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Abstract

While conservation laws in gradient flow training
dynamics are well understood for (mostly shal-
low) ReLU and linear networks, their study re-
mains largely unexplored for more practical archi-
tectures. This paper bridges this gap by deriving
and analyzing conservation laws for modern archi-
tectures, with a focus on convolutional ResNets
and Transformer networks. For this, we first show
that basic building blocks such as ReLU (or lin-
ear) shallow networks, with or without convolu-
tion, have easily expressed conservation laws, and
no more than the known ones. In the case of
a single attention layer, we also completely de-
scribe all conservation laws, and we show that
residual blocks have the same conservation laws
as the same block without skip connection. We
then introduce the notion of conservation laws
that depend only on a subset of parameters (cor-
responding e.g. to a pair of consecutive layers,
to a residual block, or to an attention layer). We
demonstrate that the characterization of such laws
can be reduced to the analysis of the correspond-
ing building block in isolation. Finally, we ex-
amine how these newly discovered conservation
principles, initially established in the continuous
gradient flow regime, persist under discrete opti-
mization dynamics, particularly in the context of
Stochastic Gradient Descent (SGD).

1. Introduction
Understanding the behavior of neural networks during train-
ing remains a fundamental challenge in deep learning. A
particularly insightful approach to this challenge involves
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studying conserved functions - quantities that remain in-
variant throughout the training process. These conserved
functions reveal important geometric properties of the train-
ing dynamics and serve a dual purpose. First, they provide
valuable insights into the implicit bias induced by both the
training algorithm and network architecture, by revealing
properties that persist from initialization to the final solu-
tion (Saxe et al., 2013; Bah et al., 2022; Arora et al., 2018;
Tarmoun et al., 2021; Min et al., 2021). Second, they have
emerged as crucial tools in theoretical analyses, playing
a key role in convergence studies (Du et al., 2018; Arora
et al., 2019; Bah et al., 2022; Chizat & Bach, 2020; Ji &
Telgarsky, 2019a; Min et al., 2021). Understanding these
conservation laws can also be applied to designing new opti-
mization schemes, which no longer preserve these laws but
instead enforce them to reach a desired value (e.g., a bal-
anced condition for ReLU networks) in order to potentially
accelerate convergence (Saul, 2023; Stock et al., 2019).

Conservation laws. In the context of Euclidean gradient
flow training dynamics, conservation laws in the form of
“balancedness conditions” have been established for ReLU
and linear networks (Saxe et al., 2013; Du et al., 2018;
Arora et al., 2019). Subsequently, (Marcotte et al., 2023)
demonstrated the “completeness” of these laws: no addi-
tional conservation laws exist for these architectures in the
shallow case under Euclidean gradient flows. For these net-
work architectures, (Marcotte et al., 2024) unveiled novel
conservation laws when considering alternative optimiza-
tion algorithms – particularly non-Euclidean gradient flows,
as employed in ICNN or NMF, or momentum-based dynam-
ics, also demonstrating their completeness. Furthermore,
(Marcotte et al., 2024) revealed that conservation laws under
momentum dynamics exhibit fundamentally different char-
acteristics compared to simple gradient flows: these laws
are time and velocity-dependent, and are generally fewer
in number than in the gradient flow case. For feed-forward
networks with single-channel convolutions, conservation
laws were also identified under gradient flow dynamics (Du
et al., 2018). While the investigation of conservation laws
for more sophisticated neural architectures has remained
largely unexplored, this paper addresses this gap by extend-
ing the analysis to more complex network architectures.
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Residual networks (ResNets) constitute a fundamental
class of deep learning architectures that revolutionized the
field of computer vision through their groundbreaking per-
formance (He et al., 2016). The distinguishing feature of
these networks—the incorporation of skip connections—has
since become a cornerstone principle in other deep learn-
ing architectures, most notably exemplified in Transformer
models (Vaswani, 2017). In (Marion et al., 2023), under spe-
cific initialization assumptions and incorporating a rescaling
operation, the authors demonstrate that the solution reached
during traing (i.e. the trained neural network) corresponds
to a discretization of a Neural ODE (Chen et al., 2018), thus
revealing an implicit bias. This enables leveraging ODE
(ordinary differential equation) theory to analyze the trained
network.

Transformers. Since their introduction (Vaswani, 2017),
Transformers and their multi-head attention mechanism
(Bahdanau et al., 2015) have achieved unprecedented per-
formance across domains from natural language processing
(Brown et al., 2020) to computer vision (Dosovitskiy et al.,
2021). In (Vasudeva et al., 2024), the authors shows that
when training self-attention layers with gradient descent, the
key-query matrix naturally converges to a hard-margin SVM
solution, revealing an implicit bias similar to that observed
in linear logistic regression on separable data (Soudry et al.,
2018; Ji & Telgarsky, 2019b).

Our contributions. After proving that conservation laws
of gradient flows with weight decay are determined by their
equivalent without weight decay (Theorem 2.1), we dis-
cover new conservation laws and show that these new laws
are complete for several basic building blocks of modern
networks with skip connections: shallow multi-channel con-
volution layers (Theorem 3.6), self-attention layers (Corol-
lary 3.9, Corollary 3.10), cross-entropy classification layer
(Proposition 3.11), and plain MLP with skip connections
(Proposition 3.2). We then explain how these results can
be used to analyze deeper networks, via a generic analysis
under the lens of the new taylored analysis of conserva-
tion laws that only depend on a given subset of parameters
(Proposition 4.3). Notable results (Theorem 4.6) include the
formal proof that such laws exactly match the laws of the
classical blocks considered in isolation. Besides, in the case
of residual convolutional networks we show (Theorem 4.7)
the absence of conservation law associated to consecutive
linear layers that “overlap” two residual blocks. To complete
the theoretical analysis we finally show that the conserva-
tion laws of gradient flows are also approximately preserved
during actual (discrete) SGD dynamics, under appropriate
assumptions (Proposition 5.1), with an error bound (27)
scaling as O(step-size2) that we showcase in our numerical
experiments, Figure 1 and Figure 5.

2. Conservation laws for Gradient Flows
In this paper, we consider learning problems where the
features are represented as xi ∈ Rm and the targets or labels
are denoted by yi ∈ Y . In regression tasks, Y is typically
defined as Rn, while in classification contexts, yi represents
categorical labels. In scenarios involving unsupervised or
self-supervised learning, yi can be treated as a constant. We
denote zi := (xi, yi) and Z = (xi, yi)i.

Predictions are generated through a parametric function
g(θ, ·) : Rm → Rn (such as a neural network). This func-
tion is trained by empirically minimizing a cost function
with respect to the parameters θ ∈ Θ ⊆ RD.

LZ(θ) :=
1

N

∑
i ℓ(g(θ, xi), yi), (1)

with ℓ a loss function. In practice, the training dynamics
are realized using a gradient descent algorithm with weight
decay:

θk+1 = θk − τ∇LZ(θk)− λkτθk. (2)

To facilitate mathematical analysis, the training dynamics is
simplified by considering a gradient flow (GF) with weight
decay (WD). This approach represents the continuous coun-
terpart of Equation (2) as τ approaches zero and can be
expressed as the first-order ODE where λ(t) ≥ 0:

θ̇(t) + λ(t)θ(t)︸ ︷︷ ︸
weight-decay

= −∇LZ(θ(t)), (3)

We aim to understand what quantities are preserved during
the dynamic (3) for a variety of neural networks g. The
mathematical study of what happens in discrete dynamics is
done in Section 5. The analogue of the transition from (2) to
(3) for a simplified version of Adam algorithm is analyzed
in Section 2.3.

2.1. Conservation laws of neural networks

A function h(t, θ) is conserved if for each solution θ(t) of
the ODE (3) with any initialization and any data-set, one
has h(t, θ(t)) that remains constant over time.

Time-dependency: with vs without weight-decay. Our
first contribution is the following theorem, which clarifies a
fundamental distinction in the temporal dependence of con-
served quantities of a dynamic system, whether it includes
WD or not. It also demonstrates how the conservation laws
with WD can be readily derived from those from the system
without WD. See Appendix A for a proof.

Theorem 2.1 (Structure theorem). Let h(t, θ) be a con-
served function for the ODE (3). If for every θ,
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there exists a data-set Z such that ∇LZ(θ) = 0,
then the function H(a) := h(0, a) satisfies h(t, θ) =

H
(
θ exp(

∫ t
0
λ(s)ds)

)
, ∀t, θ. Thus, conserved functions

can be expressed withD variables (instead ofD+1). More-
over, h̃(t, θ) := H(θ) is a conservation law of (3) without
WD (i.e. with λ(t) ≡ 0).

Remark 2.2. In particular, when considering (3) with λ(t) ≡
0, one has h(t, θ) = h(0, θ) for all t and θ.

Given this established correspondence between conserved
functions with and without weight-decay, we can now re-
strict our analysis to time-independent conserved functions
h(θ) in the case of gradient descent without WD:

θ̇(t) = −∇LZ(θ(t)). (4)

Definition and characterization of conservation laws.
Here we recall the main ingredients of the framework for
conservation laws from (Marcotte et al., 2023), introducing
some formal definitions of intermediate objects and results
that hopefully streamline the corresponding reasoning. A
function h(θ) is a conservation law for g if for each solution
θ(t) of the ODE (4) with any initialization and any data-set,
one has h(θ(t)) = h(θ(0)), ∀t. The formal definition of
a conservation law in that case is given in (Marcotte et al.,
2023, Definition 2.4) (corresponds to the notion of being
locally conserved on Θ for any dataset), and we recall an
orthogonal characterization of a smooth conservation law
(Marcotte et al., 2023, Corollary 2.6, Proposition 2.7):
Proposition 2.3. Assume that for each y ∈ Y , the loss
ℓ(z, y) is C2-differentiable with respect to z ∈ Rn. A func-
tion h ∈ C1(Θ,R) is a conservation law for g with respect
to the loss ℓ if and only if ∇h(θ) ⊥ Wg,ℓ

θ for all θ ∈ Θ
where:

Wg,ℓ
θ := span

Z=(xi,yi)∈(Xθ×Y)N
{∇LZ(θ)}

= span
(x,y)∈Xθ×Y

{∂θg(θ, x)⊤∇zℓ(g(θ, x), y)}⊆ RD,

with Xθ the set of data points x∈ Rm such that g(·, x) is
C2-differentiable in the neighborhood of θ.

Assumption 2.4. Consider a loss ℓ(z, y). We assume that
for every y it is differentiable with respect to z ∈ Rn. We
define for all z ∈ Rn the subspace

Vℓ(z) := spany∇zℓ(z, y)⊆ Rn.

We also assume that Vℓ(z) does not depend on z ∈ Rn, so
we rewrite Vℓ(z) = Vℓ.

In particular, this assumption is satisfied for all classical
losses (e.g. mean-square error, Kullblack-Leibler diver-
gence, cross-entropy loss) as stated in (Marcotte et al., 2023,
Lemma C.2, Remark C.3), and is known to imply the fol-
lowing direct corollary:

Corollary 2.5. Consider a loss ℓ(z, y) that satisfies Assump-
tion 2.4. Then for all θ ∈ Θ:

Wg,ℓ
θ = span

x∈Xθ,w∈Vℓ

{∂θg(θ, x)⊤w}.

Another useful assumption is the following.

Assumption 2.6 (Local reparameterization). There exists d
and ϕ ∈ C2(Θ,Rd) such that: for each parameter θ0 in the
open set Θ ⊆ RD, for each x ∈ X such that θ 7→ g(θ, x) is
C2 in a neighborhood of θ01, there is a neighborhood Ω of
θ0 and f(·, x) ∈ C2(ϕ(Ω),Rn) such that

∀θ ∈ Ω, g(θ, x) = f(ϕ(θ), x). (5)

Such a factorization g(θ, x) = f(ϕ(θ), x) is always pos-
sible but never unique: ϕ = id and f = g yield a trivial
factorization, and starting from an arbitrary factorization any
diffeomorphism ψ yields another one g(θ, x) = f̃(ϕ̃(θ), x)
with f̃(a, x) := f(ψ(a), x) and ϕ̃ := ψ−1 ◦ ϕ. The corre-
sponding space Wg,ℓ

θ can be characterized with any such
factorization (Marcotte et al., 2023, Proposition 2.12).

Proposition 2.7. Assume that for every y the loss ℓ(z, y) is
C2-differentiable with respect to z. Under Assumption 2.6,
for all θ ∈ Θ:

Wg,ℓ
θ = ∂ϕ(θ)⊤Wf,ℓ

ϕ(θ) (6)

with ∂ϕ(θ) ∈ Rd×D the Jacobian of ϕ and

Wf,ℓ
ϕ(θ)

:= span
(x,y)∈Xθ×Y

{∂fx(ϕ(θ))⊤∇zℓ(g(θ, x), y)},

where fx(·) := f(·, x).

Under Assumption 2.6, Proposition 2.7 directly rewrites as:

Corollary 2.8. Consider a loss ℓ(z, y) that satisfies Assump-
tion 2.4. Under Assumption 2.6, then for all θ ∈ Θ

Wf,ℓ
ϕ(θ) = span

(x,w)∈Xθ×Vℓ

{[∂fx(ϕ(θ))]⊤w}. (7)

and, denoting Pℓ(ϕ(θ)) ∈ Rd×d the matrix of the projection
on this finite-dimensional vector subspace, we have

Wg,ℓ
θ = range

(
∂ϕ(θ)⊤Pℓ(ϕ(θ))

)
. (8)

With plain shallow ReLU and linear networks, when Vℓ =
Rn (this holds with the Euclidean loss or the Kullback-
Leibler loss), there happens to a be a “distinguished” choice
of ϕ (Marcotte et al., 2023, Lemma 2.13) such that the
projection matrix Pℓ is simply the identity, so that all the

1i.e., x belongs to the set Xθ0 , as defined in Proposition 2.3.
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needed information about Wg,ℓ
θ is captured in ∂ϕ. The

formalism with Pℓ enhances the flexibility of the framework
to encompass the variety of possible factorizations via f
and ϕ.

In light of (8) we introduce the vectors fields:

χℓi : θ 7→ ∂ϕ(θ)⊤Pℓ(ϕ(θ))ei, 1 ≤ i ≤ d (9)

and the linear function space:

Wg,ℓ := span{χℓ1, · · · , χℓd},

so that we have for any θ ∈ Θ, Wg,ℓ
θ = Wg,ℓ(θ), where the

trace at θ ∈ Θ of any set W ⊂ C1(Θ,RD) of vector fields
is defined as the linear space

W(θ) := span{χ(θ) : χ ∈ W} ⊆ RD. (10)

In particular h ∈ C1 is a conservation law of g with respect
to the loss ℓ if, and only if, its gradient is orthogonal to χℓi(θ)
for every i and θ. This property is stable by Lie brackets
(for self-containedness see a reminder on the underlying
calculus in Appendix B), leading to a new orthogonal char-
acterization of conservation laws (proved in Appendix B).

Proposition 2.9. If ℓ(z, y) satisfies Assumption 2.4 then
h ∈ C1(Θ,R) is a conservation law for g with respect to ℓ
if and only if ∇h(θ) ⊥ Lie(spani{χℓi})(θ) for all θ ∈ Θ.

2.2. Existence and “number” of conservation laws

Having characterized the conservation laws, we now seek
to ascertain the quantity of such laws. However, to com-
prehend the number that exists, it is essential to establish
a notion of independence that eliminates all functional re-
dundancies. We recall the definition of independency from
(Marcotte et al., 2023, Definition 2.18):

Definition 2.10. A family of functions hi, 1 ≤ i ≤ N is
said to be independent if the vectors ∇hi(θ), 1 ≤ i ≤ N
are linearly independent for all θ ∈ Ω.

The following fundamental theorem (Marcotte et al., 2023,
Theorem 3.3) provides a formula for the exact number of
independent conservation laws.

Theorem 2.11. If Wg,ℓ ⊆ C∞ (Θ,RD) and
dim(Lie(Wg,ℓ)(θ)) is locally constant (equal to some k)
then each θ ∈ Θ ⊆ RD admits a neighborhood U0 such
that there areD−k smooth (C∞) independent conservation
laws hk+1, · · · , hD of g with respect to ℓ on U0.

The proof of this theorem in (Marcotte et al., 2023, Theorem
3.3) relies on Frobenius Theorem (recalled in Theorem C.1)
and necessitates a reasoning by contradiction, along with
the use of an intermediate functional space. In this article,
we present a significantly simplified proof (see Appendix C)

that is based solely on the Frobenius Theorem and the char-
acterization of Proposition 2.9.

We now demonstrate why Definition 2.10 effectively elimi-
nates all functional redundancies. The following proposition
states (see Appendix D for a proof) that any conservation
law can be expressed locally as a function of the independent
reference conservation laws obtained in Theorem 2.11.

Proposition 2.12. Consider a smooth conservation law
h : Θ 7→ R of g with respect to ℓ, and θ ∈ Θ around
which dim(Lie(Wg,ℓ)(θ)) is locally constant (equal to some
integer k). Then, on the neighborhood U0 of θ given by
Theorem 2.11, h can be expressed as a function of theD−k
smooth independent conservation laws hk+1, · · · , hD of g
given by Theorem 2.11.

Marcotte et al. (2023) developed a code (detailed in their
Section 3.3) that calculates the dimension of the trace of the
Lie algebra generated by a finite set of vector fields.

2.3. Conservation laws for Adam flows

A simplified version of Adam algorithm (Kingma & Ba,
2014) (full batch, without bias correction and ε, β1, β2 =
0)2 updates the parameters θ, with an estimate of the first
and second moments mt, vt using the following equations:

mt = −∇θLZ(θt),

vt = − (∇θLZ(θt))
2
,

θt+1 = θt − η
mt√
vt

= θt − ηsign(∇θLZ(θt))

(11)

where the square, square-root, and division are done
element-wise.

The discrete dynamic (11) corresponds to the explicit Euler
scheme of the ODE (informally corresponds to (11) when
η → 0):

θ̇ = −sign (∇θLZ(θ)) . (12)

Remark 2.13. Connections between the Adam algorithm
and variants of sign gradient descent (referred to as
“variance-adapted sign descent”) have been established in
(Balles & Hennig, 2018) in the discrete dynamic.

