
Under review as submission to TMLR

Polyhedral Embeddings and Realizations of Orientable
and Non-Orientable Cubical Surfaces using Reinforcement
Learning

Anonymous authors
Paper under double-blind review

Abstract

Finding realizations in R3 of polyhedral maps on compact connected surfaces is considered a
hard problem in discrete geometry because of the lack of general solution methods. Heuristic
approaches have been proven efficient in finding polyhedral embeddings of orientable vertex-
minimal surfaces of genus g by minimizing their intersection length; however, they can still
be challenging to implement due to large configuration spaces, and can struggle avoiding
local minima.
This article studies closed connected cubical surfaces; surfaces made from a collection of
faces of a 5-dimensional cube. The author proposes a Reinforcement Learning (RL) algo-
rithm to minimize the number of face intersections of orientable and non-orientable cubical
surfaces through 5-dimensional rotations or modifications on the perspective projection dis-
tances; yielding immersions that are perspective projections of a unitary 5-dimensional cube.
Polyhedral embeddings of orientable cubical surfaces of genus g = 1, 2 and realizations of
the Projective Plane and the Klein Bottle with the smallest possible number of face inter-
sections are obtained. The agent’s optimal strategy is visualized using three-dimensional
animations.

1 Introduction

1.1 Polyhedral Realizations by Triangles

Compact Surfaces are 2-dimensional topological manifolds and are completely classified. There are two
infinite families of compact surfaces, the orientable surfaces of genus g ≥ 1, which are torus with g
"handles", and the non-orientable surfaces of demigenus k ≥ 1. There is also the sphere which is orientable
and has no "handles". Topological manifolds are often too general to work with directly; for this reason, it is
often essential to assume the triangulability of manifolds. The problem of finding a minimal triangulation
of manifolds has been widely studied and has been completely solved for compact surfaces. In the context of
simplicial surfaces, a minimal triangulation can be defined as a triangulation using the minimal number
of vertices, edges, and faces. It can be shown using Euler characteristic that the minimal triangulation in
each of these three meanings of minimality is realized by the same triangulation up to isomorphism.

A polyhedral map on a surface is a finite set of polygons with at least three sides (usually triangulations)
such that the intersection of any two distinct faces is either empty, a common vertex, or a common edge.
Given a polyhedral map, it is natural to try to visualize it in R3 as a three-dimensional polyhedron or as a
projection of a polytope in Rn such that every polygon is the convex hull of its vertices and two polygons are
either: disjoint in Rn, they intersect at a common edge and are not coplanar, or they intersect at a common
vertex. This polyhedron is called a polyhedral realization.

A (topological) embedding is a continuous mapping that is a homeomorphism onto its image, while an
immersion is a continuous mapping that is locally a homeomorphism. The image of an embedding doesn’t
have self-intersections, while the image of an immersion may have. From algebraic topology we know

1

Under review as submission to TMLR

that all orientable surfaces can be embedded in R3, while non-orientable surfaces can be embedded in R4

but only immersed in R3; however, for an orientable polyhedral surface, its embeddability depends on its
defining triangulation; certain triangulations of orientable surfaces (usually minimal triangulations) are not
realizable in R3 as shown by Bokowski & Guedes de Oliveira (2000). Consequently, in R3, any polyhedral
realization of a non-orientable surface will have self-intersections, while polyhedral realizations of orientable
surfaces without self-intersections are in some cases possible.

Hougardy et al. (2006) found polyhedral embeddings of surfaces of genus g = 3, 4 and examples of polyhedral
realizations of genus g = 5 with 12 vertices. Their approach minimizes an intersection segment functional,
which is the sum of the lengths of all face intersection lines occurring in the realization. Their technique can
be described as a local search process, meaning that the final embedding is at most T steps away from the
initial immersion. For a given triangulation, the algorithm consists of assigning its vertices random integer
coordinates in R3, ensuring they are in general position to avoid degenerate triangle intersections. Then, a
vertex v ∈ R3 is randomly selected as well as a coordinate direction ±X,±Y or ±Z in which v is moved an
integer step. If the resulting set of coordinates is in general position and the new value of the intersection
segment functional is strictly smaller than before, the movement is accepted and the next step is executed;
otherwise, the movement is discarded and the process is repeated with the previous set of coordinates. The
algorithm ends if the intersection segment length drops to zero, which means that a realization has been
found. If after T steps no realization has been found, then the vertices are assigned new initial random
coordinates in R3 and the algorithm resets.

Brehm & Leopold (2016) extend this algorithm to find realizations of non-orientable surfaces; that is
immersions with flat full-dimensional faces. Their improvement consists of modifying the objective function
to minimize the edge intersection length of the faces contradicting an immersion, precisely the intersections
of faces adjacent to a vertex. Such a vertex is called a pinch-point; a kind of surface singularity that
violates the definition of an immersion. With this methodology and imposing suitable symmetry conditions
that reduce the number of parameters and speed up the search, they found numerous new realizations of
non-orientable surfaces with the minimal (or few) number of vertices. Some of them include the Projective
Plane with one or two handles and the Klein Bottle with one or two handles. Before this improvement, the
only vertex-minimal realizations of non-orientable surfaces were obtained by explicit construction; Brehm
(1990) constructed examples for the projective plane with 9 vertices, and Cervone (2001) found examples of
the Klein Bottle using 9 vertices; both proving that realizations with fewer vertices can’t be constructed.

It is natural to ask whether it is always convenient to follow a greedy strategy or if, for certain surfaces and
initial vertex coordinates, a solution can not be found without needing to increase the intersection length
functional at some step. Here is where the idea of using Reinforcement Learning (RL) comes into play,
because this technique can capture whether, in the long run, it is worth increasing the intersection segment
to find a better realization or an embedding.

1.2 Polyhedral Realizations by Quadrilaterals

In their article on polyhedral surfaces of high genus, Ziegler (2008) study in particular cubical surfaces;
two-dimensional cubical complexes of the n-dimensional cube homeomorphic to compact surfaces.

Govc (2024) gives a complete classification for n = 6 in terms of their genus g for orientable cubical surfaces
and their demigenus k for the non-orientable. Non-orientable cubical surfaces first appear for the cube of
dimension n = 5, however they appear also as surfaces in the 6-cube with one coordinate fixed. As with
triangulations of closed surfaces, one can ask what the minimal cubical embedding of a given cubical surface
is. Still, here minimality has to be specified more carefully since minimizing a cubical embedding can refer
to vertices, edges, faces, or the dimension of the cube. In the following, a minimal cubical surface will
refer to a surface that can not be realized with less faces from the n-dimensional cube Qn.

Quadrilateral realizations in R3 of orientable and non-orientable 5-dimensional cubical surfaces are not
yet studied. In this article, following the ideas in Hougardy et al. (2006), the author proposes a first approach
using RL to realize perspective projections of 5-dimensional cubical surfaces in R3 with the smallest number
of face intersections in R3, that is, the smallest number of pairwise intersecting quadrilaterals in R3.
Polyhedral embeddings for orientable cubical surfaces of genus g = 1, 2 are obtained. Since the objective

2

Under review as submission to TMLR

is to minimize face intersections, pinch-points are allowed; such a realization is instead called a singular
realization. Singular realizations are obtained for orientable cubical surfaces with g = 3, 4, 5 and non-
orientable surfaces with demi-genus k = 1, 2, 3. In particular, the Projective Plane (k = 1) and the Klein
Bottle (k = 2) here obtained can not be realized with less face intersections. They can be thought of as
quadrilateral models of the cross-cap disk and the pinched torus Klein Bottle respectively, coming
from perspective projections of a unitary 5-dimensional cube.

The realizations are obtained by projecting a realization on the 5-dimensional unitary cube to R3 via suc-
cessive perspective projection maps. We assume that for a given initial rotational orientation of the
cubical surface around the origin in R5, the n-dimensional camera is set at a position c5 ∈ R5; from
which projection rays extend to the 5-dimensional realization onto a projection hyperplane p5 ∈ R5. The
result of this first projection is a realization in R4, therefore, we can repeat the same process with a camera
c4 ∈ R4 and a hyperplane p4 ∈ R4 to obtain a realization in R3.

The initial projection in R3 has an initial number of face intersections. The RL agent’s actions consist of
applying a 5-dimensional rotation or changing the camera positions (c5 and c4) in the perspective
projections, sequentially modifying the number of face intersections. Since the realizations here obtained
are always perspective projections of faces of a unitary 5-cube, vertices of the unitary 5-cube do not move
individually and in integer steps, like in Hougardy et al. (2006) and Brehm & Leopold (2016); instead,
they move according to a 5-dimensional ϵ-degree rotation around some rotation plane in R5. However, this
restriction on the movement of the vertices yields polyhedral realizations with notable symmetries, although
deformed by perspective projection.

1.3 Main Contributions

The main contributions of this study are the following:

1. Reinforcement Learning algorithm to minimize face intersections of a quadrilateral
realization. The author proposes an RL approach to find realizations (allowing pinch-points) of
5-dimensional orientable and non-orientable closed cubical surfaces with the minimum number of
face intersections.

2. Singular quadrilateral realizations of the minimal cubical Projective Plane and the cubical
Klein Bottle with the minimum number of face intersections achievable (3) and quadrilateral
embeddings of minimal orientable cubical surfaces of genus g = 1, 2 are found.

3. Animations of multiple face-minimization sequences. For each cubical surface C, the trained
models return a sequence of steps consisting either of a camera modification or a 5-dimensional
rotation, which can be used to build animations. The optimal strategy has the property that it
allows a face intersection increase if necessary to find a realization. The author gives a link to the
animation sequences in Section 8.

2 Background

2.1 Cubical Complexes and Surfaces

Figure 1: Fv on a 4-
d Cubical Surface home-
omorphic to a sphere.

Cubical complexes have their origin in the beginning of the 20th century, with the
work of Henri Poincaré and Solomon Lefschetz. The main definitions on cubical
complexes and cubical homology can be consulted in Kaczynski et al. (2004), they
serve as the mathematical foundations to define a cubical surface; a type of closed
polyhedral surface made out from faces of an n-dimensional cube studied by Ziegler
(2008). To define formally a cubical surface, denote the n-dimensional unit cube by
Qn = [0, 1]n = [0, 1] × · · · × [0, 1] (n times), and its set of vertices by Qn

0 . Each
vertex v ∈ Qn can be represented by an element of the set of all n-tuples with binary
entries {0, 1}n, for example, the vertices of the unit square are represented by the
set of tuples {(0, 0), (0, 1), (1, 0), (1, 1)} ∈ R2. The one-skeleton Qn

1 is a graph with

3

Under review as submission to TMLR

vertex set Qn
0 with an edge e ∈ Qn

1 between two vertices if and only if they differ in exactly one coordinate.
Regarded as a set, Qn

1 consists of the set of vertices v and edges e of Qn. The two-dimensional skeleton
of Qn is denoted by Qn

2 and consists of the set of vertices Qn
0 , the one-dimensional skeleton Qn

1 , and all
its two-dimensional faces f ∈ Qn. This construction can be continued up to the n-cube itself Qn

n, and the
elements of all the preceding sets are called the cells of Qn. Every cell of Qn is a product of vertices and
intervals, and therefore can be represented combinatorially as an element of {0, 1, 2}n, where a 2 in an entry
implies that in the product, the whole unit interval is considered. Thus, every sub-complex of Qn can be
represented as a subset of {0, 1, 2}n. A subset of Qn

2 is called a two-dimensional cubical complex which
in the following is denoted by C, with sets of vertices, edges, and faces denoted by C0, C1, and C2 respectively.
The vertex figure Fv of a vertex v ∈ C0 is the graph whose nodes are the edges in C1 having v as an
endpoint and where two nodes e, e′ ∈ C1 are joined by an edge if there is a face f ∈ C2 with e, e′ as two of
its edges. A closed cubical surface is a two-dimensional cubical complex C in which every point has an
open neighborhood homeomorphic to an open disk. This condition is equivalent to requiring the following
two conditions on C: (1) Every edge is shared by exactly two faces, i.e., for all e ∈ C1, Fe = 2. (2) The vertex
figure Fv of any vertex v ∈ C0 is a cyclic graph.

