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Abstract
Discrete distributions, particularly in high-
dimensional deep models, are often highly mul-
timodal due to inherent discontinuities. While
gradient-based discrete sampling has proven ef-
fective, it is susceptible to becoming trapped in
local modes due to the gradient information. To
tackle this challenge, we propose an automatic
cyclical scheduling, designed for efficient and
accurate sampling in multimodal discrete distri-
butions. Our method contains three key compo-
nents: (1) a cyclical step size schedule where large
steps discover new modes and small steps exploit
each mode; (2) a cyclical balancing schedule, en-
suring “balanced” proposals for given step sizes
and high efficiency of the Markov chain; and (3)
an automatic tuning scheme for adjusting the hy-
perparameters in the cyclical schedules, allowing
adaptability across diverse datasets with minimal
tuning. We prove the non-asymptotic convergence
and inference guarantee for our method in gen-
eral discrete distributions. Extensive experiments
demonstrate the superiority of our method in sam-
pling complex multimodal discrete distributions.

1. Introduction
Discrete variables are common in many machine learning
problems, highlighting the crucial need for efficient dis-
crete samplers. Recent advances (Grathwohl et al., 2021;
Zhang et al., 2022b; Sun et al., 2021; 2023b;a; Xiang et al.,
2023) have leveraged gradient information in discrete dis-
tributions to improve proposal distributions, significantly
boosting their efficiency. These advancements have set
new benchmarks in discrete sampling tasks across graphical
models, energy-based models, and combinatorial optimiza-
tion (Goshvadi et al., 2023).
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However, one major limitation of gradient-based meth-
ods is their susceptibility to becoming trapped in local
modes (Ruder, 2016; Ziyin et al., 2021), which significantly
reduces the accuracy and efficiency of sampling results. In
continuous spaces, several strategies such as cyclical step
sizes (Zhang et al., 2020), parallel tempering (Swendsen &
Wang, 1986; Deng et al., 2020a), and flat histograms (Berg
& Neuhaus, 1991; Deng et al., 2020b), have been proposed
to address this issue. When it comes to discrete distribu-
tions, which are inherently more multimodal due to their dis-
continuous nature, the problem becomes even more severe.
Despite the pressing need, there is a lack of methodology
for gradient-based discrete samplers to effectively explore
multimodal distributions. Current methods often fall far
short in traversing the complex landscapes of multimodal
distributions, as illustrated in Figure 1.

In this paper, we propose automatic cyclical scheduling for
gradient-based discrete sampling to efficiently and accu-
rately sample from multimodal distributions. To balance be-
tween uncovering new modes and characterizing the current
mode, we parameterize a family of gradient-based proposals
that span a spectrum from local to global proposals. The
parameterized proposal dynamically adjusts according to
cyclical schedules of both step size and the balancing param-
eter, smoothly transitioning from global exploratory moves
to more localized moves within each cycle. These cyclical
schedules are automatically tuned by a specially designed
algorithm, which identifies optimal step sizes and balancing
parameters for discrete distributions. Our contributions are
summarized as follows:

• We present the first gradient-based discrete sampling
method that targets multimodal distributions. Our
method incorporates cyclical schedules for both step
size and balancing parameter to facilitate the explo-
ration and exploitation in discrete distributions.

• We propose an automatic tuning algorithm to config-
ure the cyclical schedule, enabling effortless and cus-
tomized adjustments across various datasets without
much manual intervention.

• We offer non-asymptotic convergence and inference
guarantees for our method in general discrete dis-
tributions. To our knowledge, this is the first non-
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(a) Ground Truth (b) Random Walk (c) DMALA (d) AB (e) ACS (Ours)

Figure 1. Sampling on a 2d distribution with multiple modes. (a) shows the ground truth. (b) shows results from a random walk sampler.
(c) shows results from DMALA (Zhang et al., 2022b) with the optimally manually-tuned step size. (d) shows results from AB (Sun et al.,
2023a). (e) shows results from our method ACS. While the random walk sampler can find all modes, its characterization is noisy and
lacks details for each mode. Gradient-based samplers (b) and (c) effectively characterize a specific mode but are easily trapped in some
local modes. Our method (d) can find all modes efficiently and characterize each mode accurately.

asymptotic convergence bound of gradient-based dis-
crete sampling to the target distribution with inference
guarantees, which could be of independent interest.

• We demonstrate the superiority of our method for
both sampling and learning tasks including restricted
Boltzmann machines, deep energy-based models,
and large language models. We release the code at
https://github.com/patrickpynadath1/
automatic_cyclical_sampling

2. Related Work
Gradient-based Discrete Sampling (Zanella, 2017) in-
troduced a family of locally informed proposals, laying the
foundation for recent developments in efficient discrete sam-
pling. Building upon this, (Grathwohl et al., 2021) further
incorporates gradient approximation, significantly reducing
computational costs. Following these pioneering efforts,
numerous studies have proposed various gradient-based dis-
crete sampling techniques (Rhodes & Gutmann, 2022; Sun
et al., 2021; 2022; 2023b; Xiang et al., 2023). (Zhang et al.,
2022b) develops a discrete Langevin proposal, translating
the powerful Langevin algorithm to discrete spaces. (San-
sone, 2022) introduces a self-balancing method to optimize
the balancing functions in locally balanced proposals. While
our work also utilizes an adaptive phase, it differs in that
our parameterization extends beyond the local regime, and
our proposal parameterization is considerably simpler.

Perhaps the most closely related study is the any-scale bal-
anced sampler (Sun et al., 2023a). This method uses a non-
local balancing proposal and adaptively tunes it. Our work,
however, differs in several key aspects: (1) We focus on
combining both local and non-local proposals to effectively
characterize multimodal discrete distributions, as opposed
to focusing on a single optimal proposal. (2) Our automatic
tuning algorithm adjusts the step size and balancing parame-
ter by considering the special discrete structures and targets

a specific Metropolis-Hastings acceptance rate, rather than
maximizing the average coordinates changed per step. (3)
Our method can be applied to learning energy-based models
(EBM) and sampling large language models, whereas their
approach cannot.

Sampling on Multimodal Distributions There exist sev-
eral sampling methods targeting discrete multimodal dis-
tributions, such as simulated tempering (Marinari & Parisi,
1992), the Swendsen-Wang algorithm (Swendsen & Wang,
1987), and the Wolff algorithm (Wolff, 1989). However,
these methods usually use random walk or Gibbs sampling
as their proposals. It is unclear how these methods can be
adapted for gradient-based discrete sampling.

In continuous spaces, various gradient-based methods
have been developed specifically for multimodal distribu-
tions (Zhang et al., 2020; Deng et al., 2020a;b). Our method
distinguishes from the cyclical step size in (Zhang et al.,
2020) by incorporating an additional cyclical balancing pa-
rameter schedule and an automatic tuning scheme, which
are crucial for efficient exploration in discrete distributions.
Furthermore, our theoretical analysis of convergence is dif-
ferent from that in (Zhang et al., 2020) which relies on
continuous stochastic processes.

3. Preliminaries
3.1. Problem Definition

We consider the task of sampling from some target distribu-
tion defined over a discrete space

π(θ) =
1

Z
exp(U(θ)), θ ∈ Θ.

Here, θ is a d dimensional discrete variable in domain Θ, U
is the energy function, and Z is the normalizing constant.
We make the following assumptions of the domain and the
energy function, following the literature of gradient-based
discrete sampling (Grathwohl et al., 2021; Sun et al., 2021;
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Zhang et al., 2022b): (1) The domain is coordinatewisely
factorized, Θ = Πd

i=1Θi. (2) The energy function U can be
extended to a differentiable function in Rd.

