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Abstract

We revisit the problem of constructing predictive confidence sets for which we wish
to obtain some type of conditional validity. We provide new arguments showing
how “split conformal” methods achieve near desired coverage levels with high
probability, a guarantee conditional on the validation data rather than marginal over
it. In addition, we directly consider (approximate) conditional coverage, where,
e.g., conditional on a covariate X belonging to some group of interest, we seek a
guarantee that a predictive set covers the true outcome Y . We show that the natural
method of performing quantile regression on a held-out (validation) dataset yields
minimax optimal guarantees of coverage in these cases. Complementing these
positive results, we also provide experimental evidence highlighting work that
remains to develop computationally efficient valid predictive inference methods.

1 Introduction and background

In conformal prediction [31, 21, 22, 4], we wish to perform predictive inference on the outcome Y
coming from pairs (X,Y ) ∈ X × Y . The basic approach yields confidence sets C(x) ⊂ Y , where
given a sample (Xi, Yi)

n
i=1, an estimated confidence set Ĉ provides the (marginal) coverage

P
(
Yn+1 ∈ Ĉ(Xn+1)

)
≥ 1− α. (1)

Typically, to do this, we assume the existence of a scoring function s : X × Y → R and define
confidence sets of the form Cτ (x) := {y | s(x, y) ≤ τ}. For example, when predicting Y ∈ R in
regression, given a predictor f : X → R the absolute error s(x, y) = |f(x)− y| yields the familiar
confidence set Cτ (x) = {y ∈ R | |y − f(x)| ≤ τ} = [f(x)− τ, f(x) + τ ] of values y near f(x).

The classical (split-conformal) approach [31, 4] uses the sample to find the threshold τ̂ larger than
the observed scores on about 1− α fraction of the data, then notes that s(Xn+1, Yn+1) is likely to be
smaller than this threshold. More formally, if (Xi, Yi) are exchangeable and we let Si = s(Xi, Yi),
then for the order statistics S(1) ≤ S(2) ≤ · · · ≤ S(n+1), we have

P
(
Sn+1 > S(d(1−α)(n+1)e)

)
≤ α,

because the probability that Sn+1 is in the α-largest fraction of the observed scores is at most α.
Then a bit of bookkeeping [e.g. 27, Lemma 2] shows that the slightly enlarged empirical quantile

τ̂ := Quant(1−α)(1+1/n)(S1, . . . , Sn),

provides the guarantee
P (Sn+1 > τ̂) ≤ α.

Written differently, the confidence set

Ĉ(x) := {y ∈ Y | s(x, y) ≤ τ̂}
satisfies

P(Yn+1 ∈ Ĉ(Xn+1)) = P (s(Xn+1, Yn+1) ≤ τ̂) = P (Sn+1 ≤ τ̂) ≥ 1− α.



1.1 On X-conditional coverage

Instead of the marginal guarantee (1), we could target conditional coverage, where we say a set valued
mapping Ĉn : X ⇒ Y achieves distribution-free conditional (1− α) coverage if for any P , when
(Xi, Yi)

iid∼ P and Ĉn is a function of (Xi, Yi)
n
i=1, then for P -almost-all x,

P(Yn+1 ∈ Ĉn(Xn+1) | Xn+1 = x) ≥ 1− α. (2)

Vovk [30] shows this is impossible. For example, when Y = R, the Lebesgue measure Leb(Ĉ(x)) is
almost always infinite [30, Proposition 4] (see also extensions in [4] and [10, Corollary 7.1]):

Corollary 1.1 ([30, 4, 10]). Let X be a metric space and assume X ∈ X has continuous distribution.
If Ĉ provides distribution free (1− α) conditional coverage, then for P -almost all x ∈ X ,

P(Leb(Ĉ(x)) = +∞) ≥ 1− α.

These failures motivate relaxing the conditional coverage condition (2). The simplest approach
considers group-conditional coverage, where for groups G ⊂ X , one targets the guarantee

P(Yn+1 ∈ Ĉ(Xn+1) | Xn+1 ∈ G) ≥ 1− α. (3)

Barber et al. [4, Sec. 4] achieve the coverage (3) by considering worst-case coverage over groups G;
Jung et al. [17] provide variations. Gibbs, Cherian, and Candès [12] extend this idea, beginning by
observing that conditional coverage P(Y ∈ Ĉ(x) | X = x) = 1− α holds if and only if

E
[
w(X)

(
1
{
Y ∈ Ĉ(X)

}
− (1− α)

)]
= 0 (4)

for all bounded w. Similarly, the one-sided inequality (2) holds if and only if

E
[
w(X)1

{
Y ∈ Ĉ(X)

}]
≥ (1− α)E[w(X)]

for all nonnegative bounded w. Taking w(x) = 1{x ∈ G} for groups G ⊂ X implies the group-
conditional coverage (3); relaxing the condition (4) by considering subclasses of weighting functions
W ⊂ {X → R} leads to the following definition [12]:

Definition 1.1 (Gibbs et al. [12]). A confidence set C : X ⇒ Y achievesW-weighted ((1− α), ε)
coverage if ∣∣E [w(X) (1{Y ∈ C(X)} − (1− α))]

∣∣ ≤ ε for all w ∈ W.

Gibbs et al.’s main two examples takeW of the formW = {w | w(x) = 〈v, φ(x)〉} for some feature
mapping φ : X → Rd or to correspond to a reproducing kernel Hilbert space. On a new example
Xn+1 they perform full conformal inference [31], where implicitly for each t ∈ R, they solve

ĥn+1,t = argmin
h∈W

n∑
i=1

`α(h(Xi)− Si) + `α(h(Xn+1)− t)

for the quantile loss `α(t) = α [t]+ + (1− α) [−t]+, then define the implicit confidence set

Ĉn(Xn+1) :=
{
y ∈ Y | s(Xn+1, y) ≤ ĥn+1,s(Xn+1,y)(Xn+1)

}
. (5)

A careful duality calculation [12, Sec. 4] shows how to compute Ĉn by solving a linear program over
O(n+ d) variables using (Xi)

n+1
i=1 and Sn1 = (S1, . . . , Sn), and Gibbs et al. show the set (5) satisfies∣∣∣E [w(Xn+1)1
{
Yn+1 6∈ Ĉn(Xn+1)

}
− w(Xn+1)(1− α)

]∣∣∣ ≤ εint(w)

for w ∈ W , where εint(w) is a small interpolation error term. Defining Pw(A) =
EP [w(X)1{A}]/EP [w(X)] to be the w-weighted probability of an event A for w ≥ 0, this in-
equality strengthens inequality (1) to imply that for all w ≥ 0, w ∈ W ,

Pw(Yn+1 ∈ Ĉ(Xn+1)) ≥ 1− α− εint(w). (6)
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Computing this prediction set Ĉn requires solving a sometimes costly optimization. This suggests
split-conformal approaches that provide adaptive confidence sets of the form

Ĉn(x) :=
{
y ∈ Y | s(x, y) ≤ ĥn(x)

}
,

where ĥn is chosen based only on the sample (Xi, Yi)
n
i=1, making the set Ĉn easy to compute [27, 8].

In spite of their ease of computation, it has been challenging to demonstrate that these sets can
achieve coverage; for example, Romano et al. [27] and Cauchois et al. [8] apply another level of
conformalization to fit a constant threshold τ̂n and use Ĉn(x) = {y ∈ Y | s(x, y) ≤ ĥn(x) + τ̂n}.
We show new coverage guarantees for these sets, including new optimality guarantees.

1.2 Sample-conditional coverage

Inequalities (1) and (6) provide guarantees marginal over the entire procedure drawing (Xi, Yi)
iid∼ P ,

i = 1, . . . , n+1. While conditional coverage (onXn+1) is impossible, it is possible to achieve sample-
conditional-coverage. Letting Pn denote the empirical distribution of (Xi, Yi)

n
i=1 and recalling the

weighted probability (6), our results demonstrate that with high probability over the sample Pn,

Pw(Yn+1 ∈ Ĉn(Xn+1) | Pn) ≥ 1− α−O(1)

√
α(1− α)

EP [w(X)]
· d log n

n

simultaneously for all w ≥ 0 in d-dimensional classes of functionsW . Because of their reliance on
individual examples, full-conformal procedures cannot achieve such conditional guarantees [6].

Sample-conditional results do hold for split-conformal procedures in the special case thatW consists
of the constant function w = 1, which we now review. To state things formally, let Si = s(Xi, Yi),
where (Xi, Yi)

iid∼ P . Let α ∈ (0, 1) be a desired confidence level, and define the empirical (1− α)
quantile

τ̂n := inf {t ∈ R | Pn(S ≤ t) ≥ 1− α} ,
where Pn denotes the empirical distribution. Given this quantile, define the confidence set

Ĉn(x) := {y ∈ Y | s(x, y) ≤ τ̂n} .
Proposition 1 (Vovk [30], Proposition 2). Let the construction above hold. Then for any γ > 0, with
probability at least 1− e−2nγ2

over the sample Pn,

P(Yn+1 ∈ Ĉn(Xn+1) | Pn) ≥ 1− α− γ. (7)

Jung et al. [17] consider attaining sample- and group-conditional coverage (3), showing that it is
approximately achievable when one assumes quantitative smoothness of the distribution of s(x, Y )
givenX = x. Section 2 revisits their approach, providing sharper guarantees without any assumptions
on the underlying distribution, yielding approximate conditional analogues of the guarantee (7).