For dimension n = 4 only orientable cubical surfaces can exist, and the quadrilateral realizations in R3 of
each cubical surface representative can be consulted in Estévez et al. (2023). In Section 5, realizations (some
of them with pinch-points) of the perspective projections of minimal 5-dimensional cubical surfaces for genus
g (1 ≤ g ≤ 5) and demigenus k (1 ≤ k ≤ 3) are presented. Non-orientable surfaces with k = 1 and k = 2 are
equivalent to the Projective Plane and the Klein Bottle.

2.2 Face-Intersection minimization Process

In this work, given a 5-dimensional cubical surface C projected to R3 by perspective projection, the author
finds quadrilateral realizations (allowing pinch-points) that minimize the face intersection number; that is
the number of pairs of faces that have a non-empty intersection. This is a slightly different approach from
the one from Hougardy et al. (2006), where the intersection segment functional is the quantity to minimize.
However, instead of minimizing the face intersection number by moving the vertices v ∈ C individually, here
they move according to the following kinds of linear transformations.

Rotations are an example of an isometry, they preserves Euclidean distances, so after applying a unitary
5-cube some rotation, the result is a unitary 5-cube. Consider two canonical vectors e(i), e(j) ∈ R5 and let
Xi,j ⊂ Rn be their span. In Rn there are

(
n
2
)

= n(n − 1)/2 possible pairings e(i), e(j) ∈ R5 or equivalently
possible rotation planes Xi,j yielding 10 possible Xi,j for n = 5. A 5-dimensional rotation by an angle
ϕ ∈ [0, 2π) fixing the plane Xi,j is called a 5-dimensional elemental rotation and can be represented by
an elemental rotation matrix Ri,j(ϕ) ∈ SO(5); elemental rotations generate all possible rotations in R5, and
some aspects like their non-commutativity or Gimbal-Lock are discussed in Appendix A.3.

Perspective projection is used to visualize n-dimensional objects in R3 preserving linear segments from
the n-dimensional object; it projects edges (line segments) e ∈ Qn

1 into line segments L ⊂ R3 and faces (plane
segments) f ∈ C2 into plane segments T ⊂ R3. It is a natural choice when intersections from projected line or
plane segments in R3 must be computed. From a camera position cn ∈ Rn, it maps a vector a ∈ Rn \ {c}
to an orthogonal hyperplane p ∈ Rn, returning a projected vector b ∈ Rn−1. Perspective projection is then
denoted by Prn(an, cn, en) : Rn → Rn−1, mapping (an, cn, en) 7→ b and its associated linear transformation
is calculated as in Algorithm 2. Note that projected vertices v ∈ C move when affecting the camera position
c5 ∈ R5 (resp. c4 ∈ R4). A further discussion can be found in Appendix A.4.

After rotating C by a "small" ϵ-degree rotation Ri,j(ϵ) or affecting the camera positions c5±δe(5) or c4±δe(4)

by a "small" distance δ, the projection of C has a new orientation encoded by a vector st ∈ R27 (see Section
3) and some face intersection number FaceIntst

parametrized by st. The task is to find a sequence
of transformations leading to a final state sT where FaceIntsT

≤ Exp, where Exp ∈ Z+ is the expected
minimum number of face intersections. Moreover, the realization must have non-overlapping edges Q5

1
(see Section A.2). Figure 2 shows an initial realization of cubical Projective Plane with FaceIntst = 17
being transformed into a realization with FaceIntsT

= 3 shown in Figure 26 which is the smallest number
of face intersections possible for this cubical surface. This discussion will be formalized in Section 4.

4

Under review as submission to TMLR

F aceInts0 = 17

→
−R13(5)

F aceInts1 = 20

→
−R13(5)

F aceInts2 = 18

→
−R13(5)

F aceInts3 = 17

→
−R13(5)

F aceInts4 = 17

→
−R13(5)

F aceInts5 = 16

→
−R13(5)

F aceInts6 = 16

→
c4[3]+δ

F aceInts7 = 16

→
−R13(5)

F aceInts8 = 15

→
−R13(5)

F aceInts9 = 13

→
−R04(5)

F aceInts10 =
16

→
c4[3]+δ

F aceInts11 =
16

→
−R04(5)

F aceInts12 =
14

→
−R04(5)

F aceInts13 =
12

→
−R04(5)

F aceInts14 =
11

→
−R04(5)

F aceInts15 =
11

→
−R13(5)

F aceInts16 =
11

→
−R04(5)

F aceInts17 = 4

→
−R04(5)

F aceInts18 = 4

→
c4[3]+δ

F aceInts19 = 4

→
−R04(5)

F aceInts20 = 4

→
−R04(5)

F aceInts21 = 3

→
−R04(1)

F aceInts22 = 3

→
−R04(1)

F aceInts23 = 3

→
−R04(1)

F aceInts24 = 3

5

Under review as submission to TMLR

Figure 27: Cubical surface with g = 5 and F aceIntsT = 16
(side view).

Figure 28: Cubical surface with g = 5 and F aceIntsT = 16
(top view).

2.3 Orientable Cubical Surfaces

Orientability of a polyhedral surface does not imply its realizability in R3, the latter depends also on the
number of faces building it. An orientable cubical surface with g = 1 can be realized in the 4-cube as shown
in Estévez et al. (2023), so it can also be realized in the 5-cube as in Figure 47. This serves as a first test
for the algorithm here presented. On the other hand, a cubical surface with g = 2 can only be constructed
on cubes of dimension n ≥ 5, and the RL algorithm successfully finds a polyhedral embedding in R3 shown
in Figure 48.

Figures 27 and 28 show a singular realization of a cubical surface with g = 5. This is a (double) perspective
projection of a unitary 5-cube, and despite being a singular realization it has some similarities with the
"deformed" realization of a g = 5 cubical surface built by Ziegler (2008), where "deformed" means that the
realization does not come from a perspective projection of a unitary 5-dimensional cube since some vertices
are allowed to move independently. The deformation induced by perspective projection also plays a role in
impeding some faces from intersecting. This was already noted by Hammack (2024) who builds a realization
of a g = 5 cubical surface by introducing an "informal perspective" in which instead of calculating perspective
projection with one camera point, it is allowed to "split" into two camera points.

2.4 Non-Orientable Cubical Surfaces

2.4.1 The Real Projective Plane

The real Projective Plane is a closed non-orientable surface that classifies all the lines in R3 passing through
the origin. There are multiple singular and non-singular immersions of this surface in R3 like the Boy’s
surface or the Cross-cap disk model which is a singular immersion because it contains two pinch-points.
However, the cross-cap disk model has a relevant property for this work; it is the singular realization that
minimizes the intersection-line components having just one component. It can be built by gluing the bound-
ary of a cross-cap with a sphere with a disk removed as explained by Francis & Weeks (1999). One can expect
that the singular realizations of the cubical projective plane minimizing face intersections are quadrilateral
realizations of a cross-cap disk model, and this is the case of the realization found by the RL algorithm in
Figure 32. This singular realization is built gluing a quadrilateral cross-cap shown in Figures 29 and 30
with a quadrilateral "disk" shown in Figure 31. Note that in this singular realization there exist only one

6

Under review as submission to TMLR

Figure 29: A cubical
cross-cap (front).

Figure 30: A cubical
cross-cap (back).

+

Figure 31: Three faces
homeomorphic to a disk.

=

Figure 32: A cubical
cross-cap disk model of the
Projective Plane.

intersection-line component composed of 3 line segments, that is FaceIntsT
= 3, and by the discussion in

Appendix A.1 this is the lowest number of face intersections that can be obtained for any realization of the
cubical Projective Plane.

2.4.2 The Klein Bottle

The Pinched-Torus Klein bottle is a singular realization of a Klein Bottle in R3 which can be thought
of as a genus-1 torus whose boundary is flattened, allowing its external side to connect with the internal
side through the intersection-line. Another interesting construction consists on joining two Möbius Strips
along their boundaries. Figure 33 shows a cubical Möbius Strip made up from 6 faces of the 5-cube. It is
possible to find a Möbius Strip in the 4-cube as shown in Estévez et al. (2023), however the Klein Bottle
can only be built in cubes of dimension n ≥ 5. Figure 35 shows the two disjoint Möbius strips in Figure 34
joined along their boundaries by the faces in gray. Note that in this singular realization there exist only one
intersection-line component composed of 3 line segments, that is FaceIntsT

= 3, and by the discussion in
Appendix A.1 this is the lowest number of face intersections that can be obtained for any realization of the
cubical Klein Bottle.

3 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning technique proposed by Sutton et al. (2018). In RL, an
algorithm called an agent interacts with its environment E by performing a sequence of actions maximizing
a cumulative reward based on feedback received for each action taken. More specifically, at each time-step
t the agent takes as input information from the environment called a state st ∈ S (this is the information
that the agent knows about E) and outputs an action at ∈ A which is then passed to E ; returning a new
state st+1 ∈ S and a reward rt for taking at at st. Future rewards are multiplied by a discount factor
γ ∈ [0, 1) at each step. The expected discounted return at step t is defined as Rt =

∑T
t′=t γt′−trt. A

policy π : S → P(A) is a map from the states to the set of probability distributions over actions mapping

Figure 33: A 6-faced cu-
bical Moebius Strip.

Figure 34: Two disjoint
cubical Moebius Strips.

Figure 35: Both copies
join to build a cubical
pinched-torus Klein Bottle.

Figure 36: Cubical
pinched-torus Klein Bot-
tle.

7

Under review as submission to TMLR

s 7→ π(a|s), where π(a|s) is the conditional probability of selecting the action a at the state s. The state-
value function following a policy π is then defined as vπ(s) = Eπ

[
rt + γrt+1 + γ2rt+2 + ...|st = s

]
; that is

the expected value of Rt by following π. The action-value function following a policy π defined as

Qπ(s, a) = Eπ [Rt|st = s, at = a, π] , at ∼ π(·|st) (1)

is the expected value of Rt by taking an action a ∈ A and following π afterwards. Let Π be the set of all
policies, the optimal action-value function is the maximum expected value of Rt achievable by following
any π ∈ Π after performing a ∈ A at s ∈ S; that is Q∗(s, a) = maxπ∈Π{Eπ [Rt|st = s, at = a, π]}, at ∼ π(·|st).

3.1 Proximal Policy Optimization

Proximal Policy Optimization Algorithms (PPO) are a family of RL algorithms that compute an estimation of
the policy gradient and plug it into a stochastic gradient ascent algorithm. Among this family of algorithms,
we use the Clipped Surrogate Objective algorithm proposed by Schulman et al. (2017), which attempts to
maximize the objective function LCLIP (θ) with actor network weights θ and critic network weights φ. The
actor network takes as input a state st and outputs an action at+1, while the critic network takes as input a
state st and outputs the value Vφ(st) of the state st. Let Vφ(st) be the this state-value function vπ(s), and
rt = πθ(at|st)/πθold

(at|st) the probability ratio, the advantages at state st are calculated as

Ât = Qπθold (st, at)− Vθold
(st), (2)

and the clip objective function to maximize is

LCLIP (θ) = Et[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)], (3)

where in common practice ϵ = 0.2. The actor and critic network weights are updated independently by
stochastic gradient descent; in this case ADAM optimizer by Kingma & Ba (2017).

4 Minimizing Self-Intersections of Cubical Surface Realizations

A Markov Decision Process (MDP) is a tuple M = (S,A,R,P, γ) where S is a state space, A an action
space, P a transition probability function, R a reward function and γ ∈ [0, 1) a future reward discount factor.
Solving M means finding a policy π over A yielding the supremum of Rt, that is finding π maximizing at
each state the state-value function vπ(s).

