(ϕ0,2), R1,2(ϕ1,2) respectively. For any angle
ϕ ∈ [0, 2π), elemental rotation matrices satisfy the relationships Ri,j(ϕ) = Rj,i(−ϕ), R−1

i,j (ϕ) = Rj,i(ϕ), and
Ri,j(θ)Rj,i(θ) = In and they can be constructed as follows:

Ri,j(ϕ) :=



Rk,k = cos(ϕ) if k = i

Rl,l = cos(ϕ) if l = j

Rk,l = − sin(ϕ) if k = i and l = j

Rl,k = sin(ϕ) if k = i and l = j

Rk,k = 1 if k ̸= i or k ̸= j

Rk,l = 0 otherwise.

Consider a list of angles ϕn := (ϕi,j : (i, j) ∈
(

n
2
)
) with the rotation angles in each plane Xi,j ordered

lexicographically, that is (i, j) < (k, l) if i < k or (i = k and j < l). A general rotation matrix
R ∈ SO(n,R) by angles ϕn can be calculated by multiplying elemental rotation matrices Ri,j(ϕi,j) for each
angle ϕi,j ∈ ϕn on the left with respect to the order given by ϕn as shown in Equation 1. Since elemental
rotation matrices generally do not commute, the order of the factors is crucial.

R(ϕn) := Rn−2,n−1(ϕn−2,n−1) · · ·R0,2(ϕ0,2)R0,1(ϕ0,1). (1)

However, when calculating general rotation matrices, some considerations must be taken into account. For
example, lets consider the list of angles ϕ3 = (ϕ0,1, ϕ0,2, ϕ1,2) = (α,−π/2, γ) in R3. Computing the corre-
sponding general rotation matrix results:

R(ϕn) =

[
1 0 0
0 cos(γ) − sin(γ)
0 sin(γ) cos(γ)

] [
cos(π/2) 0 sin(π/2)

0 1 0
− sin(π/2) 0 cos(π/2)

] [
cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

]
=

[
0 0 1

sin(α + γ) cos(α + γ) 0
− cos(α + γ) sin(α + γ) 0

]
Note that by setting β = −π/2, affecting α or γ yields the same change in the rotation matrix; moreover
for any values of α and γ the matrix R(ϕ3) fixes the plane Z = 0 and a rotation in the plane X = 0 is no

3

Under review as submission to TMLR

longer possible. We have then lost a degree of freedom, and in order for α and γ to have again different
effects the values β = ±π/2 should be avoided. This phenomenon is called Gimbal-Lock and appears in
higher dimensions as well. Since in our algorithm, the rotations (see Section 3) performed by the agent
step-wise are in just one plane Xi,j ⊂ Rn one can still use Euler angles and avoid Gimbal-Lock as explained
by Shehata (2020) for cases n = 3, 4. The strategy is to use the action of SO(n) in R3 when actualizing
the rotation matrix at each step. By the compatibility axiom of group action, for any two rotation matrices
R, S ∈ SO(n) and any vector x ∈ Rn the property S · (R ·x) = (S ·R) ·x holds. Instead of adding the angle
ϕi,j to the corresponding coordinate in the list ϕn and recalculating R(ϕn), let R = R(ϕn) be the previous
rotation matrix and S = Ri,j(ϕi,j) be the elemental rotation matrix for the rotation at the current step
and assigning R← S ·R. Algorithm 1 describes how to calculate a general rotation matrix R(ϕn) given an
ordered list of angles ϕn as in Equation 1. It will be used to construct the initial embedding of the surface
C in Algorithm 9 and after each step in Algorithm 10, successfully avoiding Gimbal-Lock.

2.3 N-dimensional Perspective Projection

Projection maps allow us to visualize n-dimensional objects in R3 conserving particular properties from the
original n-dimensional object. One could use for example a Stereographic Projection which is an example
example of a conformal map, a mapping preserving angles but not necessary lengths. The main goal of this
study is to find immersions in R3 which minimize the number face and edge intersections, therefore a good
starting point is mapping this projected edges to line segments L ⊂ R3 and similarly projected faces to plane
segments T ⊂ R3. A good candidate for such a map is Perspective Projection 2, which maps a point a ∈ Rn

from a camera position c ∈ Rn (also called a vanishing point) to an orthogonal hyperplane p ∈ Rn, returning
a projected point b ∈ Rn−1. Perspective projection mapping then is denoted as

Projn(an, cn, en) : Rn → Rn−1

(an, cn, en) 7→ b.

Consider an edge e ∈ Qn
1 (resp. a face f ∈ C2) and a rotation matrix R ∈ SO(n) as in Algorithm 1; we

apply to every rotated edge Re ⊂ Rn (resp. face Rf ∈ Rn) a sequence of perspective projections

Proj4(· · · (Projn−1((Projn(an, cn, en), cn−1, en−1), · · ·), c4, e4) : Rn → R3.

After each mapping the points b ∈ Proji(ai, ci, ei) ⊂ Ri−1 should always map to the same side of the camera
ci−1 ∈ Ri−1 in the next perspective projection; otherwise they would be inverted in the next projection.
Cubical surfaces are faces on the 5-dimensional cube Q5 centered at the origin with unit-length edges. It’s
vertices are of the form (±1/2,±1/2,±1/2,±1/2,±1/2) ∈ R5 and lay on the boundary of the 5-dimensional
sphere S5 of radius r5 =

√
5(±1/2)2 =

√
5/4 =

√
5/2; or for the n-dimensional case in the boundary of

the sphere Sn of radius rn =
√

n/2. The camera position c5 ∈ R5 is limited to move in the line segment
(0, 0, 0, 0, d5) ∈ R5 with d5 ∈ [−15,−2] so the furthest a point can be projected to R4 occurs when the camera
position is c5 = (0, 0, 0, 0,−2). Consider the 4-dimensional sphere S5, one must know how far from the origin
can any point a ∈ S5 project so the range within c4 ∈ R4 can move can be determined. Assume the projection
line L ⊂ R5 is contained in the plane X1,2 spanned by axes X1, X2 ⊂ R5 (therefore X3, X4, X5 = 0) and has
equation X2 −mX1 + 2 = 0. The plane X1,2 intersects the 5-sphere in a circle of radius r5 =

√
5/2 with

equation X2
1 + X2

2 − r2
5 = 0; we want to minimize the projection of the line L parametrized by m onto the

line X2 = 0. For any point x = (r5 cos(θ), r5 sin(θ)) in this circle with θ ∈ (−π, π), the line passing through x
and (0,−2) has slope m = (r5 sin(θ)− (−2))/(r5 cos(θ)− 0)(r5 sin(θ) + 2)/r5 cos(θ) = tan(θ) + 2/(r5 cos(θ)),
and substituting the value of m in the equation of L yields X2 − (tan(θ) + 2/r5 cos(θ))X1 + 2 = 0. This line
intersects the line X2 = 0 at the point X1 = 2/(tan(θ) + 2/r5 cos(θ)). As a function defined in the interval
(−π, π) ⊂ R it achieves a maximum value X1 = 1.348 at θ = −.5932 ≈ −π/5 radians, so the projected
points a ∈ R4 would not map behind the camera c4 = (0, 0, 0,−2) ∈ R4; the 4-dimensional camera can be
set as c4 = (0, 0, 0, d4) with d4 ∈ [−15,−2] ∈ R.

After applying the sequence of perspective projections as in Section 2.3, the resulting line segments (resp.
plane segments) are stored in a list SegList (resp. FaceList). This process is detailed in Algorithm 3 and in
Appendix A the process of determining whether whether edges in SegList (resp. faces in FaceList) intersect
in R3 is explained. For the list of projected edges SegList, we assign its elements an edge-radius w > 0 ∈ R
and determine if the resulting cylindrical segments intersect in pairs.

4

Under review as submission to TMLR

2.4 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning technique first proposed by Richard Bellman in the
60’s and further developed by Sutton et al. (2018) in the recent years. In RL an algorithm called an agent
interacts with its environment E by performing a sequence of actions maximizing a cumulative reward based
on feedback received for each action taken. More specifically, at each time-step t the agent takes as input
information from the environment called a state st ∈ S (this is the information that the agent knows about
E) and outputs an action at ∈ A which is passed to E ; returning a new state st+1 ∈ S and a reward rt for
taking at at st. Future rewards are multiplied by a discount factor γ ∈ [0, 1) at each step. The future
discounted return at step t is defined as Rt =

∑T
t′=t γt′−trt. A policy π : S → P(A) is a map from the

states to the set of probability distributions over actions mapping s 7→ π(a|s), where π(a|s) is the conditional
probability of selection the action a at the state s. The action-value function following a policy π is defined
as

Qπ(s, a) = Eπ [Rt|st = s, at = a, π] , at ∼ π(·|st). (2)

Letting Π be the set of all policies, we define the optimal action-value function as the maximum expected
return achievable by following any π ∈ Π after performing some action a ∈ A at a state s ∈ S; that is
Q∗(s, a) = maxπ∈Π{Eπ [Rt|st = s, at = a, π]}, at ∼ π(·|st).