1.3 Sample conditional coverage revisited

We begin by revisiting the sample-conditional coverage guarantees of Proposition 1. In the appendices
(see Appendix A), we provide an elementary proof relying only on Hoeffding’s concentration
inequality, along with two other proofs reposing on uniform convergence to form the point of
departure for our more sophisticated coverage guarantees. In the interest of brevity, we focus on new
results, beginning with a Bernstein-type guarantee that more carefully tracks the desired coverage α:
Proposition 2. Let δ ∈ (0, 1) and define

γn(δ) :=
4 log 1

δ

3n
+

√( 4

3n
log

1

δ

)2
+

2α(1− α)

n
log

1

δ
≤

8 log 1
δ

3n
+

√
2α(1− α)

n
log

1

δ
.

Then with probability at least 1− δ over the draw of the sample Pn,

1− α− γn(δ) ≤ P(Yn+1 ∈ Ĉn(Xn+1) | Pn).

If additionally the scores S have a density, then with probability at least 1− 2δ,

1− α− γn(δ) ≤ P(Yn+1 ∈ Ĉn(Xn+1) | Pn) ≤ 1− α+ γn(δ).
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We see that the quantile-based confidence set achieves coverage 1− α±O(1)
√
α(1− α)/n. When

α is small—which is the typical case—this is always sharper than the naive guarantee (7). The central
limit theorem shows this is as accurately as we could hope to even estimate the coverage level of a
predictor; moreover, as we discuss following Theorem 3, it is minimax (rate) optimal. In Appendix A,
we provide two proofs of Proposition 1, using Appendix A.3 to prove Proposition 2.

2 Approaching conditional coverage

Keeping in mind the ideas in Sections 1.1 and 1.2, we revisit conditional coverage, but we do
so conditional on the sample Pn as well. To do this, we consider Jung et al. and Gibbs et al.’s
approaches [17, 12], considering quantile estimation via the quantile loss [18], which for α > 0 is

`α(t) := α [t]+ + (1− α) [−t]+ .

For a random variable Y , the quantile Quant1−α(Y ) := inf{t | P(Y ≤ t) ≥ 1 − α} minimizes
L(t) := E[`α(t−Y )]. Now (cf. [12, 17]), consider a quantile regression of attempting to predict S ∈
R from X ∈ X . Let φ : X → Rd be a feature mapping and consider L(θ) := E[`α(〈θ, φ(X)〉 − S)].
Then (for motivation) assuming that S has a density conditional on X = x, we see that

∇L(θ) = E [(1{S < 〈θ, φ(X)〉} − (1− α))φ(X)] .

Now let θ? ∈ argminL(θ) be a population minimizer. Then, as Gibbs et al. [12] note, for any
u ∈ Rd, we have

0 = 〈u,∇L(θ?)〉 = E [(P(S < 〈θ?, φ(X)〉 | X)− (1− α)) · 〈u, φ(X)〉] .

This connects transparently to confidence set mappings [12, 17]: taking

S = s(X,Y ) and Cθ?(x) := {y ∈ Y | s(x, y) ≤ 〈θ?, φ(X)〉} ,

we have

0 = E [(P(Y ∈ C(X) | X)− (1− α)) 〈u, φ(X)〉] for all u ∈ Rd.

In turn, Gibbs et al. [12] show this implies the population coverage guarantee

Corollary 2.1 (Gibbs et al. [12], Thm. 2). Assume the distribution of S | X is continuous. Let θ?
minimize L(θ) = E[`α(〈θ, φ(X)〉 − s(X,Y ))]. Then Cθ? provides ((1− α), 0)-weighted coverage
(Definition 1.1) for the classW := {w(x) = 〈u, φ(x)〉}u∈Rd of linear functions of φ(x).

We extend these guarantees to provide sample-conditional coverage by adapting the arguments we
use to prove Proposition 1.

2.1 An estimated confidence set

The population-level confidence set Cθ?(x) = {y | s(x, y) ≤ 〈θ?, φ(x)〉} immediately suggests the
empirical analogue

θ̂n ∈ argmin
θ

EPn [`α(〈θ, φ(X)〉 − S)] , (8)

which Jung et al. [17] consider for the special case that the feature mapping φ(x) = [1{x ∈ G}]G∈G
is an indicator vector for groups G ⊂ X . This gives the confidence set

Ĉn(x) :=
{
y ∈ Y | s(x, y) ≤ 〈θ̂, φ(x)〉

}
.

This set indeed provides sample-conditional coverage. To see this, assume for simplicity that φ(x)
satisfies ‖φ(x)‖2 ≤ bφ for all x, and let B2 = {u ∈ Rd | ‖u‖2 ≤ 1} be the `2-ball.

Theorem 1. Assume the boundedness conditions above and that n ≥ d. Let θ̂ be the empirical
minimizer (8) of the α-quantile loss, let ĥ(x) = 〈θ̂, φ(x)〉, and define the confidence set

Ĉn(x) :=
{
y ∈ Y | s(x, y) ≤ ĥ(x)

}
.
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Then there exists a constant c ≤ 2 + α/
√
d such that for t ≥ 0, with probability at least 1− e−nt2

over the draw of the sample Pn,

E
[
〈u, φ(Xn+1)〉

(
1
{
Yn+1 ∈ Ĉn(Xn+1)

}
− (1− α)

)
| Pn

]
≥ −cbφ

(√
d

n
log

n

d
+ t

)
simultaneously for all u ∈ B2 satisfying 〈u, φ(x)〉 ≥ 0 for all x ∈ X . If the scores Si are distinct
with probability 1, then with the same probability,

E
[
〈u, φ(Xn+1)〉

(
1
{
Yn+1 ∈ Ĉn(Xn+1)

}
− (1− α)

)
| Pn

]
≤ 3bφ

(√
d

n
log

n

d
+ t+

d

3n

)
.

simultaneously for all u ∈ B2.

We defer the proof of Theorem 1 to Section 2.2. We also note in passing that by randomizing, it is
possible to make the scores distinct without sacrificing coverage [cf. 12].

As a corollary to Theorem 1, assume that G = {G1, . . . , Gd} partitions X , and define the feature
indicator φG(x) = (1, 1{x ∈ G1} , . . . , 1{x ∈ Gd}). With this choice, we obtain

Corollary 2.2. Let θ̂ be as in Theorem 1 and φ = φG be the group feature function. Then simultane-
ously for all groups Gj ,

P(Yn+1 ∈ Ĉn(Xn+1) | Xn+1 ∈ Gj , Pn) ≥ 1− α− 4

P(Xn+1 ∈ Gj)

(√
d

n
log

n

d
+ t

)
with probability at least 1− e−nt2 .

We will sharpen this inequality via more sophisticated arguments in the sequel.

It is instructive, however, to compare this guarantee to that the full-conformal approach (5) provides.
The construction (5) appears to obtain better coverage than the more basic approaches here [12,
Fig. 3], but it can be more computationally challenging [12, Fig. 6]. Gibbs et al. [12] show that a
randomized version of their procedure (5) achieves

P(Yn+1 ∈ Ĉn(Xn+1) | Xn+1 ∈ G) = 1− α for all G ∈ G.
This can be substantially sharper than the guarantee Corollary 2.2 provides, as our sample-conditional
coverage guarantees are not quite so exact; we revisit these points in experiments.

2.2 Proof of Theorem 1

By convexity, 0 ∈
∑n
i=1 ∂`α(〈θ̂, φ(Xi)〉 − Si)φ(Xi), which is equivalent to the statement that for

some scalars (really, dual variables) gi satisfying

gi


= α if 〈θ̂, φ(Xi)〉 > Si
= −(1− α) if 〈θ̂, φ(Xi)〉 < Si
∈ [−(1− α), α] if 〈θ̂, φ(Xi)〉 = Si

(9)

we have 0 =
∑n
i=1 giφ(Xi). We use the empirical process notation Pnf = 1

n

∑n
i=1 f(Xi) for short-

hand. Recall that for a convex function f , the directional derivative f ′(x;u) = limt↓0
f(x+tu)−f(x)

t
exists and satisfies f ′(x;u) = sup{〈g, u〉 | g ∈ ∂f(x)}. Thus, by definition of optimality,

Pn`
′
α(〈θ̂, φ(X)〉 − S;u) ≥ 0

for all u. Let u be such that 〈u, φ(x)〉 ≥ 0 for all x ∈ X . Then

`′α(〈θ, φ(x)〉 − s;u) = 〈φ(x), u〉 [α1{〈θ, φ(x)〉 ≥ s} − (1− α)1{〈θ, φ(x)〉 < s}] .
By the first-order optimality condition we obtain

0 ≤
〈
u, αPnφ(X)1

{
〈θ̂, φ(X)〉 ≥ S

}
− (1− α)Pnφ(X)1

{
〈θ̂, φ(X)〉 < S

}〉
=
〈
u, αPnφ(X)− Pnφ(X)1

{
〈θ̂, φ(X)〉 < S

}〉
.
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Suppose that we demonstrate that∥∥∥∥ 1

n

n∑
i=1

φ(Xi)1{Si > 〈θ, φ(Xi)〉} − EP [φ(X)1{S > 〈θ, φ(X)〉}]
∥∥∥∥
2

≤ ε

uniformly over θ ∈ Rd. Then we would obtain for all u ∈ B2 with 〈u, φ(x)〉 ≥ 0 for all x ∈ X ,

0 ≤
〈
u, Pnφ(X)

(
α− 1

{
S > 〈θ̂, φ(X)〉

})〉
≤ EP

[
〈u, φ(X)〉

(
α− 1

{
S > 〈θ̂, φ(X)〉

})]
+ ε.