Finding quadrilateral realizations of n-dimensional cubical surfaces minimizing face intersections can be
formulated as an MDP. For the rest of this article, fix n = 5 and consider a 5-dimensional cubical surface
C. The quadrilateral realization of a cubical surface C in R3 is expected to have a positive number of face
intersections, especially if C is non-orientable. To minimize them, at each state st ∈ S, the face intersection
number FaceIntst ∈ Z+ is calculated as in Algorithm 14. It determines whether the projection of two faces
f1, f2 ∈ C intersect by dividing the projection of each face into two triangles {T i

1, T i
2} for each fi and

using triangle collision detection for each possible pairing of triangles T 1
i , T 2

j . Appendix A.9 describes the
Algorithm by Möller (1997) determining whether two triangles T1, T2 ⊂ R3 intersect and the coordinates of
their intersection line or point. A Python implementation of the algorithm by NeonRice (2020) is used in this
work. In general, for C orientable or non-orientable, it is unknown how few face intersections one can achieve;
however an expected minimum face intersection number Exp ∈ Z+ can be set as an objective. At st the
agent attempts to modify FaceIntst with respect to the previous number of face intersections FaceIntst−1

from two different approaches, depending on the exact parameter Exact. If the parameter Exact = True,
the agent attempts to strictly set FaceIntst

= Exp, otherwise it is enough to set FaceIntst
≤ Exp. If some

of these conditions is achieved, the task enters a final stage. Consider the edges e ∈ Q5
1 of the 1-skeleton.

After projecting each edge, the resulting line segments are assigned a width w > 0 ∈ R and two projected
edges L1,2, L3,4 ⊂ R3 overlap if the shortest line segment connecting them La,b ⊂ R3 has length |La,b| ≤ w. A
formal definition of the number of edge overlaps Overlapst ∈ Z+ at state st is presented in Appendix A.2.
The agent attempts to find a state st at which Overlapst

= 0 and (FaceIntst
= Exp or FaceIntst

≤ Exp).

8

Under review as submission to TMLR

4.1 State Space

The parameters needed to build the realization of a 5-dimensional cubical surface C in R3 are of two kinds.
The 5-dimensional (resp. 4-dimensional) camera distance d5 ∈ [−15,−2] ∈ R (resp. d4 ∈ [−15,−2] ∈ R) is
a scalar value representing the 5-dimensional (resp. 4-dimensional) camera position c5 = (0, 0, 0, 0, d5) ∈ R5

(resp. c4 = (0, 0, 0, d4) ∈ R4). The surface C is projected to R3 as explained in Algorithm 2 by fixing the
projection hyperplane at the position e5 = (0, 0, 0, 0, 0) ∈ R5 (resp. e4 = (0, 0, 0, 10) ∈ R4) with respect
to the origin. Appendix A.3 describes how the orientation of C around the origin in Rn is described by a
general 5 by 5 rotation matrix R = (Ri,j) ∈ SO(5) with entries (−1 ≤ Ri,j ≤ 1). Therefore, at any
time-step t the projection of C is parameterized by a state

st = (d5, d4, R1,1, R1,2, ..., R5,4, R5,5) ∈ R27, (4)

where the first two entries give the agent information about the camera distances and the rest are the entries
of the general rotation matrix R = (Ri,j) (see Appendix A.3).

4.2 Action Space

The action space A describes how the agent can interact with its environment E . The agent receives a state
st ∈ S from E and selects one of the possible actions a ∈ A which then takes it to a new state st+1. This
action space used here consists on the discrete set A := {0, 1, ..., 17}; each number executes either a camera
modification or a 5-dimensional elemental rotation. An elemental rotation is a rotation around one
of the 10 rotation planes in R5; and they are explained in detail in Appendix A.3. Each action a ∈ A is then
identified with a vector as follows:

ActV ec = {0 : δe(1), 1 : −δe(1), 2 : δe(2), 3 : −δe(2), 4 : ϵe(5), 5 : −ϵe(5), · · · , 16 : ϵe(12), 17 : −ϵe(12)}, (5)

where e(i), (1 ≤ i ≤ 12, i ̸= 3, 4, 7) are the canonical basis vectors in R12, and δ, ϵ > 0 ∈ R are small positive
real numbers. The actions corresponding to i = 3, 4, 7 are discarded, because they correspond to rotations
in planes X0,1, X0,2, X1,2 (equivalently Z, Y, X) which don’t yield any change on FaceIntst

or Overlapst
.

Actions a ∈ {0, 1} (resp. a ∈ {2, 3}) modify the distance d5 (resp. d4) of the 5-d (resp. 4-d) camera by a
small distance δ > 0 ∈ R. To modify the 5-d (resp. 4-d) camera position we add ±δ to the last coordinate
of the camera vector, that is c5[4]← c5[4] + ActV ec[a][0] (resp. c4[3]← c4[3] + ActV ec[a][1]).

Actions a ∈ {4, ..., 17} apply a small rotation-step ±ϵ > 0 ∈ R in one of the planes Xi,j ⊂ R5. The rotation-
step is taken as ϵ = α degrees if at the current state st it holds that FaceIntst

> Exp and ϵ = 1 degree if
at the current state st it holds that FaceIntst ≤ Exp. Section 5 shows training plots for each surface with
α = 1, 2, 5 each, which allow to determine the best rotation-step size for each of the surfaces we study here.
The change from ϵ = α to ϵ = 1 is intended to explore the environment in a wider extent but switching
to small steps when the agent is close to a solution. To rotate C by an action a ∈ {4, ..., 17} the entries
describing the elemental rotation ActV ec[a][2, :] ∈ R10 are selected, and the corresponding elemental rotation
matrix S = RotMat(ActV ec[a][2, :]) is calculated as in Algorithm 1. Then S is multiplied from the left of
the previous rotation matrix R, and R ← S ·R is assigned. The new entries (Ri,j) are passed to the next
state st+1 ∈ S as in Equation 4.

4.3 Reward Functions

Sparse rewards are received by the agent after achieving a polyhedral realization while dense rewards are
received at each step for approaching it. In this work a combination of both is used and the reward function
is the sum of the following.

Reward 5 prevents the agent from taking two consecutive inverse actions at, at+1 that yield no change in the
state; for example rotating +ϵ after rotating −ϵ on the same plane Xi,j . If this is the case the agent receives
a reward r1 = −1.

The camera parameters d4 and d5 can range in the closed interval [−15,−2] ∈ R. Similarly any rotation
matrix R = (Ri,j) ∈ SO(5) has entries within the interval [−1, 1] (see Section A.3). The observation

9

Under review as submission to TMLR

space is the box ObsSpace := [−15,−2]× [−15,−2]× [−1, 1]25 ⊂ R27. The second reward function has to do
with it, whenever the agent chooses at such that the next state st+1 /∈ ObsSpace, then it receives a reward
r2 = −1 and no reward for staying inside the bounds (see Algorithm 6).

At each step, the agent attempts to reduce FaceIntst (see Algorithm 14) with respect to FaceIntst−1 . The
reward in Algorithm 7 is given to the agent if FaceIntst > Exp for Exact = False (resp. FaceIntst ̸= Exp
for Exact = True). If FaceIntst

≤ Exp for Exact = False (resp. FaceIntst
= Exp for Exact = True) the

agent does not get this reward. This reward is intended to make the agent to transition into states at which
FaceIntst

is closer to Exp by monotonically decreasing FaceIntst
; although in some cases FaceIntst

needs
to increase in order to reach better minima like in the first row in Figure 46.

For a cubical surface C the task has two types of solutions depending on the Exact parameter. If Exact =
False, the agent’s task is to set Overlap = 0 (see Algorithm 13) if FaceIntst

≤ Exp, meaning that a
realization with at most Exp face intersections and without edge overlaps has been found. If Exact = True
it must set Overlap = 0 if FaceIntst = Exp (see Algorithm 8), meaning that a realization with exactly
Exp face intersections and without edge overlaps has been found. In both cases the agent receives a reward
r4 = 10. Note that the agent will tend to find solutions (terminal states sT) requiring less steps because the
penalization given by the future discount reward γt′−t will be less penalized in Rt =

∑T
t′=t γt′−trt.

4.4 Reinforcement Learning Formulation

Figure 37 shows the RL formulation of the face-intersection minimization task, showing the different flows
for a ϵ-degree rotation Rij(ϵ) in R5 or a 5-d (resp. 4-d) camera modification c5[4] ← c5[4] ± δ (resp.
c4[3]← c4[3]±δ). It represents a complete episode in which for a cubical surface C on the left, FaceInts0 = 48
is sequentially minimized to FaceIntsT

= 16 with the expected face-intersection Exp = 16. To keep the flow
diagram compact, the conditions depending on the Exact parameter (represented by rhomboids in gradient)
can take two different criterions. A detailed pseudo-code of the environment E can be consulted in in Section
A.7, Algorithms 9, 10 and 11.

Figure 37: Episode flow diagram

4.5 The Agent

PPO (Clip) samples a size N > 0 batch of st, at, π(at|st), rt by following an initial policy πold. If Done =
True, the future discounted reward Rt is calculated as in Section 4 and the episode length is saved. The

10

Under review as submission to TMLR

Rt estimate the action-value functions Qπθold (s, a) used to calculate the advantages Ât in Equation 2. In
practice, a MinibatchSize > 0 of elements is sampled form the memory of size N . According to Keskar et al.
(2016) a larger MinibatchSize tends to find sharper minima (leading to poor generalization), while small
batch sizes tend to find flat minima (allowing better generalization); here a MinibatchSize = 32 is used
to achieve enough generalization. Algorithm 1 in Schulman et al. (2017) shows the PPO (clip) algorithm
workflow. The models were trained using Stable-Baselines 3, an implementation by Raffin et al. (2021).

5 Experiments

Recall from Section 4 that the rotation-step ϵ ∈ R+ is specified by the user. A small ϵ will not be the
best way to explore the entire configuration space but will be efficient to explore a particular configuration
locally. On the other hand, a large ϵ will be better to explore the whole configuration space but can miss
good configurations between steps. Each of the eight minimal cubical surfaces here presented is trained for
204800 steps with different rotation-step sizes, namely ϵ = 1 (red), ϵ = 2 (blue) and ϵ = 5 (orange) degrees
to find the best ϵ parameter for each surface. The number of steps sampled on the rollout function is set
to Updates = 2048 from where a MiniBatchSize = 32 is sampled. During training, the initial state s0
is fixed for each cubical surface and specified in Table 2, along with the initial and final FaceIntst and
Overlapst values and whether the final realization is minimal in terms of FaceIntsT

. The expected number
of face intersections Exp ≥ 0 is specified for each surface depending on the minimum FaceIntst

observed
in previous runs; if during training a FaceIntst

< Exp is detected, then the training is repeated with the
smallest Exp found. The remaining training parameters are taken as: δ = .5, Exact = False, w = .05,
MaxSteps = 100, and γ = .99.

Figure 38: Genus-1 torus with Exp = 0. Left: Episode
length mean. Right: Episode reward mean.

Figure 39: Genus-2 torus with Exp = 0. Left: Episode
length mean. Right: Episode reward mean.

Figure 40: Genus-3 torus with Exp = 9. Left: Episode
length mean. Right: Episode reward mean.

Figure 41: Genus-4 torus with Exp = 12. Left: Episode
length mean. Right: Episode reward mean.

Figure 42: Genus-5 torus with Exp = 16. Left: Episode
length mean. Right: Episode reward mean.

Figure 43: Projective Plane with Exp = 3. Left: Episode
length mean. Right: Episode reward mean.

11

Under review as submission to TMLR

Figure 44: Klein Bottle with Exp = 3. Left: Episode length
mean. Right: Episode reward mean.