2.4.1 Proximal Policy Optimization

Proximal Policy Optimization Algorithms (PPO) are a family of Reinforcement Learning algorithms proposed
by Schulman et al. (2017) which compute an estimation of the policy gradient and plug it into a stochastic
gradient ascent algorithm. Among this family of algorithms we use the Clipped Surrogate Objective algorithm
which attempts to maximize the objective function LCLIP (θ) with weights θ of the actor network and weights
φ of the critic network. The actor network takes as input a state st and outputs an action at+1 and the
critic network takes as input a state st and outputs the value Vφ(st) of the state st. Let Vφ(st) be the this
state-value function, and rt = πθ(at|st)/πθold

(at|st) the probability ratio, the advantages at state st are
calculated as

Ât = Qπθold (st, at)− Vθold
(st), (3)

and the clip objective function to maximize is

LCLIP (θ) = Et[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)], (4)

where epsilon is a small real number usually taken as ϵ = 0.2. The actor and critic network weights are
updated independently by stochastic gradient descent; in this case ADAM optimizer by Kingma & Ba (2017).

2.5 Neural Network Architecture

In PPO (clip) it is common practice to use two feed-forward neural networks namely the actor network with
weights θk and the critic network with weights φk changing at each iteration k. The actor network takes as
input a state st and returns an action a ∈ A. To achieve exploration, an action at ∈ A is sampled from a
multivariate normal distribution with mean a and a specified covariance matrix. To minimize the surrogate
loss −LCLIP (θk) (Equation 3) at each iteration k, the actor weights are actualized via stochastic gradient
descent. On the other hand, the critic network takes as input a state st and estimates the value Vφ(st)
which is then used to estimate the advantages Ât in Equation 4. To minimize the the mean squared error
L(φ) = (Rt − Vφ(st))2 at each iteration k, the critic weights are actualized via stochastic gradient descent.
We optimize both the actor and critic weights using ADAM optimizer by Kingma & Ba (2017) with a fixed
learning rate lr = 3e−4. Both neural networks have the same architecture consisting on an input layer
with 27 neurons (the length of a vector st as in Equation 5), two fully connected hidden layers with 64
neurons each, and an output layer with 18 neurons (one per every action a ∈ Action). The output of each
layer passes through a RELU activation function.

5

Under review as submission to TMLR

Figure 2: Four plane segments in R3

intersecting along F aceInt = 3 line-
segments shown in red.

Figure 3: A pair of overlapping edges
in Q5

1 for edge radius w > 0 ∈ R.

Figure 4: 3-d perspective projection
of Q5

1 with Overlap = 0 for edge radius
w = 0.5.

3 Cubical Surface Self-Intersections as a Finite MDP

A Markov Decision Process (MDP) is a tuple M = (S,A,R,P, γ) where S is a state space, A an action
space, P a transition probability function, R a reward function and γ ∈ [0, 1) a future reward discount factor.
Solving M means finding a policy π over A yielding the supremum of Rt, that is finding π maximizing at
each state the state-value function vπ(s) = Eπ

[
rt + γrt+1 + γ2rt+2 + ...|st = s

]
. Finding immersions of n-

dimensional cubical surfaces minimizing face-intersections can be formulated as a (MDP). For the rest of this
article, fix n = 5 and consider a 5-dimensional cubical surface C. When immersing a non-orientable cubical
surface C in R3 one always expects to find face-intersections, that is pairs of faces in the embedding that
intersect along a line segment. To minimize them, at each state st the number of pairs of faces intersecting
is counted and denoted by FaceInt(st) ≥ 0 ∈ Z also simply called FaceInt. To determine whether two faces
f1, f2 ⊂ R3 one can triangulate the projection of each face into two triangles {T i

1, T i
2} for each fi and use

triangle collision detection for each possible pairing of triangles T 1
i , T 2

j . Appendix A.7 explains the Algorithm
by Möller (1997) determining whether two triangles T1, T2 ⊂ R3 intersect and their intersection line or point.
A Python implementation of this algorithm NeonRice (2020) is used in this paper. In general for C it
is unknown how few face-intersections one can achieve, but an expected minimum number of face-
intersections Exp ≥ 0 ∈ Z can be set as a goal. At each state st the agent attempts to modify FaceInt(st)
with respect to the precious number of face-intersections PrevFaceInt(st) := FaceInt(st−1) from two
different approaches depending on the exactness parameter Exact. If the parameter Exact = True the
agent attempts to set strictly FaceInt = Exp, otherwise it attempts to set FaceInt ≤ Exp.

3.1 State Space

In this problem setting, there are two types of parameters needed to determine all the information necessary
to immerse C in R3:

1. The 5-d (resp. 4-d) projection camera distance d5 ∈ [−15,−2] ∈ R (resp. d4 ∈ [−15,−2] ∈ R)
is a scalar parameter representing the 5-d (resp. 4-d) camera position c5 = d5e(5) ∈ R5 (resp.
c4 = d4e(4) ∈ R4). The cubical surface C is projected to R3 as in Algorithm 2, fixing the projection
hyperplane at the position e5 = (0, 0, 0, 0, 0) ∈ R5 (resp. e4 = 10e(4) ∈ R4 which serves as a scaling
factor) with respect to the origin.

2. Section 2.2 explains how the orientation of C around the origin in Rn can be described by a general
5 by 5 rotation matrix R = (Ri,j) with entries (−1 ≤ Ri,j ≤ 1).

Therefore, at any time-step t the embedding of C is parameterized by a state (in this case also a vector)

st = (d5, d4, R1,1, R1,2, ..., R5,4, R5,5) ∈ R27 (5)

where the first two entries give the agent information about the camera distances and the rest are the entries
of the general rotation matrix R = (Ri,j) at step t.

6

Under review as submission to TMLR

3.2 Action Space

The action space A describes how the agent can interact with its environment E . The agent receives a
state st ∈ S from E and selects one of the possible actions a ∈ A which then takes it to a new state st+1.
This action space used here consists on the discrete set A := {0, 1, ..., 17}; each number executing either a
camera modification or a 5-dimensional rotation. The following dictionary identifies each action a ∈ A with
a particular vector:

ActV ec = {0 : δe(1), 1 : −δe(1), 2 : δe(2), 3 : −δe(2), 4 : ϵe(5), 5 : −ϵe(5), · · · , 16 : ϵe(12), 17 : −ϵe(12)}, (6)

where e(i), (1 ≤ i ≤ 12, i ̸= 3, 4, 7) are the canonical basis vectors in R12, and δ, ϵ > 0 ∈ R are small positive
real numbers. We eliminate the actions corresponding to i = 3, 4, 7 because they correspond to rotations in
planes X0,1, X0,2, X1,2 (equivalently Z, Y, X) respectively around which rotating doesn’t yield any change on
FaceInt or Overlap. The roles of parameters δ, ϵ are the following:

1. Actions a ∈ {0, 1} (resp. a ∈ {2, 3}) modify the distance d5 (resp. d4) of the 5-d (resp. 4-
d) camera by a small distance δ > 0 ∈ R. To modify the 5-d (resp. 4-d) camera position we
simply add ±δ to the last coordinate of the camera vector, i.e. c5[4] ← c5[4] + ActV ec[a][0] (resp.
c4[3]← c4[3] + ActV ec[a][1]).

2. Actions a ∈ {4, ..., 17} apply a small rotation-step ±ϵ > 0 ∈ R in one of the planes Xi,j ⊂ R5. The
rotation-step is taken as ϵ = απ/180 (α degrees) if at the current state st it holds that FaceInt(st) >
Exp and ϵ = π/180 (one degree) if at the current state st it holds that FaceInt(st) ≤ Exp. Section
4 shows training plots for α = 1, 2, 5 degrees which allow to determine the best rotation-step size
for each of the surfaces we study here. This technique is intended to explore the environment in a
wider extent but switching to small steps when the agent is close to a solution. To rotate a surface
C by an action a ∈ {4, ..., 17} one must take the entries describing the rotation ActV ec[a][2, :] ∈ R10,
calculate the elemental rotation matrix S = RotMat(ActV ec[a][2, :]) as in Algorithm 1, multiply S
on the left of the previous rotation matrix R, and finally assigning R ← S · R. The new entries
(Ri,j) are passed to the next state st+1 ∈ S as in Equation 5.