That is, as y 6∈ Ĉ(x) if and only if s(x, y) > 〈θ̂, φ(x)〉,

EP
[
〈u, φ(X)〉

(
1
{
Y 6∈ Ĉ(X)

}
− α

)]
≤ ε. (10)

With appropriate ε, this will give the first claim of the theorem.

We abstract a bit and letH ⊂ {X → R} be a collection of functions, and consider the process

Zn(h) :=
1

n

n∑
i=1

φ(Xi)1{Si > h(Xi)} .

When H is a VC-class, for each coordinate j, functions of the form φj(x)1{s > h(x)} are VC-
subgraph [29, Lemma 2.6.18]. The following technical lemma, whose proof we provide in Ap-
pendix C.1, shows that Zn concentrates.
Lemma 2.1. Let B2 = {u : ‖u‖2 ≤ 1} andH have VC-dimension k. Then

E

[
sup

h∈H,u∈B2

〈u, Zn(h)− E[Zn(h)]〉

]
≤ 2

√
k log ne

k

n
E
[

1

n

n∑
i=1

‖φ(Xi)‖2
]1/2

.

Trivially, E[supu∈B2
〈u, Pnφ(X)− E[φ(X)]〉] ≤ 1√

n
E[‖φ(X)‖22]1/2 addressing αPnφ(X) terms.

We can extend the lemma by homogeneity to capture arbitrary vectors. Note that if we
change a single example (Xi, Si), then 〈u, Zn(h)〉 changes by at most n−1 supx〈u, φ(x)〉 ≤
n−1 ‖u‖2 supx ‖φ(x)‖2. By homogeneity, for any scalar t there exists u ∈ Rd such that 〈u, Zn(h)−
E[Zn(h)]〉 ≥ ‖u‖2 t if and only if there exists u ∈ Sd−1 such that 〈u, Zn(h)− E[Zn(h)]〉 ≥ t. So if
bφ = supx∈X ‖φ(x)‖2, we obtain by bounded differences (Lemma A.1) and homogeneity that

P

(
sup

u6=0,h∈H

〈u, Zn(h)− E[Zn(h)]〉
‖u‖2

≥ bφt+ E

[
sup

u∈Sd−1,h∈H
〈u, Zn(h)− E[Zn(h)]〉

])
≤ e−nt

2

.

Summarizing, we have proved the following proposition.
Proposition 3. LetH have VC-dimension k. Then for t ≥ 0,

P

(
sup

u6=0,h∈H

〈u, Zn(h)− E[Zn(h)]〉
‖u‖2

≥ 2bφ

√
k log n

k

n
+ bφt

)
≤ e−nt

2

.

By takingH = {h : h(x) = 〈θ, φ(x)〉}θ∈Rd , which has VC-dimension d, in Proposition 3, we have
thus shown that inequality (10) holds with

ε = 2bφ

√
d log n

d

n
+ bφt+

bφα√
n

with probability at least 1− e−nt2 , which is the first claim of Theorem 1.

We turn to the second claim of Theorem 1, which applies when Si are distinct with probability 1.
Recall the definition (9) of the subgradient terms gi and define the sets I+ = {i | 〈θ̂, φ(Xi)〉 > Si},
I− = {i | 〈θ̂, φ(Xi)〉 < Si}, and I0 = {i | 〈θ̂, φ(Xi)〉 = Si}. Then

n∑
i=1

φ(Xi)
(

1
{
Si > 〈θ̂, φ(Xi)〉

}
− α

)
= −

∑
i∈I+∪I−

φ(Xi)gi −
∑
i∈I0

φ(Xi)gi −
∑
i∈I0

φ(Xi) (α− gi) =
∑
i∈I0

(gi − α)φ(Xi),
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where we used that
∑n
i=1 giφ(Xi) = 0 by construction. Now, we leverage our assumption that Si

are distinct with probability 1. We see immediately that card(I0) ≤ d, because with distinct values
Si we may satisfy (at most) d linear equalities, and so∥∥∥∥ 1

n

n∑
i=1

φ(Xi)
(

1
{
Si > 〈θ̂, φ(Xi)〉

}
− α

)∥∥∥∥
2

≤ card(I0)

n
bφ ≤

d

n
bφ.

Because Proposition 3 controls the fluctuations of the process θ 7→ φ(x)1{s > 〈φ(x), θ〉}, we obtain
that with probability at least 1− e−nt2 ,∥∥∥∥E [φ(X)1

{
S > 〈θ̂, φ(X)〉

}]
− αE[φ(X)]

∥∥∥∥
2

≤
∥∥∥∥ 1

n

n∑
i=1

φ(Xi)
(

1
{
Si > 〈θ̂, φ(Xi)〉

}
− α

)∥∥∥∥
2

+ 2bφ

√
d

n
log

n

d
+
bφα√
n

+ bφt

≤ bφ
d

n
+ 3bφ

√
d

n
log

n

d
+ bφt.

3 Sharper and rate-optimal approximate conditional bounds

The bounds Theorem 1 provides do not reflect the sharpest coverage possible. By leveraging empirical
process variants of the Bernstein concentration inequalities we use to prove Proposition 2, we can
achieve sharper bounds on weighted coverage that adapt to the linear functionals x 7→ w(x) =
〈u, φ(x)〉. As a consequence of our results, in terms of achieving approximate conditional coverage
(i.e., weighted coverage as in Definition 1.1), the empirical estimator (8) is minimax rate optimal; we
discuss this after Theorem 3.

To state our results, assume that B ⊂ Rd is an arbitrary but bounded set of vectors, and define
bφ(u) := sup

x∈X
|〈u, φ(x)〉| and bφ := sup

u∈B
bφ(u).

We can then extend Proposition 2 to weighted conditional coverage (Def. 1.1), conditional on the
sample. We defer their proofs, presenting the building blocks common to both in Appendix B.1, then
specializing in Appendicess B.2 and B.3, respectively.
Theorem 2. Let Kn = 1 + log2 n. Then there exists a numerical constant c <∞ such that for all
t ≥ 0, with probability at least 1− 2Kne

−t − e−d logn−t,

E
[
〈u, φ(Xn+1)〉

(
1{Yn+1 6∈ Ĉ(Xn+1)} − α

)
| Pn

]
≤ c

[√
bφ(u)α · E[〈u, φ(X)〉]

√
d log n+ t

n
+ bφ

d log n+ t

n

]
simultaneously for all u ∈ B such that 〈u, φ(x)〉 ≥ 0 for all x. If additionally the scores Si are
distinct with probability 1, then with the same probability,

E
[
〈u, φ(Xn+1)〉

(
1{Yn+1 6∈ Ĉ(Xn+1)} − α

)
| Pn

]
≥ −c

[√
bφ(u)α · E[〈u, φ(X)〉]

√
d log n+ t

n
+ bφ

d log n+ t

n

]
simultaneously for all u ∈ B such that 〈u, φ(x)〉 ≥ 0 for all x.

Simplifying the statement and ignoring higher-order terms, we can obtain a guarantee for weighted
coverage (6): for the classW = {w(x) = 〈u, φ(x)〉}u∈Rd , with probability 1− e−t,

Pw(Yn+1 ∈ Ĉn+1 | Pn) ≥ 1− α−O(1)

[√
α

E[w(X)]
·
√
d log n+ t

n

]
simultaneously for w ≥ 0 with the normalization that w(x) = 〈u, φ(x)〉 for a u satisfying bφ(u) = 1.

Applying the theorem to group indicators, meaning that we have a collection of groups G ⊂ 2X , and
the feature mapping φ(x) = (1{x ∈ G})G∈G , we have the following sharpening of Theorem 1.
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Corollary 3.1. Assume that φ(x) = (1{x ∈ G})G∈G , and let d = card(G). Then with probability at
least 1− 3 log2 ne

−t,

P(Yn+1 6∈ Ĉ(Xn+1) | Xn+1 ∈ G,Pn) ≤ α+c

[√
α

P(Xn+1 ∈ G)

d log n+ t

n
+

d log n+ t

P(Xn+1 ∈ G) · n

]
simultaneously for all G ∈ G.

The result follows immediately upon considering the standard basis vectors u = ei.

When the scores S = s(X,Y ) are distinct with probability 1, we achieve two sided bounds extending
Theorem 2, as in Proposition 2. The next theorem provides an exemplar result.
Theorem 3. Let the conditions of Theorem 2 hold, except assume that Si are distinct with probability
1, and that the mapping φ(x) includes a constant bias term φ1(x) = 1. Then there exists a numerical
constant c < ∞ such that for all t ≥ 0, with probability at least 1 − 2Kne

−t − e−d logn−t,
simultaneously for all u ∈ B,∣∣∣E [〈u, φ(X)〉

(
1{Yn+1 6∈ Ĉ(Xn+1)} − α

)
| Pn

]∣∣∣ ≤ c[bφ(u)
√
α

√
d log n+ t

n
+ bφ

d log n+ t

n

]
.

The conclusion is weaker than that of Theorem 2, as it replaces
√
bφ(u)E[〈u, φ(X)〉] with bφ(u).