Figure 45: K-3 surface with Exp = 6. Left: Episode length
mean. Right: Episode reward mean.

5.1 An Optimization Sequence

Figure 46 shows the face intersection minimization sequence giving special emphasis on the intersection-lines
for the genus-2 cubical surface in Figure 48 with ϵ = 5. In this case, FaceIntst is increased only once in Figure
46c while in all other steps FaceIntst+1 ≤ FaceIntst holds. The edge overlap minimization sequence is not
presented since it is hard to appreciate it in a 2-dimensional plot. Each of the 25 steps the agent performs
is a frame in an animation sequence; this allows capturing the movements induced by the 5-d rotations and
perspective projections that transform s0 into sT in a realistic way. Creating this animation only with the
initial and final immersions (without any intermediate ones) would only yield a linear vertex displacement
from their initial to the final locations, which would not correspond to the action of a 5-dimensional rotation.

5.2 Initial and Final Immersions of some Cubical Surfaces

The initial orientation of a cubical surface is determined from the list of angles ϕ5 =
(ϕ0,1, ϕ0,2, ϕ0,3, ϕ0,4, ϕ1,2, ϕ1,3, ϕ1,4, ϕ2,3, ϕ2,4, ϕ3,4) sorted in lexicographic order (Section A.3). For each cu-
bical surface and choice of rotation-step ϵ ∈ {1, 2, 5} the last trained model saved is tested. Having a high
mean episode reward translates into finding a solution in less steps. Table 1 shows the number of steps
each trained model needs to find a solution, showing better results for a rotation step of ϵ = 5 degrees for
almost all cubical surfaces tested. Table 2 compares the initial values FaceInts0 and Overlapsst

with the
optimized FaceIntsT

and OverlapssT
and whether the polyhedral realization is the minimal with respect

to FaceIntsT
(under this problem’s setup) or this is yet unknown.

Surface ϵ = 1 ϵ = 2 ϵ = 5
Genus-1 > 100 35 13
Genus-2 > 100 > 100 25
Genus-3 > 100 > 100 11
Genus-4 > 100 56 39
Genus-5 > 100 > 100 57

Projective Plane > 100 45 25
Klein Bottle 9 15 14

K-3 > 100 39 19

Table 1: Number of time-steps required to find a solution for a rotation step size ϵ.

g/k Initial Orientation (ϕ5) FaceInts0 FaceIntsT
Overlaps0 OverlapsT

Minimal Figure
g = 1 (0, 0, π

6 , π
6 , 0, π

6 , π
6 , π

6 , π
6 , π

6) 6 0 2 0 yes 47
g = 2 (0, 0, π

6 , π
6 , 0, π

6 , π
6 , π

6 , π
6 , π

6) 23 0 2 0 yes 48
g = 3 (0, 0, 0, 0, 0, 0, π

6 , π
6 , π

6 , π
6) 20 9 0 0 unknown 49

g = 4 (0, 0, π
6 , π

6 , 0, π
6 , π

6 , π
6 , π

6 , π
6) 36 10 2 0 unknown 50

g = 5 (0, 0, π
6 , π

6 , 0, π
6 , π

6 , π
6 , π

6 , π
6) 48 16 2 0 unknown 51

k = 1 (0, 0, π
6 , π

6 , 0, π
6 , π

6 , π
6 , π

6 , π
6) 17 3 2 0 yes 52

k = 2 (0, 0, π
6 , π

6 , 0, π
6 , π

6 , π
6 , π

6 , π
6) 9 3 2 0 yes 53

k = 3 (0, 0, π
6 , π

6 , 0, π
6 , π

6 , π
6 , π

6 , π
6) 23 6 2 0 unknown 54

Table 2: Results for various orientable and non-orientable cubical surfaces.

12

Under review as submission to TMLR

(a) F aceInt = 23, Overlap = 2 (b) F aceInt = 22, Overlap = 7 (c) F aceInt = 26, Overlap = 2 (d) F aceInt = 21, Overlap = 6

(e) F aceInt = 20, Overlap = 4 (f) F aceInt = 19, Overlap = 8 (g) F aceInt = 19, Overlap = 6 (h) F aceInt = 19, Overlap = 6

(i) F aceInt = 18, Overlap = 6 (j) F aceInt = 18, Overlap = 4 (k) F aceInt = 18, Overlap = 4 (l) F aceInt = 17, Overlap = 4

(m) F aceInt = 13, Overlap = 6 (n) F aceInt = 13, Overlap = 4 (o) F aceInt = 9, Overlap = 7 (p) F aceInt = 9, Overlap = 2

(q) F aceInt = 9, Overlap = 2 (r) F aceInt = 7, Overlap = 2 (s) F aceInt = 7, Overlap = 0 (t) F aceInt = 0, Overlap = 3

Figure 46: Face optimization stage for the orientable g = 2 cubical surface in Figure 48 with Exp = 0 and ϵ = 5 degrees
rotation-step. Faces are shown in red and face intersections in blue. The 5-cube’s 1-skeleton is rendered in light gray.

13

Under review as submission to TMLR

5.3 Realizations of Orientable and Non-Orientable Cubical Surfaces

Figure 47: Genus-1 torus (16 faces). Left: Initial with
F aceInt = 6. Right: Optimized with F aceint = 0.

Figure 48: Genus-2 torus (26 faces). Left: Initial with
F aceInt = 23. Right: Optimized with F aceint = 0.

Figure 49: Genus-3 torus (36 faces). Left: Initial with
F aceInt = 20. Right: Optimized with F aceInt = 9.

Figure 50: Genus-4 torus (38 faces). Left:Initial with
F aceInt = 36. Right: Optimized with F aceInt = 10.

Figure 51: Genus-5 torus (40 faces). Left: Initial with
F aceInt = 48. Right: Optimized with F aceInt = 16.

Figure 52: Projective Plane (20 faces). Left: Initial with
F aceInt = 17. Right: Optimized with F aceInt = 3.

Figure 53: Klein Bottle (24 faces). Left: Initial with
F aceInt = 9. Right: Optimized with F aceInt = 3.

Figure 54: K-3 surface (30 faces). Left: Initial with
F aceInt = 23. Right: Optimized with F aceInt = 6.

14

Under review as submission to TMLR

6 Conclusions

This article introduces the first RL approach to find quadrilateral realizations (allowing pinch-points) of
5-dimensional orientable and non-orientable closed cubical surfaces with the smallest number of face inter-
sections. Unlike the algorithm proposed by Hougardy et al. (2006) where the "actions" consist on moving
each vertex individually in ±X,±Y or ±Z, in this work the vertices move according to the action induced
by a 5-dimensional rotation or by affecting the camera vectors c5 ∈ R5 and c4 ∈ R4.

Singular quadrilateral realizations of the minimal cubical projective plane and the cubical Klein Bottle with
the minimum number of face intersections (3), and quadrilateral embeddings of minimal orientable cubical
surfaces of genus g = 1, 2 are found. For orientable cubical surfaces with g = 3, 4, 5 and non-orientable with
k = 3, the models here presented are candidates of singular realizations with the minimal number of face
intersections. However there is no framework to prove this strictly as done here with the Klein Bottle and
the Projective Plane.

For each cubical surface C, the trained models return a sequence of steps consisting either of a camera
modification or a 5-dimensional rotation, which are used to build animations. The optimal strategy has the
property that it allows a face intersection increase if necessary to find a realization, still a small number of
steps is required to find a realization.

7 Further directions

For orientable cubical surfaces with g = 3, 4, 5, our RL algorithm can not reduce FaceIntst
below the results

shown in Section 5 even though these surfaces are orientable and could be embedded allowing the unitary
5-cube to be deformed in some way. A possible solution could be a combination of the approach by Hougardy
et al. (2006) in which vertices move individually in ±X,±Y or ±Z with RL. This would allow increasing
the intersection segment functional when necessary in order to find a realization.

For all non-orientable cubical surfaces, a natural direction of interest is finding realizations of cubical
surfaces without pinch-points as studied in Brehm & Leopold (2016) for triangulations of non-orientable
surfaces with the minimal (or few) number of vertices. The modification in our algorithm would consist on
finding realizations by minimizing only the face number of face intersections of faces that share a vertex which
are precisely the face intersections that yield pinch-points. However, for this work the author’s focus was
focusing in the minimality of face intersections in general before experimenting with clearing pinch-points.

The RL algorithm is being tested with the 6-dimensional cubical surfaces from the GitHub repository by
Govc (2024). Here there exist representatives of orientable surfaces with genus g = 3 that can be embedded
in R3. For non-orientable cubical surfaces with k = 1, 2 we still observe that FaceInt = 3 which is still the
minimum number of face intersections achievable for Q6.

8 Supplements

If the reader wishes to explore the cubical surfaces here presented more closely, their 3-d models and
animation sequences can be consulted and downloaded from Sketchfab Estevez (2025a).

If the reader wishes to minimize a particular cubical surface or take a deeper look into the Python imple-
mentation visit the following GitHub repository Estevez (2025b).

Some 3-d prints of 5-dimensional cubical surfaces can be consulted in Estévez et al. (2024).

Acknowledgments

In loving memory of Prof. Dr. Sayan Mukherjee. This work was supported by Prof. Dr. Sayan Mukherjee’s
Humboldt Research Fellowship, awarded by the Alexander von Humboldt Foundation in 2023.

Thanks to Nikola Milosevic for the fruitful conversations and advices on this project and in general in RL.

15

Under review as submission to TMLR

References
Jürgen Bokowski and A Guedes de Oliveira. On the generation of oriented matroids. Discrete & Computa-

tional Geometry, 24(2):197–208, 2000.

Paul Bourke. The shortest line between two lines in 3d. Disponível na internet via WWW. URL: http://local.
wasp. uwa. edu. au/˜ pbourke/geometry/lineline3d, 1998.

Ulrich Brehm. How to build minimal polyhedral models of the boy surface. Math. Intelligencer, 12(4):51–56,
1990.

Ulrich Brehm and Undine Leopold. Polyhedral embeddings and immersions of many triangulated 2-manifolds
with few vertices. arXiv preprint arXiv:1603.04877, 2016.

Davide P. Cervone. Traditional research, 2001. URL https://www.math.union.edu/~dpvc/professional/
research/traditional.html.

Manuel Estevez. Cubical surface sketchfab. https://sketchfab.com/Mane.Estevez/collections/5-d-cubical-
surfaces-6e9512c3597d4a85aca657dd8a33e917, 2025a. Accesed: 2025-7-9.

Manuel Estevez. Cubical surface immersions rl. https://github.com/mestevez88/Cubical-Surface-
Immersions-RL, 2025b. Accesed: 2025-7-9.

Manuel Estévez, Érika Roldán, and Henry Segerman. Surfaces in the tesseract. In Judy Holdener, Eve
Torrence, Chamberlain Fong, and Katherine Seaton (eds.), Proceedings of Bridges 2023: Mathematics,
Art, Music, Architecture, Culture, pp. 441–444, Phoenix, Arizona, 2023. Tessellations Publishing. ISBN
978-1-938664-45-8. URL http://archive.bridgesmathart.org/2023/bridges2023-441.html.

Manuel Estévez, Érika Roldán, and Henry Segerman. Oriented and non-oriented cubical surfaces in the
penteract. In Helena Verrill, Karl Kattchee, S. Louise Gould, and Eve Torrence (eds.), Proceedings of
Bridges 2024: Mathematics, Art, Music, Architecture, Culture, pp. 381–384, Phoenix, Arizona, 2024.
Tessellations Publishing. ISBN 978-1-938664-49-6. URL http://archive.bridgesmathart.org/2024/
bridges2024-381.html.

George K Francis and Jeffrey R Weeks. Conway’s zip proof. The American mathematical monthly, 106(5):
393–399, 1999.

Dejan Govc. 6-dimensional cubical surfaces. https://github.com/DejanGovc/Surfaces6Cube, 2024. Accesed:
2025-6-11.