Thus one can adapt the results of Section 2.1 by considering
the ODE (12) instead of (4). In particular under the same
assumptions as in Proposition 2.3, a conservation law h for
g for the Adam flow (12) with respect to the loss ℓ is now
characterized by ∇h(θ) ⊥ Wg,ℓ

θ , ∀θ where

Wg,ℓ
θ := span

Z=(xi,yi)∈(Xθ×Y)N
{sign (∇LZ(θ))}. (13)

2The continuous-time version of the Adam algorithm (Kingma
& Ba, 2014) has also been studied, including the bias correction
steps, with any ϵ, β1, β2 and any batch size in (Barakat & Bianchi,
2021).
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In particular, the associated space Wg,ℓ is locally constant
with respect to θ. Thus, the trace of the generated Lie alge-
bra at θ is directly equal to the one of Wg,ℓ at θ: by using
Theorem 2.11, it suffices to determine the dimension of the
trace of Wg,ℓ to know the number of independent conser-
vation laws. In the case of a 2-layer linear neural network
parameterized by ϕ : (U, V ) ∈ Rn×r × Rm×r 7→ UV ⊤

(and similarly for an attention layer), we empirically find
that there are no conservation laws, except in the special case
n = m = r = 1, where there is exactly one conservation
law, given by |U | − |V |, as detailed in Appendix R.

3. The case of shallow neural networks
Equipped with the general results of the previous section we
now provide characterizations of the conservation laws of
several elementary networks that serve as building blocks of
standard modern network architectures such as ResNets and
Transformers. After showing that a basic block has the same
conservation laws with or without skip connections, we
remind existing laws for shallow ReLU and linear networks,
before providing our main contributions of this section : a
characterization of the conservation laws of shallow ReLU
networks with convolutions, of attention layers, and of cross-
entropy classification layers.
Remark 3.1 (Conservation and invariances). In this section
we characterize all conservation laws for elementary net-
works (except multihead layers where the completeness of
the identified laws is left to future work). It is noteworthy
that these laws in most cases are intrinsically connected to
network invariances (as detailed in Appendix J.1). When
considering weight decay regularization and applying the
structure theorem Theorem 2.1, a particular consequence
of our results is that the conservation laws from the non-
regularized case (GF without weight decay) vanish at the
optimum. This finding not only aligns with partially known
“balancedness” properties ((Yang et al., 2022, Theorem 1)
applies here in the case of a ReLU activation, as the associ-
ated elementary networks gθ are homogeneous with respect
to hidden neuron rescaling, and our results show that it is
also true for linear networks and for cross-entropy classifi-
cation layers (20)); it also provides additional insight on the
dynamics of the convergence to balanced parameters.

3.1. With vs without residual connections

We first establish a simple but generic result for conservation
laws in the presence of skip connexions. Given any neural
network g(θ, ·) with n = m, we consider the residual neural
network g̃(θ, ·) defined by:

g̃(θ, ·) : x ∈ Rn 7→ x+ g(θ, x) ∈ Rn. (14)

Proposition 3.2. With respect to any loss satisfying Assump-
tion 2.4 g and g̃ have the same conservation laws.

Proof. Use Proposition 2.3 and Corollary 2.5, and notice
that since ∂θg = ∂θg̃ we have Wg,ℓ

θ = W g̃,ℓ
θ .

Remark 3.3. It is worth noticing that this result does not
require the assumption Vℓ = Rn.

3.2. ReLU and linear networks: known results

Let us consider U ∈ Rn×r, V ∈ Rm×r, and we denote
θ := (U, V ) the parameters and uk, vk the columns of U
and V . In that case, the neural network writes:

g(θ, x) = Uσ(V ⊤x), (15)

where σ = id (resp. σ = ReLU) in the linear case case (resp.
ReLU case). The number of parameters is D = (n+m)r.

We recall here the result demonstrated in (Marcotte et al.,
2023, Lemma 2.13, Theorem 2.14) which shows that,
through an appropriate parameterization ϕ, the study of
Wg,ℓ can be reduced to the study of a Lie algebra generated
by a finite number of ‘well-behaved’ vector fields.
Theorem 3.4. Under Assumption 2.4, if Vℓ = Rn, then con-
sidering Θ = RD and ϕ(θ) := UV ⊤ for linear neural net-
works, one has: Wf,ℓ

ϕ(θ) = Rd and Wg,ℓ
θ = range(∂ϕ(θ)⊤).

The same result holds for 2-layer ReLU networks (with or
without bias bk ∈ R, 1 ≤ k ≤ r) with Θ ⊆ RD the set of
all parameters θ such that hidden neurons define pairwise
distinct hyperplanes Hk := {x ∈ Rd, v⊤k + bk = 0}, and
ϕ(θ) := (ukv

⊤
k )

r
k=1

Indeed, by Theorem 3.4, computing the associated generated
Lie algebra and finally applying Theorem 2.11, the authors
are able to determine all conservation laws in these settings
(Marcotte et al., 2023, Corollary 4.4):
Proposition 3.5. With the assumptions of Theorem 3.4, in
the ReLU (resp. linear) case, we have: for any θ ∈ Θ (resp.
θ ∈ Θ such that ( UV ) has full rank), there is a neighborhood
of θ in which all conservation laws for (15) are functions of
∥uk∥2 − ∥vk∥2 (resp. of ⟨uk, ul⟩ − ⟨vk, vl⟩), 1 ≤ k, l ≤ r.

3.3. ReLU neural networks with convolutions

We now consider the case of a basic block of a one-hidden
layer ReLU neural network with convolutions. This means
that the input vector x ∈ Rm is considered as the concatena-
tion of channels x(i) ∈ Rp, 1 ≤ i ≤ c0 each with p pixels
(for images), or p samples (in case of time series), so that
m = c0p. Accordingly the output of the network is given
by (15) where the matrices V and U are made of circulant
blocks respectively corresponding to convolutions with fil-
ters vj,i, uk,j , 1 ≤ i ≤ c0, 1 ≤ j ≤ c1 (c1 is the number
of channels of the hidden layer), and 1 ≤ k ≤ c2 (c2 is
the number of channels of the output y = g(θ, x) ∈ Rn,
considered as the concatenation of channels y(k) ∈ Rn1 , so
that n = c2 × n1.
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More explicitly this corresponds to

g(θ, x) :=
( c1∑
j=1

uk,j ⋆ σ
( c0∑
i=1

vj,i ⋆ x
(i)
))c2
k=1

. (16)

Assuming that the filters all satisfy uk,j ∈ Rnu (resp. vi,j ∈
Rnv ) the network parameters θ := ((uk,j)k,j , (vj,i)j,i), are
of dimension D := c2c1nu + c1c0nv = c1(c2nu + c0nv).

We define Θconv as the set of all θ such that the matrix V
has all its columns that define pairwise distinct hyperplanes.

A conservation law for this network has already been es-
tablished in (Du et al., 2018, Theorem 2.3) for a single-
channel networks (c0 = c1 = c2 = 1). We find that similar
functions are preserved in the multi-channel case, and we
demonstrate that there are no others by characterizing the
trace of the associated Lie algebra as well as its dimension.
The following theorem presents all conservation laws of
the network (16). A more general version of this result is
proved in Appendix E, which allows for instance to consider
strided convolutions (Zhang, 2019) (i.e. with zeros inserted
in the filter) in order to define translation invariant CNNs.

Theorem 3.6. Under Assumption 2.4, if Vℓ = Rn, then in
the neighborhood of each θ ∈ Θconv there are exactly c1
independent conservation laws for (16) given by

hj(θ) :=

c2∑
k=1

∥uk,j∥2 −
c0∑
i=1

∥vj,i∥2, 1 ≤ j ≤ c1. (17)

Remark 3.7. The formulation of the neural network (16)
in the multi-channel convolutive case generalizes the one
(15) of a simple 2-layer ReLU network without convolution.
Specifically, setting p = 1 and identifying c0 and nv with
m, c1 with r, and c2 and nu with n, yields (15) and the
conservation laws obtained in Proposition 3.5 coincide with
the ones given in Theorem 3.6.

3.4. One attention layer

For an attention layer, the input X ∈ RN×dim is reshaped as
the concatenation x ∈ Rm of N tokens x(i) ∈ Rdim, with
m = Ndim. The layer output is

g(θ, x) = softmax(XQ⊤KX⊤)XV ⊤O ∈ RN×dim (18)

(reshaped row by row as a n-dimensional vector with n =
N × dim to fit our generic notations), and where:

softmax(A)i =
exp(Ai)∑N

k=1 exp(Aik)
,

and with Q,K, V,O ∈ Rd1×dim. We assume that all the
columns of O⊤V are non equal to zero. We consider Θatt

the set of all parameters that satisfy this condition.

We define ϕ(θ) = (ϕ1, ϕ2) with ϕ1 = Q⊤K and
ϕ2 = V ⊤O the reparametrization such that (up to flat-
tening of matrices into vectors) g(θ, x) = f(ϕ, x) =
softmax(Xϕ1X

⊤)Xϕ2. The following theorem (see Ap-
pendix F for a proof) demonstrates that the parameterization
ϕ is, in a some sense, sufficiently rich and allows for reduc-
tion to the study of a Lie algebra generated by the vector
fields (θ 7→ ∂ϕ(θ)⊤ek)k.
Theorem 3.8. Under Assumption 2.4, if Vℓ = Rn and
N ≥ 2 then

Wf,ℓ
ϕ(θ) = Rd, and Wg,ℓ

θ = range{∂ϕ(θ)⊤}, ∀θ ∈ Θatt.

Thanks to this theorem, the analysis boils down to a similar
problem as for Proposition 3.5 and allows us to determine
all conservation laws. See Appendix G for a proof.
Corollary 3.9. Under the assumptions of Theorem 3.8 for
each θ ∈ Θatt such that both horizontally concatenated
matrices

(
Q,K

)
and

(
V,O

)
have full rank, there is a neigh-

borhood of θ in which all conservation laws for (18) are
functions ofQQ⊤−KK⊤, and V V ⊤−OO⊤ and vice-
versa.

For more than one head, the neural network writes

g(θ,X) =

H∑
h=1

softmax(XQ⊤
hKhX

⊤)XV ⊤
h Oh, (19)

up to matrix flattening, with Qh,Kh, Vh, Oh ∈ R
d1
H ×dim.

In the case of multi-head attention, we can partially ex-
tend our results to obtain a set of conserved quantities (see
Corollary 3.10, with proof detailed in Appendix G). How-
ever, determining whether this set of conservation laws is
complete remains an open problem.
Corollary 3.10. For any h = 1, · · · , H , the functions

QhQ
⊤
h −KhK

⊤
h , VhV

⊤
h −OhO

⊤
h ,

define conservation laws for (19) with respect to any loss ℓ.

3.5. Cross-Entropy Classification Layer

For classification tasks (which we consider in the numerical
part Section 5.2), the final layer typically combines a linear
transformation with the evaluation of a cross-entropy. This
corresponds to using a Kullback-Leibler loss over n classes
ℓ(y, y′) :=

∑n
i=1 yi log (yi/y

′
i) − yi + y′i, together with a

soft-max layer g(θ, ·) where θ ∈ Rn×m:

g(θ, x) := softmax(θx), softmax(z)i :=
ezi∑
j e
zj
. (20)

Note that this loss satisfies Assumption 2.4 and Vℓ = Rn.
The following proposition (proved in Appendix H) shows
that the softmax layer induces a new set of conservation
laws with respect to this loss.

6
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Proposition 3.11. With respect to any loss ℓ such that Vℓ =
Rn, there are exactly m independent conservation laws for
the classification layer given by (20): hj(θ) :=

∑
i θi,j , j =

1, . . . ,m.

4. Deeper ResNets and Transformers
In this section, we examine conservation laws for deep net-
works g(θ, ·) (denoted here as gθ(x)) composed of q residual
blocks. Specifically, each block l consists of parameters θl
such that θ = (θ1, . . . , θq) and corresponds to an elemen-
tary network denoted glθl(x). Thus, the global network gθ
can be written as the composition of q elementary networks:

gθ : x ∈ Rm 7→ gqθq ◦ · · · ◦ g
1
θ1(x) ∈ Rm.

In case of a classification task using a cross-entropy loss, we
consider a last block constitued of a linear (fully-connected)
layer and a softmax activation gq+1

θq+1
as in (20), so that θ :=

(θ1, · · · , θq+1) and the global network then writes:

gθ : x ∈ Rm 7→ gq+1
θq+1

◦ gqθq ◦ · · · ◦ g
1
θ1(x) ∈ Rn.

Example 4.1 (Convolutive ResNet). A convolutive ResNet
corresponds to gθ : x ∈ Rm 7→ gθ(x) ∈ Rn with q residual
blocks (we recall that here m = c0p). Each block l ≤ q
has parameters (ulk,j , v

l
j,i) and consists of a plain 2-layer

convolutive ReLU network (16) with a skip connection:

glθl : x 7→ x+ U lσ
(
V lx

)
, (21)

with matrices V l and U l made of circulant blocks respec-
tively corresponding to convolutions with filters vlj,i, u

l
k,j .

Example 4.2 (Transformer). We consider a transformer
architecture where gθ : x ∈ Rm 7→ gθ(x) ∈ Rn(here
m = N × dim) consists of alternating residual blocks with
either an attention layer with one head, or a 2-layer MLP. We
notably omit normalization layers, and restrict to a single
head. In that case, up to appropriate harmless matricizations
or flattening operations associating the vector x to the token
matrix X , each block l ≤ q writes either:

glθl : x 7→ vec(X⊤ + Ulσ(U
′
lX

⊤)), (22)

where θl = (Ul, U
′
l ) corresponds to the two weight matrices

of a 2-layer MLP (15), or:

gθl(x) = vec([X + softmax(XQ⊤
l KlX

⊤)XV ⊤
l Ol]

⊤),
(23)

where θl = (Ql,Kl, Vl, Ol) corresponds to the parameters
of a single-head attention layer (18).

4.1. Characterization of “block” conservation laws

To analyze conservation laws in this context we focus on
laws that depend only on a subset (or block) of parameters.

Considering θ ∈ Θ the parameters of a global network gθ,
we focus on θT a subset of the parameter entries (typically
we will consider θT = θl for some l, but other scenarios
will also be covered), so we can write θ = (θT , θT c), where
θT c gathers the remaining entries of the parameters θ.

The following proposition (see Appendix I) characterizes
smooth conservation laws of g that only depend on θT .

Proposition 4.3. Consider a function h ∈ C1(Θ,R) that
only depends on the coordinates θT , and for each θ ∈ Θ
denote

ΘT c(θT ) := {η ∈ RT
c

: (θT , η) ∈ Θ} (24)

Consider a loss that satisfies the assumptions of Proposi-
tion 2.3 as well as Assumption 2.4. The function h is a
conservation law of g with respect to ℓ if, and only if, for
every θ ∈ Θ one has ∇θT h(θ) ⊥ RθT (Wg,ℓ), where:

RθT (Wg,ℓ) := span
η∈ΘTc (θT )

w∈Vℓ

span
x∈X(θT ,η)

{∂θT g((θT , η), x)⊤w}.

(25)

For concrete examples below, a technical challenge that
arises when studying conservation laws that depend solely
on θT , and in comparing them with those of “internal” shal-
low networks involving only θT , is the analysis of the set
Xθ of input x of the global network gθ around which it is
smooth enough (cf the definition of Xθ in Proposition 2.3),
rather than the set of inputs of the considered “internal”
shallow network. Overall, the important property for our
purposes is the density of this set, proved in Appendix K.

Lemma 4.4. Denote Θ = Θq × . . .×Θ1 (or Θ =
Θq+1 ×Θq × . . .×Θ1 with Θq+1 = Rn×m when there
is a last softmax layer) where for each layer 1 ≤ l ≤ q, Θl
is the set of parameters θl such that

1. glθl is an open map3;

2. all the rows of the matrix V l (resp. U ′
l ) from (21) (resp.

(22)) are nonzero in the convolutive ResNet case (resp.
in the Transformer case).

For every θ ∈ Θ we have Xθ = Rm.

Remark 4.5. Obviously Item 2 only excludes a lower-
dimensional set of parameters. We discuss in Appendix L
why Item 1 is also a generic condition on the parameters for
the example of a residual block associated with a 2-layer
ReLU network.

4.2. Block laws for natural residual blocks

Consider θT := θl where l ∈ {1, · · · , q}. The following
theorem (See Appendix N for a proof) demonstrates that

3i.e., it sends an open set to an open set

7



Conservation laws for ResNets and Transformers

the conservation laws of the global network g that depend
exclusively on θl are precisely those of the shallow network
glθl of the l-th residual block.

Theorem 4.6. With Θ as in Lemma 4.4, consider the l-
th residual block of Example 4.1 (resp. Example 4.2), and
denote θT := θl and θT c the parameters of all other residual
blocks. A function H : θ = (θT , θT c) ∈ Θ 7→ h(θT ) that
only depends on θT is a conservation law of g with respect to
a loss ℓ such that Vℓ = Rn if and only if h is a conservation
law of the shallow residual network gl(θl, x) := glθl(x) with
respect to the Euclidean loss. The same result holds for
θT := θq+1 when considering a last block (20).

Thus by using Proposition 3.2, the conservation laws of g
that only depends on θl are exactly the ones of (16) (resp.
(18)), which are described in Theorem 3.6 (resp. Corol-
lary 3.9) for a residual block defined with a 2-layer ReLU
networks (resp. with an attention layer).

4.3. Case of blocks overlapping a residual connection

This section focuses exclusively on the case of ResNet (with
or without) convolutions as defined in Example 4.1. In the
previous section Section 4.2, we examined the conserva-
tion laws of the global network g that depend only on the
parameters θl of the l-th block, and we just show that they
exactly correspond to the ones of the shallow network glθl
corresponding to the l-th block. However, it is also possible
to recast the global network as a composition of elementary
networks that maintain parameter separation while involv-
ing a subset of parameters located before and after a residual
connection as described in Figure 2 in Appendix O.