3.1 Minimax optimality

The convergence guarantees in Theorems 2 and 3 are sharp to within logarithmic factors, and
capture the correct dependence on α and the weight functionsW . Indeed, Areces et al. [1] develop
a set of lower bounds that apply to VC-classes of functions W , where they show the following.
Assume that the estimated confidence set Ĉn takes the form Ĉn(x) = {y | s(x, y) ≤ ĥ(x)} or
Ĉn(x) = {y | â(x) ≤ s(x, y) ≤ b̂(x)} for some estimated functions ĥ, â, or b̂.
Corollary 3.2 (Areces et al. [1], Thm. 1). LetW be any class of functions mapping X to {±1} with
VC-dimension d, Ĉn take either of the forms above. Then there exists a sampling distribution P for
which S | X has continuous bounded density and such that with constant probability over the draw
of Pn, ∣∣∣E [w(Xn+1)1

{
Yn+1 6∈ Ĉn(Xn+1)

}
− w(Xn+1)α | Pn

]∣∣∣ ≥ c√dα(1− α)

n
,

where c > 0 is a universal constant.

To compare this with Theorems 2 and 3, let {G1, . . . , Gd}, Gj ⊂ X , be a partition of X into d
groups, and define the group feature mapping φ(x) = [1{x ∈ Gj}]dj=1. Then the class of linear
functionalsW = {w | w(x) = 〈u, φ(x)〉}u∈Rd has VC-dimension d, as does its restrictionW1 =
{w | w(x) = 〈u, φ(x)〉}u∈{±1}d , where w ∈ W1 satisfies w(x) ∈ {±1}. Theorems 2 and 3,
conversely, demonstrate that for B1 = {u | ‖u‖1 ≤ 1}, we have∣∣∣E [w(Xn+1)

(
1
{
Yn+1 6∈ Ĉn(Xn+1)

}
− α

)
| Pn

]∣∣∣ ≤ c√α(1− α)

n
·
√
d log n+ t

with probability at least 1 − e−t simultaneously for all w of the form w(x) = 〈u, φ(x)〉 for some
u ∈ B1, as long as α < 1

2 (where we use 1 − α ≥ 1
2 and wrap constants together for a cleaner

statement). In contrast to existing results [17, 1], these new guarantees are evidently optimal.

4 Experimental Results

Our main purpose has been to investigate conditional quantile estimation procedures, providing theo-
retical bounds for their performance; there is already practical experience with these methods [12].
We thus provide an exploratory experiment on the CIFAR-100 dataset [20], a 100-class image classi-
fication dataset consisting of 60,000 training examples and a 10,000 example test set, highlighting
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Figure 1. Coverage
of full conformal, split
conformal, and static
split conformal meth-
ods on random 20%
“slices” of CIFAR-100
data.

that these conditional approaches can provide better coverage than using a static threshold, i.e.,
Ĉn(x) = {y ∈ Y | s(x, y) ≤ τ̂n}. In Appendix D we provide a few further simulations to investigate
heuristic corrections to the nominal level α that may yield better realized coverage.

We use the output features of a 50 layer ResNet, pre-trained on ImageNet [13, 14], as d = 2048-
dimensional input to a 100 class logistic regression. We repeat the following experiment 10 times:

1. Uniformly randomly split the training examples into a validation set of size 10,000 and a model
training set of size 50,000, on which we fit a linear classifier s : Rd → Rk, where sy(x) = 〈βy, x〉
is the score assigned to class y, using multinomial logistic regression.

2. Draw a random matrix W ∈ Rd×d0 , where d0 = 10 and Wij
iid∼ N(0, 1), and use the validation

data with score function s(x, y) = sy(x) and the lower-dimensional mapping φ(x) = W>x to
predict quantiles via ĥ(x) = 〈θ̂, φ(x)〉.

3. Compare the coverage of the full-conformal method, standard split conformal with a static
threshold, meaning confidence sets of the form Ĉ(x) = {y ∈ [k] | s(x, y) ≤ τ̂}, and split
conformal with the threshold function ĥ(x) fit on the validation data. To perform the comparison,
we draw subsamples from the test Ztest = {(xi, yi)}ntest

i=1 by defining groups G of the form

Gj,> = {(x, y) ∈ Ztest | 〈wj , x〉 ≥ Quant.8({〈wj , xi〉}ntest
i=1)} and

Gj,< = {(x, y) ∈ Ztest | 〈wj , x〉 ≤ Quant.2({〈wj , xi〉}ntest
i=1)}

for each row w>j of the random dimension reduction matrix W from step 2.

Figure 1 displays the results of this experiment. In the figure, we notice three main results: first, the
static thresholded sets Ĉ(x) = {y | s(x, y) ≤ τ̂} have substantially more variability in coverage on
the random slices of the dataset. Second, the split conformal method and full conformal methods
have similar coverage on each of the slices, with some slices exhibiting more variability of the full
conformal methodology and some with the split conformal methodology, but all around the nominal
(desired) 90% coverage level. Finally, the split conformal methods slightly undercover marginally,
while the full conformal method slightly overcovers marginally.

5 Conclusion and discussion

The results in our experiments, though they are relatively small scale, appear to be consistent with
other experiments on regression that we present in Appendix D, where we also investigate the
appropriate choice of the level α to obtain a desired coverage level coverage. In brief: split conformal
methods with confidence sets using adaptive thresholds of the form Ĉ(x) = {y | s(x, y) ≤ ĥ(x)}
can indeed provide stronger coverage than non-adaptive thresholds. Moreover, they are much faster
to compute with than full conformal methods—in the experiment in Figure 1, the split conformal

9



method was roughly 8000× faster than the full conformal method. Additionally, they enjoy strong
sample-conditional stability as well as minimax optimality.

In spite of this, when the adaptive threshold ĥ(x) comes from a class of functions that is high-
dimensional relative to the size of the data available for calibration, these methods can undercover,
as they exhibit downward bias in their coverage. This bias is easy to correct for a static threshold
Ĉ(x) = {y | s(x, y) ≤ τ̂} by simply using a slightly larger quantile, however, it is unclear how to
address it in adaptive scenarios. This makes obtaining a data-adaptive way to compute coverage
bias an open and important research question: can we avoid the

√
n error in each of the conditional

coverage guarantees? As Gibbs et al. [12, Thm. 2] show, “full conformal” methodshave errors scaling
as O(d/n) in these cases, while the methods in the current paper have a downward coverage bias that
appears to scale with

√
d/n. This is, of course, worse, and delineating the extent to which this bias

matters remains open.

Certainly, the minimax lower bounds that Areces et al. [1] demonstrate show that it is impossible
to achieve anything improving on

√
d/n error for two-sided guarantees, but if we only wish to

demonstrate weighted coverage lower bounds Pw(Yn+1 ∈ Ĉn(Xn+1) | Pn) ≥ 1−α−O(1)d log(1/δ)n ,
then it may be possible to achieve one-sided guarantees without such errror. One approach, which
Cauchois et al. [8] adopt, is to split the validation sample to “re-conformalize” the confidence sets, so
that the only concentration one needs is on a single threshold being learned. This would mean fitting a
confidence set C(x) = {y | s(x, y) ≤ ĥ(x)} on one validation sample, and on the second, modifying
a single threshold τ̂ to fit Ĉ(x) = {y | s(x, y) ≤ ĥ(x) + τ̂}; this, however, would not provide
any approximate conditional guarantees. It seems plausible that one might instead be able to use
leave-one-out sampling to estimate this downward bias [11, 3]. Identifying such an offline correction
without relying on asymptotic error calculations, as our heuristic development in Appendix D does,
could make these procedures substantially more practical, by both enjoying the test-time speed of
split conformal methods and the coverage accuracy of full-conformal procedures.

A second set of open questions relates to the experiments. While we have been careful to identify them
as “exploratory” (because the main focus of this paper is theoretical), they do not directly address the
sample-conditional aspects (i.e., coverage given Pn) of the guarantees so much as the “φ–conditional”
guarantees (or, perhaps, group-wise guarantees), as in Theorem 3 and Corollary 3.1. It would be (to
the author at least) quite interesting to understand whether sample-conditional coverage is practically
relevant, especially relative to the marginal coverage guarantees full-conformal inference provides.
Bian and Barber [6] provide a counterexample showing that there exist cases where full-conformal
methods are quite unstable. But understanding the extent to which this is practically meaningful
would require experimental work that is beyond the current focus of this paper.
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A Sample conditional coverage revisited: proofs

As mentioned in Section 1.3, Proposition 1 provides a natural point of departure for developing more
sophisticated coverage guarantees. We thus provide this elementary proof, then demonstrate the
result using uniform convergence techniques. These uniform convergence guarantees—which form
the basis for providing guarantees for approximate weighted coverage (Definition 1.1) also provide a
two-sided bound on sample-conditional coverage:
Corollary A.1. Assume the scores Si = s(Xi, Yi) are distinct with probability 1. Then for any
γ > 0, with probability at least 1− 2e−2nγ

2

over the sample Pn,

1− α− γ ≤ P(Yn+1 ∈ Ĉn(Xn+1) | Pn) ≤ 1− α+
1

n
+ γ.

A.1 An elementary proof of Proposition 1

For the scalar random variable S, define the β-quantile

q?(β) := inf {t ∈ R | P(S ≤ t) ≥ β} . (11)

Because the CDF is right continuous, we have P(S ≤ q?(β)) ≥ β, and P(S > q?(β)) = 1− P(S ≤
q?(β)) ≤ 1− β. For γ > 0 and any τ ∈ R, the inequality

P(Sn+1 > τ) > α+ γ, i.e. P(Sn+1 ≤ τ) < 1− α− γ,
implies that τ < q?(1− α− γ).