3.3 Reward Functions

Dense rewards are received by the agent after achieving some goal while sparse rewards are received at each
step. In this paper a combination of both is used and the reward function is the sum of the following:

1. Reward 5 prevents the agent from taking two consecutive inverse actions at, at+1 that yield no change
in the state; for example rotating +ϵ after rotating −ϵ on the same plane Xi,j . If this is the case
the agent takes a reward r1 = −1. This is an example of a sparse reward.

2. The second reward function has to do with the observation space. The camera parameters d4 and
d5 can range in the closed interval [−15,−2] ∈ R. Similarly any rotation matrix R = (Ri,j) ∈ SO(5)
has entries within the interval [−1, 1] (see Section 2.2). We define the Observation Space as

ObsSpace := [−15,−2]× [−15,−2]× [−1, 1]× · · · × [−1, 1] ⊂ R27. (7)

Whenever the agent performs an action at such that that the next state st+1 /∈ ObsSpace, then
it receives a reward r2 = −1. The agent receives no reward for staying within these bounds (see
Algorithm 6); this is an example of a sparse reward.

3. At each step, the agent should attempt to reduce FaceInt(st) (see Algorithm 14) with respect to
PrevFaceInt(st). The reward in Algorithm 7 is dense because it is given to the agent at every
step if at the current state FaceInt > Exp (resp. FaceInt ̸= Exp) for Exact = False (resp. for
Exact = True). On the other hand, if FaceInt ≤ Exp (resp. FaceInt = Exp) for Exact = False
(resp. Exact = True) the agent should not get this reward. This reward is intended to incentivize
the agent to transition into states at which FaceInt is closer to Exp by monotonically decreasing
FaceInt during the exploration stage; although in some cases FaceInt may need to increase in order
to reach new minima like in the first row in Figure 23.

7

Under review as submission to TMLR

4. For a cubical surface C the task has two types of solutions depending on the Exact parameter. If
Exact = False (resp. Exact = True), the agent’s task is to set Overlap = 0 (see Algorithm 13) if
FaceInt ≤ Exp (resp. FaxeInt = Exp) (see Algorithm 8). If the agent finds a solution in any of
these situations then it receives r4 = 10. Note that the agent will tend to find solutions (terminal
states sT) requiring less steps because the penalization given by the future discount reward γt′−t will
have a smaller effect on the future discounted return Rt =

∑T
t′=t γt′−trt throughout the intermediate

steps st.

3.4 Termination Criteria

There are two termination criteria. The first one has to do with finding a solution of the problem. Given
a cubical surface C the task has two types of solutions depending on the Exact parameter. If Exact =
True, then the objective of the agent is arriving to a terminal state sT at which Overlap(sT) = 0 and
FaceInt(sT) = Exp; otherwise will be arriving to a terminal state sT at which Overlap(sT) = 0 and
FaceInt(sT) ≤ Exp. This is formalized in Algorithm 4 (1). The second one is an episode truncation which
ends the episode once the agent exceeds a maximum number of steps MaxSteps > 0 ∈ Z. For some
surfaces we must allow the agent to explore the environment further by increasing the allowed MaxSteps
but in this work a MaxSteps = 100 is tested.

3.5 The Environment

The environment E is a class containing a constructor, a step function describing how the agent and the
environment interact, and a reset function which runs if Done← True. The constructor passes the parame-
ters from the user and assigns them to the environment class. The step function takes an action at given by
the agent at a state st and outputs the resulting state st+1 and the resulting reward rt. The reset function
simply sets the environment into its initial state s0 after Done ← True. Figure 5 explains the algorithm
controlling the environment. A more detailed pseudo-code with each of its components can be consulted in
in Section A.5, Algorithms 9, 10 and 11.

Figure 5: Episode flow diagram

8

Under review as submission to TMLR

Figure 6: PPO (clip) agent flow diagram.

3.6 The Agent

Proximal Policy Optimization algorithms samples a batch of size N > 0 of data st, at, π(at|st), rt following
an initial policy πold. When done = True the future discounted reward Rt is calculated as in Section 3
the episode length is saved. The Rt estimate the action-value functions Qπθold (s, a) used to calculate the
advantages Ât in Equation 3. In practice, a MinibatchSize > 0 of elements is sampled form the memory of
size N . According to Keskar et al. (2016) a larger MinibatchSize tends to find sharper minima (leading to
poor generalization), while small batch sizes tend to find flat minima (allowing better generalization). Here
a MinibatchSize = 32 is used to achieve some generalization. Algorithm 1 in Schulman et al. (2017) shows
the PPO (clip) algorithm workflow. The models were trained using Stable-Baselines 3, an implementation
by Raffin et al. (2021) which follows the logic of Figure 6.

4 Experiments

Recall from Section 3 that the rotation steps the agent is allowed to perform via an elementary rotation
matrix are specified by the user. A small step size will not be the best way to explore the entire configuration
space but will be efficient to explore near a particular configuration. On the other hand, a large step size will
be better to explore the whole configuration space but can miss good configurations between steps. Each
of the eight minimal cubical surfaces here presented is trained for 204800 steps with different rotation-step
sizes, namely ϵ = 1 (red), ϵ = 2 (blue) and ϵ = 5 (orange) degrees to find the best ϵ parameter for each
surface. We set the number of steps sampled on the rollout function to Updates = 2048 (see Figure 6) from
which a MiniBatchSize = 32 is sampled. During training, the initial state s0 is fixed for each cubical surface
and specified in Tables 4.3, 4.4. The expected number of face-intersections Exp ≥ 0 is specified for each
surface depending on the minimum FaceInt observed in previous runs; if during training a FaceInt < Exp
is reached then the training is repeated with the smallest Exp found. The rest of the training parameters
are fixed to: δ = .5, Exact = False, w = .05, MaxSteps = 100, and γ = .99.

Figure 7: Genus-1 torus with Exp = 0. Left: Episode length
mean. Right: Episode reward mean.

Figure 8: Genus-2 torus with Exp = 0. Left: Episode length
mean. Right: Episode reward mean.

9

Under review as submission to TMLR

Figure 9: Genus-3 torus with Exp = 9. Left: Episode length
mean. Right: Episode reward mean.

Figure 10: Genus-4 torus with Exp = 12. Left: Episode
length mean. Right: Episode reward mean.

Figure 11: Genus-5 torus with Exp = 16. Left: Episode
length mean. Right: Episode reward mean.

Figure 12: Projective Plane with Exp = 3. Left: Episode
length mean. Right: Episode reward mean.

Figure 13: Klein Bottle with Exp = 3. Left: Episode length
mean. Right: Episode reward mean.

Figure 14: K-3 surface with Exp = 6. Left: Episode length
mean. Right: Episode reward mean.

4.1 Initial and Final Immersions of some Cubical Surfaces

In the following plots, lines in red represent face-intersections, and the edges of the 5-cube are not rendered
for better understanding of the surface. Recall from Section 2.2 that the initial orientation of a cubical
surface is determined from the list of angles ϕ5 = (ϕ0,1, ϕ0,2, ϕ0,3, ϕ0,4, ϕ1,2, ϕ1,3, ϕ1,4, ϕ2,3, ϕ2,4, ϕ3,4) sorted
in lexicographic order. For each cubical surface and choice of rotation-step ϵ ∈ {1, 2, 3} the last trained
model saved is tested. Having a high mean episode reward translates into finding a solution in less steps.
Table 1 presents the number of steps each trained model requires to find a solution.

Surface ϵ = 1 ϵ = 2 ϵ = 5
Genus-1 > 100 35 13
Genus-2 > 100 > 100 25
Genus-3 > 100 > 100 11
Genus-4 > 100 56 39
Genus-5 > 100 > 100 57

Projective Plane > 100 45 25
Klein Bottle 9 15 14

K-3 > 100 39 19

Table 1: Number of time-steps required to find a solution.

10

Under review as submission to TMLR

Figure 15: Genus-1 torus (16 faces). Left: Initial with
F aceInt = 6. Right: Optimized with F aceint = 0.

Figure 16: Genus-2 torus (26 faces). Left: Initial with
F aceInt = 23. Right: Optimized with F aceint = 0.

Figure 17: Genus-3 torus (36 faces). Left: Initial with
F aceInt = 20. Right: Optimized with F aceInt = 9.

Figure 18: Genus-4 torus (38 faces). Left:Initial with
F aceInt = 36. Right: Optimized with F aceInt = 10.