3.2. Locally Balanced Proposals

(Zanella, 2017) introduces a family of informed proposals,
which is defined below:

Qg,α(θ
′|θ) =

g
(

π(θ′)
π(θ)

)
Kα(θ

′ − θ)

Zg,α(θ)
(1)

Here, Kα is a kernel that determines the scale of the pro-
posal where α plays a similar role as the step size. g(t) is a
balancing function that determines how to incorporate the
information about π. If g(t) = tg( 1t ), the proposal becomes
a locally balanced proposal, which is asymptotically optimal
in the local regime, that is, when the step size α→ 0.

4. Automatic Cyclical Sampler
We aim to develop a sampler capable of escaping local
modes in general multimodal discrete distributions, includ-
ing those that appear in deep energy-based models and large
language models. First, we motivate using the cyclical
schedule by demonstrating the issue of gradient-based sam-
plers getting stuck in local modes on a toy dataset. We then
present our sampler’s parameterization of the step size and
balancing function. Next, we introduce a cyclical schedule
for the proposal distribution that enables effective explo-
ration and characterization of discrete multimodal distri-
butions. Finally, we develop an automatic tuning method
that simplifies the process of identifying hyperparameters
in cyclical schedules.

4.1. Motivating Example: A Synthetic Multimodal
Discrete Distribution

To demonstrate the crucial issue of local modes trapping
gradient-based samplers, we construct a 2-dimensional
dataset consisting of integers. We define Θ =
{0, 1, · · ·N}2, where N is the maximum value for each
coordinate. Given a set of modes {µ1, µ2, . . . µl}, we de-
fine the energy as follows:

U(θ) = log

(
l∑

i=1

exp

(
||θ − µi||2

2σ

))
. (2)

This distribution enables easy comparison between different
methods in terms of their ability to both explore and exploit
the target distribution. We demonstrate the results of various
samplers in Figure 1. More experimental details can be
found in Appendix D.1.

A visual comparison reveals that while gradient-based sam-
plers (DMALA (Zhang et al., 2022b) and AB (Sun et al.,

2023a)) are very effective at characterizing a given mode,
they tend to get trapped in some small neighborhood, pre-
venting a proper characterization of the distribution as a
whole.

We can understand this behavior of gradient-based samplers
by comparing them to a random walk sampler (RW), which
is able to explore all the modes but unable to fully character-
ize the detail of each one. While the RW sampler proposes
movements uniformly over the sample space, gradient-based
samplers propose movement based on the geometry of the
distribution as captured by the gradient. Because the pro-
posed movements are in the direction of increasing density,
these proposals are able to characterize a given mode in
detail. At the same time, these proposals hinder escape to
more distant modes as the gradient points away from their
direction. For this reason, we observe that local modes are
able to “trap” gradient-based samplers.

4.2. Parameterized Proposal Distribution

To derive an automatic schedule for the proposal, we need
to parameterize the proposal first. We define Kα and g(t)
in the informed proposal (Zanella, 2017) as follows:

Kα(θ
′ − θ) =

exp −||θ′−θ||2
2α

Z

α ∈ (0,∞); g(t) = tβ , β ∈ [0.5, 1)

where β is called a balancing parameter. α → 0, β = 0.5
correspond to a locally-balanced proposal and α→∞, β =
1 correspond to a globally-balanced proposal. Values in
between result in interpolations between locally-balanced
and globally-balanced proposals. Note that β ∈ (0, 1) in
(Sun et al., 2023a) while our range is narrower.

We substitute these definitions into Equation (1) and apply
the first-order Taylor expansion:

Qα,β(θ
′|θ) ∝ exp

(
β(U(θ′)− U(θ))− ||θ

′ − θ||2

2α

)
≈ exp

(
β(∇θU(θ)(θ′ − θ))− ||θ

′ − θ||2

2α

)
.

(3)

As in (Zhang et al., 2022b), we use the assumption
of coordinate-wise factorization to obtain the following
coordinate-wise proposal function, which we define as
Qi

α,β(θ
′
i|θ):

Cat
(

Softmax
(
β∇U(θ)i(θ

′
i − θi)−

(θ′i − θi)
2

2α

))
.

(4)

In order to make the resulting Markov chain reversible, we
apply the Metropolis-Hastings correction, where we accept
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the proposed step with the following probability:

A(θ′|θ, α, β) = min

(
1, exp(U(θ′)− U(θ)))

Qα,β(θ|θ′)
Qα,β(θ′|θ)

)
.

(5)

In summary, we parameterize our proposal as in Equation (4)
which includes a spectrum of local and global proposals.
Our proposal is determined by two hyperparameters, the
step size α and the balancing parameter β.

4.3. Cyclical Hyperparameter Schedules

Cyclical Step Size Schedule In order to effectively ex-
plore the whole target distribution while retaining the ability
to exploit local modes, we adopt the cyclical step size sched-
ule from (Zhang et al., 2020). The definition of step size α
for iteration k is as follows:

αk = max

(
αmax · cos

(
πmod(k, s)

s

)
+ 1, αmin

)
, (6)

where αmax is the initial step size, αmin is the minimum
step size, and s is the number of sampling steps per cycle.
Differing from the cyclical schedule in (Zhang et al., 2020),
we additionally add αmin to make sure that even the smallest
step size remains effective in discrete spaces.

Cyclical Balancing Schedule Using large step sizes in (6)
can easily result in very low acceptance rates, removing any
benefit of exploration. To address this issue, we introduce a
balancing parameter schedule, which enables reasonable ac-
ceptance rates for large step sizes. As discussed in (Zanella,
2017; Sun et al., 2023a), the balancing parameter should
vary with different step sizes to achieve a “balanced” pro-
posal. A balanced proposal ensures that the Markov chain
is reversible with respect to a certain distribution, which
will converge weakly to the target distribution. For example,
when the step size α → 0, the optimal balancing parame-
ter is β = 0.5, whereas for α → ∞, the ideal balancing
parameter becomes β = 1.

Thus for a schedule of step sizes, each αi requires a dif-
ferent βi ∈ [.5, 1), with larger step sizes having βi closer
to 1 and smaller step sizes having βi closer to 0.5. Using
the Metropolis-Hastings acceptance rate to characterize the
quality of a given α, β pair, we define the value of βi as
follows:

βi = argmaxβ∈[.5,βi−1]

(
Eθ∼π,θ′∼Qα,β

[{A(θ′|θ, αi, β)]
)
(7)

Intuitively, this definition means that the best βi for a given
step size αi maximizes the average acceptance rate for the
proposal function Qα,β . It also conveys that larger step sizes

will have larger balancing parameters. See Figure 2 for a
visualization of this schedule.

We include a visualization of the resulting schedules in Fig-
ure 2a and outline our algorithm using the α, β schedules
in Algorithm 1 in Appendix A. Given α, β schedules, we
introduce the cyclic sampling algorithm in Algorithm 1.
Note that it incurs no extra overhead compared to previous
gradient-based discrete sampling methods as it only adjusts
hyperparameters α and β. By using a combination of large
and small α and β, we enable the sampler to explore the dis-
tribution fully without sacrificing the ability to characterize
each mode. This is demonstrated in Figure 1e.

Algorithm 1 Cyclical Sampling Algorithm

Require: step size schedule {αk}sk=1, balancing parameter
schedule {βk}sk=1, cycle number n, steps per cycle s

1: samples← [ ]
2: for cycle c in range n do
3: for step k in range s do
4: θ ← samples[-1]
5: for coordinate i in range d do
6: construct Qi

αk,βk
(·|θ) as in (4)

7: sample θ′i ∼ Qi
αk,βk

(·|θ)
8: end for
9: samples← θ′ with probability (5)

10: end for
11: end for
12: return samples

4.4. Automatic Schedule Tuning

For schedules in Equations (6) and (7), we have parame-
ters αmax, αmin, and {β1, β2 . . . βs} to be decided. In this
section, we will introduce an automatic tuning algorithm to
easily find suitable values.