Consider the event that τ̂n < q?(1− α− γ). For this to occur, it must be the case that

1

n

n∑
i=1

1{Si < q?(1− α− γ)} ≥ 1− α. (12)

But this event is unlikely: define the Bernoulli indicator variables Bi = 1{Si < q?(1− α− γ)}.
Then E[Bi] ≤ 1− α− γ, and Hoeffding’s inequality implies that Bn = 1

n

∑n
i=1Bi satisfies

P (Pn(S < q?(1− α− γ)) ≥ 1− α) = P
(
Bn ≥ 1− α

)
≤ P

(
Bn − E[Bn] ≥ γ

)
≤ exp(−2nγ2).

That is,

P (τ̂n < q?(1− α− γ)) ≤ exp
(
−2nγ2

)
for any γ > 0, and so we must have

P (Sn+1 > τ̂n | Pn) ≤ α+ γ with probability at least 1− e−2nγ
2

.

Rearranging and recalling that Yn+1 6∈ Ĉn(Xn+1) if and only if s(Xn+1, Yn+1) > τ̂n, i.e., if
Sn+1 > τ̂n gives the result.

A.2 A proof of Proposition 1 using uniform convergence

Our alternative approach to the proof of Proposition 1 uses the bounded differences inequality and a
uniform concentration guarantee. First, for any estimated threshold τ̂n, we have the trivial inequality

P(Sn+1 > τ̂n | Pn) = P(Sn+1 > τ̂n | Pn)− Pn(S > τ̂n) + Pn(S > τ̂n)

≤ sup
τ∈R
|P (S > τ)− Pn(S > τ)|+ Pn(S > τ̂n).

Then because we choose τ̂n so that Pn(S ≤ τ̂n) ≥ 1− α, we obtain

P(Sn+1 > τ̂n | Pn) ≤ α+ sup
τ∈R
|P (S > τ)− Pn(S > τ)| . (13a)

If the values Si are distinct, then Pn(S ≤ τ̂n) ≤ 1− α+ 1
n , and so a completely similar calculation

yields

P(Sn+1 > τ̂n | Pn) ≥ α− 1

n
− sup
τ∈R
|P (S > τ)− Pn(S > τ)| . (13b)
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In either case, if we can control the deviation |P (S > τ)− Pn(S > τ)| uniformly across τ , we will
have evidently proved the desired result.

We consider two arguments, the first yielding sharper constants, while the second generalizes to
weighted coverage. For the first, we apply the Dvoretsky-Kiefer-Wolfowitz inequality [23]:

P
(

sup
τ∈R
|P (S > τ)− Pn(S > τ)| ≥ t

)
≤ 2e−2nt

2

for all t ≥ 0. Combining the equations (13), we thus obtain that

P(Sn+1 > τ̂n | Pn) ≤ α+ γ with probability at least 1− 2e−2nγ
2

.

If the scores are distinct, the corresponding lower bound is immediate, giving Corollary A.1.

The final alternative argument to control the uniform deviations in the bounds (13) underpins our more
sophisticated guarantees in the sequel, relying on uniform concentration guarantees and the Vapnik-
Chervonenkis (VC) dimension. First, recall the classical bounded differences inequality [24, 32],
where we say a function f : Xn → R satisfies ci-bounded differences if

|f(xi−11 , xi, xi, x
n
i+1)− f(xi−11 , x′i, x

n
i+1)| ≤ ci for all xi−11 , xni+1, xi, x

′
i ∈ X .

Lemma A.1 (Bounded differences). Let X1, . . . , Xn be independent random variables and f satisfy
ci-bounded differences. Then for all t ≥ 0,

max {P(f(Xn
1 )− E[f(Xn

1 )] ≥ t),P(f(Xn
1 )− E[f(Xn

1 )] ≤ −t)} ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.

We then observe that f(Pn) := supτ∈R |P (S > τ) − Pn(S > τ)| trivially satisfies bounded
differences. Indeed, let P ′n differ from Pn in a single observation. Then defining ‖P − Pn‖∞ =
supτ |P (S > τ)− Pn(S > τ)| for shorthand, we obtain

|‖P − Pn‖∞ − ‖P − P
′
n‖∞| ≤ ‖Pn − P

′
n‖∞ ≤

1

n

by the triangle inequality and that only one example may change. Lemma A.1 then implies

P (‖P − Pn‖∞ ≥ E[‖P − Pn‖∞] + t) ≤ e−2nt
2

for t ≥ 0, so that we need only control E[‖P − Pn‖∞]. For this, we perform a standard symmetriza-

tion argument [e.g. 29, Ch. 2.3]: let P 0
n = 1

n

∑n
i=1 εi1Si , where εi

iid∼ Uni{±1} are i.i.d. Rademacher
variables and 1Si denotes a point mass on Si. By introducing independent copies of Si and applying
Jensen’s inequality [29, Lemma 2.3.1], we have the bound

E [‖Pn − P‖∞] ≤ 2E
[∥∥P 0

n

∥∥
∞

]
= 2E

[
sup
τ∈R

∣∣∣∣ 1n
n∑
i=1

εi1{Si > τ}
∣∣∣∣
]
.

Because the class of functions s 7→ 1{s > τ} has VC-dimension at most 1, Dudley’s entropy integral
(see, e.g. [29, Corollary 2.2.8 and Thm. 2.6.7] or [32, Eq. (5.5.1)]) shows that

E
[∥∥P 0

n

∥∥
∞

]
≤ c√

n

for a numerical constant c. We then obtain that for any γ ≥ 0,

P (Sn+1 > τ̂n | Pn) ≤ α+
c√
n

+ γ w.p. 1− e−2nγ
2

by the inequalities (13), where c is a numerical constant.

A.3 Proof of Proposition 2

Recall the quantile mapping q? from the definition (11) and that for fixed γ ∈ [0, α], the event
τ̂n < q?(1 − α − γ) can occur only if Pn(S < q?(1 − α − γ)) ≥ 1 − α. Then defining Bi =
1{Si < q?(1− α− γ)} and recalling inequality (12), we obtain

P(τ̂n < q?(1− α− γ)) ≤ P(Bn ≥ 1− α) = P(Bn − E[Bn] ≥ 1− α− E[Bn]).
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Define p(γ) = E[Bi] = P(S < q?(1−α− γ)) < 1−α− γ, so that t = t(γ) := 1−α− p(γ) > γ.
Then Var(Bi) = p(γ)(1− p(γ)) = (α+ t)(1− α− t), and Bernstein’s inequality implies

P(Bn − E[Bn] ≥ t) ≤ exp

(
− nt2

2(1− α− t)(α+ t) + 2
3 t

)
= exp

(
− nt2

2(1− α)α+ ( 8
3 − 4α)t− t2

)
≤ exp

(
− nt2

2(1− α)α+ 8
3 t

)
.

Notably, t 7→ nt2

2(1−α)α+ 8
3 t

is increasing in t, so that

P(τ̂n < q?(1− α− γ)) ≤ exp

(
− nγ2

2(1− α)α+ 8
3γ

)
.

If the scores S have a density, P(S ≤ q?(β)) = β for any β ∈ (0, 1). Then we may also consider the
event that τ̂n > q?(1− α+ γ). For this to occur, we require

Pn(S < q?(1− α+ γ)) ≤ 1− α,
and defining Bi = 1{Si < q?(1− α+ γ)}, we have E[Bi] = 1− α+ γ and so

P(Bn ≤ 1− α) = P(Bn − E[Bn] ≤ −γ) ≤ exp

(
− nγ2

2(1− α+ γ)(α− γ) + 2
3γ

)
≤ exp

(
− nγ2

2(1− α)α+ 2
3γ

)
for γ ∈ [0, α]. Combining the two cases, for γ ≥ 0 we have

max {P (τ̂n < q?(1− α− γ)) ,P (τ̂n > q?(1 + α+ γ))} ≤ exp

(
− nγ2

2α(1− α) + 8
3γ

)
.

Solving to guarantee the right hand side is at most δ yields

γn :=
4 log 1

δ

3n
+

√(
4

3n
log

1

δ

)2

+
2α(1− α)

n
log

1

δ
.

Applying a union bound implies Proposition 2.

B Proof of Theorems 2 and 3

We split the proof into three sections, first giving the shared building blocks, then specializing.

B.1 Proof of Theorems 2 and 3: building blocks

Our proof leverages a combination of Talagrand’s concentration inequalities for empirical processes,
a VC-dimension calculation, and localized Rademacher complexities [5, 19]. We begin with the form
of Talagrand’s empirical process inequality with constants due to Bousquet [7].
Lemma B.1 (Talagrand’s empirical process inequality). Let F be a countable class of functions with
Pf = 0 and ‖f‖∞ ≤ b for f ∈ F . Let Z = supf∈F Pnf and σ2 = σ2(F) = supf∈F Pf

2. Define
v2 := σ2 + 2bE[Z]. Then for t ≥ 0,

P
(
Z ≥ E[Z] +

√
2v2t+ b

t

3

)
≤ e−nt.