Richard Hammack. Hypercube models via genus embeddings. In Helena Verrill, Karl Kattchee, S. Louise
Gould, and Eve Torrence (eds.), Proceedings of Bridges 2024: Mathematics, Art, Music, Architecture,
Culture, pp. 15–22, Phoenix, Arizona, 2024. Tessellations Publishing. ISBN 978-1-938664-49-6. URL
http://archive.bridgesmathart.org/2024/bridges2024-15.html.

Stefan Hougardy, Frank H Lutz, and Mariano Zelke. Surface realization with the intersection edge functional.
arXiv preprint math/0608538, 2006.

Tomasz Kaczynski, Konstantin Mischaikow, and Marian Mrozek. Computational homology. Appl Math Sci,
157:482, 1 2004. doi: 10.1007/b97315.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL https:
//arxiv.org/abs/1412.6980.

Tomas Möller. A fast triangle-triangle intersection test. Journal of graphics tools, 2(2):25–30, 1997.

16

https://www.math.union.edu/~dpvc/professional/research/traditional.html
https://www.math.union.edu/~dpvc/professional/research/traditional.html
http://archive.bridgesmathart.org/2023/bridges2023-441.html
http://archive.bridgesmathart.org/2024/bridges2024-381.html
http://archive.bridgesmathart.org/2024/bridges2024-381.html
http://archive.bridgesmathart.org/2024/bridges2024-15.html
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

Under review as submission to TMLR

NeonRice. 3d-triangle-intersection-detection. https://github.com/NeonRice/3D-triangle-intersection-
detection, 2020. Accessed: 2024-10-15.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning Re-
search, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Omar Shehata. How to fix gimbal lock in n-dimensions. https://omar-shehata.medium.com/how-to-fix-
gimbal-lock-in-n-dimensions-f2f7baec2b5e, 2020. Accessed: 2024-10-30.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction. MIT press Cambridge,
2018.

Günter M Ziegler. Polyhedral surfaces of high genus. In Discrete differential geometry, pp. 191–213. Springer,
2008.

17

http://jmlr.org/papers/v22/20-1364.html

Under review as submission to TMLR

A Appendix

A.1 Face Intersections

Let C be a cubical surface and consider projections F1, F2 ⊂ R3 of faces f1, f2 ∈ C. Projected edges e1 ⊂ f1
and e2 ⊂ f2 are denoted by E1, E2 ⊂ R3. If f1, f2 ∈ C share a vertex v it means that v ∈ Qn is one of the
four vertices building f1 and f2. Note that if f1, f2 share three or more vertices, then f1 = f2. The author
claims that if F1 ∩ F2 ̸= ∅, then there exist at least 3 face intersections.

1. If F1 and F2 share exactly two vertices, then the following cases can occur:

(a) If the shared vertices are common to an edge, then F1 and F2 are adjacent; an adjacency is not
counted as a face intersection.

(b) If the shared vertices don’t share any edge, then F1 and F2 must intersect along their diagonal;
however, this is impossible for faces f1, f2 ∈ C because there is a unique face connecting such
two vertices.

2. If F1 and F2 share exactly one vertex v, then the following cases can occur:

(a) F1 ∩ F2 = v with v an adjacent vertex; this is not counted as an intersection.
(b) F1 ∩ F2 = L, where L is a line segment.

i. The boundaries of F1 and F2 intersect at some point other than v. This is not a valid
intersection for our realization because some pair of edges would overlap as explained in
Section A.2. See Figure 55.

ii. The edges of F1 and F2 do not intersect at other point than v. Since the faces come from
a projection of an n-dimensional cube, there can’t be a third face intersecting as in Figure
58, so WLOG F1 crosses the boundary of F2 through edge E2 ⊂ F2. From (1) for a cubical
surface, every edge shares exactly 2 faces, so in addition to F1∩F2 a second face F ′

2 adjacent
to E2 intersects F1 and by the observation above F ′

2 must intersect some face F ′
1 adjacent

to F1. This gives at least 3 pairs of face intersections as in Figures 56 and 57.

3. If F1 and F2 have no adjacent vertices, and F1 ∩ F2 ̸= ∅, then the following cases can occur:

(a) v ∈ F1 ∩ F2 with v a non-adjacent vertex. From (2) of a cubical surface, Fv is a connected
cyclic graph, then every vertex is shared by at least 3 faces. See Figure 59.

(b) For a pair of edges E1 ⊂ F1, E2 ⊂ F2 it holds that E1 ∩F2 ̸= ∅ and E2 ∩F1 ̸= ∅. In addition to
F1 ∩ F2 ̸= ∅ which can be a line L or a point P ; from (1) of a cubical surface every edge shares
exactly 2 faces. Then E1 ∩F2 gives another intersection of F2 with some other face adjacent to
E1 and E2 ∩ F1 gives a third one of F1 with some face adjacent to E2. See Figure 60 and 61.

(c) For a pair of edges E1 ⊂ F1, E′
1 ⊂ F1 it holds that E1 ∩F2 ̸= ∅ and E′

1 ∩F2 ̸= ∅. In addition to
F1 ∩ F2 ̸= ∅ which can be a line L or a point P ; from (1) of a cubical surface every edge shares
exactly 2 faces. Then E1 ∩F2 gives another intersection of F2 with some other face adjacent to
E1 and E′

1 ∩ F2 gives a third one of F2 with some face adjacent to E′
1. See Figure 62 and 63.

18

Under review as submission to TMLR

Figure 55: F1 ∩ F2 = L shar-
ing a vertex; case not allowed
by edge overlaps.

Figure 56: F1 ∩ F2 = L shar-
ing a vertex.

Figure 57: F1 ∩ F2 = L shar-
ing a vertex.

Figure 58: F1 ∩ F2 = L shar-
ing a vertex; case not allowed
by definition of a face.

Figure 59: F1 ∩ F2 =
v with v a non-adjacent
vertex.

Figure 60: E1 ∩ F2 ̸=
∅ and E2 ∩ F1 ̸= ∅.

Figure 61: E1 ∩ F2 ̸=
∅ and E2 ∩ F1 ̸= ∅.

Figure 62: E1 ∩ F2 ̸=
∅ and E′

1 ∩ F2 ̸= ∅.
Figure 63: E1 ∩ F2 ̸=
∅ and E′

1 ∩ F2 ̸= ∅.

A.2 Edge Overlaps

Intersections between two line segments resulting from the perspective projection of two edges e1, e2 ∈ Q5
1

(although more unlikely) can also occur. To model and easily visualize the projected line segments, they are
assigned a "small" edge-width w ≥ 0 ∈ R. Consider points P1, P2, P3, P4 ∈ R3 and (infinite) lines L1,2 and
L3,4 passing through P1, P2 and P3, P4 respectively. If L1,2 and L3,4 are co-planar and not parallel, then
they intersect. However, if they are not co-planar, there exists a unique shortest line segment La,b ⊂ R3

connecting them which is perpendicular to both lines with Pa ∈ L1,2 and Pb ∈ L3,4. The Algorithm by
Bourke (1998) described in Section A.8 computes the length of the line |La,b| ≥ 0 ∈ R and whether Pa

(resp. Pb) is between points P1, P2 ∈ L1,2 (resp. P3, P4 ∈ L3,4). Given an edge-width w, two line segments
L1,2, L3,4 have an edge overlap if Pa ̸= P1, P2, Pb ̸= P3, P4, Pa ∈ L1,2, Pb ∈ L3,4, and |Pa,b| ≤ 2w. The
number of edge overlaps at state st denoted by Overlapst

is calculated using Algorithm 12. This name
is chosen to distinguish this criterion from an edge intersection; however, both have the same meaning if
w = 0.

Figure 64: An edge overlap for edge
radius w > 0 ∈ R.

Figure 65: 3-d perspective projection
of Q5

1 with Overlap = 0 for w = 0.5.

19

Under review as submission to TMLR

A.3 N-dimensional Rotations & Gimbal-Lock

Algorithm 1: RotMat(ϕn)
Data: Dimension n ∈ N and angle list ϕn := (ϕi,j : (i, j) ∈

(
n
2
)
).

Result: General rotation matrix R ∈ SO(n,R).
1 Comb2(n)←

(
n
2
)
;

2 R← In;
3 for (i, j) ∈ Comb2(n) do
4 S ← In;
5 Si,i ← cos(ϕi,j);
6 Sj,j ← cos(ϕi,j);
7 Si,j ← − sin(ϕi,j);
8 Sj,i ← sin(ϕi,j);
9 R← S ·R

10 end

In R3, elemental rotations by angles ϕ0,1, ϕ0,2 and ϕ1,2 in planes Z = 0, Y = 0 and X = 0 correspond to ele-
mental rotation matrices R0,1(ϕ0,1), R0,2(ϕ0,2), R1,2(ϕ1,2) respectively. For any angle ϕ ∈ [0, 2π), elemental
rotation matrices satisfy the relationships Ri,j(ϕ) = Rj,i(−ϕ), R−1

i,j (ϕ) = Rj,i(ϕ), and Ri,j(θ)Rj,i(θ) = In

and they can be constructed as follows:

Ri,j(ϕ) :=



Rk,k = cos(ϕ) if k = i

Rl,l = cos(ϕ) if l = j

Rk,l = − sin(ϕ) if k = i and l = j

Rl,k = sin(ϕ) if k = i and l = j

Rk,k = 1 if k ̸= i or k ̸= j

Rk,l = 0 otherwise.

Consider a list of angles ϕn := (ϕi,j : (i, j) ∈
(

n
2
)
) with the rotation angles in each plane Xi,j ordered

lexicographically, that is (i, j) < (k, l) if i < k or (i = k and j < l). A general rotation matrix
R ∈ SO(n,R) by angles ϕn can be calculated by multiplying elemental rotation matrices Ri,j(ϕi,j) for each
angle ϕi,j ∈ ϕn on the left with respect to the order given by ϕn as shown in Equation 6. Since elemental
rotation matrices generally do not commute, the order of the factors is crucial.

R(ϕn) := Rn−2,n−1(ϕn−2,n−1) · · ·R0,2(ϕ0,2)R0,1(ϕ0,1). (6)

However, when calculating general rotation matrices, some considerations must be taken into account. For
example, lets consider the list of angles ϕ3 = (ϕ0,1, ϕ0,2, ϕ1,2) = (α,−π/2, γ) in R3. Computing the corre-
sponding general rotation matrix results:

R(ϕn) =

[
1 0 0
0 cos(γ) − sin(γ)
0 sin(γ) cos(γ)

] [
cos(π/2) 0 sin(π/2)

0 1 0
− sin(π/2) 0 cos(π/2)

] [
cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

]
=

[
0 0 1

sin(α + γ) cos(α + γ) 0
− cos(α + γ) sin(α + γ) 0

]
Note that by setting β = −π/2, affecting α or γ yields the same change in the rotation matrix; moreover
for any values of α and γ the matrix R(ϕ3) fixes the plane Z = 0 and a rotation in the plane X = 0 is no
longer possible. We have then lost a degree of freedom, and in order for α and γ to have again different
effects the values β = ±π/2 should be avoided. This phenomenon is called Gimbal-Lock and appears in
higher dimensions as well. Since in our algorithm, the rotations (see Section 4) performed by the agent
step-wise are in just one plane Xi,j ⊂ Rn one can still use Euler angles and avoid Gimbal-Lock as explained
by Shehata (2020) for cases n = 3, 4. The strategy is to use the action of SO(n) in R3 when actualizing
the rotation matrix at each step. By the compatibility axiom of group action, for any two rotation matrices
R, S ∈ SO(n) and any vector x ∈ Rn the property S · (R ·x) = (S ·R) ·x holds. Instead of adding the angle
ϕi,j to the corresponding coordinate in the list ϕn and recalculating R(ϕn), let R = R(ϕn) be the previous
rotation matrix and S = Ri,j(ϕi,j) be the elemental rotation matrix for the rotation at the current step

20

Under review as submission to TMLR

and assigning R← S ·R. Algorithm 1 describes how to calculate a general rotation matrix R(ϕn) given an
ordered list of angles ϕn as in Equation 6. It will be used to construct the initial embedding of the surface
C in Algorithm 9 and after each step in Algorithm 10, successfully avoiding Gimbal-Lock.