Figure 19: Genus-5 torus (40 faces). Left: Initial with
F aceInt = 48. Right: Optimized with F aceInt = 16.

Figure 20: Projective Plane (20 faces). Left: Initial with
F aceInt = 17. Right: Optimized with F aceInt = 3.

Figure 21: Klein Bottle (24 faces). Left: Initial with
F aceInt = 9. Right: Optimized with F aceInt = 3.

Figure 22: K-3 surface (30 faces). Left: Initial with
F aceInt = 23. Right: Optimized with F aceInt = 6.

11

Under review as submission to TMLR

(a) F aceInt = 23, Overlap = 2 (b) F aceInt = 22, Overlap = 7 (c) F aceInt = 26, Overlap = 2 (d) F aceInt = 21, Overlap = 6

(e) F aceInt = 20, Overlap = 4 (f) F aceInt = 19, Overlap = 8 (g) F aceInt = 19, Overlap = 6 (h) F aceInt = 19, Overlap = 6

(i) F aceInt = 18, Overlap = 6 (j) F aceInt = 18, Overlap = 4 (k) F aceInt = 18, Overlap = 4 (l) F aceInt = 17, Overlap = 4

(m) F aceInt = 13, Overlap = 6 (n) F aceInt = 13, Overlap = 4 (o) F aceInt = 9, Overlap = 7 (p) F aceInt = 9, Overlap = 2

(q) F aceInt = 9, Overlap = 2 (r) F aceInt = 7, Overlap = 2 (s) F aceInt = 7, Overlap = 0 (t) F aceInt = 0, Overlap = 3

Figure 23: Face optimization stage for the orientable genus-2 cubical surface in Figure 16 with Exp = 0 and ϵ = 5 degrees
rotation-step. Faces are shown in red and face-intersections in blue. The 5-cube’s 1-skeleton is rendered in light gray.

12

Under review as submission to TMLR

4.2 An Optimization Sequence

Figure 23 shows the face-intersection minimization sequence for the genus-2 cubical surface in Figure 16 and
rotation-step ϵ = 5 degrees is presented. Here, FaceInt is increased only once in Figure 23c, in all other
steps FacInt(st+1) ≤ FaceInt(st) holds. The edge-overlap minimization stage is not presented since it is
hard to appreciate in a plot. Each of the 25 steps the agent performs is a frame in an animation sequence;
this allows capturing the effects of the 5-d rotations and perspective projections needed to transform s0
into sT in a realistic way. Creating this animation only with the initial and final immersions (without any
intermediate one) would only yield a linear vertex displacement from their initial to the final locations which
would not corresponding to the effect of a 5-d rotation.

4.3 Orientable Cubical Surfaces

The following table summarizes the results for orientable cubical surfaces.

g Initial Orientation (ϕ5) FaceInt(s0) FaceInt(sT) Overlap(s0) Overlap(sT)
1 (0, 0, π

6 , π
6 , 0, π

6 , π
6 , π

6 , π
6 , π

6) 6 0 2 0
2 (0, 0, π

6 , π
6 , 0, π

6 , π
6 , π

6 , π
6 , π

6) 23 0 2 0
3 (0, 0, 0, 0, 0, 0, π

6 , π
6 , π

6 , π
6) 20 9 0 0

4 (0, 0, π
6 , π

6 , 0, π
6 , π

6 , π
6 , π

6 , π
6) 36 10 2 0

5 (0, 0, π
6 , π

6 , 0, π
6 , π

6 , π
6 , π

6 , π
6) 48 16 2 0

4.3.1 Genus-1 Cubical Surface
Figure 15 shows the initial (left) and optimized (right) immersions of the g = 1 cubical surface:

{ (0, 0, 0, 2, 2), (0, 0, 1, 2, 2), (0, 0, 2, 0, 2), (0, 0, 2, 1, 2), (0, 1, 0, 2, 2), (0, 1, 1, 2, 2), (0, 1, 2, 0, 2), (0, 1, 2, 1, 2),

(0, 2, 0, 2, 0), (0, 2, 0, 2, 1), (0, 2, 1, 2, 0), (0, 2, 1, 2, 1), (0, 2, 2, 0, 0), (0, 2, 2, 0, 1), (0, 2, 2, 1, 0), (0, 2, 2, 1, 1)}

4.3.2 Genus-2 Cubical Surface
Figure 16 shows the initial (left) and optimized (right) immersions of the g = 2 cubical surface:

{ (0, 0, 0, 2, 2), (0, 0, 1, 2, 2), (0, 0, 2, 0, 2), (0, 0, 2, 1, 2), (0, 1, 0, 2, 2), (0, 1, 1, 2, 2), (0, 2, 0, 2, 0), (0, 2, 0, 2, 1), (0, 2, 1, 2, 0), (0, 2, 1, 2, 1),

(0, 2, 2, 0, 0), (0, 2, 2, 0, 1), (0, 2, 2, 1, 0), (0, 2, 2, 1, 1), (1, 1, 0, 2, 2), (1, 1, 1, 2, 2), (1, 1, 2, 2, 0), (1, 1, 2, 2, 1), (2, 1, 0, 0, 2), (2, 1, 0, 1, 2),

(2, 1, 1, 0, 2), (2, 1, 1, 1, 2), (2, 1, 2, 0, 0), (2, 1, 2, 0, 1), (2, 1, 2, 1, 0), (2, 1, 2, 1, 1)}

4.3.3 Genus-3 Cubical Surface
Figure 17 shows the initial (left) and optimized (right) immersions of the g = 3 cubical surface:

{ (0, 0, 0, 2, 2), (0, 0, 2, 0, 2), (0, 0, 2, 1, 2), (0, 0, 2, 2, 0), (0, 1, 0, 2, 2), (0, 1, 2, 0, 2), (0, 1, 2, 1, 2), (0, 2, 0, 2, 1), (0, 2, 1, 0, 2), (0, 2, 1, 1, 2),

(0, 2, 1, 2, 0), (0, 2, 1, 2, 1), (1, 0, 0, 2, 2), (1, 0, 2, 0, 2), (1, 0, 2, 1, 2), (1, 0, 2, 2, 0), (1, 1, 0, 2, 2), (1, 1, 2, 0, 2), (1, 1, 2, 1, 2), (1, 2, 0, 2, 1),

(1, 2, 1, 0, 2), (1, 2, 1, 1, 2), (1, 2, 1, 2, 0), (1, 2, 1, 2, 1), (2, 0, 1, 2, 1), (2, 0, 2, 0, 1), (2, 0, 2, 1, 1), (2, 1, 0, 2, 0), (2, 1, 1, 2, 0), (2, 1, 1, 2, 1),

(2, 1, 2, 0, 0), (2, 1, 2, 0, 1), (2, 1, 2, 1, 0), (2, 1, 2, 1, 1), (2, 2, 0, 0, 1), (2, 2, 0, 1, 1)}

This surface’s initial orientation is different from the rest so the agent could find some solution within
the MaxSteps = 100 specified. With this modification the agent was able to find a solution only with a
rotation-step ϵ = 5 degrees.

4.3.4 Genus-4 Cubical Surface
Figure 18 shows the initial (left) and optimized (right) immersions of the g = 4 cubical surface:

{ (0, 0, 0, 2, 2), (0, 0, 1, 2, 2), (0, 0, 2, 0, 2), (0, 0, 2, 1, 2), (0, 1, 0, 2, 2), (0, 1, 1, 2, 2), (0, 1, 2, 1, 2), (0, 2, 0, 2, 0), (0, 2, 0, 2, 1), (0, 2, 1, 2, 0),

(0, 2, 1, 2, 1), (0, 2, 2, 0, 0), (0, 2, 2, 0, 1), (1, 0, 0, 2, 2), (1, 0, 1, 2, 2), (1, 0, 2, 0, 2), (1, 0, 2, 1, 2), (1, 1, 0, 2, 2), (1, 1, 1, 2, 2), (1, 1, 2, 1, 2),

(1, 2, 0, 2, 0), (1, 2, 0, 2, 1), (1, 2, 1, 2, 0), (1, 2, 1, 2, 1), (1, 2, 2, 0, 0), (1, 2, 2, 0, 1), (2, 0, 2, 1, 0), (2, 0, 2, 1, 1), (2, 1, 0, 0, 2), (2, 1, 1, 0, 2),

(2, 1, 2, 0, 0), (2, 1, 2, 0, 1), (2, 1, 2, 1, 0), (2, 1, 2, 1, 1), (2, 2, 0, 1, 0), (2, 2, 0, 1, 1), (2, 2, 1, 1, 0), (2, 2, 1, 1, 1)}