Specifically, let us consider l ∈ {1, · · · , q − 1} and θT =
(vl+1
j,i , u

l
k,j′). In that case, θT corresponds to two consec-

utive parameter blocks that overlap a skip connection (as
described in Figure 2 in Appendix O). Denoting x1 (resp.
y1) the input of the intermediate layer of the l-th (resp.
l+1-th) block, x2 (resp. y2) the copy of the input of the cor-
responding block that is transferred via the skip connection,
g can be written as a composition of g1, g2 and g3 with

( y1y2 ) = g2

(
θ̃2, (

x1
x2

)
)
:=
(
V l+1

Id

)
( U l Id ) (

σ
id ) (

x1
x2

) ,

( x1
x2

) = g3(θ̃3, x) :=
(
V l

Id

)
(gl−1
θl−1

◦ . . . ◦ g1θ1)(x),

and g1
(
θ̃1, (

y1
y2 )
)
= gqθq ◦ . . .◦g

l+2
θl+2

(( U l+1 Id ) (
σ
id ) (

y1
y2 ))

where θ̃1, θ̃3 gather all parameters appearing in g1 and g3.
The following proposition (See Appendix P for a proof)
shows that there exist no conserved functions of the global
network that depend exclusively on θ̃2 = θT = (V l+1, U l).

Theorem 4.7. Consider a layer index 1 ≤ l ≤ q − 1 and
Θ defined as in Lemma 4.4 with the exception that for each

θl+1 ∈ Θl+1, we further require that the rows of V l+1 are
pairwise non-colinear. If nv = p then any conservation law
of g with respect to the Euclidean loss that only depends on
θ̃2 is a constant function.

4.4. Numerical confirmation

In the general case of a residual network composed of
q blocks, there could potentially exist conservation laws
that depend on a larger subset of parameters than those
previously analyzed, which helped us demonstrate that
we recover exactly the same conservation laws as those
of elementary blocks when considering the global net-
work. However, by numerically computing the dimension
of span{LZ(θ) : Z} ⊆ Wg

θ with a sufficiently large batch
size to adequately explore the space, we find that there is no
additional conservation law when m > 1 for a ResNet with
q = 2 residual blocks (see code in our GitHub repository).

When m = 1, numerical results suggest that there are addi-
tional conservation laws. It might be that this specific case
enables as in (Marcotte et al., 2024, Theorem 4.1) to shed
the light on new invariances that give rise to new conserva-
tion laws. This is confirmed by the following example: we
exhibit a domain Ω where there are more conservation laws
than the “block” ones.

Example 4.8. Consider a ReLU neural network with two-
residual blocks, g((u, v, s, t), x) = x+ uσ(vx) + sσ(t(x+
uσ(vx)) with (u, v, s, t) ∈ Ω ⊆ R4 and x ∈ R. While there
are two “block” conservation laws: u2−v2 and s2−t2, there
are three conservation laws on the set Ω of all parameters
such that sgn(t) = sgn(v) = sgn(u). Indeed, for every x,

1. either vx, tx ≤ 0, hence g(θ, x) = x and ∇θg(·) = 0;

2. or vx, tx ≥ 0, hence g(θ, x) = x+uvx+stx+stuvx
as vx, tx, tu ≥ 0, and thus 1

x∇θg(·) =: χ1(·) is a
vector field that does not depend on x.

As the space Wg,ℓ = Rχ1 is spanned by a single non-null
vector field, its Lie algebra is itself, and by Theorem 2.11,
there are exactly 4− 1 = 3 conservation laws as claimed.

5. Conservation laws for discrete dynamics
In practice optimization is performed with a discrete dynam-
ics associated to stochastic gradient descent. To what extent
do conservation laws still apply in this context? This is the
object of this section.

5.1. (Stochastic) gradient descent as a training dynamic

We consider the ERM problem (1). Instead of using gradient
descent (2), we consider the stochastic gradient descent
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(SGD) method on mini-batches:

θk+1 = θk − τk∇LZk
(θk),

where the sequence of mini-batches (Zk)k is drawn i.i.d.
from the data distribution. The following proposition (see
Appendix Q for a proof) shows that a conservation law is
approximately preserved by SGD.

Proposition 5.1. Let h(θ) be a conservation law of the gra-
dient flow with a bounded Hessian ∀θ, ∥∂2h(θ)∥ ≤ Ch.
Suppose that the gradients remain bounded in expectation
throughout the algorithm:

EZk,θk

∥∥∇LZk
(θk)

∥∥2
2

≤ CL. (26)

Then, we have E
∣∣h(θk)−h(θ0)∣∣ ≤ ChCL

2

k−1∑
i=0

τ2i . (27)

For a constant step size τk = τ , this proposition shows that
the conservation error grows as |h(θk)− h(θ0)| = O(τ2k),
which increases linearly with the number of iterations. If
one uses a decaying step size, such as τk = τ0/(k + 1),
which ensures convergence of the method, then the error re-
mains bounded: |h(θk)−h(θ0)| = O(τ20 ). The requirement
that h has a bounded Hessian holds in the case considered
in this paper since the conservation laws we examine are
quadratic. The key assumption for the result to hold is the
bound on the gradient magnitude in (26). This condition
is met if the loss function ℓ and the network gθ are uni-
formly Lipschitz, though this is not generally true for deep
networks. It also holds with an explicit constant CL for
smooth convex losses (Bach, 2024), but this setting is quite
restrictive. More generally, such bounds hold for smooth
losses when the variance of ∇LZk

(θ) is bounded (Garrigos
& Gower, 2023), because the iterates are bounded in ex-
pectations, E(∥θk∥2) < +∞, though the constant CL may
not be explicitly determined. In the numerical experiments
presented in Section 5.2, we empirically evaluate the con-
stants to show that, in practice, they remain relatively small,
ensuring approximate conservation.

5.2. Numerical experiments

In Figure 1, we train a ResNet-18 on CIFAR-10 (Krizhevsky,
2009) while tracking the difference between the squared
Frobenius norms of consecutive convolutional layers in
the first residual block, considering the conservation law
h(θT ) :=

∑c1
j=1 hj(θT ), where hj is defined in (17), with

θT representing the parameters of the first residual block.
We vary the learning rate between 10−3 and 5×10−3, using
stochastic gradient descent (SGD) without momentum or
weight decay. For each learning rate, we train 10 models
for 50 steps with 10 different random seeds, recording both
the loss evolution (bottom) and the evolution of the con-
servation error |(h(θk)− h(θ0))/h(θ0)| (top). The dotted

Figure 1. Tracking a conserved function during ResNet-18 training
on CIFAR-10.

lines show the theoretical slopes Cτ2 derived from (27),
confirming that the function is approximately conserved and
that the slope coefficient maintains proportionality with τ2.
Our code is available at our GitHub repository.

In another experiment, we train a transformer model on the
IMDb sentiment analysis dataset (Maas et al., 2011) using
SGD optimization. We track the evolution of the Frobenius
norm of the conserved matrix identified in Corollary 3.10,
specifically examining the query and key matrices from the
first attention head in the first layer. Consistent with our
ResNet training results presented in Figure 1, we observe
that the conservation error scales as O(step-size2) through-
out training, which confirms our theoretical bound (27).
Furthermore, it is worth noting that the numerical behavior
is unchanged whether masking is applied or not. See Ap-
pendix O for the associated figures. Our code is available at
our GitHub repository

Conclusion
This paper investigates conservation laws in deep networks
(ResNet and Transformer architectures) within gradient flow
dynamics and examines their behavior under discrete SGD
dynamics. Our analysis does not currently account for trans-
former normalization layers, and the multi-head attention
mechanism is only partially addressed. The integration of
these components as well as max-pooling layers presents
promising avenues for future research.
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A. Proof of Theorem 2.1 (Structure theorem)
To prove Theorem 2.1, it will be essential to juggle with certain properties of conserved quantities when they depend
on (t, θ). Here we recall definitions and properties directly derived from (Marcotte et al., 2024), which are necessary to
understand the proof of the structure theorem.

A.1. Definitions of conservation

We recall definitions and properties from (Marcotte et al., 2024).

Definition A.1 (Conservation through a (family of) flow(s)). Consider an open subset Ω ⊆ R × RD and a function
F ∈ C1(Ω,RD). By the Cauchy-Lipschitz theorem, for each initial condition init := (tinit, θinit) ∈ Ω, there exists a
unique maximal solution t ∈ (tinit − ηinit, tinit + ηinit) 7→ θ(t,init) of the ODE θ̇(t) = F (t, θ(t)) with θ(tinit) = θinit. A
function h : Ω ⊆ RD+1 → R is conserved on Ω through the flow F if h(t, θ(t,init)) = h(tinit, θinit) for each choice of
init ∈ Ω and every t ∈ (tinit − ηinit, tinit + ηinit). It is conserved on Ω through a family of flows if h is conserved on Ω
through all flows.

Proposition A.2 (Smooth functions conserved through a family of flows). Let I be any set. Given Fi ∈ C1(Ω,RD)
for any i ∈ I, a function h ∈ C1(Ω,R) is conserved through the family of flows induced by all Fi if and only if
⟨∇h(α), (1, Fi(α)⊤)⊤⟩ = 0 for all α ∈ Ω and for all i ∈ I. Moreover by denoting χi the vector field on Ω defined by

χi : α ∈ Ω 7→
(

1
Fi(α)

)
∈ RD+1, (28)

and by denoting
W := spani{χi} ⊂ C1

(
Ω,RD+1

)
, (29)

this exactly means that for all α ∈ Ω, ⟨∇h(α),W(α)⟩ = 0, where the trace of W is defined by

W(α) := span{χ(α) : χ ∈ W} = spani{χi(α)}. (30)

In the context of the dynamic (3), we consider α = (t, θ) ∈ R×Θ ⊆ RD+1 and we consider the flow FZ defined by

FZ(t, θ) = −M(θ)∇LZ(θ)− λ(t)θ. (31)

We keep in that section the matrix M(θ) (that allows to deal with non-euclidean metric as in (Marcotte et al., 2024)).
However, we do not focus in that paper on the non-euclidean setting.

Definition A.3 (Conservation during the flow (3) with a given dataset). Consider an open subset Ω = Ωt × Ωθ ⊆ R×Θ
and a dataset Z = (xi, yi)i such that LZ ∈ C2(Ωθ,R). A function h : Ω ⊆ RD+1 → R is conserved on Ω during the flow
(3) if it is conserved through the flow induced by FZ defined in (31).

To identify conserved functions that do not depend on a specific dataset, we focus on a more precise class of conserved
functions: those that remain conserved during all flows defined by the ordinary differential equation (ODE) (3). This leads
us to the following definition. The goal is to derive universal laws that hold true regardless of any particular dataset.

Definition A.4 (Conservation during the flow (3) with “any” dataset). Consider an open subset Ω = Ωt ×Ωθ ⊂ R×Θ and
a loss ℓ(z, y) such that ℓ(·, y) is C2-differentiable for all y ∈ Y . A function h : Ω ⊆ RD+1 → R is conserved on Ω for any
data set if, for each data set (X,Y ) such that g(·, xi) ∈ C2(Ωθ,Rn) for each i, the function h is conserved on Ω during the
flow (3). This leads us to introduce the family of vector fields:

WΩ
g :=

{
χ(·) : ∃Z,∀i g(·, xi) ∈ C2(Ωθ,Rn), χ(·) = (1, FZ(·)⊤)⊤

}
⊆ C1(Ω,RD+1) (32)

so that being conserved on Ω for any dataset is the same as being conserved on Ω through WΩ
g .

The definitions provided above are local and contingent upon the selection of an open set of parameters Ωθ ⊂ Θ. However,
our primary interest lies in functions defined across the entire parameter space Θ; thus, we present the following definition.

Definition A.5 (Conservation law for a neural network). A function h : R×Θ 7→ R is a conservation law if for each open
subset Ω ⊆ R×Θ, h is conserved on Ω for any data set.

12
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Therefore, by using the “orthogonality” characterization of a conserved function Proposition A.2 and Definition A.5, the
object of interest to study locally conserved functions is the union of the traces

Wg
α :=

⋃{
WΩ

g(α) : Ω ⊆ R×Θ with Ω a neighborhood of α
}
. (33)

Corollary A.6. A function h : R×Θ 7→ R is a conservation law if and only if ∇h(α) ⊥ Wg
α for all α ∈ R×Θ.

Proposition A.7. Assume that for each y ∈ Y the loss ℓ(z, y) is C2-differentiable with respect to z ∈ Rn. For each
α = (t, θ) ∈ R×Θ we have:

Wg
α = span

Z=(xi,yi)∈(Xθ×Y)N
{(1,−[M(θ)∇LZ(θ) + λ(t)θ]⊤)⊤}

where Xθ is the set of data points x such that g(·, x) is C2-differentiable in the neighborhood of θ.

A.2. Proof of Theorem 2.1

Theorem 2.1 (Structure theorem). Let h(t, θ) be a conserved function for the ODE (3). If for every θ, there exists a
data-set Z such that ∇LZ(θ) = 0, then the function H(a) := h(0, a) satisfies h(t, θ) = H

(
θ exp(

∫ t
0
λ(s)ds)

)
, ∀t, θ. Thus,

conserved functions can be expressed with D variables (instead of D+1). Moreover, h̃(t, θ) := H(θ) is a conservation law
of (3) without WD (i.e. with λ(t) ≡ 0).

To manipulate the first assumption we outline it as follows:

Assumption A.8. For all θ ∈ Θ, there exists Z ∈ Z ′
θ such that ∇LZ(θ) = 0, where we denote Z ′

θ the collection of all data
set Z = (xi, yi)i such that for all i, g(·, xi) is C2-differentiable in the neighborhood of θ

Assumption A.8 is satisfied for all classical losses e.g. for the mean-squared or the cross-entropy loss as shown in Lemma
D.2 of (Marcotte et al., 2024).

Proof. Let h(t, θ) be a conservation law. Then by Corollary A.6, for each α = (t, θ) ∈ R×Θ we have: ⟨∇h(α),Wg
α⟩ = 0.

In particular, thanks to Proposition A.7 and Assumption A.8, one has ⟨∇h(α), (1,−[λ(t)θ]⊤)⟩ = 0. By Proposition A.2,
h is in particular conserved through the flow induced by F (t, θ) := −λ(t)θ. For each initialization (0, θ0), the solution
of the ODE θ̇(t) = F (t, θ(t)) is θ(t) = θ0 exp(−

∫ t
0
λ(s)ds) for t ∈ R and by definition of a conserved function,

one has h(t, θ(t)) = h(0, θ(0)) = h(0, θ(t) exp(
∫ t
0
λ(s)ds)) = H(θ(t) exp(

∫ t
0
λ(s)ds)). Thus for all t and θ, one has

h(t, θ) = H(θ exp(
∫ t
0
λ(s)ds)).

Now, let us show that (t, θ) 7→ H(θ) is a conservation law of the GF without WD scenario (λ(t) ≡ 0). For any
α = (t, θ) ∈ R×Θ, one has

∇h(α) =
(
∂th(α)
∇θh(α)

)
=

(
⟨∇H(θ exp(

∫ t
0
λ(s)ds)), λ(t)θ exp(

∫ t
0
λ(s)ds)⟩

exp(
∫ t
0
λ(s)ds)∇H(θ exp(

∫ t
0
λ(s)ds))

)
.

Let us consider α = (t, θ) ∈ R×Θ. By taking Z ∈ Z ′
θ (NB: here we do not choose it such that ∇LZ(θ) = 0) and using

the characterization (Corollary A.6) of a conservation law and Proposition A.7, one has:

0 =

〈
∇h(α),

(
1

−M(θ)∇LZ(θ)− λ(t)θ

)〉
= exp(

∫ t

0

λ(s)ds)
(
⟨λ(t)θ,∇H(θ exp(

∫ t

0

λ(s)ds))⟩+

⟨∇H(θ exp(

∫ t

0

λ(s)ds)),−M(θ)∇LZ(θ)− λ(t)θ⟩
)

= − exp(

∫ t

0

λ(s)ds)⟨∇H(θ exp(

∫ t

0

λ(s)ds)),M(θ)∇LZ(θ)⟩.

13
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In particular, this remains true for t = 0, and thus one has:

⟨∇H(θ),M(θ)∇LZ(θ)⟩ = 0.

Finally by denoting H0 : (t, θ) 7→ H(θ), one has〈
∇H0(t, θ),

(
1

−M(θ)∇LZ(θ)

)〉
= 0,

and thus H0 is a conservation law for the GF without WD case by using Corollary A.6 and Proposition A.7.

B. Proof of Proposition 2.9 (Characterization of conservation laws via Lie algebras)
First, we recall that the Lie bracket [χ1, χ2] of two vector fields χ1, χ2 ∈ C∞(Ω,RD) is the vector field defined by:

[χ1, χ2] : θ ∈ Ω 7→ [χ1, χ2](θ) := ∂χ1(θ)χ2(θ)− ∂χ2(θ)χ1(θ). (34)

Let us consider W ⊆ C∞(Ω,RD). The generated Lie algebra of W is the smallest space A ⊆ C∞(Ω,RD) that contains
W and that is stable by Lie brackets, i.e. for any χ1, χ2 ∈ A one has [χ1, χ2] ∈ A. We denote A := Lie(W ).

Proposition 2.9 is a direct consequence of this lemma:

Lemma B.1. Let h be a real-valued function defined on Ω and let consider two smooth vector fields χ1 and χ2 defined on
Ω satisfying for all θ ∈ Ω:

⟨∇h(θ), χ1(θ)⟩ = 0 and ⟨∇h(θ), χ2(θ)⟩ = 0, (35)

then
⟨∇h(θ), [χ1, χ2](θ)⟩ = 0. (36)

Proof. Let us denote χ the Lie bracket of χ1 and χ2. By definition

χ(θ) := [χ1, χ2](θ) = ∂χ1(θ)χ2(θ)− ∂χ2(θ)χ1(θ). (37)

Differentiating (35) gives
∂χi(θ)

⊤∇h(θ) = −∂(∇h)(θ)⊤ χi(θ) = −∂(∇h)(θ)χi(θ), (38)

as ∂(∇h)(α) is self-adjoint. Using this relation (38), we have

⟨∇h(θ), χ(θ)⟩ = ⟨∂χ1(θ)
⊤∇h(θ), χ2(θ)⟩ − ⟨∂χ2(θ)

⊤∇h(θ), χ1(θ)⟩
= −⟨∂(∇h)(θ)χ1(θ), χ2(θ)⟩+ ⟨∂(∇h)(θ)⊤ χ2(θ), χ1(θ)⟩
= 0.