A.4 N-dimensional Perspective Projection

Algorithm 2: Prn(a, c, p)
Data: Point to project a ∈ Rn, Camera position c ∈ Rn, Projection Plane position p ∈ Rn.
Result: Projected point b ∈ Rn−1.

1 d← a− c;
2 M ← In;
3 for i, (0 ≤ i < n− 1) do
4 Mi,n ← p[i]/p[n];
5 end
6 Mn,n ← 1/p[n];
7 f ←M · d;
8 f ← f/f [n];
9 b← (f [1], ..., f [n− 1]);

Algorithm 3: ProjSegList(n, R, Qn
k , cn, pn, ..., c4, p4).

Data: Point to project ai ∈ Ri, n-dimensional Rotation Matrix R, n-dimensional Edges Qn
1 , Camera

position ci ∈ Ri, Orthogonal distance from origin to projection plane p > 0 ∈ R.
Result: list(tuple : b ∈ R3)

1 SegList← list();
2 for e ∈ Qn

1 do
3 V txList← list();
4 for v ∈ e do
5 a← R · v;
6 N ← n;
7 while N > 3 do
8 a← PrN (a, cN , pN);
9 N ← N − 1;

10 end
11 V txList.append(a);
12 end
13 SegList.append(V txList);
14 end

If R ∈ SO(n) is an n-dimensional rotation matrix, then the edges e ∈ Qn
1 and faces f ∈ C2

can be rotated in Rn applying R to each of its building vertices v. The rotated edges R · e ⊂
Rn or faces R · f ⊂ Rn can then be projected to R3 via a sequence of perspective projections
Pr4(· · · (Prn−1((Prn(v, cn, en), cn−1, en−1), · · ·), c4, e4) : Rn → R3. After each mapping the points
b ∈ Pri(ai, ci, ei) ⊂ Ri−1 should always map to the same side of the camera ci−1 ∈ Ri−1 in the next
perspective projection; otherwise they would be inverted in the next projection. Cubical surfaces are faces
on the 5-dimensional cube Q5 centered at the origin with unit-length edges. It’s vertices are of the form
(±1/2,±1/2,±1/2,±1/2,±1/2) ∈ R5 and lay on the boundary of the 5-dimensional sphere S5 of radius
r5 =

√
5(±1/2)2 =

√
5/4 =

√
5/2; or for the n-dimensional case in the boundary of the sphere Sn of

radius rn =
√

n/2. The camera position c5 ∈ R5 is limited to move in the line segment (0, 0, 0, 0, d5) ∈ R5

with d5 ∈ [−15,−2] so the furthest a point can be projected to R4 occurs when the camera position is
c5 = (0, 0, 0, 0,−2). Consider the 4-dimensional sphere S5, one must know how far from the origin can any
point a ∈ S5 project so the range within c4 ∈ R4 can move can be determined. Assume the projection line
L ⊂ R5 is contained in the plane X1,2 spanned by axes X1, X2 ⊂ R5 (therefore X3, X4, X5 = 0) and has

21

Under review as submission to TMLR

equation X2 −mX1 + 2 = 0. The plane X1,2 intersects the 5-sphere in a circle of radius r5 =
√

5/2 with
equation X2

1 + X2
2 − r2

5 = 0; we want to minimize the projection of the line L parametrized by m onto the
line X2 = 0. For any point x = (r5 cos(θ), r5 sin(θ)) in this circle with θ ∈ (−π, π), the line passing through x
and (0,−2) has slope m = (r5 sin(θ)− (−2))/(r5 cos(θ)− 0)(r5 sin(θ) + 2)/r5 cos(θ) = tan(θ) + 2/(r5 cos(θ)),
and substituting the value of m in the equation of L yields X2 − (tan(θ) + 2/r5 cos(θ))X1 + 2 = 0. This line
intersects the line X2 = 0 at the point X1 = 2/(tan(θ) + 2/r5 cos(θ)). As a function defined in the interval
(−π, π) ⊂ R it achieves a maximum value X1 = 1.348 at θ = −.5932 ≈ −π/5 radians, so the projected
points a ∈ R4 would not map behind the camera c4 = (0, 0, 0,−2) ∈ R4; the 4-dimensional camera can be
set as c4 = (0, 0, 0, d4) with d4 ∈ [−15,−2] ∈ R. After applying the sequence of perspective projections as in
Section A.4, the resulting line segments (resp. plane segments) are stored in a list SegList (resp. FaceList).
This process is detailed in Algorithm 3 and in Appendix A the process of determining whether edges in
SegList (resp. faces in FaceList) intersect in R3 is explained. For the list of projected edges SegList, we
assign its elements an edge radius w > 0 ∈ R and determine if the resulting cylindrical segments intersect in
pairs.

A.5 Termination Criteria

Algorithm 4: Done(FaceInt, Exp, Overlap, Counter, Exact)
Data: (int, int, int, int, bool); (FaceInt, Exp, Overlap, Counter, Exact)
Result: bool : Done

1 Done← False;
2 if Exact; // (1)
3 then
4 if Overlap = 0 and FaceInt = Exp then
5 Done← True;
6 end
7 else
8 if Overlap = 0 and FaceInt ≤ Exp then
9 Done← True;

10 end
11 end
12 if Counter = MaxSteps; // (2)
13 then
14 Done← True;
15 end

There are two termination criteria. The first one has to do with finding a realization. Given a cubical
surface C the task has two types of solutions depending on the Exact parameter. If Exact = True, then
the objective of the agent is arriving to a terminal state sT at which OverlapsT

= 0 and FaceIntst = Exp;
otherwise will be arriving to a terminal state sT at which OverlapsT

= 0 and FaceIntst
≤ Exp. This is

formalized in Algorithm 4. The second termination criteria is an episode truncation which ends the episode
once the agent exceeds a maximum number of steps MaxSteps > 0 ∈ Z. For some surfaces we must
allow the agent to explore the environment further by increasing the allowed MaxSteps. In this work a
MaxSteps = 100 is tested.

A.6 Reward Functions

22

Under review as submission to TMLR

Algorithm 5: r1(PrevAction, Action)
Data: (int, int) : (PrevAction, Action)
Result: r1 ∈ R

1 r1 ← 0;
2 if Counter > 1 then
3 if ActV ec[PrevAction] + ActV ec[Action] = 0 then
4 r1 ← r1 − 1
5 end
6 end

Algorithm 6: r2(State, Action)
Data: (tuple, int) : (State, Action)
Result: r2 ∈ R

1 r2 ← 0;
2 if State[0] + ActV ec[Action][0] /∈ ObsSpace[0] and State[1] + ActV ec[Action][1] /∈ ObsSpace[1] then
3 r2 ← r2 − 1;
4 end

Algorithm 7: r3(FaceInt, PrevFaceInt, Exact)
Data: (int, int, bool) : (FaceInt, PrevFaceInt)
Result: r3 ∈ R

1 if Exact then
2 if FaceInt = Exp then
3 r3 ← 0;
4 else
5 if |FaceInt− Exp| < |PrevFaceInt− Exp| then
6 r3 ← 1
7 end
8 if |FaceInt− Exp| = |PrevFaceInt− Exp| then
9 r3 ← 0

10 end
11 if |FaceInt− Exp| > |PrevFaceInt− Exp| then
12 r3 ← −1
13 end
14 end
15 else
16 if FaceInt > Exp then
17 if FaceInt < PrevFaceInt then
18 r3 ← 1
19 end
20 if FaceInt = PrevFaceInt then
21 r3 ← 0
22 end
23 if FaceInt > PrevFaceInt then
24 r3 ← −1
25 end
26 else
27 r3 ← 0;
28 end
29 end

23

Under review as submission to TMLR

Algorithm 8: Reward4(FaceInt, PrevFaceInt, Overlap, PrevOverlap, Exact)
Data: (int, int, int, int, bool) : (FaceInt, PrevFaceInt, Overlap, PrevOverlap, Exact)
Result: r4 ∈ R

1 if Exact then
2 if FaceInt = Exp then
3 if Overlap = 0 or PrevOverlap = 0 then
4 r4 ← 10;
5 else
6 if Overlap < PrevOverlap then
7 r4 ← 1
8 end
9 if Overlap = PrevOverlap then

10 r4 ← 0
11 end
12 if Overlap < PrevOverlap then
13 r4 ← −1
14 end
15 end
16 end
17 else
18 if FaceInt ≤ Exp then
19 if Overlap = 0 or PrevOverlap = 0 then
20 Reward4 ← 10;
21 else
22 if Overlap < PrevOverlap then
23 r4 ← 1
24 end
25 if Overlap = PrevOverlap then
26 r4 ← 0
27 end
28 if Overlap > PrevOverlap then
29 r4 ← −1
30 end
31 end
32 end
33 end

24

Under review as submission to TMLR

A.7 Environment Logic

Algorithm 9: Hypercube Environment
Data: Camera distances d5, d4 ∈ [−15,−2], ϕi ∈ [0, π/2]; Step size δ, ϵ > 0 ∈ R; Exp ≥ 0 ∈ Z;

Exact = bool; w > 0 ∈ R; Cubical surface C = list(tuple).
1 class Hypercube5{
2 Constructor(d5, d4, ϕ1, ..., ϕ10, δ, ϵ, Exp, Exact, C2, w)
3 Q5

1 ← EdgeCoordinates(Q5
1);

4 f ← FaceCoordinates(C);
5 ActV ec← {0 : δe(1), 1 : −δe(1), 2 : δe(2), 3 : −δe(2), 4 : ϵe(3), 5 : −ϵe(3), ..., 23 : −ϵe(12)};
6 Action← (0, ..., 17);
7 ObsSpace← ([−15,−2], [−15,−2], [−1, 1], ..., [−1, 1]);
8 R← RotMat(ϕ1, ..., ϕ10); // Algorithm 1
9 State← (d5, d4, R1,1, R1,2, · · · , R5,4, R5,5);

10 c5 ← State[0]e(5); // Camera positions.
11 c4 ← State[1]e(4);
12 p5 ← −State[0]e(5) + e(5) ; // Hyperplane positions relative to camera.
13 p4 ← −State[1]e(4) + 10e(4);
14 SegList← ProjSegList(5, R, Q5

1, c5, p5, c4, p4); // Algorithm 3
15 FaceList← ProjSegList(5, R, f , c5, p5, c4, p4); // Algorithm 3
16 Overlaps← EdgeIntersections(w, SegList); // Algorithm 13
17 PrevOverlaps← Overlaps;
18 FaceInt← FaceInt(FaceList); // Algorithm 14
19 PrevFaceInt← FaceInt;
20 MinFaceInt← PrevFaceInt;

25

Under review as submission to TMLR

Algorithm 10: Step function
48 ...
49 Step(Action) :
50 Counter ← Counter + 1;
51 PrevOverlap← Overlap;
52 PrevFaceInt← FaceInt;
53 R1 ← Reward1(PrevAction, Action); // Algorithm 5
54 R2 ← Reward1(State, Action); // Algorithm 6
55 if Action ∈ {0, 1} and c5[4] + ActV ec[Action][0] ∈ [−15,−2] then
56 c5 ← c5 + ActV ec[Action][0]e(5); // 5-dimensional camera.
57 else if Action ∈ {2, 3} and c4[3] + ActV ec[Action][1] ∈ [−15,−2] then
58 c4 ← c4 + ActV ec[Action][1]e(4); // 4-dimensional camera.
59 else
60 S ← RotMat(ActDir[Action][2, :]); // Algorithm 1
61 R← S ·R;
62 State← (c5[4], c4[3], R1,1, R1,2, · · · , R5,4, R5,5);
63 p5 ← −State[0]e(5) + e(5) ; // Hyperplane positions relative to camera.
64 p4 ← −State[1]e(4) + 10e(4);
65 SegList← ProjSegList(5, R, Q5