13

Under review as submission to TMLR

4.3.5 Genus-5 Cubical Surface
Figure 19 shows the initial (left) and optimized (right) immersions of the g = 5 cubical surface:

{ (0, 0, 0, 2, 2), (0, 0, 1, 2, 2), (0, 0, 2, 0, 2), (0, 0, 2, 1, 2), (0, 1, 0, 2, 2), (0, 1, 1, 2, 2), (0, 1, 2, 0, 2), (0, 1, 2, 1, 2), (0, 2, 0, 2, 0), (0, 2, 0, 2, 1),

(0, 2, 1, 2, 0), (0, 2, 1, 2, 1), (1, 0, 0, 2, 2), (1, 0, 1, 2, 2), (1, 0, 2, 0, 2), (1, 0, 2, 1, 2), (1, 1, 0, 2, 2), (1, 1, 1, 2, 2), (1, 1, 2, 0, 2), (1, 1, 2, 1, 2),

(1, 2, 0, 2, 0), (1, 2, 0, 2, 1), (1, 2, 1, 2, 0), (1, 2, 1, 2, 1), (2, 0, 2, 0, 0), (2, 0, 2, 0, 1), (2, 0, 2, 1, 0), (2, 0, 2, 1, 1), (2, 1, 2, 0, 0), (2, 1, 2, 0, 1),

(2, 1, 2, 1, 0), (2, 1, 2, 1, 1), (2, 2, 0, 0, 0), (2, 2, 0, 0, 1), (2, 2, 0, 1, 0), (2, 2, 0, 1, 1), (2, 2, 1, 0, 0), (2, 2, 1, 0, 1), (2, 2, 1, 1, 0), (2, 2, 1, 1, 1)

4.4 Non-Orientable Cubical Surfaces

The following table summarizes the results for non-orientable cubical surfaces.

k Initial Orientation (ϕ5) FaceInt(s0) FaceInt(sT) Overlap(s0) Overlap(sT)
1 (0, 0, π

6 , π
6 , 0, π

6 , π
6 , π

6 , π
6 , π

6) 17 3 2 0
2 (0, 0, π

6 , π
6 , 0, π

6 , π
6 , π

6 , π
6 , π

6) 9 3 2 0
3 (0, 0, π

6 , π
6 , 0, π

6 , π
6 , π

6 , π
6 , π

6) 23 6 2 0

4.4.1 Projective Plane

Figure 20 shows the initial (left) and optimized (right) immersions of the k = 1 cubical surface:
{ (0, 0, 0, 2, 2), (0, 0, 1, 2, 2), (0, 0, 2, 0, 2), (0, 0, 2, 2, 0), (0, 1, 2, 1, 2), (0, 2, 0, 1, 2), (0, 2, 1, 2, 1), (0, 2, 2, 1, 0), (0, 2, 2, 1, 1), (1, 0, 2, 2, 1),

(1, 2, 1, 1, 2), (1, 2, 1, 2, 1), (2, 0, 0, 2, 1), (2, 0, 1, 1, 2), (2, 0, 2, 0, 1), (2, 0, 2, 1, 1), (2, 1, 1, 1, 2), (2, 1, 1, 2, 1), (2, 2, 1, 0, 1), (2, 2, 1, 1, 0)}

4.4.2 Klein Bottle
Figure 21 shows the initial (left) and optimized (right) immersions of the k = 2 cubical surface:

{ (0, 0, 0, 2, 2), (0, 0, 2, 0, 2), (0, 0, 2, 1, 2), (0, 0, 2, 2, 0), (0, 1, 2, 0, 2), (0, 1, 2, 1, 2), (0, 1, 2, 2, 0), (0, 1, 2, 2, 1),

(0, 2, 0, 2, 1), (0, 2, 1, 0, 2), (0, 2, 1, 1, 2), (0, 2, 1, 2, 0), (0, 2, 1, 2, 1), (1, 0, 2, 2, 1), (1, 1, 0, 2, 2), (1, 2, 0, 2, 1),

(2, 0, 1, 2, 1), (2, 0, 2, 0, 1), (2, 0, 2, 1, 1), (2, 1, 0, 0, 2), (2, 1, 0, 1, 2), (2, 1, 0, 2, 0), (2, 2, 0, 0, 1), (2, 2, 0, 1, 1)}.

The faces in red are equivalent to a Möbius Strip. In this minimal immersion of a cubical Klein Bottle there
exist two parallel Möbius Strips joined by the gray set of faces in the figure on the right.

4.4.3 K-3 surface
Figure 22 shows the initial (left) and optimized (right) immersions of the k = 3 cubical surface:

{ (0, 0, 0, 2, 2), (0, 0, 2, 0, 2), (0, 0, 2, 1, 2), (0, 0, 2, 2, 0), (0, 1, 2, 0, 2), (0, 1, 2, 2, 0), (0, 1, 2, 2, 1), (0, 2, 0, 2, 1), (0, 2, 1, 0, 2), (0, 2, 1, 1, 2),

(0, 2, 1, 2, 0), (0, 2, 1, 2, 1), (1, 0, 2, 1, 2), (1, 1, 0, 2, 2), (1, 1, 2, 2, 1), (1, 2, 0, 1, 2), (1, 2, 1, 1, 2), (1, 2, 1, 2, 1), (1, 2, 2, 0, 1), (1, 2, 2, 1, 0),

(2, 0, 1, 2, 1), (2, 0, 2, 0, 1), (2, 0, 2, 1, 1), (2, 1, 0, 0, 2), (2, 1, 0, 2, 0), (2, 1, 1, 1, 2), (2, 1, 2, 1, 0), (2, 1, 2, 1, 1), (2, 2, 0, 0, 1), (2, 2, 0, 1, 1)}

5 Conclusions

This article presents the first setting to minimize the face-intersections of any 5-dimensional cubical surface
immersed in R3 by perspective projection. The agent modifies an initial immersion by sequentially applying
the surface a 5-dimensional rotation or modifying the projection-distance parameters. For orientable cubical
surfaces with genus g = 1, 2 the algorithm removes all face-intersections, while for orientable with g = 3, 4, 5
and non-orientable with k = 1, 2, 3 they are reduced to a minimum possible known so far. Moreover, the
strategy found by the agent is such that a small number of steps is required and the face-intersections
are decreased as monotonically as possible. This is particularly useful when animating the agent’s strategy
because the animations evidence an efficient rotation strategy to transform a visually complicated immersion
into one whose topological features can be visualized and understood easier.

6 Further directions

For orientable cubical surface with genus g = 1, 2 the RL algorithm here introduced is able to find an em-
bedding using perspective projections by performing a sequence of actions sequentially minimizing FaceInt.

14

Under review as submission to TMLR

However, for genus g = 3, 4, 5 the RL algorithm can not reduce FaceInt below the results shown in Sec-
tion 4 even though these surfaces are orientable and could be embedded allowing the unitary 5-cube to be
deformed in some way. A possible solution can be adapting the RL algorithm to a continuous action-space
framework eliminating the need of perspective projection and rotation-step size parameters δ and ϵ, but
some considerations regarding Gimbal-Lock and non-commutativity of rotation matrices should be made.

For non-orientable cubical surfaces, a possible direction of interest could be finding immersions of cubical
surfaces whose self-intersections have special properties. For example, the Boy’s surface is an immersion
in R3 of the projective plane whose intersection curve has a triple point (and no other singularities). It
is natural to ask whether some non-orientable cubical surface homeomorphic to a Projective plane can be
immersed in R3 with its intersection lines having these same properties and what is the least amount of faces
required.

The RL algorithm is being tested with the 6-dimensional cubical surfaces found in the GitHub repository by
Govc (2024). Here there exist representatives of orientable surfaces with genus g = 3 that can be embedded
in R3. For non-orientable cubical surfaces with k = 1, 2 we still observe that FaceInt ≥ 3.

7 Supplements

If the reader wishes to explore the cubical surfaces here presented more closely, their 3-d models and
animation sequences can be consulted and downloaded from Sketchfab Estevez (2025a).

If the reader wishes to minimize a particular cubical surface or take a deeper look into the implementations
visit the following GitHub repository Estevez (2025b).

Some 3-d prints of 5-dimensional cubical surfaces can be consulted in Estévez et al. (2024).

Acknowledgments

In loving memory of Prof. Dr. Sayan Mukherjee. This work was supported by Prof. Dr. Sayan Mukherjee’s
Humboldt Research Fellowship, awarded by the Alexander von Humboldt Foundation in 2023.

Thanks to Nikola Milosevic for the fruitful conversations and advices on this project and in general in RL.