C. A new and simplified proof of Theorem 2.11 (Marcotte et al., 2023, Theorem 3.3)
We first recall Frobenius theorem (see for example (Marcotte et al., 2023, Theorem E.1) with the same notations or see
(Isidori, 1995, Section 1.4) for control theory practitioners).

Theorem C.1 (Frobenius theorem). Consider W ⊆ C∞(Ω,RD), and assume that the dimension of its trace W(θ) is
constant: dimW(θ) = k for every θ ∈ Ω ⊆ RD. Then the two following assertions are equivalent:

1. each θ ∈ Ω admits a neighborhood U0 such that there exists D − k smooth (C∞) real-valued functions hk+1, · · · , hD
on U0 such that for all θ′ ∈ U0:

span{∇hk+1(θ
′), · · · ,∇hD(θ′)} = W(θ′)⊥; (39)

2. the following property holds:
[χ1, χ2](θ) ∈ W(θ), ∀ χ1, χ2 ∈ W,∀ θ ∈ Ω. (40)

14
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By using Proposition 2.9 and Theorem C.1, we derive the following corollary, which is already established in (Marcotte
et al., 2023), Theorem 3.3. Nevertheless, this new proof, by using Proposition 2.9, is more intuitive and straightforward.

Corollary C.2. Let us assume that Wg,ℓ ⊆ C∞ (Θ,RD). If dim(Lie(Wg,ℓ)(θ)) = k is locally constant then each
θ ∈ Θ ⊆ RD admits a neighborhood U0 such that there are D− k smooth conservation laws hk+1, · · · , hD of g on U0 and
such that for all θ′ ∈ U0, the vectors (∇hk+1(θ

′), · · · ,∇hD(θ′)) are linearly independent.

Thus by using Definition 2.10, Corollary C.2 can be reformulated as

Corollary C.3. Let us assume that Wg,ℓ ⊆ C∞ (Θ,RD). If dim(Lie(Wg,ℓ)(θ)) = k is locally constant then each
θ ∈ Θ ⊆ RD admits a neighborhood U0 such that there are D− k smooth independent conservation laws hk+1, · · · , hD of
g on U0.

D. Proof of Proposition 2.12 (role of independent conservation laws)
Proposition 2.12. Consider a smooth conservation law h : Θ 7→ R of g with respect to ℓ, and θ ∈ Θ around which
dim(Lie(Wg,ℓ)(θ)) is locally constant (equal to some integer k). Then, on the neighborhood U0 of θ given by Theorem 2.11,
h can be expressed as a function of the D − k smooth independent conservation laws hk+1, · · · , hD of g given by
Theorem 2.11.

Proof. We consider some θ ∈ Θ such that dim(Lie(Wg,ℓ)(θ′)) = k is locally constant. By using Theorem 2.11, there exist
hk+1, · · · , hD smooth conservation laws of g on a neighborhood U0, and thus by using Proposition 2.9 for any θ′ ∈ U0:

span{∇hk+1(θ
′), · · · ,∇hD(θ′)} = Lie(Wg,ℓ)(θ′)

⊥
. (41)

But as h is also a conservation law of g, by using again Proposition 2.9, one has that for any θ′ ∈ U0: ∇h(θ′) ∈
span{∇hk+1(θ

′), · · · ,∇hD(θ′)}. This exactly means that ∇h is linearly dependent of all gradients ∇hi everywhere on
U0. If all conservation laws are (C∞) smooth on U0, this corresponds to the fact (cf (Newns, 1967, Theorem 1)) that h is
then a function of the hi on U0.

E. Proof of Theorem 3.6 (Conservation laws for convolutive two-layer ReLU networks)
We first recall all notations. Let c0 be the number of channels for the input. Let c1 be the number of channels for the hidden
layer, and let c2 be the number of channels for the final output. Let nu (resp. nv) be the size of the filters for the second (resp.
first) convolution, and let p be the number of pixels of the input image. In that setting, we consider θ := ((uk,j)k,j , (vj,i)j,i),
so that D := (nuc2 + nvc0)× c1, and the parameter vector consists of the collection of all filters. We write the input and
the output:

x =

 x(1)

· · ·
x(c0)

 ∈ Rm, with m = c0 × p y =

 y(1)

· · ·
y(c2)

 ∈ Rn, with n = c2 × n1.

We denote G(θ, x) the convolutive 2-layer ReLU neural network defined by:

G(θ, x) :=

 c1∑
j=1

C1(uk,j)σ

(
c0∑
i=1

C2(vj,i)
⊤x(i)

)c2
k=1

, (42)

where C1 : Rnu 7→ Rn1×p1 and C2 : Rnv 7→ Rp×p1 are linear operators.

In particular, the formulation (42) is more general than (16). We explicit below the corresponding operators whenin the
case of circular convolution.

Assumption E.1. We assume that we can write C1(u) = (P1u, · · · , Pp1u) (resp. C2(v) = (Q1v, · · · , Qp1v)) where all
matrices Pi ∈ Rn1×nu (resp. Qi ∈ Rp×nv ) are injective.

Link with the two formulations. In case of a “full” circular convolution (i.e. nu = p), Pi is the circular shift operator
Piu = u·−i (mod. p), that corresponds to consider Pi the i-cyclic shift matrix, and in particular Pi is injective. In the case
of filters of size nu ≤ p, then by considering I the canonical injection I : Rnu 7→ Rp that adds zeros, then Piu = P̃iI(u),
with P̃i the circular shift operator of the previous case nu = p, in particular Pi = P̃iI is injective too.
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We now explain how (42) can be expressed with a structured 2-layer ReLU neural network (15).

Obviously (42) can be rewritten as
G(θ, x) = Uσ(V ⊤x) (43)

where U = U(θ) and V = V (θ) are defined blockwise as

U := [C1(uk,j)]1≤k≤c2,1≤j≤c1 V := [C2(vj,i)]1≤i≤c0,1≤j≤c1

It will be convenient for further calculations to consider the vertical concatenation of blocks associated to a given index
1 ≤ j ≤ c1. For this reason we write u(j) := (uk,j)

c2
k=1 ∈ Rnuc2 , v(j) := (vj,i)

c0
i=1 ∈ Rnvc0 and

C1(u
(j)) :=

C1(u1,j)
· · ·

C1(uc2,j)

 ∈ R(n1c2)×p1 , so that U(θ) =
(
C1(u

(1)) · · · C1(u
(c1)
)
∈ R(n1c2)×(p1c1) (44)

and

C2(v
(j)) :=

C2(vj,1)
· · ·

C2(vj,c0)

 ∈ R(pc0)×p1 , so that V (θ) =
(
C2(v

(1)) · · · C2(v
(c1)
)
∈ R(pc0)×(p1c1). (45)

It will also be convenient to observe that by construction, using the notations of Assumption E.1 and the definition of the
Kronecker product between matrices

C1(u
(j)) =

(
P ′
1u

(j) · · · P ′
p1u

(j)
)

with P ′
i = Ic2 ⊗ Pi (46)

C2(v
(j)) =

(
Q′

1v
(j) · · · Q′

p1v
(j)
)

with Q′
i = Ic0 ⊗Qi (47)

Thus G(θ, x) = g((U, V ), x) where g is the 2-layer ReLU network defined in (15).

Lemma E.2. Consider G(θ, x) as in (42), g((U, V ), x) from (15), and ϕ the reparametrization of g defined in Theorem 3.4
in the (unstructured / nonconvolutive) ReLU case. Denote ψ(θ) := ϕ(Tθ), where Tθ := vec(( UV )) ∈ R(n1c2+pc0)p1c1 with
U = U(θ) and V = V (θ) defined blockwise as above. Denote Θ the set of all parameters such that the columns of V (θ)
define pairwise disjoint hyperplanes. Under Assumption 2.4, if Vℓ = Rn, then for each θ ∈ Θ we have

WG,ℓ
θ = span

γ∈Rd

{∂ψ(θ)⊤γ} and WG,ℓ = span{∇ψi(·) : i = 1, · · · , d}.

Proof. We have G(θ, x) = g(Tθ, x) = f(ϕ(Tθ), x) = f(ψ(θ), x), hence the set Xθ associated to the model G(·, x) (see
within Proposition 2.3) coincides with the set XTθ associated to g(·, x), and the general definition (7) yields Wf,ℓ

ψ(θ) =

Wf,ℓ
ϕ(Tθ). Moreover, by definition of Θ, each parameter θ ∈ Θ is such Tθ satisfies the assumptions of Theorem 3.4.

By Theorem 3.4 it follows that Wf,ℓ
ψ(θ) = Wf,ℓ

ϕ(Tθ) = Rd. Finally by using Proposition 2.7, one obtains: WG,ℓ
θ =

span
γ∈Rd

{∂ψ(θ)⊤γ} and WG,ℓ = span{∇ψi(·) : i = 1, · · · , d}.

Proposition E.3. Consider any structured two-layer ReLU network model as in (42) where the linear operators C1, C2

satisfy Assumption E.1, and Θ defined as in Lemma E.2. For each θ ∈ Θ, there exists a neighborhood of θ in which
there are exactly c1 independent conservation laws for (42). Such independent conservation laws are given, e.g., by
θ 7→

∑c2
k=1 ∥uk,j∥2 −

∑c0
i=1 ∥vj,i∥2, for j = 1, · · · c1.

Before proving this proposition let us highlight that it yields Theorem 3.6 as a direct corollary by the very definition of
Θconv and the fact that the matrices Pi, Qi associated to the convolutive model indeed satisfy Assumption E.1.

Proof. Recall that P ′
i = Ic2 ⊗ Pi and Q′

i = Ic0 ⊗Qi, so that P ′
i (resp. Q′

i is injective) as Pi (resp. Qi) is injective. It will

be useful to denote P i :=
(
P ′
i 0
0 Q′

i

)
and P =

 P 1

· · ·
P p1

 in order to get a compact explicit expression of T (step 1 below).

This will be used to characterize the trace of the Lie algebra of WG,ℓ and its dimension.
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1st step: We first give an explicit expression of T .

Writing θ =


u(1)

v(1)

· · ·
u(c1)

v(c1)

, where we recall that for j = 1, · · · , c1, u(j) = vec((uk,j)k) ∈ Rnuc2 and v(j) = vec((vj,i)i) ∈

Rnvc0 , we get using once again the definition of the Kronecker product,

Tθ = vec
(
U(θ)
V (θ)

)
(44)−(45)−(46)−(47)

=
(
Ic1 ⊗ P

)
θ. (48)

2d step: Characterization of WG,ℓ and of the trace of its Lie algebra.

Recall that the reparameterization ϕ of two-layer ReLU networks from Theorem 3.4 reads ϕ : (U, V ) ∈ R(n1c2)×(p1c1) ×
R(pc0)×(p1c1) 7→ (uiv

⊤
i )i=1,··· ,p1c1 ∈ (Rn1c2×pc0)p1c1 with ui, vi the columns of the matrices U, V . Let ∆ := (∆i,j)i,j ∈

(Rn1c2×pc0)p1c1 and let us consider γ := vec(∆).

Straightforward computations show that ∂ϕ(U, V )⊤γ =


S∆1,1

· · · 0
0 S∆2,1 · · ·

· · ·
0 · · · S∆p1,c1

 vec(U ;V ), where: S∆i,j
:=

(
0 ∆i,j

∆⊤
i,j 0

)
. Since ψ(θ) := ϕ(Tθ) it follows that

∂ψ(θ)⊤γ = T⊤∂ϕ(Tθ)⊤γ = T⊤

S∆1,1 · · · 0
· · ·

0 · · · S∆p1,c1

Tθ

Using Equation (48) we thus obtain

∂ψ(θ)⊤γ = blockdiagj

(
P

⊤ (
blockdiagi(S∆i,j

)
)
P
)
θ = blockdiagj

(
p1∑
i=1

Pi
⊤
S∆i,jPi

)
θ.

The above is valid for any ∆, and we now exhibit particular choices of ∆ to obtain particular constructions, in order to
characterize WG,ℓ. Given some (i, j) ∈ {1, · · · , p1} × {1, · · · , c1}, imposing ∆i′,j′ = 0 for all (i′, j′) ̸= (i, j) yields

∂ψ(θ)⊤γ =


0 · · · 0

· · ·
0 Pi

⊤
S∆i,j

Pi 0
· · ·

0 · · · 0

 θ. (49)

As Pi
⊤
S∆i,j

Pi =

(
0 P ′

i
⊤
∆i,jQ

′
i

Q′
i
⊤
∆i,j

⊤P ′
i 0

)
∈ R(ñu+ñv)×(ñu+ñv) with ñu := nuc2 and ñv := nvc0, we obtain

WG,ℓ Lemma E.2
= span{θ 7→ ∂ψ(θ)⊤γ : γ}

⊆ span

θ 7→

(

0 A1

A⊤
1 0

)
· · · 0

· · ·

0 · · ·
(

0 Ac1
A⊤
c1 0

)
 θ : Ai ∈ Rñu×ñv , 1 ≤ i ≤ c1

 . (50)

We now show the converse inclusion. Let us consider some i = 1, · · · , c1 and some A ∈ Rñu×ñv . To show the converse
inclusion, it is enough to show that there exists ∆i,j ∈ Rn1c2×pc0 such that P ′

i
⊤
∆i,jQ

′
i = A. As P ′

i is injective by

17



Conservation laws for ResNets and Transformers

hypothesis, then P ′⊤
i is surjective. Thus, there exists B =

(
b1 · · · bñv

)
∈ R(n1c2)×ñv such that P ′⊤

i B = A. Then as
Q′
i =

(
q1 · · · qñv

)
is injective, the vectors qj are linearly independent. Let us define ∆i,j ∈ Rn1c2×pc0 such that for all

k = 1, · · · , ñv , ∆i,jqk = bk. In particular, such a ∆i,j satisfies P ′
i
⊤
∆i,jQ

′
i = A.

Thus:

span

θ 7→


(

0 A1

A⊤
1 0

)
· · · 0

· · ·

0 · · ·
(

0 Ac1

A⊤
c1 0

)
 θ : Ai ∈ Rñu×ñv , 1 ≤ i ≤ c1

 ⊆ span{θ 7→ ∂ψ(θ)⊤γ : γ} = WG,ℓ. (51)

Finally by using (50) and (51) we have characterized the space WG,ℓ as

WG,ℓ = span

θ 7→


(

0 A1

A⊤
1 0

)
· · · 0

· · ·

0 · · ·
(

0 Ac1

A⊤
c1 0

)
 θ : Ai ∈ Rñu×ñv , 1 ≤ i ≤ c1

 ,

To conclude this step we need to compute the trace of its Lie algebra

Lie(WG,ℓ) = Lie

span



(

0 A1

A⊤
1 0

)
· · · 0

· · ·

0 · · ·
(

0 Ac1

A⊤
c1 0

)
 : Ai ∈ Rñu×ñv , 1 ≤ i ≤ c1


 .

For this we can reuse computations from (Marcotte et al., 2023, Proposition H.3) showing that the considered Lie algebra is indeed a
space of linear operators that can be identified with matrices:

Lie

span



(

0 A1

A⊤
1 0

)
· · · 0

· · ·

0 · · ·
(

0 Ac1

A⊤
c1 0

)
 : Ai ∈ Rñu×ñv




=


(
Ic1 ⊗

(
Iñu 0
0 −Iñv

))
×

M1 · · · 0
· · ·

0 · · · Mc1

 :Mi ∈ Añu+ñv

 ,

where Añu+ñv ⊂ R(ñu+ñv)
2

is the space of skew symmetric matrices.

3d step: Let us show that there are exactly c1 independent conservation laws.

Let us consider θ ∈ Θ (in particular θ ̸= 0). To conclude, by using Theorem 2.11, we only need to compute dim(Lie(WG)(θ)) (as the
computation is unchanged for θ′ in a neighborhood of θ, we will also get that this dimension is locally constant as needed).

For this, denoting θ(i) =
(
u(i)

v(i)

)
, we consider the linear application:

Γ : (M1, · · · ,Mc1) ∈ (Añu+ñv )
c1 7→

(
Ic1 ⊗

(
Iñu 0
0 −Iñv

))
×

M1 · · · 0
· · ·

0 · · · Mc1

 θ(1)

· · ·
θ(c1)

 ,

As range(Γ) := Γ((Añu+ñv )
c1) = Lie

(
WG

)
(θ), we only need to compute rankΓ as in (Marcotte et al., 2023, Proposition H.5). Since,

by the rank–nullity theorem, we have dim ker Γ + rank Γ = c1(ñu + ñv)(ñu + ñv − 1)/2, it is equivalent to compute dim ker Γ. It
is also easy to check that dim ker Γ = dim ker Γ1 + · · ·+ dim ker Γc1 , where

Γi :M ∈ Añu+ñv 7→
(
Iñu 0
0 −Iñv

)
×Mθ(i).

18
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By (Marcotte et al., 2023, Proposition H.5) (remember that θ(i) is a vector in that case and not a matrix), one has dim ker Γi =
(ñu + ñv − 2)(ñu + ñv − 1)/2, so that dim ker Γ = c1(ñu + ñv − 2)(ñu + ñv − 1)/2, and thus

rank Γ = c1(ñu + ñv − 1) = D − c1

since the number of parameters is indeed D = c1(ñu + ñv). By Theorem 2.11, we conclude that there are exactly c1 independent
conservation laws.

4th step: Finally, let us check that the claimed laws are indeed a set of c1 independent conservation laws.

Let us define for j = 1, · · · , c1: hj : θ(j) 7→
∑c2

k=1 ∥uk,j∥2 −
∑c0

i=1 ∥vj,i∥
2 = ∥u(j)∥2 − ∥v(j)∥2 and h̃j : θ 7→ hj(θ

(j)).

By Proposition 2.9 and the expression of the gradient of h̃j in the terms of ∇hj , the function h̃j is a conservation law for (42) if and only
if the function hj satisfies for all θ and for all M ∈ Añu+ñv :

∇hj(θ
(j)) = ∇θ(j) h̃j(θ) ⊥

(
Iñu 0
0 −Iñv

)
×Mθ(j). (52)

Since hj : θ(j) 7→ u(j)⊤u(j) − v(j)
⊤
v(j), by (Marcotte et al., 2023, Proposition H.1), this function indeed satisfies (52). Thus h̃j is a

conservation law for (42). Finally, it is straightforward to check that the gradient of the functions hj , 1 ≤ j ≤ c1 are nonzero vectors with
disjoint supports, hence they are linearly independent. This shows that the considered conservation laws are indeed independent.