Main Idea Our automatic tuning algorithm depends on
the initial balancing parameter βmax, the final balancing pa-
rameter βmin, a target acceptance rate ρ∗, and the number of
steps per cycle s. These values are relatively easy to select,
as detailed in Appendix A. Below, we assume they are al-
ready determined. The tuning algorithm first estimates the
optimal choices for αmax and αmin based on ρ∗, which can
then be used to construct the full step-size schedule using
(6). We then construct the balancing parameter schedule
using (7). The method is summarized in Algorithm 2 with
details regarding subroutines in Appendix A.

Our automatic tuning introduces minimal overhead relative
to the more expensive sampling process. For example, in
Section 6, we use 500 steps as the budget for Algorithm 2
where the total number of sampling steps is at least 5000.
We further demonstrate that our algorithm is relatively ro-
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Figure 2. (a) α-schedule along with the corresponding β schedule. The initial large steps enable the sampler to explore different regions of
the distribution, while the smaller steps enable good characterization of each region. The balancing parameter β varies with the step size
to enable high acceptance rates for all step sizes. (b) Acceptance rate v.s. step size on EBM sampling on MNIST shows a non-monotonic
relationship.

bust to hyperparameters in Appendix A.1.

In short, our tuning algorithm adopts an alternative opti-
mization strategy, leveraging existing knowledge about hy-
perparameter values (e.g. βmin and βmax should be around
0.5 and 1 respectively). While estimating the best pair α, β
is challenging due to their interdependence, it is much easier
to fix one and optimize the other (Sun et al., 2023a).

Algorithm 2 Automatic Schedule Tuning Algorithm

Require: βmin = .5, βmax, target acceptance rate ρ∗, ini-
tial state θinit, steps per cycle s, initial largest step size
αceil = 60, initial smallest step size αfloor = .05

1: θ ← InitBurnin(αceil, βmax, θinit)
2: αmin ← EstAlpha(αfloor, βmin, θ, ρ

∗, MAX=False)
3: αmax ← EstAlpha(αceil, βmax, θ, ρ

∗, MAX=True)
4: Construct α-sched of length s using (6)
5: β-sched← EstBalSched(α-sched, βmax, βmin, θ)
6: return α-sched, β-sched

Estimating αmax, αmin For a given βmax, βmin, our goal is
to find step sizes αmax, αmin that enable an acceptance rate
close to ρ∗. We can formally state this goal as follows:

J(α, β) = Eθ∼π

[
Eθ′∼Qα,β(·|θ) |ρ

∗ −A(θ′|θ, α, β)|
]
.

(8)

Given βmax, βmin, we construct the following objectives to
pick the corresponding αmax, αmin:

αmax = max{α s.t J(α, βmax) ≈ 0}
αmin = min{α s.t J(α, βmin) ≈ 0}. (9)

By defining the initial and final step sizes in this manner, we
ensure that our cyclical schedule includes a wide range of
hyperparameter pairs with different trade-offs in exploration
and exploitation.

To solve (9), we estimate αmax by starting with a large step
size and gradually decreasing it to find the step size that
yields ρ∗. Unlike existing works that start with small step
sizes, we observed that multiple α values can yield the same
acceptance rate for a given β, as shown in Figure 2b. We
hypothesize that it is caused by the structures of the discrete
distribution, such as the correlation among coordinates. Our
goal is to identify the maximum feasible step size that meets
the desired acceptance rate to enhance exploration. There-
fore, we start with an upper limit αceil and reduce the step
size to avoid missing any larger α values that meet our crite-
ria. Detailed implementation is provided in Algorithm 4 in
the Appendix. αmin can be obtained similarly.

Estimating Balancing Schedule After setting the start
and end pairs for the α and β schedules, we now define
intermediate β values. As the entire step size schedule is
fixed by (6), the problem is to determine the best balancing
parameter for each step size. A simple strategy is to test dif-
ferent β spaced out evenly throughout the interval [.5, βi−1]
and select the best value in terms of acceptance rate. This
approach leverages the observation that smaller step sizes
tend to have smaller optimal balancing parameters. Detailed
implementation is given in Algorithm 5 in Appendix.

5. Theoretical Analysis
In this section, we present a convergence rate analysis for
Algorithm 1. For general step size and balancing parameter
schedules, i.e., at each cycle, the algorithm will go through
s steps in which it will use step sizes α1, α2, · · · , αs and
balancing parameters β1, β2, · · · , βs. Note that for each
pair (αi, βi), we have a Markov transition operator which
we label Pi for i = 1, 2, · · · , s. The Markov operator for
a single cycle is given by P̂ = P1P2 · · ·Ps. We have the
following two assumptions:
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Assumption 5.1. The function U(·) ∈ C2(Rd) has M -
Lipschitz gradient. That is

∥∇U(θ)−∇U(θ′)∥ ≤M ∥θ − θ′∥ .

Note that it implicitly assumes that the set in domain Θ is
finite. We define conv(Θ) as the convex hull of the set Θ.
Assumption 5.2. For each θ ∈ Rd, there exists an open ball
containing θ of some radius rθ, denoted by B(θ, rθ), such
that the function U(·) is mθ-strongly concave in B(θ, rθ)
for some mθ > 0.

Assumptions 5.1 and 5.2 are standard in optimization and
sampling literature (Bottou et al., 2018; Dalalyan, 2017).
Under Assumption 5.2, U(·) is m-strongly concave on
conv(Θ), following Lemma C.3 in Appendix.

We define diam(Θ) = supθ,θ′∈Θ ∥θ − θ′∥ and ϵαi,βi
to be

exp

{
−
(

1

2αi
+ βiM −

βim

2

)
diam(Θ)2 − ∥∇U(a)∥ diam(Θ)

}
.

The Markov kernel corresponding to each Pi in each step
of the cycle in Algorithm 1 is

pi(θ
′|θ) = A(θ′|θ, αi, βi)Qαi,βi(θ

′|θ) + (1− L(θ)) δθ(θ
′)

(10)

where

L(θ) =
∑
θ′∈Θ

(
π(θ′)Qαi,βi

(θ|θ′)
π(θ)Qαi,βi(θ

′|θ)
∧ 1

)
Qαi,βi

(θ′|θ)

is the total rejection probability from θ. Finally, recall that
the total variation distance between two probability mea-
sures µ and ν, defined on some space Θ ⊂ Rd is

∥µ− ν∥TV = sup
A∈B(Θ)

|µ(A)− ν(A)|

where B(Θ) is the set of all measurable sets in Θ.

Constant Step Size and Balancing Parameter To ana-
lyze Algorithm 1 with step size and balancing parameter
schedules, we first solve a simpler problem where the step
size and balancing parameter are fixed and then extend the
analysis to the setting of Algorithm 1.

Our main method of proof is to establish uniform ergodicity
of the Markov chain P , for a single α, β, by establishing a
uniform minorization for P . We denote the transition kernel
for this Markov chain P as p(· | ·), which is given in (10)
with αi, βi replaced by a fixed α, β.
Lemma 5.3. Let Assumptions 5.1-5.2 with α < 1

βM hold.
Then for the Markov chain P we have, for any θ, θ′ ∈ Θ,

p(θ | θ′) ≥ ϵβ,α
exp {βU(θ′)}∑

θ′∈Θ exp {βU(θ′)}
,

where

ϵβ,α =exp

{
−
(

1

2α
+ βM − β m

2

)
diam(Θ)2

−∥∇U(a)∥diam(Θ)}

with a ∈ argminθ∈Θ ∥∇U(θ)∥ .

