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1. Introduction

The Metropolis-Hastings (M-H) accept-reject step (Metropolis et al., 1953; Hastings, 1970)
is a central element of many Markov chain Monte Carlo (MCMC) algorithms that are
essential to modern Bayesian inference. If performed using exact arithmetic, it can be used
to ensure that a Markov chain’s stationary distribution is any distribution of interest p(θ),
even if that distribution is only known up to a normalizing constant.

But computers cannot do exact arithmetic on real numbers, and in fact the trend in
machine learning is towards lower-precision computation. Lower-precision formats offer
both memory savings and more floating-point operations per second (FLOPS) per transistor.
Rather than use the traditional 64-bit floating-point format (F64), modern ML software
frameworks such as TensorFlow (Abadi et al., 2015), PyTorch (Paszke et al., 2019), and
JAX (Bradbury et al., 2018) tend to default to 32-bit floating-point (F32) numerics, or even
lower-precision formats such as TensorFloat-32 (TF32; Kharya, 2020) or bfloat16 (Wang
and Kanwar, 2019) on supported hardware. These lower-precision formats often work fine
for training large neural networks using stochastic gradient descent (e.g., Kalamkar et al.,
2019). But are there consequences to using low-precision arithmetic in MCMC?

In this note, we consider what happens to the M-H algorithm when it is fed log-density
calculations that are subject to roundoff error and catastrophic cancellations. Below, we
will briefly review the nature of these errors and how they can arise in M-H algorithms.
Next, we will develop a theoretical model of roundoff error in M-H corrections, and find
that it can lead to exponentially low acceptance rates in the magnitude of the errors (if the
errors have Gaussian tails) and bias (if different types of states produce different types of
errors). Finally, we will discuss some consequences of this phenomenon, and touch on some
practical ways to avoid these consequences of catastrophic cancellations in software.

2. A Source of Roundoff Error in Metropolis-Hastings

Metropolis-Hastings updates (M-H; Hastings, 1970) proceed by proposing a move from the
current state θ to a new state θ′ drawn from some proposal distribution q(θ′ | θ). If we are
trying to sample from some distribution p(θ), then we replace the current state θ with the

proposed state θ′ with probability α = min{1, p(θ
′)q(θ|θ′)

p(θ)q(θ′|θ) }, and otherwise keep the current

state. (For both convenience and accuracy, M-H implementations typically compute the

densities and their ratio in log space, e.g. exp{log p(θ′) − log p(θ)} instead of p(θ′)
p(θ) .) This

procedure leaves the distribution p(θ) invariant; that is, if θ ∼ p then θ′ ∼ p as well. So
repeating it with a suitable q for long enough that it forgets its initial state will yield samples
from p.
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The derivation of the M-H algorithm assumes that we use exact arithmetic to compute
the acceptance probability α. Often, floating-point arithmetic is a good enough approxi-
mation to arithmetic on real numbers that we can ignore this issue. We have found F32
arithmetic to be problematic in at least two scenarios.

First, if the magnitude of log p(θ′) + log q(θ | θ′) is very large, then there may not be
enough mantissa bits in an F32 scalar to accurately represent it. For example, the number
10000000.51 cannot be represented as an F32, and gets rounded to 10000001.0. This is a
small relative error, but in the M-H accept-reject step absolute error is what matters. For
example, if log p(θ′) + log q(θ | θ′) = 10000000.49 and log p(θ) + log q(θ′ | θ) = 10000000.51,
then the true acceptance probability should be e−0.02 ≈ 0.98, but if these values are rounded
before subtraction the computed acceptance probability is e−1 ≈ 0.37.

Second, when log p(θ) is a sum of many terms, small errors in summing these terms can
accumulate. Figure 1 illustrates this phenomenon when computing two million indepen-
dent Poisson log-likelihoods with different rate parameters. Summing the terms for each
observation in F32 yields roughly Gaussian errors about 10 times larger than the nearly
uniform errors obtained when summing in F64 and rounding the final result to F32. The
errors due to summing in F32 are clearly large enough to affect the dynamics of the M-H
algorithm, causing some states that might be rejected to be accepted and vice versa. In the
next section, we will explore how these errors may introduce bias or degrade the efficiency
of the M-H algorithm.