F. Proof of Theorem 3.8 for attention layers
Theorem 3.8. Under Assumption 2.4, if Vℓ = Rn and N ≥ 2 then

Wf,ℓ
ϕ(θ) = Rd, and Wg,ℓ

θ = range{∂ϕ(θ)⊤}, ∀θ ∈ Θatt.

Proof. Consider θ ∈ Θatt. By Proposition 2.7 it is sufficient to show that Wf,ℓ
ϕ(θ) = Rd, since this implies that Wg,ℓ

θ =

range{∂ϕ(θ)⊤}. Since the considered model is smooth, here we have Xθ = Rm, which can be identified (with the reshaping
of x ∈ Rm into X ∈ RN×dim) to RN×dim. Recall for convenience that ϕ(θ) = (ϕ1, ϕ2) with ϕ1 = Q⊤K, ϕ2 = V ⊤O and
f(ϕ, x) = softmax(Xϕ1X

⊤)Xϕ2. As we assume Vℓ = Rn, the space we need to consider is thus

Wf,ℓ
ϕ(θ) = span

X∈RN×dim, ∆∈RN×dim

{[∂ϕf(ϕ(θ), X)]⊤ ·∆}

Our goal is to show that Wf,ℓ
ϕ(θ) = Rdim×(2dim). As a warmup given any H ∈ Rdim×dim and ∆ ∈ RN×dim, we have:

⟨∂ϕ2
f ·H,∆⟩ = ⟨softmax(Xϕ1X

⊤)XH,∆⟩ = ⟨H,X⊤[softmax(Xϕ1X
⊤)]⊤∆⟩ (53)

hence

[∂ϕ2f ]
⊤ ·∆ = X⊤[softmax(Xϕ1X

⊤)]⊤∆ (54)

1st step: Considering any j, l ∈ {1, · · · ,dim}, we first show that(
0
Ej,l

)
∈ span
X∈RN×dim, ∆∈RN×dim

{∂ϕf(ϕ(θ), X)⊤ ·∆} (55)

and (
Ej,j
0

)
∈ span
X∈RN×dim, ∆∈RN×dim

{∂ϕf(ϕ,X)⊤ ·∆}. (56)

Consider any i ∈ {1, · · · , N} and X = Ei,j . By (54) we have

[∂ϕ2
f ]⊤ ·∆ = Ej,i[softmax(Ei,jϕ1Ej,i)]

⊤∆ = ej [softmax(Ei,jϕ1Ej,i)ei]
⊤
∆. (57)

Moreover denoting αj = αj(ϕ1) := ⟨ej , ϕ1ej⟩ we have

softmax(Ei,jϕ1Ej,i)ei =
1
N 1+

(
exp(αj)

exp(αj)+N−1 − 1

N

)
ei,
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By straightforward calculus we obtain that for any K ∈ Rdim×dim

∂ϕ1
f ·K = ⟨ej ,Kej⟩[( exp(αj)(N−1)

(exp(αj)+N−1)2 )︸ ︷︷ ︸
=:βj

ei](ϕ
⊤
2 ej)

⊤.

Thus for any ∆ ∈ RN×dim, one has:

⟨∂ϕ1
f ·K,∆⟩ =

〈
⟨ej ,Kej⟩βjei(ϕ⊤2 ej)⊤,∆

〉
= ⟨ej ,Kej⟩

〈
βjei(ϕ

⊤
2 ej)

⊤,∆
〉
= ⟨K, eje⊤j ⟩

〈
βjei(ϕ

⊤
2 ej)

⊤,∆
〉

hence
[∂ϕ1f ]

⊤ ·∆ = eje
⊤
j

〈
βjei(ϕ

⊤
2 ej)

⊤,∆
〉
. (58)

Combining (57) and (58) yields

[∂ϕf ]
⊤ ·∆ =

(
[∂ϕ1

f ]⊤ ·∆
[∂ϕ2

f ]⊤ ·∆

)
=

(
eje

⊤
j

〈
βjei(ϕ

⊤
2 ej)

⊤,∆
〉

ej

(
1
N 1+

(
exp(αj)

exp(αj)+N−1 − 1
N

)
ei

)⊤
∆

)
.

Specializing to ∆ = Ek,l for some k ∈ {1, · · · , N} we have(
1
N 1+

(
exp(αj)

exp(αj)+N−1 − 1

N

)
ei

)⊤

∆ =

{
1
N e

⊤
l if k ̸= i
exp(αj)

exp(αj)+N−1e
⊤
l if k = i

and

β−1
j

〈
βjei(ϕ

⊤
2 ej)

⊤,∆
〉
= ⟨ei(ϕ⊤2 ej)⊤, eke⊤l ⟩ = ⟨e⊤k ei(ϕ⊤2 ej)⊤, e⊤l ⟩ =

{
0 if k ̸= i

⟨(ϕ⊤2 ej)⊤, e⊤l ⟩ if k = i

hence

∂ϕf
⊤ ·∆ =


1
N

(
0

eje
⊤
l

)
when k ̸= i(

C1eje
⊤
j ⟨(ϕ⊤2 ej)⊤, e⊤l ⟩
C2eje

⊤
l

)
, when k = i

(59)

where C1 and C2 are nonzero. The case k ̸= i is possible since we assume N ≥ 2 and it yields (55) directly, while
combining both cases yields

⟨(ϕ⊤2 ej)⊤, e⊤l ⟩
(
Ej,j
0

)
∈ span
X∈RN×dim, ∆∈RN×dim

{∂ϕf(ϕ(θ), X)⊤ ·∆}.

Finally as by hypothesis on Θatt all columns of O⊤V = ϕ⊤2 are nonzero, we have ϕ⊤2 ej ̸= 0, hence there exists some l1
such that ⟨(ϕ⊤2 ej)⊤, e⊤l1⟩ ≠ 0. This directly implies (56), which concludes this step.

2d step: Considering an arbitrary pair j, l ∈ {1, · · · ,dim}, we now show that(
Ej,l
0

)
∈ span
X∈RN×dim, ∆∈RN×dim

{∂ϕf(ϕ(θ), X)⊤ ·∆}. (60)

This is of course a trivial from (56) when j = l (which is always the case when dim = 1) so we focus on j ̸= l.

Considering X = Ei,j + Ek,l, for some pair of indicex i < k ∈ {1, · · · , N} (possible as N ≥ 2). we have

f(ϕ,X) = softmax(Xϕ1X
⊤)Xϕ2 =

(
1
N 1+ (α(ϕ1)ei + β(ϕ1)ek

)
(ϕ⊤2 ej)

⊤ +
(

1
N 1+ γ(ϕ1)ei + δ(ϕ1)ek

)
(ϕ⊤2 el)

⊤

20



Conservation laws for ResNets and Transformers

where

α(ϕ1) :=
exp(⟨ej , ϕ1ej⟩)

N − 2 + exp(⟨ej , ϕ1ej⟩) + exp(⟨ej , ϕ1el⟩)
− 1

N

β(ϕ1) :=
exp(⟨el, ϕ1ej⟩)

N − 2 + exp(⟨el, ϕ1ej⟩) + exp(⟨el, ϕ1el⟩)
− 1

N

γ(ϕ1) :=
exp(⟨ej , ϕ1el⟩)

N − 2 + exp(⟨ej , ϕ1ej⟩) + exp(⟨ej , ϕ1el⟩)
− 1

N

δ(ϕ1) :=
exp(⟨el, ϕ1el⟩)

N − 2 + exp(⟨el, ϕ1ej⟩) + exp(⟨el, ϕ1el⟩)
− 1

N

Straightforward calculus yields that for any H ∈ Rdim×dim

∂ϕ1
f ·H = ei [a1⟨ej , Hej⟩+ b1⟨ej , Hel⟩] (ϕ⊤2 ej)⊤ + ei [c1⟨ej , Hel⟩+ d1⟨ej , Hej⟩] (ϕ⊤2 el)⊤

+ ek [a2⟨el, Hej⟩+ b2⟨el, Hel⟩] (ϕ⊤2 ej)⊤ + ek [c2⟨el, Hel⟩+ d2⟨el, Hej⟩] (ϕ⊤2 el)⊤,

with appropriate scalars ai, bi, ci, di, where b1 ̸= 0. Thus for any ∆ ∈ RN×dim and H ∈ Rdim×dim

⟨[∂ϕ1
f ]⊤ ·∆, H⟩ = ⟨∂ϕ1

f ·H,∆⟩ = [a1⟨ej , Hej⟩+ b1⟨ej , Hel⟩] ⟨ei(ϕ⊤2 ej)⊤,∆⟩
+ [c1⟨ej , Hel⟩+ d1⟨ej , Hej⟩] ⟨ei(ϕ⊤2 el)⊤,∆⟩
+ [a2⟨el, Hej⟩+ b2⟨el, Hel⟩] ⟨ek(ϕ⊤2 ej)⊤,∆⟩
+ [c2⟨el, Hel⟩+ d2⟨el, Hej⟩] ⟨ek(ϕ⊤2 el)⊤,∆⟩

Since ⟨ep, Heq⟩ = ⟨epe⊤q , H⟩ = ⟨Ep,q, H⟩ for every p, q it follows that

[∂ϕ1
f ]⊤ ·∆ =a1⟨ei(ϕ⊤2 ej)⊤,∆⟩Ej,j + b1⟨ei(ϕ⊤2 ej)⊤,∆⟩Ej,l

+ c1⟨ei(ϕ⊤2 el)⊤,∆⟩Ej,l + d1⟨ei(ϕ⊤2 el)⊤,∆⟩Ej,j
+ a2⟨ek(ϕ⊤2 ej)⊤,∆⟩El,j + b2⟨ek(ϕ⊤2 ej)⊤,∆⟩El,l
+ c2⟨ek(ϕ⊤2 el)⊤,∆⟩El,l + d2⟨ek(ϕ⊤2 el)⊤,∆⟩El,j .

By (56), we have Ej,j , El,l ∈ spanX′,∆′{[∂ϕ1
f(ϕ(θ), X ′)]⊤ ·∆′} hence we obtain[

b1⟨ei(ϕ⊤2 ej)⊤,∆⟩+ c1⟨ei(ϕ⊤2 el)⊤,∆⟩
]︸ ︷︷ ︸

=:α

Ej,l

+
[
a2⟨ek(ϕ⊤2 ej)⊤,∆⟩+ d2⟨ek(ϕ⊤2 el)⊤,∆⟩

]︸ ︷︷ ︸
=:β

El,j ∈ spanX′,∆′{[∂ϕ1f(ϕ(θ), X
′)]⊤ ·∆′}.

To conclude it is enough to exhibit a choice of ∆ such that α ̸= 0 and β = 0: this will indeed imply

Ej,l ∈ spanX′,∆′{[∂ϕ1
f(ϕ(θ), X ′)]⊤ · ∆′}, hence the the existence of A ∈ Rdim×dim such that

(
Ej,l
A

)
∈

spanX′,∆′{∂ϕf(ϕ(θ), X ′)⊤ ·∆′}, and by (55) one will obtain (60) as claimed.

To ensure β = 0 is it enough to have ∆ϕ⊤2 ej = ei ⊥ ek (possible as k ̸= i), as well as ∆ϕ⊤2 el ⊥ ek, ei (possible as l ̸= j)
Such a choice also implies α = b1, which is indeed nonzero.

3d step: Conclusion. Finally by combining (55) and (60), one obtains that

span
X∈RN×dim, ∆∈RN×dim

{[∂ϕf(ϕ(θ), X)]⊤ ·∆} = Rdim×(2dim),

which concludes the proof.
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Note that in the case when N = 1, then (18) writes

g(θ, x) = XV ⊤O, (61)

with θ = (Q,K, V,O). In particular the parameters Q and K remain constant during (4), so θ 7→ Q and θ 7→ K are
conservation laws with respect to any loss ℓ. Moreover (61) coincides with a 2-layer linear network g̃(θ̃, x) with θ̃ := (V,O),
whose exact independent conservation laws with respect to any loss ℓ such that Vℓ = Rn have been studied in Proposition 3.5,
and are thus obtained via the set of conservation laws θ̃ 7→ V V ⊤ −OO⊤.

G. Proof of Corollaries 3.9 and 3.10 for attention layers
Corollary 3.9. Under the assumptions of Theorem 3.8 for each θ ∈ Θatt such that both horizontally concatenated matrices(
Q,K

)
and

(
V,O

)
have full rank, there is a neighborhood of θ in which all conservation laws for (18) are functions of

QQ⊤ −KK⊤, and V V ⊤ −OO⊤ and vice-versa.

Proof. We recall that ϕ(θ) = (Q⊤K,V ⊤O) and we denote θ1 = (Q,K) ∈ Rd1×dim × Rd1×dim and θ2 = (V,O) ∈
Rd1×dim × Rd1×dim and ψ : (U, V ) ∈ Rd1×dim × Rd1×dim 7→ U⊤V ∈ Rdim×dim. Let us define: ψ1 : θ 7→ ψ(θ1) and
ψ2 : θ 7→ ψ(θ2). Then ϕ(θ) = (ψ1(θ), ψ2(θ)), that is to say ϕ can be decoupled into two functions depending on
two separate blocks of parameters. Its Jacobian and Hessian matrices are thus block-diagonal. Denoting ϕi, ψ1

i , ψ2
i

the coordinate functions of ϕ, ψ1, ψ2, the Lie bracket [∇ψ1
i (·),∇ψ2

j (·)] ≡ 0 thus vanishes for every i = (i1, i2) and
j = (j1, j2) ∈ {1, . . . ,dim}2 and as a consequence

Lie(span{∇ϕk(·) : k}) = Lie(span{∇ψ1
i (·) : i} ⊕ Lie(span{∇ψ2

i (·) : i}).

Since Vℓ = Rn, by Theorem 3.8 and Proposition 2.7 we also have Wg,ℓ = span{∇ϕi(·) : i}, and thus for any θ:

dim(Lie(Wg,ℓ)(θ)) = dim(Lie(span{∇ψ1
i (·) : i})(θ)) + dim(Lie(span{∇ψ2

i (·) : i})(θ)).

Let us consider θ such that both horizontally concatenated matrices
(
Q,K

)
and

(
V,O

)
have full rank.

As (Q,K) (resp (V,O)) has full rank, this remains locally the case. By Proposition 4.3 of (Marcotte et al., 2023), the
dimension of Lie(span{∇ψ1

i (·) : i})(θ) (resp. of Lie(span{∇ψ2
i (·) : i})(θ)) is locally constant, denoted d1(θ) (resp.

d2(θ)). Then, by Theorem 2.11, the exact number of independent conservation laws is equal to D − d1(θ)− d2(θ). Finally,
by Proposition 3.5, all conservation laws are obtained by the set QQ⊤ −KK⊤, V V ⊤ −OO⊤ of conservation laws.

Corollary 3.10. For any h = 1, · · · , H , the functions

QhQ
⊤
h −KhK

⊤
h , VhV

⊤
h −OhO

⊤
h ,

define conservation laws for (19) with respect to any loss ℓ.

Proof. We recall that H is the number of attention heads and define θh := (Qh,Kh, Vh, Oh) for any 1 ≤ h ≤ H as well as
ϕh : θ 7→ ϕ(θh), where ϕ(θh) = (Q⊤

hKh, V
⊤
h Oh). Then, we have using Proposition 2.7:

Wg,ℓ ⊆ span{∇ϕhj (·) : h ∈ {1, · · · , H}, j ∈ {1, · · · , 2dim × dim}},

where (ϕhj )j denote the coordinate functions of ϕh. In particular by Corollary 3.9 (we do not need to assume the non-
degeneracy condition on θ as in Corollary 3.9 as we just use the direct inclusion via the reparametrization ϕ), the functions
Hh

1 : θ 7→ QhQ
⊤
h −KhK

⊤
h and Hh

2 : θ 7→ VhV
⊤
h − OhO

⊤
h are conservation laws (for any ℓ by using Corollary 3.9 and

Proposition 2.7), hence by Proposition 2.3 they satisfy for all θ ∈ Θ, for all h, j, ∇Hh
1 (θ),∇Hh

2 (θ) ⊥ ∇ϕhj (θ) (as Hh
1 and

Hh
2 only depend on θh). And thus ∇Hh

1 (θ),∇Hh
2 (θ) ⊥ Wg,ℓ(θ) = Wg

θ . By Proposition 2.3, we conclude that indeed Hh
1

and Hh
2 are conservation laws for (19) with respect to any loss ℓ.
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H. Proof of Proposition 3.11 about cross-entropy / classification layers
Proposition 3.11. With respect to any loss ℓ such that Vℓ = Rn, there are exactly m independent conservation laws for the
classification layer given by (20): hj(θ) :=

∑
i θi,j , j = 1, . . . ,m.

Proof. Using Corollary 2.5 and straightforward calculus involving the Jacobian of the softmax (that are left to the reader)
we compute

Wg,ℓ(θ) = span
x∈Rm,w∈Vℓ=Rn

{∂θg(θ, x)⊤w} = span
x∈Rm,w∈Rn:

∑
i wi=0

{vec(wx⊤)} = {vec(Z) : Z ∈ Rn×m : 1⊤Z = 0}.

This space is independent of θ, so that Lie(Wg,ℓ)(θ) = Wg,ℓ(θ). By Theorem 2.11, since dim(Lie(Wg,ℓ)(θ)) = nm−m,
there are exactly m independent conservation laws. One verifies directly that for the functions hj defined in Prop. 3.11, we
have ⟨∇hj(θ), Z⟩ = 0, ∀Z ∈ Wg,ℓ(θ).