Proof. The proof is provided in Appendix C.1.

Theorem 5.4. Let Assumptions 5.1-5.2 hold with α <
1/βM . Then for the Markov chain P , the following hold:
i. P is uniformly ergodic with

∥Pn − π∥TV ≤ (1− ϵβ,α)
n
.

ii. For any real-valued function f and samples
X1, X2, X3, · · · , Xn from P , one has

√
n

(
1

n

n∑
i=1

f(Xi)−
∑
θ∈Θ

f(θ)π(θ)

)
d→ N(0, σ̃2

∗)

for some σ̃∗ > 0 as n→∞.

Proof. The proof directly follows from our Lemma 5.3
and (Jones, 2004)[Corollary 5].

Note that as α→ 0, we have ϵβ,α → 1 which implies that
small step sizes result in low convergence rates. This is
intuitive as the algorithm could not explore much in this
case. Furthermore, our results suggest that large β restricts
α to small values. Given that large β generally requires
large α, our findings imply an upper bound for the step size.

Adaptive Step Size and Balancing Parameter Now we
tackle the case of varying step sizes and balancing parame-
ters. Each cycle has s steps with step sizes α1, α2, · · · , αs

and balancing parameters β1, β2, · · · , βs. Note that this
case is more challenging as at each step the transition opera-
tor changes and the Markov chain is no longer homogeneous.
However, the marginal chain for each cycle is indeed homo-
geneous and can be analyzed. We present our results in this
setting as follows:

Theorem 5.5. Let Assumptions 5.1 and 5.2 hold with αi <
1/βiM , i = 1, 2, · · · s. Then for the Markov chain P̂ , the
following hold
i. P̂ is uniformly ergodic with∥∥∥P̂n − π

∥∥∥
TV
≤ (1− ϵβs,αs

)n.

ii. For any real-valued function f and samples
X1, X2, X3, · · · , Xn from P̂ , one has

√
n

(
1

n

n∑
i=1

f(Xi)−
∑
θ∈Θ

f(θ)π(θ)

)
d→ N(0, σ̃2

∗)

6



Gradient-based Discrete Sampling with Automatic Cyclical Scheduling

for some σ̃∗ > 0 as n→∞, where,

ϵβs,αs =exp

{
−
(

1

2αs
+ βsM −

βs m

2

)
diam(Θ)2

}
· exp {−∥∇U(a)∥diam(Θ)}

with a ∈ argminθ∈Θ ∥∇U(θ)∥.

Proof. The proof follows from our Lemma 5.3, Proposi-
tion C.1 and (Jones, 2004)[Corollary 5].

Both Theorems 5.4 and 5.5 hold uniformly over all functions
in the class of functions with at least a local minima in
Θ. The Central Limit Theorem results in Theorems 5.4
and 5.5 imply that we may perform inference on the target
distribution π(·) even though the asymptotic variances are
unknown, as we may perform batch-means to estimate these
variances (Vats et al., 2019).

In summary, we have established a geometric convergence
rate to the target distribution for our sampler. Previous re-
search has only established asymptotic convergence (Zhang
et al., 2022b) or relative convergence rate bounds (Grath-
wohl et al., 2021) for gradient-based discrete samplers. To
the best of our knowledge, our results present the first non-
asymptotic convergence bounds that explicitly quantify the
distance between the estimated and target distributions. Fur-
ther, our convergence bound also shows that discrete spaces
play a fundamental part in the ergodic nature of these algo-
rithms.

6. Experiments
6.1. Sampling Tasks

We evaluate our sampling method on both Restricted Boltz-
mann Machines (RBMs) and deep convolutional Energy-
Based Models (EBMs). For RBMs, we measure accuracy
by comparing the Maximum Mean Divergence (MMD) be-
tween samples generated by our method and Block Gibbs,
which can be considered the ground truth. We sample on
EBMs to demonstrate our method’s scalability to more com-
plex distributions. Experimental details are provided in
Appendices D.2 and D.3 for RBM and EBM sampling, re-
spectively.

Results In Figure 3, our proposed ACS method performs
competitively for both RBMs and EBMs across all datasets.
For RBM sampling, ACS is able to converge to the ground
truth quicker than other methods due to the ability to capture
the multi-modal nature of the target distribution. This is
especially evident in the results pertaining to mode-specific
batch initialization, where we see that ACS demonstrates
more robust performance than other methods. We see that
this performance generalizes to more complex distributions
as represented by deep EBMs.

Table 1. Log likelihood scores for RBM learning on test data as
estimated by AIS. ACS outperforms all gradient-based baselines
across all datasets.

GB GWG DMALA ACS

MNIST -191.98 -387.34 -278.35 -249.55
eMNIST -317.78 -590.97 -324.34 -304.96
kMNIST -357.69 -681.28 -436.3538 -407.39
Omniglot -161.73 -276.81 -222.61 -220.71
Caltech -511.65 -827.45 -427.29 -396.04

Table 2. Deep Convolution EBM Log likelihood scores on test data
as estimated by AIS. GWG results are taken from (Grathwohl et al.,
2021). ACS is able to achieve better results than the baselines.

GWG* DMALA ACS

Static MNIST -80.01 -79.93 -79.76
Dynamic MNIST -80.51 -80.13 -79.70
Omniglot -94.72 -100.08 -91.32
Caltech -96.20 -99.35 -88.34

6.2. Learning Tasks

One common application of MCMC techniques is learning
energy-based models (EBMs), where a neural network pa-
rameterized by ϕ represents an energy function Eϕ. These
models are typically trained using Persistent Contrastive
Divergence (PCD) and evaluated with Annealed Importance
Sampling (AIS). Details on ACS for EBM learning are in
Appendix B. We test our algorithm on learning RBMs and
deep convolutional EBMs, with experimental details in Ap-
pendix D.5.D.4.

Results

Table 1 demonstrates that ACS is able to learn better quality
RBMs than other methods. Particularly, the RBMs trained
using ACS have far closer AIS scores and sometimes supe-
rior AIS results than those trained by Block-Gibbs.

Table 2 demonstrates that ACS is capable of learning bet-
ter quality EBMs given the same computational budget as
DMALA. Furthermore, ACS learns better quality models
with less computational budget than GWG.

6.3. Text Infilling

One challenging application of discrete MCMC methods
is text-infilling, where the goal is to complete a sentence
with some missing words. Given a dataset of sentences, we
randomly mask our 50% of the words and fill them in using
the distribution given by a pretrained RoBERTa model. We
utilize Stanford Sentiment Treebank and Grimms Fairy tales
as these provide challenging sentences to complete. We
compare DMALA and ACS using perplexity, CoLA score,
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Figure 3. Sampling performance of various methods. Top row demonstrates convergence to ground truth on RBMs with random batch
initialization and bottom row demonstrates convergence speed on deep EBMS. Across all sampling tasks, ACS demonstrates competitive
performance.

Dataset Method Perplexity (↓) CoLA (↑) Self-Bleu (↓)
Unique n-gram (↑)
n=2 n=3

Grimm DMALA 280.82± 27.26 50.46± 1.25 41.83± 6.85 48.55 70.56
ACS 369.44± 30.85 53.42± 1.26 36.70± 6.42 53.91 74.70

SST2 DMALA 256.66± 10.53 42.62± 1.14 37.47± .79 57.68 75.21
ACS 307.05± 14.84 47.12± 1.20 32.42± .75 62.54 78.87

Table 3. Empirical evaluation of the generated sentences. ACS outperforms DMALA for all metrics related to diversity.

self-BLEU, and n-gram diversity (Zhu et al., 2018; Wang
& Cho, 2019). We randomly pick 100 sentences from each
dataset and mask out 50% of the tokens in the sentence.
We then run 25 seperate chains for both DMALA and ACS
for 100 sampling steps. We pick the 5 most likely genera-
tions and conduct our comparisons using these samples. In
addition to using perplexity to evaluate the quality of the
output generations, we also use a RoBERTA fine-tuned on
the CoLA dataset to measure the linguistic acceptability of
the generations. We measure the diversity of generations
using self-BLEU (Zhu et al., 2018) and the percentage of
unique n-grams (Wang & Cho, 2019) in each generation.