Figure 1: Errors when computing the sum of the log-likelihoods of two million Poisson
random variables. NumPy code to generate the plots is in Appendix A.

3. Analysis of Metropolis-Hastings with Roundoff Error

In this section, we analyze the effects of roundoff error in the log-densities fed to the
Metropolis-Hastings algorithm. We denote the state of the Markov chain as θ, the ex-
act target log-density as log p(θ), and the computed target log-density with roundoff error ε
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as log p̂(θ) = log p(θ)+ε(θ). Since ε(θ) is obtained by rounding bounded floating-point num-
bers, it is also bounded, so we can define the normalizing constant Z =

∫
θ p̂(θ) = Ep[eε(θ)].

Note that, although ε is a deterministic function of θ, when θ is a draw from a Markov
chain ε is also a random variable whose distribution depends on that of θ.

At each step, the algorithm proceeds from a state θ and cached log p̂(θ) to sample
θ′ ∼ q(· | θ), computes the perturbed Metropolis-Hastings acceptance probability

α̂ = min{1, p̂(θ
′)q(θ|θ′)

p̂(θ)q(θ′|θ) } = min{1, p(θ
′)q(θ|θ′)

p(θ)q(θ′|θ) e
ε(θ′)−ε(θ)}, (1)

and accepts the new state θ′ with probability α̂.
This algorithm leaves the perturbed distribution p̂

Z invariant. If expectations of interest

with respect to p̂
Z are close to their values under the true p, then the asymptotic bias of

this algorithm will be small. Loosely speaking, this bias will be small if we are trying to
estimate the expected value of some function h(θ) such that the average of eε(θ) over any
region in which h(θ) is nearly constant is approximately Z.

But if the variance of ε(θ) is large, then the average acceptance rate α̂ may get very
small, dramatically slowing down the algorithm. Intuitively, the issue is that eε(θ) may have
quite heavy tails, and so most of the mass in p̂ will be concentrated on values of θ for which
eε(θ) are abnormally large. Unfortunately, there is no way to preferentially select states
whose roundoff errors are large and positive, so the chain must wait until it gets a favorable
error by chance. (Pseudo-marginal MCMC suffers from a very similar issue (Andrieu and
Roberts, 2009).)

We can make this intuition a bit more quantitative. At stationarity, the expected
acceptance probability is

Ep̂[α̂] =

∫
θ,θ′

p(θ)

Z
eε(θ)q(θ′ | θ) min

{
1,
p(θ′)q(θ | θ′)
p(θ)q(θ′ | θ)

eε(θ
′)−ε(θ)

}
dθdθ′

=

∫
θ,θ′

p(θ)q(θ′ | θ) min

{
eε(θ)

Ep[eε(θ)]
,
p(θ′)q(θ | θ′)
p(θ)q(θ′ | θ)

eε(θ
′)

Ep[eε(θ)]

}
dθdθ′.

(2)

Consider what happens if we have an ideal proposal distribution q(θ′ | θ) = p(θ′). Without
roundoff, this would yield perfect samples and an acceptance rate of 1. But with roundoff,
we can bound the acceptance rate as

α̂? ,
∫
θ,θ′

p(θ)p(θ′) min

{
eε(θ)

Ep[eε(θ)]
,
eε(θ

′)

Ep[eε(θ)]

}
dθdθ′ (3)

= Ep[eε(θ)]−1

∫ ∞
0

p(min{eε(θ), eε(θ′)} = m)mdm (4)

= Ep[eε(θ)]−1

∫ ∞
0

2p(eε(θ) = m)P (eε(θ) > m)mdm (5)

≤ Ep[eε(θ)]−1

∫ ∞
0

2p(eε(θ) = m)
Ep[eε(θ)/2]√

m
mdm (6)

=
Ep[eε(θ)/2]2

Ep[eε(θ)]
, (7)

3



Roundoff Error in Metropolis-Hastings Accept-Reject Steps

where the bound follows from applying Markov’s inequality to eε(θ)/2.
By the strict convexity of the square, this upper bound is strictly less than 1 unless the

variance of ε is 0. How much less depends on both the scale and the tails of the distribution
of ε. Two cases are of particular interest: first, where ε follows a normal distribution
(e.g., due to summing many independent roundoff errors), and second, where ε follows a
uniform distribution (e.g., due to rounding an accurately computed log-density to fit into a
single-precision float). In both of these cases we can compute the exact acceptance rate α̂?.