1, c5, p5, c4, p4); // Algorithm 3
66 FaceList← ProjSegList(5, R, f , c5, p5, c4, p4); // Algorithm 3
67 Overlaps← EdgeIntersections(w, SegList); // Algorithm 13
68 FaceInt← FaceInt(FaceList); // Algorithm 14
69 MinFaceInt← min(MinFaceInt, FaceInt);
70 R3 ← Reward3(FaceInt, PrevFaceInt); // Algorithm 7
71 R4 ← Reward4(FaceInt, PrevFaceInt, Overlap, PrevOverlap); // Algorithm 8
72 Reward← R1 + R2 + R3 + R4;
73 Done← Done(FaceInt, Exp, Overlap, Counter, Exact); // Algorithm 4

Algorithm 11: Reset function
48 ...
49 Reset(Done) :
50 R← RotMat(ϕ1, ..., ϕ10); // Algorithm 1
51 State← (d5, d4, R1,1, R1,2, · · · , R5,4, R5,5);
52 c5 ← State[0]e(5); // Camera positions.
53 c4 ← State[1]e(4);
54 p5 ← −State[0]e(5) + e(5) ; // Hyperplane positions relative to camera.
55 p4 ← −State[1]e(4) + 10e(4);
56 SegList← ProjSegList(5, R, Q5

1, c5, p5, c4, p4); // Algorithm 3
57 FaceList← ProjSegList(5, R, f , c5, p5, c4, p4); // Algorithm 3
58 Overlaps← EdgeIntersections(w, SegList); // Algorithm 13
59 PrevOverlaps← Overlaps;
60 FaceInt← FaceInt(FaceList); // Algorithm 14
61 PrevFaceInt← FaceInt;
62 MinFaceInt← PrevFaceInt;

26

Under review as submission to TMLR

A.8 Edge Collision Detection

Here, the algorithm by Bourke (1998) to compute the shortest line between two line segments in R3 is
presented. Two lines L1,2 ⊂ R3 and L3,4 ⊂ R3 passing through points P1, P2 ∈ R3 and P3, P4 ∈ R3

respectively generally do not intersect. If L1,2 and L3,4 are not parallel and they are co-planar, then they
must intersect. However, if they are not co-planar, they can be connected by a unique shortest line segment
La,b ⊂ R3 perpendicular to both lines with Pa ∈ L1,2 and Pb ∈ L3,4. The algorithm calculates the points
Pa and Pb defining La,b, and determines whether the point Pa (resp. Pb) lies between the points P1 and P2
(resp. P3 and P4) or not. First note that any point P ∈ L1,2 (resp. P ′ ∈ L3,4) between P1 and P2 (resp.
P3, P4) is of the form

P = P1 + ma(P2 − P1),

(resp. P ′ = P3 + mb(P4−P3)) for some real number 0 ≤ ma ≤ 1 (resp. 0 ≤ mb ≤ 1). Since the shortest line
segment La,b between two lines L1,2 and L3,4 is perpendicular to both of them, the dot product must satisfy
(Pb − Pa) · (P2 − P1) = 0 (resp. (Pb − Pa) · (P4 − P3) = 0). By taking Pi − Pj = (xi − xj , yi − yj , zi − zj),
and setting

dijkl(Pi, Pj , Pk, Pl) := (Pi − Pj) · (Pk − Pl) = (xi − xj)(xk − xl) + (yi − yj)(yk − yl) + (zi − zj)(zk − zl),

expanding the dot product we get

(Pa − Pb) · (P2 − P1) = (P1 + ma(P2 − P1)− P3 −mb(P4 − P3)) · (P2 − P1)
= ((P1 − P3) + ma(P2 − P1)−mb(P4 − P3)) · (P2 − P1)
= d1321 + mad2121 −mbd4321,

therefore we get the equality

d1321 + mad2121 −mbd4321 = 0, (7)

and similarly for segments L3,4 and La,b

d1343 + mad4321 −mbd4343 = 0. (8)

Solving for mb in Equation 8 yields mb = (d1343 + mad4321)/d4343, and substituting the expression for mb in
Equation 7 yields ma = (d1343d4321 − d1321d4343)/(d2121d4343 − (d4321)2) . Note that d4343 ̸= 0 if and only if
P4 ̸= P3, therefore lets analyze when can d2121d4343 − (d4321)2 = 0. Let u = P2 − P1 and v = P4 − P3, and
recall that u · v = ||u||||v|| cos(θ), where θ is the angle between u and v. Substituting in the denominator
on Equation A.8, and since u ̸= 0 and v ̸= 0 we get

d2121d4343 − (d4321)2 = (u · u)(v · v)− (u · v)2

= ||u||2||v||2 − (||u||||v|| cos(θ))2

= ||u||2||v||2 − ||u||2||v||2 cos2(θ)
= ||u||2||v||2(1− cos2(θ))
= 0,

if and only if θ = 0 or θ = π, that is if and only if u and v are parallel. Algorithm 12 determines whether
line segments L1,2 and L3,4 intersect for a given edge-with w.

27

Under review as submission to TMLR

Algorithm 12: IntersectionLine(w, P1, P2, P3, P4)
Data: Edge radius w > 0 ∈ R and points P1, P2, P3, P4 ∈ R3 with (P2 − P1), (P4 − P3) ̸= 0.
Result: (bool : Intersects, float : distance, tuple : Pa, tuple : Pb)

1 Intersects← False;
2 u = P2 − P1;
3 v = P4 − P3;
4 d1343 ← dijkl(P1, P3, P4, P3);
5 d4321 ← dijkl(P4, P3, P2, P1);
6 d1321 ← dijkl(P1, P3, P2, P1);
7 d4343 ← dijkl(P4, P3, P4, P3);
8 b← (d2121d4343 − d4321d4321);
9 if b = 0 ; // Lines are parallel.

10 then
11 w = P3 − P1;
12 z = P4 − P1;
13 pru(P3) = u

||u|| ·w;
14 pru(P4) = u

||u|| · z;
15 if !(||u|| < pru(P3) ∧ ||u|| < pru(P4) ∨ pru(P3) < 0 ∧ pru(P4) < 0) // L3,4 projects out of L1,2.
16 then
17 distance = u

||u|| ×w;
18 if distance < 2w then
19 Intersects← True
20 end
21 end
22 else
23 ma ← (d1343d4321 − d1321d4343)/b;
24 mb ← (d1343 + mad4321)/d4343;
25 Pa ← P1 + mau;
26 Pb ← P3 + mbv;
27 if (0 < ma < 1) and (0 < mb < 1) then
28 distance← ||Pb − Pa||;
29 if distance < 2w then
30 Intersects← True;
31 end
32 end
33 end

Algorithm 13: EdgeIntersections(w, SegList)
Data: Edge radius w > 0 ∈ R, list : SegList.
Result: int : Overlaps

1 EdgeCombinations← Combinations(SegList, 2);
2 Overlaps← 0;
3 for Edge1, Edge2 in EdgeCombinations do
4 Intersection, Distance, Pa, Pb ← IntersectionLine(w, Edge1[0], Edge1[1], Edge2[0], Edge2[1]);
5 if Intersection then
6 Overlaps← Overlaps + 1;
7 end
8 end

28

Under review as submission to TMLR

A.9 Face Collision Detection

The algorithm by Möller (1997) to calculate whether two triangles T1, T2 ⊂ R3 intersect is presented. If they
intersect, it also returns the coordinates of their intersection line or point. Denote the vertices of T1 and T2
by V 1

0 , V 1
1 , V 1

2 and V 2
0 , V 2

1 , V 2
2 respectively; and the planes they lie in by π1 and π2 respectively. Consider

vectors u2 = (V 2
1 − V 2

0) and v2 = (V 2
2 − V 2

0), then for any point x ∈ π2 the plane equation satisfies

π2 : N2 · x + d2 = 0, (9)

where N2 = u2 × v2 and d2 = −N2 · V 2
0 the projection distance of the vertex V 2

0 over the vector −N2. The
signed (perpendicular) distances from the vertices V 1

i , i = 0, 1, 2 of the triangle T1 to the plane π2 can be
computed by inserting the vertices into the equation 9, yielding

dV 1
i

= N2 · V 1
i + d2, i = 0, 1, 2.

For triangle T1 and plane π2, two possible situations can occur:

1. If dV 1
i
̸= 0 for some i ∈ {0, 1, 2} then the possible sub-cases can occur:

(a) If all dV 1
i
̸= 0, i ∈ {0, 1, 2} have the same sign, then all vertices of T1 lie on the same side of the

plane π2, so in particular T1 and T2 ⊂ π2 don’t intersect.
(b) If any of the dV 1

i
= 0, i ∈ {0, 1, 2}, or has a different sign with respect to the other dV 1

j
, j ̸= i,

then T1 and the plane π2 intersect.

2. If all dV 1
i

= 0, i = 0, 1, 2, then T1 and T2 are co-planar.

Suppose both pairs (T1, π2) and (T2, π1) are on the situation 1(b) described above, then there exist a line
L ⊂ R3 in the direction of D := N1 ×N2 such that L ∩ T1 ̸= ∅ and L ∩ T2 ̸= ∅ with equation L = O + tD,
where O is some point on L and t ∈ R. Moreover, for triangle T1 there must be a vertex V 1

i lying on the other
side of π2 (or in π2) with respect to the remaining vertices V 1

j , j ̸= i (otherwise we would have T1 ∩ π2 = ∅,
which we already discarded). To keep notation simple we suppose this vertex is V 1

0 (resp. V 2
0) for T1 (resp.

for T2), and we consider the edges E1
0,1 and E1

0,2 of T1 (resp. E2
0,1 and E2

0,2 of T2). The goal is to compute
a scalar parameter value t1 for B = E1

0,1 ∩ L = O + t1D. First consider the projections of the vertices onto
L, that is

pV 1
i

= D · (V 1
i −O), i = 0, 1, 2.

Let K1
i be the projection of V 1

i onto π2 and note that the triangles ∆V 1
0 BK1

0 and ∆V 1
1 BK1

1 are similar,
therefore we get the following equation:

t1 = pV 1
0

+ (pV 1
1
− pV 1

0
)

dV 1
0

dV 1
0
− dV 1

1

. (10)

Similar calculations are done to compute a scalar parameter t2 for E1
0,2 ∩ L = O + t2D. Without loss of

generality we can suppose t1 ≤ t2 and therefore these two parameters yield a closed interval [t1, t2] ⊂ R
describing the intersection of T1 with L. By computing the corresponding interval for T2, the intersection
between T1 and T2 is computed by the intersection of both intervals.

On the other hand, if both pairs (T1, π2) and (T2, π1) are on the situation 2, start by projecting the triangles
onto the axis where their area is maximized. A 2-dimensional triangle-triangle intersection is performed,
that is checking if any edge of T1 intersects some edge of T2; if any intersection is found then T1 and T2
intersect. Otherwise it only remains to check if Ti is totally contained in Tj by checking if some point of Ti

lies inside the triangle Tj ; then all the vertices of Ti should lie inside Tj otherwise Ti and Tj should have
an edge to edge intersection which we had already discarded. This Algorithm has the following Python
implementation NeonRice (2020), which we name here as TriTriIntersect and use in Algorithm 14 which
counts the number of face intersections of the projected faces.