We include experiment details in Appendix D.6.

Results Table 3 demonstrates that ACS is capable of gen-
erating more diverse sentences, as ACS has a lower self-
BLEU and higher percentage of unique n-grams. While the
perplexity results seem to imply that ACS generates lower
quality than DMALA, we note that the ACS generations are
more likely to be predicted as linguistically acceptable as
shown by the CoLA scores. We discuss the results more
extensively in Appendix D.6.

Conclusion and Limitations
In this work, we propose Automatic Cyclical Sampler (ACS)
to more effectively characterize multimodal distributions in
discrete spaces. First, we demonstrate that gradient-based
samplers are prone to getting trapped in local modes, pre-
venting a full characterization of target distributions. To
address this issue, we combine a cyclical step size schedule
with a cyclical balancing parameter schedule along with an
automatic tuning algorithm to configure these schedules. We
also theoretically establish the non-asymptotic convergence
bound of our method to the target distribution in addition to
providing extensive experimental results.

While our proposed ACS method generates impressive re-
sults on a wide range of experiments, there are some limi-
tations to our work that should be mentioned. Specifically,
though we have proven a geometric convergence rate and
the relationship between α and β in our theoretical analysis,
we require U(·) to be twice differentiable as well as locally
strongly concave and the proof is not based on the specific
tuning algorithm implemented. This is why we provide ex-
tensive experimentation to demonstrate that our algorithm
is capable of picking good α, β schedules.

8



Gradient-based Discrete Sampling with Automatic Cyclical Scheduling

References
Berg, B. A. and Neuhaus, T. Multicanonical algorithms for

first order phase transitions. Physics Letters B, 267(2):
249–253, 1991.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. Siam Review,
60(2):223–311, 2018.

Dalalyan, A. S. Theoretical guarantees for approximate
sampling from smooth and log-concave densities. Jour-
nal of the Royal Statistical Society Series B: Statistical
Methodology, 79(3):651–676, 2017.

Deng, W., Feng, Q., Gao, L., Liang, F., and Lin, G. Non-
convex learning via replica exchange stochastic gradient
mcmc. In International Conference on Machine Learning,
pp. 2474–2483. PMLR, 2020a.

Deng, W., Lin, G., and Liang, F. A contour stochastic
gradient langevin dynamics algorithm for simulations of
multi-modal distributions. Advances in neural informa-
tion processing systems, 33:15725–15736, 2020b.

Du, Y. and Mordatch, I. Implicit generation and modeling
with energy based models. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Goshvadi, K., Sun, H., Liu, X., Nova, A., Zhang, R., Grath-
wohl, W. S., Schuurmans, D., and Dai, H. Discs: A bench-
mark for discrete sampling. In Thirty-seventh Conference
on Neural Information Processing Systems Datasets and
Benchmarks Track, 2023.

Grathwohl, W., Swersky, K., Hashemi, M., Duvenaud,
D., and Maddison, C. J. Oops I took A gradient:
Scalable sampling for discrete distributions. CoRR,
abs/2102.04509, 2021. URL https://arxiv.org/
abs/2102.04509.

Hinton, G. E. Training products of experts by minimizing
contrastive divergence. Neural computation, 14(8):1771–
1800, 2002.

Jones, G. L. On the markov chain central limit theorem.
2004.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Marinari, E. and Parisi, G. Simulated tempering: a new
monte carlo scheme. Europhysics letters, 19(6):451,
1992.

Neal, R. M. Annealed importance sampling. Statistics and
computing, 11:125–139, 2001.

Rhodes, B. and Gutmann, M. Enhanced gradient-based
mcmc in discrete spaces, 2022.

Ruder, S. An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747, 2016.

Sansone, E. Lsb: Local self-balancing mcmc in discrete
spaces. In International Conference on Machine Learn-
ing, pp. 19205–19220. PMLR, 2022.

Sun, H., Dai, H., Xia, W., and Ramamurthy, A. Path auxil-
iary proposal for mcmc in discrete space. In International
Conference on Learning Representations, 2021.

Sun, H., Dai, H., and Schuurmans, D. Optimal scaling for
locally balanced proposals in discrete spaces, 2022.

Sun, H., Dai, B., Sutton, C., Schuurmans, D., and Dai, H.
Any-scale balanced samplers for discrete space. In The
Eleventh International Conference on Learning Represen-
tations, 2023a. URL https://openreview.net/
forum?id=lEkl0jdSb7B.

Sun, H., Dai, H., Dai, B., Zhou, H., and Schuurmans, D.
Discrete langevin samplers via wasserstein gradient flow.
In International Conference on Artificial Intelligence and
Statistics, pp. 6290–6313. PMLR, 2023b.

Swendsen, R. H. and Wang, J.-S. Replica monte carlo
simulation of spin-glasses. Physical review letters, 57
(21):2607, 1986.

Swendsen, R. H. and Wang, J.-S. Nonuniversal critical
dynamics in monte carlo simulations. Physical review
letters, 58(2):86, 1987.

Tieleman, T. Training restricted boltzmann machines using
approximations to the likelihood gradient. In Proceedings
of the 25th international conference on Machine learning,
pp. 1064–1071, 2008.

Vats, D., Flegal, J. M., and Jones, G. L. Multivariate output
analysis for markov chain monte carlo. Biometrika, 106
(2):321–337, 2019.

Wang, A. and Cho, K. Bert has a mouth, and it must speak:
Bert as a markov random field language model. arXiv
preprint arXiv:1902.04094, 2019.

Wolff, U. Collective monte carlo updating for spin systems.
Physical Review Letters, 62(4):361, 1989.

Xiang, Y., Zhu, D., Lei, B., Xu, D., and Zhang, R. Efficient
informed proposals for discrete distributions via newton’s
series approximation. In International Conference on Ar-
tificial Intelligence and Statistics, pp. 7288–7310. PMLR,
2023.

9

https://arxiv.org/abs/2102.04509
https://arxiv.org/abs/2102.04509
https://openreview.net/forum?id=lEkl0jdSb7B
https://openreview.net/forum?id=lEkl0jdSb7B


Gradient-based Discrete Sampling with Automatic Cyclical Scheduling

Zanella, G. Informed proposals for local mcmc in discrete
spaces, 2017.

Zhang, R., Li, C., Zhang, J., Chen, C., and Wilson, A. G.
Cyclical stochastic gradient mcmc for bayesian deep
learning. In International Conference on Learning Rep-
resentations, 2020. URL https://openreview.
net/forum?id=rkeS1RVtPS.

Zhang, R., Liu, X., and Liu, Q. A langevin-like sampler
for discrete distributions. In International Conference on
Machine Learning, pp. 26375–26396. PMLR, 2022a.

Zhang, R., Liu, X., and Liu, Q. A langevin-like sampler for
discrete distributions, 2022b.

Zhu, Y., Lu, S., Zheng, L., Guo, J., Zhang, W., Wang, J.,
and Yu, Y. Texygen: A benchmarking platform for text
generation models. In The 41st international ACM SIGIR
conference on research & development in information
retrieval, pp. 1097–1100, 2018.