The Gaussian case: If ε ∼ N (µ, σ), then equation 5 can be written as

α̂? = e−µ−σ
2/2

∫
ε
2φ(ε)Φ(−ε)eσ(ε+µ)dε = e−σ

2/2

∫
ε
2φ(ε)Φ(−ε)eσεdε, (8)

where φ(ε) and Φ(ε) are the pdf and cdf of a standard normal distribution. Since 2φ(x)Φ(−x)
is the pdf of a skew-normal distribution with shape parameter α = −1, we can use the skew-
normal’s moment-generating function M to compute the integral:

α̂? = e−σ
2/2M(σ;−1) = e−σ

2/22eσ
2/2Φ(−σ/

√
2) = 2Φ(−σ/

√
2). (9)

If σ is close to zero, then a first-order Taylor approximation implies that the acceptance
rate will be

α̂? = 2Φ(−σ/
√

2) = 1− 1√
π
σ +O(σ3), (10)

so small amounts of roundoff error will not hurt the acceptance rate too badly. However,
as σ gets large, the acceptance rate approaches zero very rapidly, as Figure 2 shows. For
example, if σ = 2 then α̂? ≈ 0.16; if σ = 4 then α̂? ≈ 0.005.

Figure 2: Average acceptance probability of the ideal M-H proposal q(θ′ | θ) = p(θ′) as-
suming the log-density is corrupted by uniformly or normally distributed roundoff
error as in Equation (11) and Equation (9).
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Figure 3: Left: Standard deviation of the error ε of the F32 log-posterior calculation as
a function of number of examples. Right: Predicted (x-axis) and empirical (y-
axis) acceptance rates of HMC chains with different numbers of examples N (and
therefore different amounts of roundoff error).

The uniform case: If ε ∼ Uniform([µ− σ, µ+ σ]), then equation 5 can be written as

α̂? =

(
1

2σ

∫ σ

−σ
eµ+εdε

)−1 1

2σ

∫ σ

−σ

(
1− ε

σ

)
eµ+εdε

=
1

σ
+ 1− 1

tanh(σ)
.

(11)

For small σ, this is 1− σ
3 +O(σ3). For large σ, the tanh saturates and it becomes 1

σ . This is
a much more graceful degradation in acceptance rate than the Gaussian case, but for large
roundoff errors it may still be quite bad.

In summary, we have argued that roundoff errors in computing the log-density that is
used in the Metropolis-Hastings accept-reject step may or may not induce bias, but they can
aggressively degrade the acceptance rate to the point that the algorithm becomes unusable.

4. Empirical Example: Bayesian Linear Regression

In this section, we will empirically demonstrate the issues described above by trying to use
Hamiltonian Monte Carlo (HMC; Neal, 2011) to sample from the posterior of a simple
Bayesian linear regression model applied to synthetic data. The model is

β ∼ N (0, I); yn ∼ N (x>n β, 0.1), (12)

where β ∈ R2, x ∈ RN×2, and y ∈ RN . To generate the dataset, we drew each xnd i.i.d. from
a standard normal and sampled β and y from the generative process above. We ran HMC in
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both F32 and F64 on a CPU using TensorFlow Probability (Lao et al., 2020) in JAX (Brad-
bury et al., 2018) to sample from p(β | x, y) forN ∈ {20000, 100000, 200000, 500000, 1000000}.
All chains were run for 500 iterations with 20 leapfrog steps and a step size of 0.005/

√
N .

Each chain was initialized with the value of β that was used to generate y, which is a valid
draw from the posterior p(β | x, y). When run in F64, the average acceptance probabilities
for these chains were very high: between 0.99975 and 0.99977 for all values of N .