Thanks to the Blender Team for such a robust 3-d modeling and animation software.

References
Aveni, Govc, and Roldan. Cubical surfaces (in preparation). arxiv, 1:1–10, 2024.

Paul Bourke. The shortest line between two lines in 3d. Disponível na internet via WWW. URL: http://local.
wasp. uwa. edu. au/˜ pbourke/geometry/lineline3d, 1998.

Davide P. Cervone. Traditional research, 2001. URL https://www.math.union.edu/~dpvc/professional/
research/traditional.html.

Manuel Estevez. Cubical surface sketchfab. https://sketchfab.com/Mane.Estevez/collections/5-d-cubical-
surfaces-6e9512c3597d4a85aca657dd8a33e917, 2025a. Accesed: 2025-7-9.

Manuel Estevez. Cubical surface immersions rl. https://github.com/mestevez88/Cubical-Surface-
Immersions-RL, 2025b. Accesed: 2025-7-9.

Manuel Estévez, Érika Roldán, and Henry Segerman. Surfaces in the tesseract. In Judy Holdener, Eve
Torrence, Chamberlain Fong, and Katherine Seaton (eds.), Proceedings of Bridges 2023: Mathematics,
Art, Music, Architecture, Culture, pp. 441–444, Phoenix, Arizona, 2023. Tessellations Publishing. ISBN
978-1-938664-45-8. URL http://archive.bridgesmathart.org/2023/bridges2023-441.html.

Manuel Estévez, Érika Roldán, and Henry Segerman. Oriented and non-oriented cubical surfaces in the
penteract. In Helena Verrill, Karl Kattchee, S. Louise Gould, and Eve Torrence (eds.), Proceedings of

15

https://www.math.union.edu/~dpvc/professional/research/traditional.html
https://www.math.union.edu/~dpvc/professional/research/traditional.html
http://archive.bridgesmathart.org/2023/bridges2023-441.html

Under review as submission to TMLR

Bridges 2024: Mathematics, Art, Music, Architecture, Culture, pp. 381–384, Phoenix, Arizona, 2024.
Tessellations Publishing. ISBN 978-1-938664-49-6. URL http://archive.bridgesmathart.org/2024/
bridges2024-381.html.

Dejan Govc. 6-dimensional cubical surfaces. https://github.com/DejanGovc/Surfaces6Cube, 2024. Accesed:
2025-6-11.

Tomasz Kaczynski, Konstantin Mischaikow, and Marian Mrozek. Computational homology. Appl Math Sci,
157:482, 1 2004. doi: 10.1007/b97315.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL https:
//arxiv.org/abs/1412.6980.

Tomas Möller. A fast triangle-triangle intersection test. Journal of graphics tools, 2(2):25–30, 1997.

NeonRice. 3d-triangle-intersection-detection. https://github.com/NeonRice/3D-triangle-intersection-
detection, 2020. Accessed: 2024-10-15.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning Re-
search, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Omar Shehata. How to fix gimbal lock in n-dimensions. https://omar-shehata.medium.com/how-to-fix-
gimbal-lock-in-n-dimensions-f2f7baec2b5e, 2020. Accessed: 2024-10-30.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction. MIT press Cambridge,
2018.

16

http://archive.bridgesmathart.org/2024/bridges2024-381.html
http://archive.bridgesmathart.org/2024/bridges2024-381.html
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://jmlr.org/papers/v22/20-1364.html

Under review as submission to TMLR

A Appendix

A.1 High-dimensional rotations

Algorithm 1: RotMat(ϕn)
Data: Dimension n ∈ N and angle list ϕn := (ϕi,j : (i, j) ∈

(
n
2
)
).

Result: General rotation matrix R ∈ SO(n,R).
1 Comb2(n)←

(
n
2
)
;

2 R← In;
3 for (i, j) ∈ Comb2(n) do
4 S ← In;
5 Si,i ← cos(ϕi,j);
6 Sj,j ← cos(ϕi,j);
7 Si,j ← − sin(ϕi,j);
8 Sj,i ← sin(ϕi,j);
9 R← S ·R

10 end

A.2 Perspective Projection

Algorithm 2: Projn(a, c, p)
Data: Point to project a ∈ Rn, Camera position c ∈ Rn, Projection Plane position p ∈ Rn.
Result: Projected point b ∈ Rn−1.

1 d← a− c;
2 M ← In;
3 for i, (0 ≤ i < n− 1) do
4 Mi,n ← p[i]/p[n];
5 end
6 Mn,n ← 1/p[n];
7 f ←M · d;
8 f ← f/f [n];
9 b← (f [1], ..., f [n− 1]);

Algorithm 3: ProjSegList(n, R, Qn
k , cn, pn, ..., c4, p4).

Data: Point to project ai ∈ Ri, n-dimensional Rotation Matrix R, n-dimensional Edges Qn
1 , Camera

position ci ∈ Ri, Orthogonal distance from origin to projection plane p > 0 ∈ R.
Result: list(tuple : b ∈ R3)

1 SegList← list();
2 for e ∈ Qn

1 do
3 V txList← list();
4 for v ∈ e do
5 a← R · v;
6 N ← n;
7 while N > 3 do
8 a← ProjN (a, cN , pN);
9 N ← N − 1;

10 end
11 V txList.append(a);
12 end
13 SegList.append(V txList);
14 end

17

Under review as submission to TMLR

A.3 Termination Criteria

Algorithm 4: Done(FaceInt, Exp, Overlap, Counter, Exact)
Data: (int, int, int, int, bool); (FaceInt, Exp, Overlap, Counter, Exact)
Result: bool : Done

1 Done← False;
2 if Exact; // (1)
3 then
4 if Overlap = 0 and FaceInt = Exp then
5 Done← True;
6 end
7 else
8 if Overlap = 0 and FaceInt ≤ Exp then
9 Done← True;

10 end
11 end
12 if Counter = MaxSteps; // (2)
13 then
14 Done← True;
15 end

A.4 Reward Functions

Algorithm 5: r1(PrevAction, Action)
Data: (int, int) : (PrevAction, Action)
Result: r1 ∈ R

1 r1 ← 0;
2 if Counter > 1 then
3 if ActV ec[PrevAction] + ActV ec[Action] = 0 then
4 r1 ← r1 − 1
5 end
6 end

Algorithm 6: r2(State, Action)
Data: (tuple, int) : (State, Action)
Result: r2 ∈ R

1 r2 ← 0;
2 if State[0] + ActV ec[Action][0] /∈ ObsSpace[0] and State[1] + ActV ec[Action][1] /∈ ObsSpace[1] then
3 r2 ← r2 − 1;
4 end

18

Under review as submission to TMLR

Algorithm 7: r3(FaceInt, PrevFaceInt, Exact)
Data: (int, int, bool) : (FaceInt, PrevFaceInt)
Result: r3 ∈ R

1 if Exact then
2 if FaceInt = Exp then
3 r3 ← 0;
4 else
5 if |FaceInt− Exp| < |PrevFaceInt− Exp| then
6 r3 ← 1
7 end
8 if |FaceInt− Exp| = |PrevFaceInt− Exp| then
9 r3 ← 0

10 end
11 if |FaceInt− Exp| > |PrevFaceInt− Exp| then
12 r3 ← −1
13 end
14 end
15 else
16 if FaceInt > Exp then
17 if FaceInt < PrevFaceInt then
18 r3 ← 1
19 end
20 if FaceInt = PrevFaceInt then
21 r3 ← 0
22 end
23 if FaceInt > PrevFaceInt then
24 r3 ← −1
25 end
26 else
27 r3 ← 0;
28 end
29 end

19

Under review as submission to TMLR

Algorithm 8: Reward4(FaceInt, PrevFaceInt, Overlap, PrevOverlap, Exact)
Data: (int, int, int, int, bool) : (FaceInt, PrevFaceInt, Overlap, PrevOverlap, Exact)
Result: r4 ∈ R

1 if Exact then
2 if FaceInt = Exp then
3 if Overlap = 0 or PrevOverlap = 0 then
4 r4 ← 10;
5 else
6 if Overlap < PrevOverlap then
7 r4 ← 1
8 end
9 if Overlap = PrevOverlap then

10 r4 ← 0
11 end
12 if Overlap < PrevOverlap then
13 r4 ← −1
14 end
15 end
16 end
17 else
18 if FaceInt ≤ Exp then
19 if Overlap = 0 or PrevOverlap = 0 then
20 Reward4 ← 10;
21 else
22 if Overlap < PrevOverlap then
23 r4 ← 1
24 end
25 if Overlap = PrevOverlap then
26 r4 ← 0
27 end
28 if Overlap > PrevOverlap then
29 r4 ← −1
30 end
31 end
32 end
33 end