Ziyin, L., Li, B., Simon, J. B., and Ueda, M. Sgd can
converge to local maxima. In International Conference
on Learning Representations, 2021.

10

https://openreview.net/forum?id=rkeS1RVtPS
https://openreview.net/forum?id=rkeS1RVtPS


Gradient-based Discrete Sampling with Automatic Cyclical Scheduling

A. Details of Automatic Cyclical Sampler Algorithm
InitialBurnin We find that in order to produce meaningful estimates for the objective in (8), it is necessary to burn in the
MCMC sampling chain. This is due to the dependence of the acceptance rate on current sample θ. If we use θ very low in
density with respect to the target distribution, the acceptance rates estimated by the tuning algorithm will lose accuracy as
the sampler converges to the target distribution. In order to avoid this issue, we run a quick burn-in stage with two distinct
stages.

The first stage uses the gradient information to move the sampler away from the initialized point as quickly as possible. We
use the parameterized proposal from Equation (3) with stepsize αceil, βmax without any Metropolis-Hastings correction as
this enables very large movements from the initial sample.

For some datasets, this enables a very quick burn-in. This can be noticed in Figure ?? for Static/Dynamic MNIST and
Omniglot. We hypothesize that this is due to the distribution having a relatively simple structure that enables the gradient
to provide meaningful information for very large sampling steps. It is impossible to determine a priori whether a given
distribution will have this property, so we include a following stage that uses a Metropolis-Hastings correction to increase
the chance of arriving at a reasonable sample θ.

For this stage, we construct a naive step size schedule and balancing constant schedule using the values of
αceil, αfloor, βmax, βmin. We then run the parameterized sampler from Equation (3) with the Metropolis-Hastings correction.
Our goal is to move the sampler to samples θ that are more likely in the target distribution. This will enable the acceptance
rates computed during the tuning algorithm to be closer to the acceptance rates for the steady-state chain.

For all the sampling experiments, these two stages combined use 100 sampling steps.

EstimateAlpha Here we discuss the algorithm used to calculate both αmax, αmin as defined in Equation (9). When
calculating αmax, the goal is to pick the largest stepsize αmax that acheives the acceptance rate ρ∗ for a given βmax. When
calculating αmin, the goal is to determine the smallest step-size capable of acheiving the target acceptance rate. We put the
full pseudo-code in Algorithm 4.

For calculating αmax and αmin, the algorithm follows the general pattern of automatically shifting the range of potential
α based on the best values calculated from the previous iteration. When calculating αmax, the algorithm starts with an
upper-bound initialized to αbound = αceil and iteratively decreases the range of proposed α. For αmin, the algorithm starts
with a lower bound αbound = αfloor and iteratively increases the range. For both, the other bound is calculated by the
following learning rule:

αprop = αbound ± ζ|ρ− ρ∗|.

Here, ζ is the learning rate that determines how much we can adjust the step size in one tuning step. We found ζ insensitive
and set ζ = .5 in all tasks. Additionally, ρ is the best acceptance rate computed from the previous iteration of the algorithm.
For the first step of the algorithm, we set ρ = 0.

The algorithm uses αprop, αbound to determine the range of α to test. For calculating αmax, the algorithm searches in the
range of [αprop, αbound]. For calculating αmin, the range is [αbound, αprop].

Given the appropriate range of α and an initial θ, we test t potential α and calculate their respective acceptance rates using
Equation (5). Once we have computed all the acceptance rates, we set αbound to the value that resulted in the most optimal
acceptance rate as determined by Equation (8), θ to the corresponding θ′, and ρ to the corresponding acceptance rate.

Choice of βmax, βmin, ρ
∗, s The automatic tuning algorithm depends on an initial choice of βmax, , βmin, ρ

∗, s that enable it
to automatically configure an effective hyper-parameter schedule. Here we describe the general approach to picking these
values.

For some target distributions, it is possible that the best possible acceptance rate with a very high βmax, such as βmax = .95,
will not be close to the target acceptance rate ρ∗. In this case, the EstimateAlphaMax algorithm will keep on decreasing
the proposed αmax, which will result in a very small αmax. In order to avoid this behavior, we recommend starting with
βmax = .95, and decreasing it by .05 if the resulting αmax is reasonable.

We always set βmin = 0.5 which is the smallest value β can take.
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We determine the target ρ∗ by starting with a value of .5 and increasing it by .05 until desirable performance metrics are
obtained. While this process is essentially the same as a grid search, we note that we only needed to apply this process
in the specific case of training a deep EBM on the Caltech Silhouettes dataset. For all other tasks and datasets, the target
acceptance rate of ρ∗ = .5 was effective. We discuss the unique difficulty presented within the Caltech Silhouettes dataset in
D.5.

To determine the steps per cycle s, we required a similar approach to determine the optimal value. In our experiments, we
only look at two different values: either s = 8, or s = 20. Having a longer cycle length tends to enable more exploitation of
the target distribution, whereas having a shorter cycle enables more exploration. While we do not have an algorithm for
automatically configuring this value, we were able to achieve good results across all tasks and datasets by choosing either of
these two values. For more details on the resulting hyper-parameters used for each experiment, see Appendix D.

A.1. Hyper-parameter Sensitivity

Our method introduces the following hyperparameters: βmax, βmin, αceil, αfloor, learning rate for tuning γ, steps per cycle s,
target acceptance rate ρ∗, and budget B. This may seem like many additional hyperparameters, but the majority of these are
introduced due to the automatic tuning mechanism and are not changed across all tasks and datasets in the paper: γ = .5,
αfloor = .05, αceil = 5, βmin = .5, B = 200. Thus the only hyperparameters requiring tuning in practice are βmax, ρ∗, and s.
Note that the existing adaptive discrete sampler, any-scale sampler introduced in (Sun et al., 2023a), has a similar number of
hyper-parameters: initial step size σ, initial balancing parameter α, update rate γ, decay rate β, buffer size N , initial Hessian
matrix W , and initial diagonal matrix D. Like our method, most of these hyperparameters are fixed across experiments.

We conduct an ablation study to evaluate the sensitivity of our tuning algorithm to these hyperparameters choices. We
choose one hyperparameter at a time to ablate and keep the rest at default values of the hyperparameters at their default
setting. We run the RBM sampling experiment over multiple datasets, each for 10 random seeds, and report the average
results in Figure 4. We omit the standard error as that would harm the interpretability of the graph as many of the plots are
quite close together.

We can summarize the main takeaways as follows:

1. The sensitivity of our algorithm to the hyperparameters depends on the dataset. For example, the sensitivity of our
algorithm is low on MNIST, kMNIST, eMNIST, and Omniglot while the sensitivity is relatively high on Caltech.

2. The optimal hyperparameter values depend on the dataset. For example, high values of s generally yield superior
results, except for Caltech, where lower values excel. Similarly, low βmax values are usually less effective, though
Caltech is an exception, showcasing decent outcomes. In general, the hyperparameter values we selected to generate
the final results in the experiment section were the ones that generalized across the datasets.

3. For each ablation, the values tested demonstrate reasonable results when compared with the baselines. While
not all hyperparameter values result in equally competitive performance, all of them outperform the Gibbs-With-
Gradient sampler (Grathwohl et al., 2021). This demonstrates that our method performs well with a wide range of
hyperparameters and can achieve even better performance with careful hyperparameter tuning.

In conclusion, we believe these results demonstrate that our algorithm is relatively robust to choice in hyperparameters.