Because we will consider functions of the form f(x, s) = 〈u, φ(x)〉1{〈θ, φ(x)〉 > s}, we also require
some control over the complexity of such rank-one-like products.
Lemma B.2. LetH and G be classes of functions with VC-dimensions d1 and d2, respectively. Then
the classes of functions

F := {f | f(x) = g(x)1{h(x) > 0}} and F+ := {f | f(x) = g(x)1{h(x) > 0} − cg(x)}
where c is a constant have VC-dimension O(1)(d1 + d2).
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Proof For a set of points x1, . . . , xn, let S(xn1 ,H) = {1{h(xi) > 0}}ni=1 be the set of “sign”
vectors that h realizes. By definition of the VC-dimension and the Sauer-Shelah lemma, this set has
cardinality at most

∑d1
i=0

(
n
i

)
≤ (ned1 )d1 . Similarly, the set of signs

S(xn1 ,F) = {sign(g(xi)) · 1{h(xi) > 0}}ni=1

has cardinality at most
∑d1
i=0

(
n
i

)
·
∑d2
i=0

(
n
i

)
≤ (ned1 )d1(ned2 )d2 . If n is large enough that(

ne

d1

)d1
·
(
ne

d2

)d2
< 2n,

then certainly F cannot shatter n points; this occurs once n ≥ c · (d1 + d2) for some numerical
constant c. For the second class the argument is similar.

For the next lemma, our main technical building block for convergence, we consider the class of
functions F indexed by u ∈ B and h ∈ H, whereH is a class with VC-dimension at most d, with

f(x, s) = fu,h(x, s) := 〈u, φ(x)〉1{s > h(x)} . (14)

Each of these functions evidently satisfies |f(x, s)| ≤ bφ. The variance proxy

v2(u, h) := v2(fu,h) = Pfu,h(X,S)2 = E[〈φ(X), u〉21{S > h(X)}] (15)

and its empirical variant

v2n(u, h) = Pnfu,h(X,S)2 =
1

n

n∑
i=1

〈φ(Xi), u〉21{Si > h(Xi)} .

will allow us to bound deviations of Pnf from Pf relative to v2(f).

For later use, we recall the empirical Rademacher complexity of a function class F ,

Rn(F) :=
1

n
E

[
sup
f∈F

n∑
i=1

εif(Xi) | Xn
1

]
,

where εi
iid∼ Uni{±1} are random signs. In some cases, we will require localized Rademacher

complexities [5, 19] around a class Fr := {f | Pf2 ≤ r2}, which contains functions of small
variance, allowing us to “relativize” bounds. Bartlett et al. [5, Proof of Corollary 3.7] demonstrate
the following.
Lemma B.3. Let F be a star-convex collection of functions, meaning that f ∈ F implies λf ∈ F
for λ ∈ [0, 1], and assume that supx |f(x)| ≤ b and F has VC-dimension d. Then

E [Rn(Fr)] ≤
bφ
n

+ cr

√
d

n
log

bφ
r

if r2 > b2φ
d

n
log

n

d
, (16)

where c <∞ is a numerical constant.

We will combine the VC-bound in Lemma B.2, the version of Talagrand’s empirical process inequality
in Lemma B.1, and a localization argument on Rademacher complexities via inequality (16) to prove
the following lemma in Appendix C.2.
Lemma B.4. Let F be the class of functions (14). Let Kn = 1 + log2 n. Then for all t ≥ 0, with
probability at least 1−Kne

−t over the draw of the sample Pn,

|(Pn − P )f | ≤ c

[
v(f)

√
d log n+ t

n
+ bφ

d log n+ t

n

]
simultaneously for all f ∈ F , where c < ∞ is a numerical constant. In addition, with the same
probability,

|(Pn − P )〈u, φ(X)〉| ≤ c

[√
P 〈u, φ〉2

√
d log n+ t

n
+ bφ

d log n+ t

n

]
simultaneously for all u ∈ B.
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Next we present a version of a result appearing as [32, Theorem 14.12] (the result there assumes
functions are mean-zero, but an inspection of the proof shows this is unnecessary); see also the
results of [25] and [9, Proof of Proposition 1]. These show that second moments satisfy one-sided
concentration bounds with high probability as soon as we have the fourth moment condition

E[f4(X,S)] ≤ b2E[f2(X,S)] for all f ∈ F . (17)

For the setting we consider, where F consists of product functions (14), inequality (17) immediately
holds with b = bφ, though tighter constants may be possible.
Lemma B.5. There exist numerical constants 0 < c and C < ∞ such that the following holds.
Let inequality (17) hold and for Fr = {f | Pf2 ≤ r2}, let r satisfy E[Rn(Fr)] ≤ r2

Cb . Then with
probability at least 1− e−cnr2/b2 ,

Pnf
2 ≥ 1

2
Pf2 simultaneously for all f s.t. v(f) ≥ r.

Inequality (16) shows the conclusions of of Lemma B.5 hold if the radius r satisfies

r

√
d

n
log

n

d
.
r2

bφ
or r2 & b2φ ·

d

n
log

n

d
.

We then obtain the following consequence:

Lemma B.6. Let r2 & b2φ
d
n log n

d . Then with probability at least 1− e−cnr
2/b2φ ,

Pn〈u, φ(X)〉21{S > h(X)} ≥ 1

2
P 〈u, φ(X)〉21{S > h(X)}

simultaneously over u ∈ B and h such that P 〈u, φ(X)〉21{S > h(X)} ≥ r2.

Now, let ĥ = 〈θ̂, φ(·)〉, where θ̂ solves the problem (8). Then simultaneously for all u ∈ B, with
probability at least 1−Kne

−t,∣∣∣(Pn − P )〈u, φ(X)〉1
{
S > ĥ(X)

}∣∣∣ ≤ c[v(ĥ, u)

√
d log n+ t

n
+ bφ

d log n+ t

n

]
(18)

by Lemma B.4. Moreover, for r2 & b2φ
d
n log n

d , either v(ĥ, u) ≤ r or

v2(ĥ, u) ≤ 2Pn〈φ(X), u〉21
{
S > ĥ(X)

}
by Lemma B.6 (with the appropriate probability 1− e−cr

2/b2φ ).

B.2 Proof of Theorem 2: nonnegative weights

We now specialize our development to the particular cases that 〈u, φ(x)〉 ≥ 0 for all x ∈ X . First, we
leverage the particular structure of the quantile loss to give a non-probabilistic bound on the empirical
weights.
Lemma B.7. Let u be such that 〈u, φ(x)〉 ≥ 0 for all x ∈ X . Then

Pn〈φ(X), u〉1
{
S > ĥ(X)

}
≤ αPn〈φ(X), u〉.

If additionally Si are all distinct, then

Pn〈φ(X), u〉1
{
S > ĥ(X)

}
≥ αPn〈φ(X), u〉 − bφ(u)

d

n
.

Proof The directional derivative `′α(t; 1) := limδ↓0
`α(t+δ)−`α(t)

δ = 1{t ≥ 0} − (1− α). Then

Pn〈φ(X), u〉1
{
S > ĥ(X)

}
= Pn〈φ(X), u〉

(
1− α− 1

{
S ≤ ĥ(X)

})
+ Pn〈u, φ(X)〉α

= Pn〈φ(X), u〉
(
−`′α(ĥ(X)− S; 1)

)
+ αPn〈u, φ(X)〉.
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Letting Ln(h) = Pn`α(h(X) − S), we now use that directional derivatives are positively homo-
geneous [15] and that by assumption ĥ minimizes Pn`α(h(X) − S) over functions of the form
h(x) = 〈θ, φ(x)〉 to obtain

Pn〈φ(X), u〉
(
−`′α(ĥ(X)− S; 1)

)
= −Pn`′α(ĥ(X)− S; 〈φ(X), u〉) = −L′n(ĥ(X);u).

But of course, as ĥ minimizes Ln, we have L′n(ĥ(X);u) ≥ 0 for all u, and so

Pn〈φ(X), u〉1
{
S > ĥ(X)

}
≤ αPn〈u, φ(X)〉.

If Si are all distinct, then considering the left directional derivative, we also have

Pn〈φ(X), u〉1
{
S ≥ ĥ(X)

}
≥ αPn〈u, φ(X)〉.

If I0 = {i | ĥ(Xi) = Si}, then card(I0) ≤ d, and so

0 ≥ Pn〈φ(X), u〉
(

1
{
S > ĥ(X)

}
− 1
{
S ≥ ĥ(X)

})
= −Pn〈φ(X), u〉1

{
S = ĥ(X)

}
≥ −bφ(u)

d

n
.

Rearranging and performing a bit of algebra, we obtain the second claim of the lemma.

From the lemma, we see that

P 〈u, φ(X)〉
(

1
{
S > ĥ(X)

}
− α

)
= (P − Pn)〈u, φ(X)〉

(
1
{
S > ĥ(X)

}
− α

)
+ Pn〈u, φ(X)〉

(
1
{
S > ĥ(X)

}
− α

)
≤ (P − Pn)〈u, φ(X)〉1

{
S > ĥ(X)

}
− α(P − Pn)〈u, φ(X)〉 (19)

by Lemma B.7. Additionally, the lemma implies that

Pn〈φ(X), u〉21
{
S > ĥ(X)

}
≤ bφ(u)Pn〈φ(X), u〉1

{
S > ĥ(X)

}
≤ bφ(u)αPn〈φ(X), u〉.

We use this to control the first term in the expansion (19) by combining these bounds with inequal-
ity (18) and considering that v(ĥ, u) ≤ r or v(ĥ, u) > r where r2 = O(1)b2φ

d
n log n

d . In the latter,
we have v2(ĥ, u) ≤ cbφ(u)αPn〈φ(X), u〉. We have therefore shown that for any r2 & d

n log n
d , with

probability at least 1−Kne
−t − e−nr2 , for all u ∈ B with 〈u, φ(x)〉 ≥ 0,∣∣∣(Pn − P )〈u, φ(X)〉1

{
S > ĥ(X)

}∣∣∣ (20)

≤ c

[(√
bφ(u)αPn〈u, φ(X)〉+ bφr

)√
d log n+ t

n
+ bφ

d log n+ t

n

]
.