29

Under review as submission to TMLR

Algorithm 14: FaceInt(FaceList)
Data: list : FaceList.
Result: (int : FaceInt, list : IntersectionLine)

1 FaceCombinations← Combinations(FaceList, 2);
2 FaceInt← 0;
3 V txList← list();
4 IntersectionLine← list();
5 for Face1, Face2 in FaceCombinations do
6 FaceTriangles1← Combinations(Face1, 3); // Combinations of triangles in Face1.
7 FaceTriangles2← Combinations(Face2, 3); // Combinations of triangles in Face2.
8 TriangleIntersections← 0;
9 Count← 0; // Avoid co-planar face intersections.

10 for vertex in Face1 do
11 if vertex not in Face2 then
12 Count← Count + 1;
13 end
14 end
15 if Count = 3 and vertex not in VtxList then
16 V txList.append(vertex);
17 end
18 for T1 in FaceTriangles1 do
19 for T2 in FaceTriangles2 do
20 if Count ≥ 3 then
21 Res1, Res2, Intersects← TriTriIntersect(T1[0], T1[1], T1[2], T2[0], T2[1], T2[2]);
22 if Intersects and |Res2[0]−Res2[1]| ≥ 1e− 10 then
23 TriangleIntersections← TriangleIntersections + 1;
24 IntersectionLine.append([Res2[2], Res2[3]]);
25 end
26 end
27 end
28 end
29 if TriangleIntersections > 0 then
30 FaceInt← FaceInt + 1;
31 end
32 end

30

Under review as submission to TMLR

A.10 Notation of quadrilateral realizations

Figure 47 shows the initial (left) and optimized (right) immersions of the g = 1 cubical surface:

{ (0, 0, 0, 2, 2), (0, 0, 1, 2, 2), (0, 0, 2, 0, 2), (0, 0, 2, 1, 2), (0, 1, 0, 2, 2), (0, 1, 1, 2, 2), (0, 1, 2, 0, 2), (0, 1, 2, 1, 2),

(0, 2, 0, 2, 0), (0, 2, 0, 2, 1), (0, 2, 1, 2, 0), (0, 2, 1, 2, 1), (0, 2, 2, 0, 0), (0, 2, 2, 0, 1), (0, 2, 2, 1, 0), (0, 2, 2, 1, 1)}

Figure 48 shows the initial (left) and optimized (right) immersions of the g = 2 cubical surface:

{ (0, 0, 0, 2, 2), (0, 0, 1, 2, 2), (0, 0, 2, 0, 2), (0, 0, 2, 1, 2), (0, 1, 0, 2, 2), (0, 1, 1, 2, 2), (0, 2, 0, 2, 0), (0, 2, 0, 2, 1), (0, 2, 1, 2, 0), (0, 2, 1, 2, 1),

(0, 2, 2, 0, 0), (0, 2, 2, 0, 1), (0, 2, 2, 1, 0), (0, 2, 2, 1, 1), (1, 1, 0, 2, 2), (1, 1, 1, 2, 2), (1, 1, 2, 2, 0), (1, 1, 2, 2, 1), (2, 1, 0, 0, 2), (2, 1, 0, 1, 2),

(2, 1, 1, 0, 2), (2, 1, 1, 1, 2), (2, 1, 2, 0, 0), (2, 1, 2, 0, 1), (2, 1, 2, 1, 0), (2, 1, 2, 1, 1)}

Figure 49 shows the initial (left) and optimized (right) immersions of the g = 3 cubical surface:

{ (0, 0, 0, 2, 2), (0, 0, 2, 0, 2), (0, 0, 2, 1, 2), (0, 0, 2, 2, 0), (0, 1, 0, 2, 2), (0, 1, 2, 0, 2), (0, 1, 2, 1, 2), (0, 2, 0, 2, 1), (0, 2, 1, 0, 2), (0, 2, 1, 1, 2),

(0, 2, 1, 2, 0), (0, 2, 1, 2, 1), (1, 0, 0, 2, 2), (1, 0, 2, 0, 2), (1, 0, 2, 1, 2), (1, 0, 2, 2, 0), (1, 1, 0, 2, 2), (1, 1, 2, 0, 2), (1, 1, 2, 1, 2), (1, 2, 0, 2, 1),

(1, 2, 1, 0, 2), (1, 2, 1, 1, 2), (1, 2, 1, 2, 0), (1, 2, 1, 2, 1), (2, 0, 1, 2, 1), (2, 0, 2, 0, 1), (2, 0, 2, 1, 1), (2, 1, 0, 2, 0), (2, 1, 1, 2, 0), (2, 1, 1, 2, 1),

(2, 1, 2, 0, 0), (2, 1, 2, 0, 1), (2, 1, 2, 1, 0), (2, 1, 2, 1, 1), (2, 2, 0, 0, 1), (2, 2, 0, 1, 1)}

Figure 50 shows the initial (left) and optimized (right) immersions of the g = 4 cubical surface:

{ (0, 0, 0, 2, 2), (0, 0, 1, 2, 2), (0, 0, 2, 0, 2), (0, 0, 2, 1, 2), (0, 1, 0, 2, 2), (0, 1, 1, 2, 2), (0, 1, 2, 1, 2), (0, 2, 0, 2, 0), (0, 2, 0, 2, 1), (0, 2, 1, 2, 0),

(0, 2, 1, 2, 1), (0, 2, 2, 0, 0), (0, 2, 2, 0, 1), (1, 0, 0, 2, 2), (1, 0, 1, 2, 2), (1, 0, 2, 0, 2), (1, 0, 2, 1, 2), (1, 1, 0, 2, 2), (1, 1, 1, 2, 2), (1, 1, 2, 1, 2),

(1, 2, 0, 2, 0), (1, 2, 0, 2, 1), (1, 2, 1, 2, 0), (1, 2, 1, 2, 1), (1, 2, 2, 0, 0), (1, 2, 2, 0, 1), (2, 0, 2, 1, 0), (2, 0, 2, 1, 1), (2, 1, 0, 0, 2), (2, 1, 1, 0, 2),

(2, 1, 2, 0, 0), (2, 1, 2, 0, 1), (2, 1, 2, 1, 0), (2, 1, 2, 1, 1), (2, 2, 0, 1, 0), (2, 2, 0, 1, 1), (2, 2, 1, 1, 0), (2, 2, 1, 1, 1)}

Figure 51 shows the initial (left) and optimized (right) immersions of the g = 5 cubical surface:

{ (0, 0, 0, 2, 2), (0, 0, 1, 2, 2), (0, 0, 2, 0, 2), (0, 0, 2, 1, 2), (0, 1, 0, 2, 2), (0, 1, 1, 2, 2), (0, 1, 2, 0, 2), (0, 1, 2, 1, 2), (0, 2, 0, 2, 0), (0, 2, 0, 2, 1),

(0, 2, 1, 2, 0), (0, 2, 1, 2, 1), (1, 0, 0, 2, 2), (1, 0, 1, 2, 2), (1, 0, 2, 0, 2), (1, 0, 2, 1, 2), (1, 1, 0, 2, 2), (1, 1, 1, 2, 2), (1, 1, 2, 0, 2), (1, 1, 2, 1, 2),

(1, 2, 0, 2, 0), (1, 2, 0, 2, 1), (1, 2, 1, 2, 0), (1, 2, 1, 2, 1), (2, 0, 2, 0, 0), (2, 0, 2, 0, 1), (2, 0, 2, 1, 0), (2, 0, 2, 1, 1), (2, 1, 2, 0, 0), (2, 1, 2, 0, 1),

(2, 1, 2, 1, 0), (2, 1, 2, 1, 1), (2, 2, 0, 0, 0), (2, 2, 0, 0, 1), (2, 2, 0, 1, 0), (2, 2, 0, 1, 1), (2, 2, 1, 0, 0), (2, 2, 1, 0, 1), (2, 2, 1, 1, 0), (2, 2, 1, 1, 1)

Figure 52 shows the initial (left) and optimized (right) immersions of the k = 1 cubical surface:

{ (0, 0, 0, 2, 2), (0, 0, 1, 2, 2), (0, 0, 2, 0, 2), (0, 0, 2, 2, 0), (0, 1, 2, 1, 2), (0, 2, 0, 1, 2), (0, 2, 1, 2, 1), (0, 2, 2, 1, 0), (0, 2, 2, 1, 1), (1, 0, 2, 2, 1),

(1, 2, 1, 1, 2), (1, 2, 1, 2, 1), (2, 0, 0, 2, 1), (2, 0, 1, 1, 2), (2, 0, 2, 0, 1), (2, 0, 2, 1, 1), (2, 1, 1, 1, 2), (2, 1, 1, 2, 1), (2, 2, 1, 0, 1), (2, 2, 1, 1, 0)}

Figure 53 shows the initial (left) and optimized (right) immersions of the k = 2 cubical surface:

{ (0, 0, 0, 2, 2), (0, 0, 2, 0, 2), (0, 0, 2, 1, 2), (0, 0, 2, 2, 0), (0, 1, 2, 0, 2), (0, 1, 2, 1, 2), (0, 1, 2, 2, 0), (0, 1, 2, 2, 1),

(0, 2, 0, 2, 1), (0, 2, 1, 0, 2), (0, 2, 1, 1, 2), (0, 2, 1, 2, 0), (0, 2, 1, 2, 1), (1, 0, 2, 2, 1), (1, 1, 0, 2, 2), (1, 2, 0, 2, 1),

(2, 0, 1, 2, 1), (2, 0, 2, 0, 1), (2, 0, 2, 1, 1), (2, 1, 0, 0, 2), (2, 1, 0, 1, 2), (2, 1, 0, 2, 0), (2, 2, 0, 0, 1), (2, 2, 0, 1, 1)}.

Figure 54 shows the initial (left) and optimized (right) immersions of the k = 3 cubical surface:

{ (0, 0, 0, 2, 2), (0, 0, 2, 0, 2), (0, 0, 2, 1, 2), (0, 0, 2, 2, 0), (0, 1, 2, 0, 2), (0, 1, 2, 2, 0), (0, 1, 2, 2, 1), (0, 2, 0, 2, 1), (0, 2, 1, 0, 2), (0, 2, 1, 1, 2),

(0, 2, 1, 2, 0), (0, 2, 1, 2, 1), (1, 0, 2, 1, 2), (1, 1, 0, 2, 2), (1, 1, 2, 2, 1), (1, 2, 0, 1, 2), (1, 2, 1, 1, 2), (1, 2, 1, 2, 1), (1, 2, 2, 0, 1), (1, 2, 2, 1, 0),

(2, 0, 1, 2, 1), (2, 0, 2, 0, 1), (2, 0, 2, 1, 1), (2, 1, 0, 0, 2), (2, 1, 0, 2, 0), (2, 1, 1, 1, 2), (2, 1, 2, 1, 0), (2, 1, 2, 1, 1), (2, 2, 0, 0, 1), (2, 2, 0, 1, 1)}

31

	Introduction
	Polyhedral Realizations by Triangles
	Polyhedral Realizations by Quadrilaterals
	Main Contributions

	Background
	Cubical Complexes and Surfaces
	Face-Intersection minimization Process
	Orientable Cubical Surfaces
	Non-Orientable Cubical Surfaces
	The Real Projective Plane
	The Klein Bottle

	Reinforcement Learning
	Proximal Policy Optimization

	Minimizing Self-Intersections of Cubical Surface Realizations
	State Space
	Action Space
	Reward Functions
	Reinforcement Learning Formulation
	The Agent

	Experiments
	An Optimization Sequence
	Initial and Final Immersions of some Cubical Surfaces
	Realizations of Orientable and Non-Orientable Cubical Surfaces

	Conclusions
	Further directions
	Supplements
	Appendix
	Face Intersections
	Edge Overlaps
	N-dimensional Rotations & Gimbal-Lock
	N-dimensional Perspective Projection
	Termination Criteria
	Reward Functions
	Environment Logic
	Edge Collision Detection
	Face Collision Detection
	Notation of quadrilateral realizations