B. ACS for EBM Learning
B.1. Background

Energy Based Models (EBMs) are a class of generative models that learn some unnormalized distribution over a sample
space. As discussed in (Hinton, 2002), these models can be trained via the following Maximum Likelihood objective:

L(ϕ) = Ex∼pdata [− log pϕ(x)] (11)

The gradient updates for this loss function are known to be as follows:

∇ϕL(ϕ) = Ex∼pdata [∇ϕEϕ(x)]− Ex∼pϕ
[∇ϕEϕ(x)] (12)

While the expectation on the left is straight forward to calculate given a dataset, calculating the right expectation is not as
clear. Here we will mention the two methods that are relevant towards our experiments with EBMs.
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Algorithm 3 InitBurnin

Require: αceil, αfloor, βmax, βmin, steps per cycle s, steps to take without MH correction l = 50, steps to take with MH
correction lMH = 50, initial state θ

1: for step i in range(l) do
2: θ ∼ Qαceil,βmax(·|θ) ▷ Run burnin steps without MH correction
3: end for
4: {α0, α1 · · ·αs−1} ← values from Equation (6) using αceil, αfloor.
5: {β0, β1 · · ·βs−1} ← values from Equation (6) using βmax, βmin ▷ We can use Equation (6) to get interpolations of β
6: number of cycles n = floor( lMH

s )
7: Obtain θ by running Algorithm 1 using the calculated α, β schedule ▷ Run burnin steps with MH correction
8: return θ

Algorithm 4 EstimateAlpha

Require: αbound, BUDGET, initial state θ, Balancing parameter β, target acceptance rate ρ∗, learning rate ζ, number of
proposals per step t = 5, flag MAX

1: ρcur ← 0
2: while iteration i ≤ BUDGET do
3: if MAX then
4: αprop = α(1− ζ|ρ∗ − ρcur|) ▷ adaptively decrease the range of potential α
5: proposed-params← LinSpace(αprop, αbound, t) ▷ we use αbound = αceil as the ceiling for proposed α
6: else
7: αprop = α(1 + ζ|ρ∗ − ρcur|) ▷ For AlphaMin, adaptively increase the range of potential α
8: proposed-params← LinSpace(αbound, αprop, t) ▷ For AlphaMin, use αbound = αfloor as the floor for proposed α
9: end if

10: initialize bookkeeping to keep track of proposed states and acceptance rates
11: for α ∈ proposed-params do
12: θ′ ∼ Qαprop,β(·|θ) ▷ Use proposed α to take sampling step
13: ρ = A(θ′|θ, αprop, β) ▷ Compute acceptance rate for proposed α
14: i = i+ 1
15: end for
16: Set ρcur to the acceptance rate closest to the target a∗

17: Set αbound to the corresponding α ▷ Update αbound to shift the range of proposed α for the next step
18: set θcur to the corresponding θ
19: end while
20: if MAX then
21: return αmax = αbound
22: else
23: return αmin = αbound
24: end if
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Figure 4. Average performance across multiple seeds for various hyper-parameter settings.

Contrastive Divergence (CD) In order to estimate the second term, we initialize some sampler using the x in the first
term and run it for a set number of sampling steps. For a more detailed description, refer to (Hinton, 2002).

Persistent Contrastive Divergence (PCD) The expectation on the right can be calculated using samples from a persistent
Markov Chain that approximates the true distribution (Tieleman, 2008). Instead of resetting the chain each training iteration,
we maintain a buffer of the generated samples that we use to calculate the second expectation. This method relies on the
intuition that the model distribution does not vary too widely within one iteration. Using the intuition provided by (Du &
Mordatch, 2019), we can view this process as updating the model parameters ϕ to put more weight on true samples and less
weight on fake samples. By doing so, the model will in turn generate samples that closer to those from the true distribution.

B.2. Persistent Contrastive Divergence with ACS

Main Idea We can apply the ACS algorithm combining the automatic tuning of the cyclical schedule with the original
PCD learning algorithm. Our goal in doing so is to improve PCD through better characterization of the entire model
distribution. During training, we can view PCD as adjusting the model parameters to “push down” the probability of samples
from the model distribution while “pushing up” samples from the true data distribution. Because our sampling method
is able to explore the model’s distribution more effectively than other samplers, we can adjust more regions of the model
distribution at a quicker rate than previous sampling methods, which should improve the quality of gradient updates and
thus lead to better model parameters. We adapt ACS to work within PCD by having the step size depend on the training
iteration as opposed to the sampling iteration, with the corresponding α, β pair being used for all the sampling steps within
the iteration. We include the complete learning algorithm in Algorithm 6.

Cyclical Scheduling We find that the learning task requires a different approach to the cyclical scheduling than the
sampling task. Rather than having a relative equal amount of exploration and exploitation, we find that it is more effective to
use a cyclical schedule biased towards exploitation. However, exploration is still important as it enables the model to better
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Algorithm 5 EstimateBalSched

Require: Step size schedule {αmax, α1, . . . αmin}, βmax, βmin, number of proposals per step t = 10, initial state θ, target
acceptance rate ρ∗

1: βfloor = βmin, βceil = βmax
2: β-sched← {βmax}
3: for i in {1, 2, . . . s− 1} do
4: proposed-params← LinSpace(βfloor, βmax, t) ▷ Create t potential balance parameters for index i in the schedule
5: initialize bookkeeping to keep track of proposed states and acceptance rates
6: for β ∈ proposed-params do
7: θ′ ∼ Qαi,β(·|θ) ▷ Use current proposed β to take a sampling step
8: ρ = A(θ′|θ, αi, β) ▷ Evaluate the acceptance rate of proposed β for current αi

9: bookkeeping[β]← θ′, ρ
10: end for
11: pick βi as β ∈ bookkeeping largest ρ
12: βceil ← βi ▷ Shrink the range of potential balancing parameters by using assumption βi > βi+1

13: θ = θ′ correspending to βi

14: end for
15: β-sched.append(βmin)
16: return β-sched

represent the distribution as a whole rather than a few local modes. Given this, we construct a cyclical schedule consisting
of one iteration that uses αmax, βmax with the rest using αmin, βmin.

Tuning One of the advantages of using the simplified cyclical schedule is that it only requires two pairs of hyper-parameters
to be optimized. Thus we can leverage the EstimateAlphaMax and EstimateAlphaMin algorithm to both tune the respective
α, β pair while also updating the persistent buffer. Not only does this reduce the additional overhead of the tuning component,
but it allows the hyper-parameters to adapt to the changing EBM distribution.
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Algorithm 6 ACS for Persistent Contrastive Divergence

Require: Number Iterations N , EBM Eϕ, data-loader D, sampler Q, small sampling steps Ssmall, big sampling steps Sbig ,
initial buffer Xf , cycle length s, αfloor, αceil, adaptive learning rate ζ, adaptive budget BUDGET

1: while iteration i ≤ N do
2: for Xt ∼ D do
3: cycle number c = floor( i

C )
4: if c mod K = 0 then
5: if i mod s = 0 then
6: Xf , αmax ← EstAlphaMax(αceil, budget=BUDGET, learning-rate =γ)
7: else
8: Xf , αmin ← EstAlphaMin(αfloor, budget=BUDGET, learning-rate=γ)
9: end if

10: Update Sampler Step Schedule ▷ Update the buffer by running either the AlphaMax or AlphaMin estimation
algorithm

11: else
12: if i mod s = 0 then
13: S = Sbig
14: α = αmax, β = βmax ▷ Use the α, β pair that best enables exploration
15: else
16: S = Ssmall
17: α = αmin, β = βmin ▷ Use the α, β pair that best enables exploitation
18: end if
19: Construct Q = Qα,β(·|Xf ) using (3)
20: for sampling step in range(Sbig) do
21: X ∼ Q(·|Xf )
22: if i mod s = 0 then
23: Xf ← X
24: continue ▷ If i is the first step of the cycle, omit the MH correction
25: end if
26: Xf ← X with acceptance probability as calculated in (5)
27: end for
28: end if
29: Calculate Ex∼pϕ

[∇ϕEϕ(x)] using Xf

30: Calculate Ex∼pdata [∇ϕEϕ(x)] using Xt

31: ∇L(ϕ) = Ex∼pϕ
[∇ϕEϕ(x)]− Ex∼pdata [∇ϕEϕ(x)] ▷ Estimate the gradient of the Maximum-Likelihood objective

as in (11)
32: ϕ = ϕ− γϕ∇L(ϕ)
33: i+ = 1
34: end for
35: end while
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C. Theoretical Results
We define the problem setting in more detail. We have a target that is of the form

π(θ) =
1

Z
exp(U(θ)).