20

Under review as submission to TMLR

A.5 Environment Logic

Algorithm 9: Hypercube Environment
Data: Camera distances d5, d4 ∈ [−15,−2], ϕi ∈ [0, π/2]; Step size δ, ϵ > 0 ∈ R; Exp ≥ 0 ∈ Z;

Exact = bool; w > 0 ∈ R; Cubical surface C = list(tuple).
1 class Hypercube5{
2 Constructor(d5, d4, ϕ1, ..., ϕ10, δ, ϵ, Exp, Exact, C2, w)
3 Q5

1 ← EdgeCoordinates(Q5
1);

4 f ← FaceCoordinates(C);
5 ActV ec← {0 : δe(1), 1 : −δe(1), 2 : δe(2), 3 : −δe(2), 4 : ϵe(3), 5 : −ϵe(3), ..., 23 : −ϵe(12)};
6 Action← (0, ..., 17);
7 ObsSpace← ([−15,−2], [−15,−2], [−1, 1], ..., [−1, 1]);
8 R← RotMat(ϕ1, ..., ϕ10); // Algorithm 1
9 State← (d5, d4, R1,1, R1,2, · · · , R5,4, R5,5);

10 c5 ← State[0]e(5); // Camera positions.
11 c4 ← State[1]e(4);
12 p5 ← −State[0]e(5) + e(5) ; // Hyperplane positions relative to camera.
13 p4 ← −State[1]e(4) + 10e(4);
14 SegList← ProjSegList(5, R, Q5

1, c5, p5, c4, p4); // Algorithm 3
15 FaceList← ProjSegList(5, R, f , c5, p5, c4, p4); // Algorithm 3
16 Overlaps← EdgeIntersections(w, SegList); // Algorithm 13
17 PrevOverlaps← Overlaps;
18 FaceInt← FaceInt(FaceList); // Algorithm 14
19 PrevFaceInt← FaceInt;
20 MinFaceInt← PrevFaceInt;

21

Under review as submission to TMLR

Algorithm 10: Step function
48 ...
49 Step(Action) :
50 Counter ← Counter + 1;
51 PrevOverlap← Overlap;
52 PrevFaceInt← FaceInt;
53 R1 ← Reward1(PrevAction, Action); // Algorithm 5
54 R2 ← Reward1(State, Action); // Algorithm 6
55 if Action ∈ {0, 1} and c5[4] + ActV ec[Action][0] ∈ [−15,−2] then
56 c5 ← c5 + ActV ec[Action][0]e(5); // 5-dimensional camera.
57 else if Action ∈ {2, 3} and c4[3] + ActV ec[Action][1] ∈ [−15,−2] then
58 c4 ← c4 + ActV ec[Action][1]e(4); // 4-dimensional camera.
59 else
60 S ← RotMat(ActDir[Action][2, :]); // Algorithm 1
61 R← S ·R;
62 State← (c5[4], c4[3], R1,1, R1,2, · · · , R5,4, R5,5);
63 p5 ← −State[0]e(5) + e(5) ; // Hyperplane positions relative to camera.
64 p4 ← −State[1]e(4) + 10e(4);
65 SegList← ProjSegList(5, R, Q5

1, c5, p5, c4, p4); // Algorithm 3
66 FaceList← ProjSegList(5, R, f , c5, p5, c4, p4); // Algorithm 3
67 Overlaps← EdgeIntersections(w, SegList); // Algorithm 13
68 FaceInt← FaceInt(FaceList); // Algorithm 14
69 MinFaceInt← min(MinFaceInt, FaceInt);
70 R3 ← Reward3(FaceInt, PrevFaceInt); // Algorithm 7
71 R4 ← Reward4(FaceInt, PrevFaceInt, Overlap, PrevOverlap); // Algorithm 8
72 Reward← R1 + R2 + R3 + R4;
73 Done← Done(FaceInt, Exp, Overlap, Counter, Exact); // Algorithm 4

Algorithm 11: Reset function
48 ...
49 Reset(Done) :
50 R← RotMat(ϕ1, ..., ϕ10); // Algorithm 1
51 State← (d5, d4, R1,1, R1,2, · · · , R5,4, R5,5);
52 c5 ← State[0]e(5); // Camera positions.
53 c4 ← State[1]e(4);
54 p5 ← −State[0]e(5) + e(5) ; // Hyperplane positions relative to camera.
55 p4 ← −State[1]e(4) + 10e(4);
56 SegList← ProjSegList(5, R, Q5

1, c5, p5, c4, p4); // Algorithm 3
57 FaceList← ProjSegList(5, R, f , c5, p5, c4, p4); // Algorithm 3
58 Overlaps← EdgeIntersections(w, SegList); // Algorithm 13
59 PrevOverlaps← Overlaps;
60 FaceInt← FaceInt(FaceList); // Algorithm 14
61 PrevFaceInt← FaceInt;
62 MinFaceInt← PrevFaceInt;

22

Under review as submission to TMLR

A.6 Edge Collision Detection

Here, the algorithm by Bourke (1998) to compute the shortest line between two line segments in R3 is
presented. Two lines L1,2 ⊂ R3 and L3,4 ⊂ R3 passing through points P1, P2 ∈ R3 and P3, P4 ∈ R3

respectively generally do not intersect. If L1,2 and L3,4 are not parallel and they are co-planar, then they
must intersect. However, if they are not co-planar, they can be connected by a unique shortest line segment
La,b ⊂ R3 perpendicular to both lines with Pa ∈ L1,2 and Pb ∈ L3,4. The algorithm calculates the points
Pa and Pb defining La,b, and determines whether the point Pa (resp. Pb) lies between the points P1 and P2
(resp. P3 and P4) or not. First note that any point P ∈ L1,2 (resp. P ′ ∈ L3,4) between P1 and P2 (resp.
P3, P4) is of the form

P = P1 + ma(P2 − P1),

(resp. P ′ = P3 + mb(P4−P3)) for some real number 0 ≤ ma ≤ 1 (resp. 0 ≤ mb ≤ 1). Since the shortest line
segment La,b between two lines L1,2 and L3,4 is perpendicular to both of them, the dot product must satisfy
(Pb − Pa) · (P2 − P1) = 0 (resp. (Pb − Pa) · (P4 − P3) = 0). By taking Pi − Pj = (xi − xj , yi − yj , zi − zj),
and setting

dijkl(Pi, Pj , Pk, Pl) := (Pi − Pj) · (Pk − Pl) = (xi − xj)(xk − xl) + (yi − yj)(yk − yl) + (zi − zj)(zk − zl),

expanding the dot product we get

(Pa − Pb) · (P2 − P1) = (P1 + ma(P2 − P1)− P3 −mb(P4 − P3)) · (P2 − P1)
= ((P1 − P3) + ma(P2 − P1)−mb(P4 − P3)) · (P2 − P1)
= d1321 + mad2121 −mbd4321,

therefore we get the equality

d1321 + mad2121 −mbd4321 = 0, (8)

and similarly for segments L3,4 and La,b

d1343 + mad4321 −mbd4343 = 0. (9)

Solving for mb in Equation 9 yields mb = (d1343 + mad4321)/d4343, and substituting the expression for mb in
Equation 8 yields ma = (d1343d4321 − d1321d4343)/(d2121d4343 − (d4321)2) . Note that d4343 ̸= 0 if and only if
P4 ̸= P3, therefore lets analyze when can d2121d4343 − (d4321)2 = 0. Let u = P2 − P1 and v = P4 − P3, and
recall that u · v = ||u||||v|| cos(θ), where θ is the angle between u and v. Substituting in the denominator
on Equation A.6, and since u ̸= 0 and v ̸= 0 we get

d2121d4343 − (d4321)2 = (u · u)(v · v)− (u · v)2

= ||u||2||v||2 − (||u||||v|| cos(θ))2

= ||u||2||v||2 − ||u||2||v||2 cos2(θ)
= ||u||2||v||2(1− cos2(θ))
= 0,

if and only if θ = 0 or θ = π, that is if and only if u and v are parallel. Algorithm 12 determines whether
line segments L1,2 and L3,4 intersect for a given edge-with w.