Figure 3 summarizes the results of the F32 experiments. as N gets larger, the num-
ber of terms being added together to compute the posterior log-density gets larger, and
the number of roundoff errors being added together likewise grows. As the magnitude of
the roundoff errors grows, the average acceptance probability drops roughly as equation 9
predicts it should if the roundoff errors are Gaussian, although it is a bit higher than pre-
dicted for N = 1000000. This may be because the chain has not actually converged to its
stationary distribution; it might take many tries before it randomly selects a β with a large
enough positive roundoff error ε(β) to qualify as “typical” under the perturbed stationary
distribution p̂(β).

5. Discussion and Practical Considerations

We have illustrated a way in which roundoff error can severely degrade the performance
of Metropolis-Hastings procedures, leading in some cases to bias and in others to such
low acceptance rates that the method is useless. Unfortunately these issues seem most
pronounced in precisely the sort of large-scale problems that motivate the use of cheap,
low-precision arithmetic.

We have found a few of ways of diagnosing these roundoff issues. The simplest is of
course to run the algorithm in F64 and see if anything changes, but not all implementations
make that easy. One can also inspect the values of log p(θ) that the algorithm is generating;
if they have more than six digits to the left of the decimal point, then there may be cause
for concern. Finally, most Metropolis-Hastings algorithms have some kind of step size
parameter; in an exact-arithmetic implementation, as the step size approaches zero, the
acceptance rate would go to one. If it is difficult or impossible to drive the acceptance
rate to one by reducing the step size, that is a warning sign that numerical issues may be
present. Likewise, if one is employing a step-size adaptation scheme that targets a particular
acceptance rate, and instead of converging it drives the step size to zero, then one should
suspect roundoff error as the culprit.

There are multiple ways to address roundoff issues. A simple approach is to compute
the terms being summed in log p(θ) in F32, but convert them to F64 before the final
(relatively cheap) summation. If F64 summation is not available or convenient, one can
also use methods like Kahan summation to eliminate catastrophic cancellations. In many
cases it is more accurate to compute a sum of differences than a difference of sums, e.g.,∑

n log p(xn | θ′)− log p(xn | θ) instead of (
∑

n log p(xn | θ′))− (
∑

n log p(xn | θ)); however,
this approach makes caching of previous results more memory-intensive and is somewhat
cumbersome, since it breaks the abstraction of a scalar log-density. Also, hardware that
supports stochastic rounding may dramatically reduce roundoff error (Gupta et al., 2015).
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Appendix A. Code to generate figure 1

de f p o i s s o n l o g p d f (x , r a t e ) :
r e turn (− s c ipy . s p e c i a l . gammaln( x+1) + x ∗ np . l og ( ra t e ) − r a t e ) . sum ( )

x = np . random . po i s son (1 , s i z e =2000000)
sum errors = [ ]
f i n a l r o u n d o f f e r r o r s = [ ]
f o r i in range ( 1 0 0 0 ) :

r a t e = np . exp ( 0 . 2 ∗ np . random . randn ( ) )
logpdf64 = p o i s s o n l o g p d f (x , r a t e ) . sum ( )
logpdf32 = p o i s s o n l o g p d f ( x . astype (np . f l o a t 3 2 ) , r a t e . astype (np . f l o a t 3 2 ) ) . sum ( )
sum errors . append ( logpdf32 − l ogpdf64 )
f i n a l r o u n d o f f e r r o r s . append ( logpdf64 . astype (np . f l o a t 3 2 ) − l ogpdf64 )

p l t . f i g u r e ( f i g s i z e =[12 , 4 ] )
p l t . subplot (1 , 2 , 1)
p l t . t i t l e ( ’Sum of F32s ’ )
sns . d i s t p l o t ( sum errors )
p l t . x l a b e l ( ’ Error in log−dens i ty c a l c u l a t i o n ’ )
p l t . subplot (1 , 2 , 2)
p l t . t i t l e ( ’Sum of F64s rounded to F32 ’ )
sns . d i s t p l o t ( f i n a l r o u n d o f f e r r o r s )
p l t . x l a b e l ( ’ Error in log−dens i ty c a l c u l a t i o n ’ )
sns . d i s t p l o t ( e r r o r s )
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