I. Proof of Proposition 4.3 on “block” conservation laws
Proposition 4.3. Consider a function h ∈ C1(Θ,R) that only depends on the coordinates θT , and for each θ ∈ Θ denote

ΘT c(θT ) := {η ∈ RT
c

: (θT , η) ∈ Θ} (24)

Consider a loss that satisfies the assumptions of Proposition 2.3 as well as Assumption 2.4. The function h is a conservation
law of g with respect to ℓ if, and only if, for every θ ∈ Θ one has ∇θT h(θ) ⊥ RθT (Wg,ℓ), where:

RθT (Wg,ℓ) := span
η∈ΘTc (θT )

w∈Vℓ

span
x∈X(θT ,η)

{∂θT g((θT , η), x)⊤w}. (25)

Proof. By Corollary 2.5 and Proposition 2.3, h is a conservation law of g if, and only if, for any θ = (θT , θT c) ∈ Θ:

∇h(θ) ⊥ span
x∈Xθ,w∈Vℓ

{∂θg(θ, x)⊤w}. (62)

Since h only depends on θT , we have ∇h(θ) =
(
∇θT h(θ)
∇θTch(θ)

)
=

(
∇θT h(θ)

0

)
hence the above orthogonality is equivalent

to:
∇θT h(θ) ⊥ span

x∈Xθ,w∈Vℓ

{∂θT g(θ, x)⊤w}, ∀θ ∈ Θ (63)

Given any θ ∈ Θ and any η ∈ ΘT c(θT ), the vector θ′ := (θT , η) ∈ Θ also satisfies h(θ′) = h(θ) and ∇θT h(θ
′) = ∇θT h(θ),

hence the orthogonality condition (63) also holds at θ′. As a result,

∇θT h(θ) ⊥ span
η∈ΘTc (θT )

span
(x,w)∈X(θT ,η)×Vℓ

{∂θT g((θT , η), x)⊤w} =: RθT (Wg,ℓ). (64)

Conversely, if h satisfies (64), then h also satisfies (63), which is equivalent to (62) and implies that h is a conservation law
of g with respect to ℓ.

J. About the invariances of the neural network
J.1. Conservation laws and invariances of the shallow case

Definition J.1 (Invariant transformation on the cost (1)). A (one-parameter) transformation on an open set Ω ⊆ Θ ⊆ RD is
a map T : R × Ω → RD such that T (·, θ) is differentiable for each θ ∈ Ω and T (0, ·) = id. This transformation leaves
invariant the cost (1) if for all θ ∈ Ω and for all ϵ ≥ 0, LZ(T (ϵ, θ)) = LZ(T (0, θ)) = LZ(θ). When this holds, simple
calculus yields for every θ ∈ Ω: 〈

∇LZ(θ),
∂

∂ϵ
T (ϵ, θ)

∣∣∣
ϵ=0

〉
= 0. (65)
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We denote ∆T (·) := ∂
∂ϵT (ϵ, ·)

∣∣∣
ϵ=0

.

From loss invariance to conservation laws. In the context of a gradient flow dynamic (4), implies

⟨θ̇(t),∆T (θ(t))⟩ = 0. (66)

Definition J.2 (conservation law obtained via an invariance). In particular, in light of Proposition 2.3, if a function
h ∈ C1(Ω,R) is such that for all θ one has ∇h(θ) := ∆T (θ), then h is a conservation law. We say in that case that h is a
conservation law of g obtained via the invariant transformation T .

The case of a 2-layer linear network Consider θ := (U, V ) ∈ Rn×r × Rm×r and define TA as the linear transformation

TA(ϵ, U, V ) =
(
U exp(ϵA), V exp(−ϵA⊤)

)
. (67)

Simple calculus yields ∆TA(U, V ) = (UA,−V A⊤). Considering g(θ, x) := UV ⊤x and any A ∈ Rr×r, TA is an
invariant transformation on (1): for all ϵ and θ, g(TA(ϵ, θ), ·) = g(θ, ·) hence LZ(TA(ϵ, θ)) = LZ(θ). As a particular
consequence, for gradient flows with linear networks, since (66) holds for T = TA with any matrix A ∈ Rr×r, denoting
⟨M,N⟩ := Tr(M⊤N) we obtain 0 = ⟨U̇(t), U(t)A⟩ − ⟨V̇ (t), V (t)A⟩ at each time and for any A. Specializing this to
any symmetric matrix, we obtain that 0 = ⟨U̇ , UA⟩ − ⟨V̇ , V A⟩ = 1/2 d

dt (⟨U,UA⟩ − ⟨V, V A⟩). Thus for every symmetric
matrix A, ⟨U,UA⟩ − ⟨V, V A⟩ is conserved, which coincides with all conservation laws in that case (cf Proposition 3.5).

The case of a 2-layer ReLU network Consider θ := (U, V, v) ∈ Rn×r × Rm×r × R1×r and define TA as the linear
transformation

TA(ϵ, U, V, b) :=
(
U exp(ϵA), V exp(−ϵA⊤), b exp(−ϵA⊤)

)
.

Considering g(θ, x) := Uσ(V ⊤x+ b⊤) and any diagonal matrix A ∈ Rr×r, TA is a linear transformation that leaves (1)
invariant. Moreover, ∆TA(U, V, b) = (UA,−V A⊤,−bA⊤) = (UA,−V A,−bA), as diagonal matrices are symmetric.
By restricting ourselves to elementary diagonal matrices A = Ei,i where Ei,i is the one-hot matrix in Rr×r with
the (i, i)-th entry being 1, i = 1, · · · , r, we obtain that for all i, 0 = ⟨u̇i(t), ui(t)⟩ − ⟨v̇i(t), vi(t)⟩ − ḃi(t)bi(t) =
1
2

d
dt (⟨ui, ui⟩ − ⟨vi, vi⟩ − b2i ). Thus for all i, ∥ui∥2 − ∥vi∥2 − b2i is conserved, recovering all conservation laws (cf

Proposition 3.5).

The case of a 2-layer ReLU convolutive network Consider θ := ((uk,j)k,j , (vj,i)j,i) the collection of all filters and
denote G(θ, x) the convolutive 2-layer ReLU neural network defined by (42). As explained in (43), we express (42)
as a 2-layer ReLU neural network (15) as follows. Let us write for j = 1, · · · , c1, u(j) = vec((uk,j)k) ∈ Rnuc2 and
v(j) = vec((vj,i)i) ∈ Rnvc0 . For any x ∈ Rm one has:

G (θ, x) =
(
C1(u

(1)) · · · C1(u
(c1))

)︸ ︷︷ ︸
=:U

σ(
(
C2(v

(1)) · · · C2(v
(c1))

)︸ ︷︷ ︸
=:V

⊤
x),

where C1 (resp.C2) is a linear operator defined in (44) (resp. (45)). We rewrite θ = (U, V ), where U :=
(
u(1) · · · u(c1)

)
and V :=

(
v(1) · · · v(c1)

)
. For any j = 1, · · · , c1, we define Tj the linear transformation

Tj(ϵ, U, V ) :=
(
U exp(ϵEj,j), V exp(−ϵEj,j⊤)

)
.

The transformation Tj leaves(1) invariant: for all ϵ and θ, g(Tj(ϵ, θ), ·) = g(θ, ·) as C1 and C2 are linear operators,
hence LZ(Tj(ϵ, θ)) = LZ(θ). Moreover, ∆Tj

(U, V ) = (UEj,j ,−V Ej,j) and thus (66) writes: 0 = ⟨u̇(j)(t), u(j)(t)⟩ −
⟨v̇(j)(t), v(j)(t)⟩ = 1

2
d
dt (⟨u

(j), u(j)⟩ − ⟨v(j), u(j)⟩). Thus for all j, ⟨u(j), u(j)⟩ − ⟨v(j), u(j)⟩ is conserved, recovering all
conservation laws (cf Theorem 3.6).

The case of an attention-layer We treat the case of the network (18) in the exact same way as for a 2-layer linear network
by considering for any symmetric matrix A ∈ Rd1×d1 the linear transformations TA and T ′A defined by

TA(ϵ,Q,K, V,O) =
(
exp(ϵA)Q, exp(−ϵA⊤)K,V,O)

)
,
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and
T ′A(ϵ,Q,K, V,O) =

(
Q,K, exp(ϵA)V, exp(−ϵA⊤)O)

)
,

and that leave (1) invariant. We conclude in the exact same way as for the 2-layer linear neural network case and we obtain
that for every symmetric matrix A, ⟨Q,AQ⟩ − ⟨K,AK⟩ and ⟨V,AV ⟩ − ⟨O,AO⟩ are conserved, which coincides with all
conservation laws in that case (cf Corollary 3.9).

J.2. A conservation law of a sub-network obtained via an invariance gives a conservation law of the global network

Proposition J.3. Assume that Θ = Θ1 × Θ2 × Θ3 and that for every θ = (θ1, θ2, θ3) ∈ Θ we can write g(θ, x) =
g1(θ1, g2(θ2, g3(θ3, x))). If there is a conservation law h : Θ2 7→ R of g2 obtained via an invariance of g2 (cf Definition J.2),
then H : θ ∈ Θ 7→ h(θ2) is a conservation law of the global neural network g.

Proof. We assume there exists a transformation T : (ϵ, θ2) ∈ R×Θ2 7→ T (ϵ, θ2) that leaves g2 invariant, i.e.

g2(T (ϵ, θ2), ·) = g2(T (0, θ2), ·), ∀ϵ, θ2.

Let h : θ2 ∈ Θ2 7→ h(θ2) ∈ R be a conservation law of g2 obtained via the transformation T . This means that (cf
Definition J.2)

∇h(θ2) = ∆T (θ2), ∀θ2 ∈ Θ2. (68)

We now define T̃ : (ϵ, θ1, θ2, θ3) ∈ R+×Θ 7→ (θ1, T (ϵ, θ2), θ3). As T leaves invariant g2, T̃ is a transformation that leaves
the global neural network g invariant: for all ϵ∈ R one has g(T (ϵ, θ), x) = g(T (0, θ), x). Thus, T̃ leaves (1) invariant too.
Moreover by (68) we have for any θ ∈ Θ:

∆T̃ (θ) =

 0
∆T (θ2)

0

 =

 0
∇h(θ2)

0

 . (69)

Let us show that H : (θ1, θ2, θ3) ∈ Θ1 ×Θ2 ×Θ3 7→ h(θ2) is a conservation law of the global network g. Let us θ(t) a
solution of (4). Then for all t such that it holds:

d

dt
(H(θ(t)) = ⟨θ̇(t),∇H(θ(t))⟩

(4)
= ⟨∇LZ(θ(t)),∇H(θ(t)⟩

=

〈
∇LZ(θ(t)),

 0
∇h(θ2(t))

0

〉
(69)
= ⟨∇LZ(θ(t)),∆T̃ (θ(t))⟩ = 0,

as T̃ leaves (1) invariant.

K. Proof of Lemma 4.4 on the density of Xθ

Remember that we consider a deep network g(θ, x) composed of residual blocks denoted glθl(x), corresponding either to a
block of a convolutive ResNet (21), a residual MLP (22) or an attention layer (23), see Section 4.2 for the notations.

Lemma 4.4. Denote Θ = Θq × . . .×Θ1 (or Θ = Θq+1 ×Θq × . . .×Θ1 with Θq+1 = Rn×m when there is a last
softmax layer) where for each layer 1 ≤ l ≤ q, Θl is the set of parameters θl such that

1. glθl is an open map4;

2. all the rows of the matrix V l (resp. U ′
l ) from (21) (resp. (22)) are nonzero in the convolutive ResNet case (resp. in the

Transformer case).

4i.e., it sends an open set to an open set
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For every θ ∈ Θ we have Xθ = Rm.

In particular, for an attention layer (23), Lemma 4.4 only requires the first assumption Item 1.

Proof. First we show that, without loss of generality, it is sufficient to prove the result in the absence of a last softmax layer
(20). This is a simple consequence of the fact that, in the presence of such a layer, since gq+1

θq+1
: z 7→ softmax(θq+1z) is

infinitely smooth everywhere with respect to θq+1∈ Rn×m, the set Xθ (which we recall is defined as the collection of all data
points x ∈ Rm such that θ 7→ g(θ, x) is C2 in a neighborhood of θ, cf Proposition 2.3) for the model gq+1

θq+1
◦ gqθq ◦ · · · ◦ g

1
θ1

is the same as with the “truncated” neural network gθ(x) = gqθq ◦ · · · ◦ g
1
θ1
(x).

To prove the result without a softmax layer, we defineGlθ(x) = glθl ◦· · ·◦g
1
θ1
(x) the output after l blocks with the convention

G0
θ(x) = x.

Our goal is to show that Xθ = Rm, and we proceed by contradiction, assuming that there exists x0 and r > 0 such that for
any x ∈ B(x0, r), there is no neighborhood of θ in which θ′ 7→ gθ′(x) is C2.

Since each residual layer glθl is either defined as a convolutive 2-layer ReLU network (21), a dense 2-layer ReLU network
(22), or an attention layer (23), a straightforward induction on q shows that given any x, the function θ 7→ gθ(x) is infinitely
smooth in a neighborhood of θ unless there is at least one residual layer 1 ≤ l ≤ q such that θl 7→ glθl(G

l−1
θ (x)) fails to be

infinitely smooth. Since attention layers (23) are always infinitely smooth, the lack of smoothness can only come from a
2-layer ReLU residual block, convolutive or not. The lack of smoothness implies that the pre-activation of at least one of the
hidden neurons of this layer must be zero, i.e., ⟨Vl[j, :], Gl−1(x)⟩ = 0 and where we denote Vl either the matrix V l from
(21) or the matrix U ′

l from (22). Similarly we denote Ul either the matrix U l from (21) or the matrix Ul from (22).

Thus, for any x ∈ B(x0, r), there exists 1≤l ≤ q such that glθl : x
′ 7→ x′ + Ulσ(Vlx

′) corresponds to the 2-layer ReLU
network (21) in the convolutive ResNet case (resp. (22) in the Transformer case), and such that there exists j satisfying
⟨Vl[j, :], Gl−1(x)⟩ = 0.

In other words, we have proved that B(x0, r) ⊆
⋃
l,j

Hl,j where each of the finitely many sets

Hl,j := {x′ ∈ Rn : ⟨Vl[j, :], Gl−1(x′)⟩ = 0}

is a closed set of empty interior, as we now show. Indeed Hl,j is closed as the reciprocal image of a closed set ({0}) by
a continuous function. To show that Hl,j is of empty interior we proceed by contradiction, assuming that there exists a
non-empty open set B such that any x′ ∈ B satisfies Gl−1(x′) ∈ (RVl[j, :])⊥ ⊊ Rm, as Vl[j, :] ̸= 0 by Item 2 (θ ∈ Θ). But
as x′ ∈ B 7→ Gl−1(x′) = gl−1

θl−1
◦ · · · ◦ g1θ1(x) is open as composition of open maps (thanks to Item 1) and as B is open, the

set Gl−1(B) is an open set in Rm: this is absurd as Gl−1(B) ⊂ (RVl[j, :])⊥ ⊊ Rm.

Overall, as B(x0, r) is covered by a finite union of closed sets with empty interior, by Baire’s theorem B(x0, r) also has
empty interior: this is absurd, which concludes the proof.

L. Discussion on the genericity of Item 2 in the assumptions of Lemma 4.4
We discuss here why Item 2 is a generic condition on the set of parameters, for the example of a residual block associated
with a 2-layer ReLU network: :

glθl : x 7→ x+ Ulσ(Vlx),

where Ul and Vl are defined via θl as in (21) or (22). Since glθl is a continuous, piecewise linear, and homogeneous function
of x, we can write glθl(x) = Jl(x)× x, where Jl(x) represents the Jacobian matrix given by: Jl(x) = UlDl(x)Vl. Here,
Dl(x) denotes a diagonal matrix whose entries are binary values (either 0 or 1) depending on the activation of the neurons at
x. We denote by D the set of all such diagonal matrices. By construction, D is finite. Thus the Jacobian Jl(x) belongs to the
finite set

J (Ul, Vl) := {Im + UlDVl : D ∈ D}.

If each element of this set is invertible (i.e. J (Ul, Vl) ⊆ GLm(R), a generic condition), then glθl is an open map.
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M. Finding parameters for simplified neural network forms
Lemma M.1. Let us consider consider some 1 ≤ l ≤ q and the associated Θl defined in Lemma 4.4 and glθl that can be
either an attention layer with a skip connection (23), or a (convolutive (21) or not (22)) MLP. There exists θl ∈ Θl such that
for any x ∈ Rm one has glθl(x) = x.

Proof. 1st case: glθl is defined by (21) (resp. (22)). Then by considering V l (resp. U ′
l ) such that all its rows are nonzero (so

that Item 2 is satisfied) (it is possible by taking v(l)j,i non equal to zero as the matrices Qi are injective), and by considering

U l = 0 by taking all u(l)k,j equal to zero (resp. Ul = 0), then for any x ∈ Rm, glθl(x) = x (and in particular glθl is open, so
Item 1 is satisfied and thus θl = (U l, V l) (resp. θl = (Ul, U

′
l ) is in Θl).

2d case: glθl is defined by (23). Then by considering θl = (Ql,Kl, Vl, Ol) = (0, 0, 0, 0) one has for any x ∈ Rm,
glθl(x) = x, and so glθl is open, implying that θl ∈ Θl.

N. Proof of Theorem 4.6 on block laws for natural residual blocks
Theorem 4.6. With Θ as in Lemma 4.4, consider the l-th residual block of Example 4.1 (resp. Example 4.2), and denote
θT := θl and θT c the parameters of all other residual blocks. A function H : θ = (θT , θT c) ∈ Θ 7→ h(θT ) that only
depends on θT is a conservation law of g with respect to a loss ℓ such that Vℓ = Rn if and only if h is a conservation law of
the shallow residual network gl(θl, x) := glθl(x) with respect to the Euclidean loss. The same result holds for θT := θq+1

when considering a last block (20).

Proof. Case l = q + 1. First we treat the case where θT := θq+1. In this case, one has for any θ ∈ Θ and for any x ∈ Rm:

g(θ, x) = softmax(θq+1(g
q
θq

◦ · · · ◦ g1θ1(x)) = gq+1
θq+1

(gqθq ◦ · · · ◦ g
1
θ1(x)).