23

Under review as submission to TMLR

Algorithm 12: IntersectionLine(w, P1, P2, P3, P4)
Data: Edge radius w > 0 ∈ R and points P1, P2, P3, P4 ∈ R3 with (P2 − P1), (P4 − P3) ̸= 0.
Result: (bool : Intersects, float : distance, tuple : Pa, tuple : Pb)

1 Intersects← False;
2 u = P2 − P1;
3 v = P4 − P3;
4 d1343 ← dijkl(P1, P3, P4, P3);
5 d4321 ← dijkl(P4, P3, P2, P1);
6 d1321 ← dijkl(P1, P3, P2, P1);
7 d4343 ← dijkl(P4, P3, P4, P3);
8 b← (d2121d4343 − d4321d4321);
9 if b = 0 ; // Lines are parallel.

10 then
11 w = P3 − P1;
12 z = P4 − P1;
13 pru(P3) = u

||u|| ·w;
14 pru(P4) = u

||u|| · z;
15 if !(||u|| < pru(P3) ∧ ||u|| < pru(P4) ∨ pru(P3) < 0 ∧ pru(P4) < 0) // L3,4 projects out of L1,2.
16 then
17 distance = u

||u|| ×w;
18 if distance < 2w then
19 Intersects← True
20 end
21 end
22 else
23 ma ← (d1343d4321 − d1321d4343)/b;
24 mb ← (d1343 + mad4321)/d4343;
25 Pa ← P1 + mau;
26 Pb ← P3 + mbv;
27 if (0 < ma < 1) and (0 < mb < 1) then
28 distance← ||Pb − Pa||;
29 if distance < 2w then
30 Intersects← True;
31 end
32 end
33 end

Algorithm 13: EdgeIntersections(w, SegList)
Data: Edge radius w > 0 ∈ R, list : SegList.
Result: int : Overlaps

1 EdgeCombinations← Combinations(SegList, 2);
2 Overlaps← 0;
3 for Edge1, Edge2 in EdgeCombinations do
4 Intersection, Distance, Pa, Pb ← IntersectionLine(w, Edge1[0], Edge1[1], Edge2[0], Edge2[1]);
5 if Intersection then
6 Overlaps← Overlaps + 1;
7 end
8 end

24

Under review as submission to TMLR

A.7 Face Collision Detection

Here, the algorithm by Möller (1997) to calculate whether two triangles T1, T2 ⊂ R3 intersect is presented.
If they intersect, it also returns the coordinates of their intersection line or point. Denote the vertices of
T1 and T2 by V 1

0 , V 1
1 , V 1

2 and V 2
0 , V 2

1 , V 2
2 respectively; and the planes they lie in by π1 and π2 respectively.

Consider vectors u2 = (V 2
1 −V 2

0) and v2 = (V 2
2 −V 2

0), then for any point x ∈ π2 the plane equation satisfies

π2 : N2 · x + d2 = 0, (10)

where N2 = u2 × v2 and d2 = −N2 · V 2
0 the projection distance of the vertex V 2

0 over the vector −N2. The
signed (perpendicular) distances from the vertices V 1

i , i = 0, 1, 2 of the triangle T1 to the plane π2 can be
computed by inserting the vertices into the equation 10, yielding

dV 1
i

= N2 · V 1
i + d2, i = 0, 1, 2.

For triangle T1 and plane π2, two possible situations can occur:

1. If dV 1
i
̸= 0 for some i ∈ {0, 1, 2} then the possible sub-cases can occur:

(a) If all dV 1
i
̸= 0, i ∈ {0, 1, 2} have the same sign, then all vertices of T1 lie on the same side of the

plane π2, so in particular T1 and T2 ⊂ π2 don’t intersect.
(b) If any of the dV 1

i
= 0, i ∈ {0, 1, 2}, or has a different sign with respect to the other dV 1

j
, j ̸= i,

then T1 and the plane π2 intersect.

2. If all dV 1
i

= 0, i = 0, 1, 2, then T1 and T2 are co-planar.

Suppose both pairs (T1, π2) and (T2, π1) are on the situation 1(b) described above, then there exist a line
L ⊂ R3 in the direction of D := N1 ×N2 such that L ∩ T1 ̸= ∅ and L ∩ T2 ̸= ∅ with equation L = O + tD,
where O is some point on L and t ∈ R. Moreover, for triangle T1 there must be a vertex V 1

i lying on the other
side of π2 (or in π2) with respect to the remaining vertices V 1

j , j ̸= i (otherwise we would have T1 ∩ π2 = ∅,
which we already discarded). To keep notation simple we suppose this vertex is V 1

0 (resp. V 2
0) for T1 (resp.

for T2), and we consider the edges E1
0,1 and E1

0,2 of T1 (resp. E2
0,1 and E2

0,2 of T2). The goal is to compute
a scalar parameter value t1 for B = E1

0,1 ∩ L = O + t1D. First consider the projections of the vertices onto
L, that is

pV 1
i

= D · (V 1
i −O), i = 0, 1, 2.

Let K1
i be the projection of V 1

i onto π2 and note that the triangles ∆V 1
0 BK1

0 and ∆V 1
1 BK1

1 are similar,
therefore we get the following equation:

t1 = pV 1
0

+ (pV 1
1
− pV 1

0
)

dV 1
0

dV 1
0
− dV 1

1

. (11)

Similar calculations are done to compute a scalar parameter t2 for E1
0,2 ∩ L = O + t2D. Without loss of

generality we can suppose t1 ≤ t2 and therefore these two parameters yield a closed interval [t1, t2] ⊂ R
describing the intersection of T1 with L. By computing the corresponding interval for T2, the intersection
between T1 and T2 is computed by the intersection of both intervals.

On the other hand, if both pairs (T1, π2) and (T2, π1) are on the situation 2, start by projecting the triangles
onto the axis where their area is maximized. A 2-dimensional triangle-triangle intersection is performed,
that is checking if any edge of T1 intersects some edge of T2; if any intersection is found then T1 and T2
intersect. Otherwise it only remains to check if Ti is totally contained in Tj by checking if some point of Ti

lies inside the triangle Tj ; then all the vertices of Ti should lie inside Tj otherwise Ti and Tj should have
an edge to edge intersection which we had already discarded. This Algorithm has the following Python
implementation NeonRice (2020), which we name here as TriTriIntersect and use in Algorithm 14 which
counts the number of face-intersections of the projected faces.

25

Under review as submission to TMLR

Algorithm 14: FaceInt(FaceList)
Data: list : FaceList.
Result: (int : FaceInt, list : IntersectionLine)

1 FaceCombinations← Combinations(FaceList, 2);
2 FaceInt← 0;
3 V txList← list();
4 IntersectionLine← list();
5 for Face1, Face2 in FaceCombinations do
6 FaceTriangles1← Combinations(Face1, 3); // Combinations of triangles in Face1.
7 FaceTriangles2← Combinations(Face2, 3); // Combinations of triangles in Face2.
8 TriangleIntersections← 0;
9 Count← 0; // Avoid co-planar face-intersections.

10 for vertex in Face1 do
11 if vertex not in Face2 then
12 Count← Count + 1;
13 end
14 end
15 if Count = 3 and vertex not in VtxList then
16 V txList.append(vertex);
17 end
18 for T1 in FaceTriangles1 do
19 for T2 in FaceTriangles2 do
20 if Count ≥ 3 then
21 Res1, Res2, Intersects← TriTriIntersect(T1[0], T1[1], T1[2], T2[0], T2[1], T2[2]);
22 if Intersects and |Res2[0]−Res2[1]| ≥ 1e− 10 then
23 TriangleIntersections← TriangleIntersections + 1;
24 IntersectionLine.append([Res2[2], Res2[3]]);
25 end
26 end
27 end
28 end
29 if TriangleIntersections > 0 then
30 FaceInt← FaceInt + 1;
31 end
32 end

26

	Introduction
	Background
	Cubical Surfaces
	N-dimensional Rotations & Gimbal-Lock
	N-dimensional Perspective Projection
	Reinforcement Learning
	Proximal Policy Optimization

	Neural Network Architecture

	Cubical Surface Self-Intersections as a Finite MDP
	State Space
	Action Space
	Reward Functions
	Termination Criteria
	The Environment
	The Agent

	Experiments
	Initial and Final Immersions of some Cubical Surfaces
	An Optimization Sequence
	Orientable Cubical Surfaces
	Genus-1 Cubical Surface
	Genus-2 Cubical Surface
	Genus-3 Cubical Surface
	Genus-4 Cubical Surface
	Genus-5 Cubical Surface

	Non-Orientable Cubical Surfaces
	Projective Plane
	Klein Bottle
	K-3 surface

	Conclusions
	Further directions
	Supplements
	Appendix
	High-dimensional rotations
	Perspective Projection
	Termination Criteria
	Reward Functions
	Environment Logic
	Edge Collision Detection
	Face Collision Detection