Applying Lemma B.4 to the quantity Pn〈u, φ(X)〉 shows that simultaneously for all u ∈ B,

|(Pn − P )〈u, φ(X)〉| ≤ c

[√
bφ(u)P 〈u, φ(X)〉

√
d log n+ t

n
+ bφ

d log n+ t

n

]
with probability at least 1 −Kne

−t. Substituting this into the bounds (19) and (20), and ignoring
lower-order terms (because α ≤ 1), we obtain the guarantee that for all t ≥ 0 and r2 & d

n log n
d , then

with probability at least 1− 2Kne
−t − e−nr2 , for all u such that P 〈u, φ(X)〉 ≥ bφ d logn+tn ,

E
[
〈u, φ(X)〉

(
1
{
S > ĥ(X)

}
− α

)
| Pn

]
≤ c

[(√
αbφ(u)P 〈u, φ(X)〉+ bφr

)√
d log n+ t

n
+ bφ

d log n+ t

n

]
and for all u such that P 〈u, φ(X)〉 ≤ bφ d logn+tn ,

E
[
〈u, φ(X)〉

(
1
{
S > ĥ(X)

}
− α

)
| Pn

]
≤ cbφ

[
r

√
d log n+ t

n
+
d log n+ t

n

]
.
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Combining the inequalities and replacing r2 with d logn+t
n gives the first claim of Theorem 2.

For the second claim, when the scores Si are distinct, note simply that we may replace inequality (19)
with

P 〈u, φ(X)〉
(

1
{
S > ĥ(X)

}
− α

)
= (P − Pn)〈u, φ(X)〉

(
1
{
S > ĥ(X)

}
− α

)
+ Pn〈u, φ(X)〉

(
1
{
S > ĥ(X)

}
− α

)
≥ (P − Pn)〈u, φ(X)〉1

{
S > ĥ(X)

}
− α(P − Pn)〈u, φ(X)〉 − bφ(u)

d

n
.

The remainder of the argument is, mutatis mutandis, identical to the proof of the first claim of the
theorem.

B.3 Proof of Theorem 3: distinct scores

Because of the distinctness of Si and that we assume φ1(x) = 1 (that is, we include the constant
offset), the optimality conditions for the quantile loss imply that

d

n
≥

n∑
i=1

1
{
Si > ĥ(Xi)

}
− α ≥ − d

n
.

So if bφ(u) := supx∈X |〈u, φ(x)〉|, then

Pn〈φ(X), u〉21
{
S > ĥ(X)

}
≤ b2φ(u)

(
α+

d

n

)
.

Applying inequality (18), we find that with probability at least 1−Kne
−t − e−cnr

2/b2φ ,∣∣∣(Pn − P )〈u, φ(X)〉1
{
S > ĥ(X)

}∣∣∣ ≤ c[(bφ(u)
√
α+ r

)√d log n+ t

n
+ bφ

d log n+ t

n

]
.

The deviations α(Pn − P )〈u, φ(X)〉 are of smaller order than this by Lemma B.4.

C Technical proofs

C.1 Proof of Lemma 2.1

When B2 is the `2-ball,

E

[
sup

h∈H,u∈B2

〈u, Zn(h)− E[Zn(h)]〉

]
= E

[
sup
h∈H
‖Zn(h)− E[Zn(h)]‖2

]
.

Performing a typical symmetrization argument, we let P 0
n = 1

n

∑n
i=1 εi1Xi,Si be the symmetrized

empirical measure, where εi
iid∼ Uni{±1} are i.i.d. Rademacher variables, and define the symmetrized

process Z0
n(h) = 1

n

∑n
i=1 εiφ(Xi)1{Si > h(Xi)}. Then for the (random) set of vectors Vn =

{(1{S1 > h(X1)} , . . . , 1{Sn > h(Xn)})}h∈H ⊂ {0, 1}n

E
[

sup
h∈H
‖Zn(h)− E[Zn(h)]‖2

]
≤ 2E

[
sup
h∈H

∥∥Z0
n(h)

∥∥
2

]
≤ 2E

[
max
v∈Vn

∥∥∥∥ 1

n

n∑
i=1

εiφ(Xi)vi

∥∥∥∥
2

]
.

Now, we recognize that because the vectors φ lie in a Hilbert space, we enjoy certain dimension free
concentration guarantees. In particular, we have for any fixed v ∈ {0, 1}n that

P

(∥∥∥∥ n∑
i=1

εiφ(Xi)vi

∥∥∥∥
2

≥ t | Xn
1

)
≤ 2 exp

(
− t2

2Φ2
n

)
,

19



where Φ2
n :=

∑n
i=1 ‖φ(Xi)‖22 by Pinelis [26, Theorem 3.5] (see also [16, Corollary 10]). In particular,

using that for U a nonnegative random variable E[U ] =
∫∞
0

P(U ≥ u)du, we obtain

E

[
max
v∈Vn

∥∥∥∥ n∑
i=1

εiφ(Xi)vi

∥∥∥∥
2

| Xn
1

]
≤
∫ ∞
0

P

(
max
v∈Vn

∥∥∥∥ n∑
i=1

εiφ(Xi)vi

∥∥∥∥
2

≥ t | Xn
1

)
dt

≤ t0 + 2 card(Vn)

∫ ∞
t0

exp

(
− t2

2Φ2
n

)
dt.

Recognizing the Gaussian tail bound that∫ ∞
c

e−
t2

2σ2 dt =
√

2πσ2

∫ ∞
c/σ

1√
2π
e−z

2/2dz ≤
√

2πσ2 min

{
1√
2π

σ

c
, 1

}
exp

(
− c2

2σ2

)
by Mills’ ratio, we see that for any t0 ≥ 0,

E

[
max
v∈Vn

∥∥∥∥ n∑
i=1

εiφ(Xi)vi

∥∥∥∥
2

| Xn
1

]
≤ t0 + 2 card(Vn) · Φ2

n

t0
exp

(
− t20

2Φ2
n

)
.

Finally, recognize that Vn has cardinality at most ( enk )k by the Sauer-Shelah lemma becauseH has
VC-dimension k. Consequently, we may take t20 = 2 log card(Vn)Φ2

n to obtain the bound

E

[
max
v∈Vn

∥∥∥∥ n∑
i=1

εiφ(Xi)vi

∥∥∥∥
2

| Xn
1

]
≤
√

2 log card(Vn)Φn +
Φn√

2 log card(Vn)
≤ 2

√
k log

ne

k
· Φn.

Take expectations over Xn
1 .

C.2 Proof of Lemma B.4

For r ≥ 0, define the localized class

Fr :=
{
f ∈ F | Pf2 = E[〈v, φ(X)〉21{S > h(X)}] ≤ r2

}
.

Note that Fr always includes the 0 function and is star-convex, because if f ∈ Fr, then λf ∈ Fr for
λ ∈ [0, 1]. Recalling inequality (16), the second term dominates the first, and so

E [Rn(Fr)] ≤ cr
√
d

n
log

n

d
if r2 ≥ b2φ

d

n
log

n

d
.

Define the random variable Zn(r) := supf∈Fr (Pn − P )f = supf∈Fr |(Pn − P )f |, the equality
following by symmetry of Fr. Then Talagrand’s concentration inequality (Lemma B.1) implies that

P
(
Zn(r) ≥ E[Zn(r)] +

√
2(r2 + 2bφE[Zn(r)])t+

bφ
3
t

)
≤ e−nt

for all t ≥ 0. Applying a standard symmetrization argument and inequality (16), we thus obtain that
for r2 ≥ b2φ dn log n

d , with probability at least 1− e−t,

Zn(r) ≤ cr
√
d log n

n
+ c

√
r2

n2
+
b2φ
n
r

√
d log n

n

√
t+

bφt

3n
.

As the last step, we apply a peeling argument [32, 28]: consider the intervals

Ek :=

(
2k−1

b2φd log n

n
, 2k

b2φd log n

n

]
k = 1, 2, . . . ,Kn :=

⌈
log2

n

d log n

⌉
.

Let Fk = {f ∈ F | Pf2 ∈ Ek}, where F0 = {f ∈ F | Pf2 ≤ d logn
n }. Then evidently

∪Knk=0Fk = F , and letting r2k = 2kb2φ
d logn
n , we have Frk ⊂ Fk. So by a union bound, with

probability at least 1− (Kn + 1)e−t,

Zn(rk) ≤ crk

√
d log n

n
+ c

√
r2k
n2

+
bφ
n

√
r2kd log n

n

√
t+

bφ
3n
t for k = 1, . . . ,Kn (21a)
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and

Zn(r0) ≤ cd log n

n
+

√
r20
n2

+
bφ
n

d log n

n

√
t+

bφt

3n
. (21b)

Recall the definition v2(f) := Pf2 = Var(f) + (Pf)2. Then f ∈ Fk implies 1
2rk ≤ v(f) ≤ rk,

so that on the event that all the inequalities (21) hold, then simultaneously for all f satisfying
v2(f) ≥ d logn

n , then

|(Pn − P )f | ≤ cv(f)

√
d log n

n
+ c

√
v2(f)

n2
+
bφ
n

√
v2(f)

d log n

n

√
t+

bφ
3n
t,

while for all f with v2(f) ≤ d logn
n we have

|(Pn − P )f | ≤ cd log n

n
+ c

√
d log n

n3
+
bφ
n

d log n

n

√
t+

bφ
3n
t.