As a consequence

∂θT g(θ, x) = ∂θq+1
gq+1(θq+1, g

q
θq

◦ · · · ◦ g1θ1(x)), ∀θ ∈ Θ, ∀x ∈ Xθq+1
:= Rm. (70)

Then by using Lemma M.1, one can choose θT c ∈ ΘT c such that gqθq ◦ · · · ◦ g1θ1(x) = x for any x ∈ Rm, and thus one
obtains Rm = {gqθq ◦ · · · ◦ g

1
θ1
(x) : θT c ∈ ΘT c , x ∈ Rm}. Therefore one has:

span
x∈Rm

{∂θq+1
gq+1(θq+1, x)

⊤} = span
θTc∈ΘTc ,x∈Rm

{∂θT g(θ, x)⊤}. (71)

Since we assume Vℓ = Rn, one has

Wgq+1,ℓ
θq+1

Corollary 2.5
:= span

x∈Xθq+1
, w∈Rn

{∂θq+1
gq+1(θq+1, x)

⊤w} = span
x∈Rm,w∈Rn

{∂θq+1
gq+1(θq+1, x)

⊤w}

(71)
= span

θTc∈ΘTc ,w∈Rn

span
x∈Rm

{∂θT g⊤(θ, x)w}

Lemma 4.4
= span

θTc∈ΘTc ,w∈Rn

span
x∈Xθ

{∂θT g⊤(θ, x)w}

= span
θTc∈ΘTc ,w∈Rn

span
x∈Xθ

{∂θT g(θ, x)⊤w} =: RθT (Wg,ℓ),

where we recall that RθT (Wg,ℓ) is defined in Proposition 4.3. This concludes the proof in the case θT := θq+1.

Case 1 ≤ l ≤ q. We now assume that θT := θl for some l = 1, · · · , q. Let us consider h(θl) a conservation law for gl. Then
as all conservation laws of gl are obtained via the rescaling invariances of gl as discussed in Appendix J.1 and by using
Proposition 3.2, the function H : θ ∈ Θ 7→ h(θl) is a conservation law of g by Proposition J.3.

We now show the converse result: considering a function H : θ ∈ Θ 7→ h(θl) that is a conservation law of g we wish to
show that h is a conservation law of gl.
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A. We first consider the case without a last block (20), ie the case where:

g(θ, x) =gqθq ◦ · · · ◦ g
1
θ1(x) ∈ Rm. (72)

It will be convenient to rewrite this as the composition of three functions depending on three separate blocks of coordinates
of the variable θ = (θ̃1, θ̃2, θ̃3) ∈ Θ̃1 × Θ̃2 × Θ̃3 (with Θ̃2 := Θl, and Θ̃1, Θ̃3 given by Cartesian products of adequate Θj ,
j ̸= l), the middle one corresponding to θ̃2 = θl:

g(θ;x) = g1(θ̃1; g2(θ̃2; g3(θ̃3;x))). (73)

If l = q (resp if l = 1) corresponds to the parameters of the last (resp. first) block, then we directly can write g(θ;x) =
g2(θ̃2; g3(θ̃3;x)) (resp. g(θ;x) = g1(g2(θ̃2;x))), but we will use the formulation (73) in all cases informally by simplicity.

With these notations our goal is to show that a conservation law H for g in (73) that only depends on θ̃2 is a conservation law
for g2. A technical step, that we slightly postpone, is to prove that there are θ̃1, θ̃3 ∈ Θ̃1 × Θ̃3 such that for every θ̃2 ∈ Θ̃2,

g(θ, x) = g2(θ̃2, x), ∀x ∈ Rm (74)

with θ := (θ̃1, θ̃2, θ̃3). Using this result we proceed using a density argument. Denoting Xθ̃2 the set of all data points
x ∈ Rm such that θ′2 7→ g2(θ

′
2, x) is C2 in the neighborhood of θ̃2, we observe that Xθ ⊆ Xθ̃2 with Xθ defined as in

Proposition 2.3. (Indeed if x ∈ Xθ, then θ′ 7→ g(θ′, x) is C2 in the neighborhood of θ := (θ̃1, θ̃2, θ̃3), so in particular
θ′2 7→ g((θ̃1, θ

′
2, θ̃3), x) = g2(θ

′
2, x) is C2 in the neighborhood of θ̃2.) By (74), for any θ̃2 ∈ Θ̃2 and any x ∈ Xθ̃2 ,

∂θ̃2g(θ;x) = ∂θ̃2g2(θ̃2;x). Moreover x 7→ ∂θ̃2g(θ, x)(= ∂θ̃2g2(θ̃2, x)) is continuous on Xθ̃2 . Indeed either Xθ̃2 = Rm
(when g2 is an attention layer) or Xθ̃2 is the whole space outside a finite number of hyperplanes associated to the zeroes of
the activation of each hidden neuron: in particular if x ∈ Xθ̃2 , then g2(θ̃2, x) does not have any activation that vanishes, so it
remains the case in a neighborhood B(x, r) of x, this implies in particular that x′ ∈ B(x, r) 7→ g2(θ̃2, x

′) is continuous.
Finally, as Xθ = Rn by Lemma 4.4, for any x ∈ Xθ̃2 there exist (xN ) ∈ (Xθ)N such that xN −→ x. Thus, as Xθ ⊆ Xθ̃2
and by continuity of ∂θ̃2g2(θ;x) on Xθ̃2 .

∂θ̃2g(θ;xN ) = ∂θ̃2g2(θ;xN ) −→ ∂θ̃2g2(θ;x),

Since Vℓ = Rm with ℓ the Euclidean loss in Rm, we obtain with the considered triplet of parameter θ = (θ̃1, θ̃2, θ̃3)

Wg2,ℓ

θ̃2

Corollary 2.5
:= span

w∈Rm

span
x∈Xθ̃2

{∂θ̃2g
⊤
2 (θ̃2;x)w}

⊆ span
w∈Rm

span
x∈Xθ

{∂θ̃2g(θ;x)
⊤w} (as Xθ̃2 ⊆ Rm = Xθ)

= span
w∈Rm

span
x∈Xθ

{∂θ̃2g(θ;x)
⊤w} (as every finite-dimensional space is closed)

⊆ span
θ′1∈Θ̃1,θ′3∈Θ̃3,w∈Rm

span
x∈X(θ′1,θ̃2,θ′2)

{∂θ̃2g(θ;x)
⊤w} =: Rθ̃2(W

g,ℓ).

where we recall again that RθT (Wg,ℓ) is defined in Proposition 4.3. Thus by Proposition 4.3, if a function H(θ) = h(θ̃2)
that only depends on θ̃2 is conserved for g with respect to the Euclidean loss, then for every θ̃2 ∈ Θ̃2 the gradient
∇θ̃2

H(θ) = ∇h(θ̃2) is orthogonal to Rθ̃2(W
g,ℓ) = Wg2,ℓ

θ̃2
, hence by Proposition 2.3 h is also conserved for g2 with respect

to the Euclidean loss.

B. We finally consider the case with a last block (20), ie the case where the neural network writes:

gθ : x ∈ Rm 7→ g(θ, x) =gq+1
θq+1

◦ gqθq ◦ · · · ◦ g
1
θ1(x) ∈ Rn.

We recall that l ̸= q + 1. Denoting θ̃ = (θ1, · · · , θq) and g̃(θ̃, x) = g̃θ̃ the network (72), the analysis conducted in A above
shows that there are θ̃1 ∈ Θ̃1, θ̃3 ∈ Θ̃3 such that for every θ̃2 ∈ Θ̃2 the parameter θ̃ := (θ̃1, θ̃2, θ̃3) satisfies:

g̃(θ̃, x) = g2(θ̃2, x), ∀x ∈ Rm.
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so that with θ = (θ̃, θq+1) we have

g(θ, x) = softmax(θq+1g̃(θ̃, x)) = softmax(θq+1g2(θ̃2, x)), ∀x ∈ Rm

As a result, reasoning as in A above, for any x ∈ Xθ̃2 one has:

∂θ̃2g(θ, x) = ∂softmax(θq+1g̃(θ̃, x))θq+1∂θ̃2g2(θ̃2, x).

Moreover we have

span
θq+1

span
x∈Xθ̃2

,w∈Rn

{(
∂softmax(θq+1g̃(θ̃, x))θq+1∂θ̃2g2(θ̃2, x)

)⊤
w

}
= span

θq+1

span
x∈Xθ̃2

,w∈Rn

{
∂θ̃2g2(θ̃2, x)

⊤θ⊤q+1[∂softmax(θq+1g̃(θ̃, x))]
⊤w
}

= span
x∈Xθ̃2

{
∂θ̃2g2(θ̃2, x)

⊤ span
θq+1,w∈Rn

{
θ⊤q+1[∂softmax(θq+1g̃(θ̃, x))]

⊤w
}}

= span
w′∈Rm

span
x∈Xθ̃2

{∂θ̃2g
⊤
2 (θ̃2;x)w

′} =: Wg2,ℓ

θ̃2
,

In the last line we used that
span

θq+1,w∈Rn

{θ⊤q+1[∂softmax(θq+1g̃(θ̃, x))]
⊤w} = Rm, (75)

a property that we now show. Indeed, given any y ∈ Rm consider θq+1 := e1y
⊤, where e1 ∈ Rn the first canonical vector.

Simple calculus yields θ⊤q+1[∂softmax(θq+1g̃(θ̃, x))]
⊤ = yz⊤, where

z⊤ =

(
exp(λ)(n− 1)

(exp(λ) + n− 1)2
, − exp(λ)

(exp(λ) + n− 1)2
, · · · , − exp(λ)

(exp(λ) + n− 1)2

)
̸= 0, with λ := ⟨y, g̃(θ̃, x)⟩.

With w := z/∥z∥22, we get θ⊤q+1[∂softmax(θq+1g̃(θ̃, x))]
⊤w = y. Since this holds for any choice of y, we get (75).

Finally, we can use the exact same previous proof by using Lemma 4.4 and conclude the proof.

C. We finally prove (74). By Lemma M.1, one can choose for all layer p ̸= l with p ≤ q some parameters θp such that
for any x ∈ Rm one has gpθp(x) = x. Thus with θ̃1 := (θl+1, · · · , θq) ∈ Θ̃1 and θ̃3 = (θ1, · · · , θl−1) ∈ Θ̃3, one has

g1(θ̃1, x) = x and g3(θ̃3, x) = x for any x ∈ Rm. Finally one has g(θ, x) = g2(θ̃2, x) for all x ∈ Rm which concludes the
proof.

O. Additional figures
We illustrate the notion of blocks overlapping or not a residual connexion in Figure 3-Figure 2, and display experimental
results on conserved functions during ResNet training in Figure 4 and during Transformer training in Figure 5.

2-layer  
convolutive 

network 

g2( ⋅ , x1, x2)
2-layer  

convolutive 
network ⋯ = g(θ, x) ∈ ℝmx ∈ ℝm ↦ ⋯

Figure 2. Block overlapping a residual connection
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x ∈ ℝm ↦ ⋯ ⋯ = g(θ, x) ∈ ℝm
2-layer  

convolutive 
network 

g2( ⋅ , x)

Figure 3. Block sharing a residual connection

P. Proof of Theorem 4.7 : no block conservation laws for blocks overlapping a residual connexion
Theorem 4.7. Consider a layer index 1 ≤ l ≤ q − 1 and Θ defined as in Lemma 4.4 with the exception that for each
θl+1 ∈ Θl+1, we further require that the rows of V l+1 are pairwise non-colinear. If nv = p then any conservation law of g
with respect to the Euclidean loss that only depends on θ̃2 is a constant function.

While Theorem 4.7 is stated in the main text for the specific case of ResNets with residual blocks that involve a 2-layer
ReLU network with matrices U, V that are either dense or with a convolutive structure, we actually prove a more general
version where these matrices have the generic structure associated to (42), with C1, C2 satisfying Assumption E.1 and two
additional hypotheses on the matrices Pi and Qi from Assumption E.1.

Assumption P.1. First we assume that
⋂
range(Qi) ̸= {0}, where Qi is defined in Assumption E.1.

Link with the convolutive case. Assumption P.1 (as well as Assumption E.1) is satisfied for the matrices Qi defined
just after Assumption E.1, that are associated to the convolutive model (16) when nv = p. Indeed in this setting, all Qi
correspond to full circular shift operators, and notably 1 = Qi1, where 1 denotes the all-ones vector.

Proof of Theorem 4.7. Here θ̃2 = θT = (V l+1, U l) corresponds to two consecutive parameter blocks before and after a
skip connection and that can be written as the composition of g1, g2 and g3 where(

y1
y2

)
= g2

(
(V l+1, U l);

(
x1
x2

))
:=

(
V l+1

Id

)(
U l Id

)(σ
id

)(
x1
x2

)
, (76)(

x1
x2

)
= g3(θ̃3, x) =

(
V l

Id

)
(gl−1
θl−1

◦ . . . ◦ g1θ1)(x), (77)

and g1

(
θ̃1,

(
y1
y2

))
= (gqθq ◦ . . . g

l+2
θl+2

)

((
U l+1 Id

)(σ
id

)(
y1
y2

))
. (78)

The parameters θ̃1, θ̃3 gather all relevant parameters involved in the definitions of g1 and g3. We define d1, d2 such that
V l+1 ∈ Rd1×n, U l ∈ Rn×d2 and will painlessly alternate between matrix and vector representations (in Rndi) of such
parameters. The core of the proof is to show that

RθT (Wg2,ℓ) := span
η=(θ̃1,θ̃3)∈ΘTc (θT )

span
(x,w)∈X(θT ,η)×Rn

{∂θT g⊤((θT , η);x)w} = R(d1+d2)n (79)

with ℓ the Euclidean loss. By Proposition 4.3 this will imply as claimed that the only conservation laws h of g with respect
to the Euclidean loss that only depend on θT are the constant ones.

To prove (79) we proceed in two steps, proving separately

{0d1n} × Rd2n ⊆ RθT (Wg2,ℓ) (80)

Rd1n × {0d2n} ⊆ RθT (Wg2,ℓ). (81)

By the definition of RθT (Wg2,ℓ) ⊆ R(d1+d2)n as a linear span, this indeed implies (79).

As a warmup, let us characterize ΘT c(θT ) := {η ∈ RT c

: (θT , η) ∈ Θ} as defined in (24), where we recall that
Θ = Θq × · · · ×Θ1 with the Θi defined in Lemma 4.4, and where Θl+1 is also such that V l+1 has all its rows that define
distinct hyperplanes. One then has ΘT c(θT ) = Θ̃1 × Θ̃3, where
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Figure 4. Tracking a conserved function and the loss during ResNet-18 training on CIFAR-10. For each learning rate between 1e-3
and 5e-3, we train 10 models for 50 steps using SGD without momentum or weight decay, with 10 different random seeds. For each
configuration, we record both the loss evolution (bottom) and the evolution of the conservation error

∣∣∣h(θk)−h(θ0)
h(θ0)

∣∣∣ (top) with hj defined
in (17), where θT represents the parameters associated with the first residual block. The dotted lines show the theoretical slopes derived
from bound (27), which scale quadratically with τ as Cτ2. The empirical results confirm that the function is approximately conserved
and that the slope coefficient maintains proportionality with τ2. For non-conserved functions, the evolution is in τ rather than τ2, since
the first-order term in the Taylor expansion (used in the proof of Proposition 5.1) does not vanish in that case.

• Θ̃1 := Θq × . . .×Θl+2 × Θ̂l+1 with Θ̂l+1 := {U l+1 ∈ Rn×d1 : (U l+1, V l+1) ∈ Θl+1};

• Θ̃3 := Θ̂l ×Θl−1 × . . .×Θ1 with Θ̂l := {V l ∈ Rd2×n : (U l, V l) ∈ Θl}.

It will also be useful to denote Θ1 (resp. Θ3) the set of all θ̃1 (resp. of all θ̃3) such that for each k ≥ l + 2 (resp. all
k ≤ l − 1) we have: a) Uk = 0 (by taking all u(k)k′,j equal to zero), so that (Uk, V k) satisfies Item 1 ; and b) V k satisfies

Item 2 of Lemma 4.4 (possible by taking v(k)j,i non equal to zero as the matrices Qi are injective).
For every θ̃1 ∈ Θ1 and θ̃3 ∈ Θ3 we have

g1

(
θ̃1;

(
y1
y2

))
= U l+1σ(y1) + y2. (82)

g3

(
θ̃3;x

)
=

(
V lx
x

)
. (83)

With the above notations, we highlight that if θ̃1 ∈ Θ1 is such that U l+1 ∈ Θ̂l+1 then θ̃1 ∈ Θ̃1, and if θ̃3 ∈ Θ3 is such that
V l ∈ Θ̂l then θ̃3 ∈ Θ̃3. In particular such a choice of θ̃1 and θ̃3 implies that η = (θ̃1, θ̃3) ∈ ΘT c(θT ). In the rest of the
proof we consider θ̃1, θ̃3 with these properties, this will enable us to leverage (82)-(83).

1st step: proof of (80).

In that part, we consider θ̃1 ∈ Θ1 such that U l+1 = 0, and thus (cf (21)-(22)-(23) ) we have gl+1
θl+1

= id and the block
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Figure 5. Tracking a conserved function and the loss during a Transformer training on IMDb dataset. For each learning rate between
1e-3 and 5e-3, we train 8 models for 50 steps using SGD without momentum or weight decay, with 8 different random seeds. For each
configuration, we record both the evolution of the Frobenius norm of the conserved matrix identified in Corollary 3.10, specifically
examining the query and key matrices from the first attention head in the first layer where masking is applied (bottom) or not (top). The
dotted lines show the theoretical slopes derived from bound (27), which scale quadratically with τ as Cτ2. The empirical results confirm
that the function is approximately conserved and that the slope coefficient maintains proportionality with τ2.
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parameter θl+1 = (U l+1, V l+1) satisfies Item 1 of Lemma 4.4 (i.e. U l+1 ∈ Θ̂l+1 and thus θ̃1 ∈ Θ̃1). Since U l+1 = 0,
combining (82)-(83) with the expression of g2 (76) we have

g(θ;x) = U lσ(V lx) + x. (84)

Since the above expression of g is independent of V l+1, and θT = θ̃2 = (V l+1, U l) ∈ Rd1×n × Rn×d2 , for any
(H,K) ∈ Rd1×n × Rn×d2 , any w ∈ Rn and any x ∈ Rn, at θ = (θ̃1, θ̃2, θ̃3) = (θT , θT c) we have:

⟨∂θT g(θ;x) · (H,K), w⟩ = ⟨Kσ(V lx), w⟩ = ⟨(H,K), (0, wσ(V lx)⊤)⟩.

that is to say
∂θT g(θ;x)

⊤w = (
0

vec(wσ(V lx)⊤) ).

In light of the definition (79) of RθT (Wg2,ℓ), since η = (θ̃1, θ̃3) ∈ ΘT c(θT ) for each of the parameters θ̃1, θ̃3 considered in
this part of the proof, a sufficient condition to establish (80) is thus

span
V l∈Θ̂l,w∈Rn,x∈Xθ

vec(wσ(V lx)⊤) = Rd2n

or equivalently (by simple linear algebra)
span

V l∈Θ̂l,x∈Xθ

σ(V lx) = Rd2 .

For each V l ∈ Θ̂l, by definition the corresponding θ = (θ̃1, θT , θ̃3) belongs to Θ hence by Lemma 4.4 Xθ is dense. Since
x 7→ σ(V lx) is continuous, the above condition is also equivalent to

span
V l∈Θ̂l,x∈Rm

σ(V lx) = Rd2 (85)

To prove (85) we simply exhibit for each canonical vector ei ∈ Rd2 a matrix V l ∈ Θ̂l and x ∈ Rm such that σ(V lx) = ei.
For this simply consider λ > 0, x = λe1 ∈ Rm, V a matrix with its first column equal to ei, and V l = V/λ. If λ > 0 is
large enough then one can easily check that (U l, V l) ∈ Θl, hence V l ∈ Θ̂l as claimed.

2d step: proof of (81).

We denote v1, · · · , vd1 the d1 rows of the matrix V l+1 ∈ Rd1×n, and for each j = 1, · · · , d1 we denote

Hj := {x ∈ Rn : v⊤j x = 0}.

Combining (82)-(83) with the expression of g2 (76) we have for any V l:

g(θ;x) = U l+1σ(V l+1x) + x, for each x such that σ(V lx) = 0. (86)

As in the first step, since this expression of g is independent of U l, and as θT = θ̃2 = (V l+1, U l) ∈ Rd1×n × Rn×d2 , we
obtain that for any V l and any w ∈ Rn, at θ = (θ̃1, θ̃2, θ̃3) = (θT , θT c), denoting D(x) := diag((1⟨vj ,x⟩>0)j),

[∂θT g(θ;x)]
⊤w = ( vec(D(x)U l+1⊤

wx⊤)
0

), for each x ∈ Rn − ∪Hj such that σ(V lx) = 0. (87)

The claim (81) is a direct consequence of the following two inclusions that we prove below

span
θ̃1∈Θ̃1

span
w∈Rn

x∈(Rn−∪Hj)

{
( vec(D(x)U l+1⊤

wx⊤)
0

)
}
⊆ RθT (Wg2,ℓ) (88)

Rd1n × {0d2n} ⊆ span
θ̃1∈Θ̃1

span
w×Rn

x∈(Rn−∪Hj)

{
( vec(D(x)U l+1⊤

wx⊤)
0

)
}

(89)

Proof of (88). The main difference between the left-hand-side of (88) and the definition of RθT in (79) is that in (88) x
can be freely chosen in the set Rn − ∪jHj independently of θ̃1 (and of θ̃3). To prove (88) we exhibit below two vectors
θ+, θ− ∈ Θ such that θ+T = θ−T = θT and that for every x ∈ Rn − ∪jHj and w ∈ Rn, we either have

[∂θT g(θ
+;x)]⊤w = ( vec(D(x)U l+1⊤

wx⊤)
0

) ∈ span
x′∈Xθ+ ,w∈Rn

{[∂θT g(θ+;x′)]⊤w} (90)
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or the equivalent with θ− instead of θ+. By the closedness of finite-dimensional spaces and (79) we get

( vec(D(x)U l+1⊤
wx⊤)

0
) ∈ span

x′∈Xθ+ ,w∈Rn

{[∂θT g(θ+;x′)]⊤w} ⊆ RθT (Wg2,ℓ),

or of course the equivalent with θ− instead of θ+, yielding the desired conclusion (88).

We now proceed to the construction of θ+, θ−. This is where we use Assumption P.1: this enables us to consider an arbitrary
nonzero a0 ∈

⋂
rangeQi ⊆ Rp and to denote a =

(
a0
...
a0

)
∈ Rpc0 = Rn as well as

A+ := {x′ ∈ Rn : a⊤x′ < 0}, A0 := {x′ ∈ Rn : a⊤x′ = 0}, and A− := {x′ ∈ Rn : a⊤x′ > 0}

We construct θ+ (resp. θ−) so that (90) or its equivalent with θ− holds for every x in the intersection of Rn − ∪Hj with
A+, with A0, or with A−.

Recall that we consider θ̃1 ∈ Θ1 such that U l+1 ∈ Θ̂1, and that this implies θ̃1 ∈ Θ̃1. We consider θ̃+3 ∈ Θ3 such that
V l+ has all its rows that are equal5 to ϵa – in particular V l+ satisfies Item 2 in the assumptions of Lemma 4.4– where ϵ > 0

is small enough to ensure that (U l, V l+) ∈ Θl and hence V l+ ∈ Θ̂l and θ̃+3 ∈ Θ̃3. We denote θ+ = (θ̃1, θT , θ̃
+
3 ). The

construction of θ− is similar, except that V l− has all its rows equal to −ϵa for small enough ϵ > 0.

Considering x ∈ (Rn − ∪Hj) ∩ A+ our goal is now to establish (90). As Xθ+ = Rn by Lemma 4.4 (as θ+ ∈ Θ), there
exists a sequence of vectors xN ∈ Xθ+ such that xN −→ x. By construction A+ is open, and Xθ+ ⊆ Rn − ∪Hj (Indeed if
x ∈ Xθ+ , then θ′ 7→ g(θ′, x) is C2 in the neighborhood of θ+ := (θ̃1, θT , θ̃3), so in particular θ′T 7→ g((θ̃1, θ

′
T , θ̃3), x) =

U l+1σ((V l+1)′x)+x (by (86)) is C2 in the neighborhood of θT .) hence forN large enough we have xN ∈ (Rn−∪Hj)∩A+.
As A+ ⊆ {x′ : σ(V l+x′) = 0}, the expression (87) of [∂θT g(θ

+; ·)]⊤w is valid on (Rn−∪Hj)∩A+. Since it is continuous
(because D(·) is locally constant on Rn − ∪Hj) we get

( vec(D(x)U l+1⊤
wx⊤)

0
) = [∂θT g(θ

+;x)]⊤w = lim
N→∞

[∂θT g(θ
+;xN )]⊤w ∈ span

x′∈Xθ+ ,w∈Rn

{[∂θT g(θ+;x′)]⊤w} (91)

therefore establishing (90) as claimed. The same reasoning holds for x ∈ (Rn − ∪Hj) ∩ A− using θ− instead of θ+.

Finally for x ∈ (Rn − ∪Hj) ∩ A0, one has in particular V l−x = V l+x = 0. As we have seen, Xθ+ = Xθ− = Rn, hence
there exists a sequence of vectors xN ∈ Xθ+ ∪ Xθ− such that xN −→ x. By extracting a subsequence if necessary we
can assume that σ(V l+xN ) = 0 for every N (or that σ(V l−xN ) = 0 for every N ). Without loss of generality we assume
σ(V l+xN ) = 0 for all N (the other option is treated similarly). As proven above, we have Xθ+ ∪ Xθ− ⊆ Rn − ∪Hj , hence
xN ∈ (Rn − ∪Hj) ∩ {x′ : σ(V l+x′) = 0} for every N . Thus (91) remains valid and yields (90).

Proof of (89). First, observe that it is enough to prove that for each k ∈ {1, · · · , d1} there exists θ̃1 ∈ Θ̃1, θ = (θ̃1, θT , θ̃3) ∈
Θ, and w ∈ Rn such that

vec
(
ekx

⊤, 0
)
∈ span
x′∈Rn−∪jHj

{∂θT g⊤(θ;x′)w}, ∀x ∈ Rn (92)

Indeed, by (87) and the closedness of finite-dimensional spaces this implies (89).

To prove (92), given an arbitrary k ∈ {1, · · · , d1}, the core of the proof is to exhibit below some θ̃1 ∈ Θ1 such that the
matrix U l+1 ∈ Θ̂l+1 (recall that this implies θ̃1 ∈ Θ̃1) has a nonzero k-th column, and that for every w ∈ Rn

vec
(
Ek,k(U

l+1)⊤wx⊤, 0
)
∈ span
x′∈Rn−∪jHj

{∂θT g⊤(θ;x′)w}, ∀x ∈ Rn. (93)

Since the k-th column of U l+1 is nonzero, there exists an index ℓ such that U l+1
ℓ,k = α ̸= 0. Setting w := eℓ we have

Ek,k(U
l+1)⊤w = αekx

⊤, hence (93) implies (92).

Given an arbitrary k ∈ {1, · · · , d1}, we consider k′ = k mod p1, by assumption Assumption E.1 one has range(Pk′) ̸=
{0}, hence one can build U l+1 as in (44) such that its k-th column is non equal to zero. To ensure that (U l+1, V l+1) satisfies
Item 1 (hence U l+1 ∈ Θ̂l+1, and hence θ ∈ Θ) we rescale U l+1 such that its norm is small enough.

5The assumptions of Theorem 4.7 the matrix forbid V l+1 to have colinear rows, but there is no such constraint on V l.
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With this choice of U l+1, to prove (92) for every x ∈ Rn we first show it for x living in H′
k := Hk−∪j ̸=kHj (note that this

is a non empty set as the hyperplanes are pairwise distinct by definition of Θ) before proving it for x in the complementary
direction. We denote

A+
k := {x ∈ Rn : v⊤k x > 0}, and A−

k := {x ∈ Rn : v⊤k x < 0}

where we recall that v1, . . . , vd1 are the rows of V l+1.

We first show that (92) is satisfied on H′
k .

Consider x′ ∈ H′
k. Denote B(c, η) the open Euclidean ball of radius η > 0 centered at c ∈ Rn. Given any η > 0, by

continuity of x ∈ Rn 7→ V l+1x = (v⊤1 x, · · · , v⊤d1x) ∈ Rd1 , there exists x+η ∈ B(x′, η) ∩ A+
k and x−η ∈ B(x′, η) ∩ A−

k

such that 1 = sign(v⊤k x
+
η ) ̸= sign(v⊤k x

−
η )= −1 while for all j ̸= k, sign(v⊤j x

±
η ) = sign(v⊤j x

′) ̸= 0 (as the hyperplanes are
pairwise distinct by definition of Θ). It follows that x±η ∈ Rn − ∪Hj . As a consequence, we have D(x+η ) −D(x−η ) =
diag(ek) hence for every w ∈ Rn:

vec
(
Ek,k(U

l+1)⊤wx′⊤, 0
)
= vec

((
D(x+η )−D(x−η )

)
(U l+1)⊤wx′⊤, 0

)
= lim
η→0

vec
(
D(x+η )(U

l+1)⊤w(x+η )
⊤ −D(x−η )(U

l+1)⊤w(x−η )
⊤, 0

)
= lim
η→0

(
∂θT g

⊤(θ;x+η )w − ∂θT g
⊤(θ;x−η )w

)
∈ span
x∈Rn−∪Hj

{∂θT g⊤(θ;x)w}.

This establishes (92) for any x′ ∈ H′
k.

We finally show that (92) is satisfied for any x := vk.

With x′ ∈ H′
k as above the continuity of x ∈ Rn 7→ V l+1x = (v⊤1 x, · · · , v⊤d1x) ∈ Rd1 also implies the existence of γ > 0

such that the vectors
xK := x′ + γKvk, K ∈ {−2,−1, 1, 2},

satisfy v⊤k xK ̸= 0 while for all j ̸= k, sign(v⊤j xK) = sign(v⊤j x
′) (as the hyperplanes are pairwise distinct by definition of

Θ), so that xK ∈ Rn − ∪Hj and we similarly obtain

γ vec
(
Ek,k(U

l+1)⊤wv⊤k , 0
)

= γ vec

D(x1)︸ ︷︷ ︸
=D(x2)

(U l+1)⊤wv⊤k −D(x−1)︸ ︷︷ ︸
=D(x−2)

(U l+1)⊤wv⊤k , 0


= vec

(
D(x2)(U

l+1)⊤wx⊤2 −D(x1)(U
l+1)⊤wx⊤1 −

(
D(x−1)(U

l+1)⊤wx⊤−1 −D(x−2)(U
l+1)⊤wx⊤−2

)
, 0
)

= [∂θT g(θ;x2)]
⊤w − [∂θT g

(θ;x1)]⊤w − {[∂θT g(θ;x−1)]⊤w − [∂θT g(θ;x−2)]⊤w}
∈ span
x∈Rn−∪Hj

{
∂θT g

⊤(θ;x)w
}
,

which gives (92) for any x ∈ Rvk.

We have thus proved that (92) holds for any x ∈ H′
k ∪ Rvk. Since Rn = span(H′

k ∪ Rvk) this establishes (92) for every
x ∈ Rn. Since this holds for any k this completes the proof of (89) and therefore of the theorem.

Q. Proof of Proposition 5.1 (approximate conservation of laws under discrete dynamics)
Proposition 5.1. Let h(θ) be a conservation law of the gradient flow with a bounded Hessian ∀θ, ∥∂2h(θ)∥ ≤ Ch.
Suppose that the gradients remain bounded in expectation throughout the algorithm:

EZk,θk

∥∥∇LZk
(θk)

∥∥2
2

≤ CL. (26)

Then, we have E
∣∣h(θk)− h(θ0)

∣∣ ≤ ChCL
2

k−1∑
i=0

τ2i . (27)
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Proof. Since h is a conservation law, by Proposition 2.3 we have ⟨∇h(θk),∇LZk
(θk)⟩ = 0 for every k. Besides, a Taylor

expansion yields

h(θk+1)− h(θk) =
τ2k
2

[∇LZk
(θk)]

⊤∂2h(ξ)∇LZk
(θk)

for some ξ in the segment [θk, θk+1]. Applying the bounds on ∂2h(θ) and ∇LZk
(θn), we get

E|h(θk+1)− h(θk)| ≤
τ2k
2
ChCL.

Summing over k completes the proof.

R. Conservation laws for Adam Flow
We recall that for Adam flow the space Wg,ℓ

θ is defined by

Wg,ℓ
θ := span

Z=(xi,yi)∈(Xθ×Y)N
{sign (∇LZ(θ))}. (94)

By directly adapting the results of Section 2.1 with Wg,ℓ
θ defined in (94), this leads to the direct corollary:

Corollary R.1. Consider a loss ℓ(z, y) that satisfies Assumption 2.4. Under Assumption 2.6, then for all θ ∈ Θ:

Wg,ℓ
θ = span

w∈Wf,ℓ
ϕ(θ)

{sign
(
∂ϕ(θ)⊤w

)
}. (95)

In particular if Wf,ℓ
ϕ(θ) = Rd one has

Wg,ℓ
θ = span

w∈Rd

{sign
(
∂ϕ(θ)⊤w

)
}. (96)

Thus by Theorem 3.4 and Corollary R.1 one directly obtains:

Theorem R.2. Under Assumption 2.4, if Vℓ = Rn, then considering Θ = RD and ϕ(θ) := UV ⊤ for linear neural networks,
one has: Wf,ℓ

ϕ(θ) = Rd and Wg,ℓ
θ = span

w∈Rd

{sign
(
∂ϕ(θ)⊤w

)
} for Adam flows.

Similarly, by applying Theorem 3.8 and Corollary R.1 one directly obtains the following theorem for an attention layer:

Theorem R.3. Under Assumption 2.4, if Vℓ = Rn and N ≥ 2 then

Wf,ℓ
ϕ(θ) = Rd, and Wg,ℓ

θ = span
w∈Rd

{sign
(
∂ϕ(θ)⊤w

)
}, ∀θ ∈ Θatt,

for an attention layer and for Adam flows, where we recall that the reparametrization ϕ is defined by ϕ(θ) = (ϕ1, ϕ2) with
ϕ1 = Q⊤K and ϕ2 = V ⊤O.

Moreover as the parametrization ϕ1 and ϕ2 are separable, one has under the same assumptions:

Wg,ℓ
θ = span

w=(w1,w2)∈Rd

{(
sign

(
∂ϕ1(Q,K)⊤w1

)
sign

(
∂ϕ2(V,O)⊤w2

))} , ∀θ ∈ Θatt.

Numerical experiments The code provided in our GitHub repository numerically investigates the dimension of the
space Wg,ℓ

θ defined in (96), i.e. the space spanned by the sign vectors of gradients ∂ϕ(θ)⊤z, where ϕ(U, V ) = UV ⊤ and
θ = (U, V ) ∈ Rn×r × Rm×r. For various choices of n,m, r, the code: 1) generates random parameter matrices U and
V ; 2) samples random vectors z ∈ Rn×m; 3) computes the gradients of ϕ with respect to U and V ; and 4) collects the
sign patterns of the projected gradients ∂ϕ(θ)⊤z. It then estimates the dimension of the linear span of these sign vectors
by calculating the rank of the resulting sign matrix. This provides a lower bound on the dimension of the sign-gradient
space Wg,ℓ

θ . In all tested configurations, this lower bound consistently equals the total parameter dimension D = (n+m)r,
indicating that the sign vectors span the full parameter space, expect in the case n = m = r = 1 where in that case the
dimension of the space is equal to 1. Consequently, this numerical observation suggests that there are no conservation
laws for the mapping ϕ(U, V ), except in the case where n = m = r = 1. In the latter case, there is indeed exactly one
independent conservation law given by: θ 7→ |U | − |V | as we now show.
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The special case n = m = r = 1. We show that h : θ = (u, v) ∈ R2 7→ |u| − |v| is a conservation law for g for the
Adam flow (12).

By characterization of conservation laws we only need to show that for any θ ∈ (R∗)
2,

∇h(θ) ⊥ span
w∈R

{sign
(
∂ϕ(θ)⊤w

)
} = Rsign

((
v
u

))
,

which is always true as ∇h(θ) =
(

sign(u)
−sign(u)

)
.
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