(To obtain the absolute bounds, we have used that f ∈ F implies −f ∈ F and each set Fr and Fk is
symmetric.) Finally, we note that√

v2(f)

n2
+
bφ
n

√
v2(f)

d log n

n
≤

√
v2(f)

n2
+
b2φd log n

2n2
+
v2(f)

2n

≤ bφ
√
d log n√
2n

+
v(f)√
n
,

which implies the first statement of Lemma B.4.

The second statement follows via the same argument.

D Further simulations

We can incorporate a few recent theoretical results to enhance the practical performance of the
proposed conformalization procedures, allowing some additional performance gains, while simul-
taneously exhibiting the need for future work. We consider mostly the difference between the full
conformal approach that Gibbs et al. [12] develop and the split-conformal approaches that sim-
ply minimize the empirical loss (8). Our theoretical results provide no guidance to lower-order
corrections to the desired level α to guarantee (exact) marginal coverage rather than approximate
sample-conditional coverage, and so we proceed a bit heuristically here, using theoretical results to
motivate modifications of the level α that do not change the sample-conditional coverage results we
provide, but which turn out to be empirically effective.

To motivate our tweaks, recall the classical (unconditional) conformal approach to achieve exact finite-
sample marginal coverage P(Yn+1 ∈ Ĉn(Xn+1)), where the confidence confidence set Ĉn(x) =
{y | s(x, y) ≤ τ̂n}. Setting τ̂n = Quant(1+1/n)(1−α)(S

n
1 ), the slightly enlarged quantile, guarantees

(1 − α) coverage; this follows by letting S(i,n) be the order statistics of Sn1 and S(i,n+1) those
of Sn+1

1 , and noting that the score Sn+1 ≤ S(k,n) if and only if Sn+1 ≤ S(k,n+1) [27, Lemma
2], so the inflation by n+1

n is necessary. Equivalently, if we wish to achieve coverage (1 − αdes)
using the estimator (8) with feature mapping φ(x) = 1 fit at level α, then α must solve (1− α) =
(1 + 1

n )(1−αdes), that is, α = 1− (1 + 1
n )(1−αdes) = (1 + 1

n )αdes− 1
n . That is, quantile regression

under-covers.

When φ : X → Rd, it is then natural to heuristically imagine that the order statistics ought to “swap
orders” by at most roughly d items and so we ought to target coverage n+d

n (1− αdes); unfortunately,
it escapes our ability to prove such a result currently. Nonetheless, we consider a “naive” adaptation
of the confidence level, setting α to solve

(1− α) =

(
1 +

d

n

)
(1− αdes), or α =

(
1 +

d

n

)
αdes −

d

n
, (22)

and then choosing θ̂ to minimize (8) with this α, which we term the “naive” choice. Bai et al. [2] give
an alternative perspective, where they show that the actual marginal coverage achieved by quantile
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regression at level α in the high-dimensional scaling d, n→∞ with d/n→ κ ∈ (0, 1) is

(1− α)− d

n

(
1

2
− α

)
+ o(d/n)

for α < 1
2 , at least when the covariates are Gaussian. Solving this and ignoring the higher-order term,

we recognize that to achieve desired coverage α, we ought (according to this heuristic) to compute
the estimator (8) using α solving

(1− αdes) = (1− α)− d

n

(
1

2
− α

)
or α =

αdes − d
2n

1− d
n

. (23)

We call the choice (23) the “scaling” choice. Neither of the rescalings (22) or (23) have any effect on
the convergence guarantees our theory provides, as they are of lower order.

We perform two synthetic experiments that give a sense of the coverage properties of the methods we
have analyzed. These exploratory experiments help provide justification for the heuristic corrections
to the desired level α we set in the real data experiments.

D.1 Level rescaling on a simple synthetic dataset

For our first experiment, we consider the simple setting of a standard Gaussian linear model, where
we observe

yi = 〈w?, xi〉+ εi, εi
iid∼ N(0, 1) and xi

iid∼ N(0, Id).

We mimic the experiment Gibbs et al. [12, Fig. 3] provide, but we investigate the coverage
properties of the coverage set from the estimator (8) with uncorrected α and level α corrected
either naively (22) or via the scaling correction (23). In all cases, we use the feature map
φ(x) = (1, 1{x1 > 0} , . . . , 1{xd > 0}) ∈ {0, 1}d+1 indicating nonnegative coordinates. Figure 2
displays the results of this experiment for 1000 trials, where in each trial, we draw w? ∼ Uni(Sd−1),
fit a regression estimator ŵ on a training dataset of size ntrain = 100 using least squares, then confor-
malize this predictor using a validation set of size n and evaluate its coverage on a test dataset of size
ntest = 10ntrain = 1000. We vary the ratio n/d of the validation dataset, keeping d = 20 fixed. From
the figure, it is clear that the uncorrected confidence set using α = αdes = .1 undercovers, especially
when the ratio n/d < 20 or so. The naive correction (22) appears to be a bit conservative, while the
scaling correction (23) is more effective.
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Figure 2. Impact of the correction to α used in fitting the conformal predictor (8) for a desired level
αdes = .1, i.e., 90% coverage. The “None” correction uses α = αdes, “Naive” uses the correction (22),
and “Scaling” uses the correction (23). (a) Coverage rates with the desired coverage marked as the red
line. (b) Width of predictive intervals Ĉ(x) = {y ∈ R | |f̂(x)− y| ≤ θ̂>φ(x)}.
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Figure 3. Comparison of full- and split-conformal methods on the simulated sinusoidal data of Sec. D.2
with ntrain = 200 training examples and target miscoverage α = .1. Plots (a) and (c) use validation
sample sizes nval = 20k = 100, while (b) and (d) use nval = 160k = 800. Plots (a) and (b) show
miscoverage P(Y 6∈ Ĉ(X) | X ∈ Bi) by group Bi; plots (c) and (d) prediction interval lengths.

D.2 Full conformal versus split-conformal predictions

We briefly look at the coverage properties of the full conformalization method (5) from the paper [12],
comparing with split-conformal methods (8), on a synthetic regression dataset we design to have
asymmetric mean-zero heteroskedastic noise. We generate pairs (Xi, Yi) ∈ R2 according to Y =
f(x) + ε(x), discretizing x ∈ [0, 1] into bins Bi = {x | ik ≤ x <

i+1
k }, i = 0, . . . , k − 1, for k = 5.

Within each experiment, we draw U0, U1
iid∼ Uni[−1, 1] and φ0, φ1

iid∼ Uni[π4 , 4π] to define

f(x) = U0 cos(φ0 · x) + U1 sin(φ1 · x).

Within the ith region i
k ≤ x <

i+1
k we set λ0,i = exp(3− 3

k i) and λ1,i = exp(4− 3
k i), i.e., evenly

spaced in {e3, . . . , e0} and {e4, . . . , e1}, and draw

ε(x) ∼

{
Exp(λ0,i) with probability λ0,i

λ0,i+λ1,i
= 1

1+e

−Exp(λ1,i) otherwise,

so that E[ε(x) | x] = 0 but the noise is skewed upward, with variance increasing in i.

Figure 3 shows the results of this experiment over 200 independent trials, where in each experiment
we draw a new mean function f and fit it using a degree 5 polynomial regression on a training set
of size ntrain = 200. The conformalization methods use a group-indicator featurization φ(x) =
(1, 1{x ∈ B1} , . . . , 1{x ∈ Bk}) and confidence sets C(x) = {y | θ>0 φ(x) ≤ y ≤ θ>1 φ(x)}. Within
each trial, we compute miscoverage proportions P(Y 6∈ Ĉ(X) | X ∈ Bi) for each bin i on a
test set of size 500, drawing a new function f . We vary the size of the validation data nval =
{10k, 20k, 40k, 80k, 160k}, and use the scaling correction (23) to set α for the split-conformal
method. The figure plots results for validation sizes 40k and 160k; from the figure—which is
consistent with our other sample sizes and experiments—we see that when the validation size is large
relative to the dimension of the mapping φ, both methods are similar; for smaller ratios, the offline
method undercovers slightly within the groups, though its marginal coverage remains near perfect in
spite of the very non-Gaussian data.

We remark in passing that the full conformal method requires roughly 10× the amount of time to
compute predictions as the split conformal method requires to both fit a quantile prediction model
and make its predictions. Once the split-conformal quantile model is available—it has been fit—this
difference becomes roughly a factor of 2000–4000 in our experiments. For some applications, this
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may be immaterial; for others, it may be a substantial expense, suggesting that a decision between
the offline method and the online procedure may boil down to one of computational feasibility.

24



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The main contributions of the paper are theoretical. The main limitation of the
paper (see the Discussion section) is the theoretical results do not provide exact coverage,
which appears to be challenging for sample-conditional coverage.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is available, along with the paper, at the public repository https:
//github.com/jduchi/cond-conformal.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The code to reproduce the experiments is available at https://github.com/
jduchi/cond-conformal.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The experiments are runnable on a laptop in an hour or so.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The authors view this paper as having limited significant societal impact, as its
main focus is foundational research. It provides valid confidence sets for predictions, which
presumably can be used to improve any predictive ML algorithm, but the focus of the paper
is theoretical.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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