We consider the proposal kernel as

Qα,β(θ
′|θ) ∝ exp

{
β∇U(θ)T (θ′ − θ)− 1

2α
∥θ′ − θ∥2

}
and consider the transition kernel as

p(θ′ | θ) =
(
π(θ′)Qα,β(θ | θ′)
π(θ)Qα,β(θ′ | θ)

∧ 1

)
Qα,β(θ

′ | θ) + (1− L(θ)) δθ(θ
′)

where δθ(θ
′) is the Kronecker delta function and L(θ) is the total acceptance probability from the point θ with

L(θ) =
∑
θ′∈Θ

(
π(θ′)Qα,β(θ|θ′)
π(θ)Qα,β(θ′|θ)

∧ 1

)
Qα,β(θ

′|θ).

We also define

Zα,β(θ) =
∑
x∈Θ

exp

{
β∇U(θ)T (x− θ)− 1

2α
∥x− θ∥2

}
which is the normalizing constant for the proposal kernel.

C.1. Proof of Lemma 5.3

Proof. By including the balancing parameter, we start by noting that

Qα,β(θ
′|θ) =

exp
{
β∇U(θ)T (θ′ − θ)− 1

2α∥θ
′ − θ∥2

}∑
θ∈Θ exp

{
β∇U(θ)T (θ − θ)− 1

2α∥θ − θ∥2
} (13)

Consider the term,

β ∇U(θ)T (θ′ − θ) = β (−U(θ) + U(θ′))− β

2
(θ − θ′)T (

∫ 1

0

∇2U((1− s)θ + sθ′) ds)(θ − θ′) (14)

Substituting (14) in (13), the numerator of Qα,β(θ, θ
′)

β∇U(θ)T (θ′ − θ)− 1

2α
∥θ′ − θ∥2 =β (−U(θ) + U(θ′))

− β

2
(θ − θ′)T

(∫ 1

0

∇2U((1− s)θ + sθ′) ds

)
(θ − θ′)

− 1

2α
(θ − θ′)T I(θ − θ′)

=β (−U(θ) + U(θ′))

− 1

2
(θ − θ′)T

(
β

∫ 1

0

∇2U((1− s)θ + sθ′) ds+
1

α
I

)
(θ − θ′)

.
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From Assumption 5.1 (U is M -gradient Lipschitz), we have

β

∫ 1

0

∇2U((1− s)θ + sθ′) ds)(θ − θ′) +
1

α
I ≥

(
1

α
− βM

)
I

Since α < 1/βM , the matrix
(

1
2α − βM

)
I is positive definite. We note that

p(θ′|θ) =
(
π(θ′)Qα,β(θ|θ′)
π(θ)Qα,β(θ′|θ)

∧ 1

)
Qα,β(θ

′|θ) + (1− L(θ)) δθ(θ
′) (15)

≥
(
π(θ′)Qα,β(θ|θ′)
π(θ)Qα,β(θ′|θ)

∧ 1

)
Qα,β(θ

′|θ) (16)

=

(
Zα,β(θ)

Zα,β(θ′)
∧ 1

)
Qα,β(θ

′|θ). (17)

Zα,β(θ) =
∑
x∈Θ

exp

{
β∇U(θ)T (x− θ)− 1

2α
∥x− θ∥2

}

=
∑
x∈Θ

exp

{
−β (U(θ)− U(x))− 1

2
(θ − x)T (β

∫ 1

0

∇2U((1− s)θ + sx) ds)(θ − x) +
1

α
I)(θ − x)

}
.

This can be seen as

π(θ)Qα,β(θ
′|θ) = 1

Z Zα,β(θ)
exp

{
β (U(θ) + U(θ′))− (θ′ − θ)

T
(

1

2α
I +

β

2

∫ 1

0

∇2U((1− s)θ + sθ′)ds

)
(θ′ − θ)

}
.

Since Assumption 5.2 holds true in this setting, we have an m > 0 such that for any θ ∈ conv(Θ)

−∇2U(θ) ≥ mI.

From this, one notes that

exp

(
−βU(θ)− 1

2

(
1

α
− β m

)
diam(Θ)2

)∑
x∈Θ

exp (βU(x)) ≤ Zα,β(θ) ≤ exp (−βU(θ))
∑
x∈Θ

exp (βU(x))

where the right-hand side follows from the fact that α < 1/(βM). Therefore,

Zα,β(θ)

Zα,β(θ′)
≥ exp {β (−U(θ) + U(θ′))}

exp
{

1
2

(
1
α − βm

)
diam(Θ)2

}
Also note that

Qα,β(θ
′|θ) =

exp
{
β (−U(θ) + U(θ′))− (θ − θ′)

T
(

1
2αI +

β
2

∫ 1

0
∇2U((1− s)θ + sθ′)

)
(θ − θ′)

}
∑

θ′∈Θ exp
{
β (−U(θ) + U(θ′))− (θ − θ′)

T
(

1
2αI +

β
2

∫ 1

0
∇2U((1− s)θ + sθ′)

)
(θ − θ′)

}
≥

exp
{
β ⟨∇U(θ), θ′ − θ⟩ − 1

2α∥θ − θ′∥2
}∑

θ′Θ exp {β (−U(θ) + U(θ′))}
.
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We also note that

−β ⟨∇U(θ), θ′ − θ⟩+ 1

2α
∥θ − θ′∥2 = β ⟨−∇U(θ) +∇U(a), θ′ − θ⟩+ β ⟨−∇U(a), θ′ − θ⟩+ 1

2α
∥θ − θ′∥2

≤ β ⟨−∇U(θ) +∇U(a), θ′ − θ⟩+ β ⟨−∇U(a), θ′ − θ⟩+ 1

2α
diam(Θ)2

≤ β ∥−∇U(θ) +∇U(a)∥∥θ′ − θ∥+ β ∥∇U(a)∥∥θ′ − θ∥+ 1

2α
diam(Θ)2

≤ β∥ − ∇U(θ) +∇U(a)∥diam(Θ) + β∥∇U(a)∥diam(Θ) +
1

2α
diam(Θ)2

≤
(
βM +

1

2α

)
diam(Θ)2 + β∥∇U(a)∥ diam(Θ).

Combining, we get

p(θ′|θ) ≥ ϵβ,α
exp {βU(θ′)}∑
θ′Θ exp {βU(θ′)}

where

ϵβ,α = exp

{
−
(
1

α
+ βM − β m

2

)
diam(Θ)2 − ∥∇U(a)∥ diam(Θ)

}
.

C.2. Proofs of Proposition C.1 and Corollary C.2

Proposition C.1. Let P1, P2, · · ·Ps be Markov transition operators with kernels p1, p2, · · · ps with respect to a reference
measure η. Also, let pi(θ′|θ) ≥ ϵiνi(θ

′) for some density νi on Θ and ϵi > 0 with respect to a reference measure η. Then,
for the Markov operator P̂i defined with respect to the kernel as

p̂i(θ
′|θ) =

∫
ΘS−1

pi+1(θ1|θ)pi+2(θ2|θ1) · · · ps(θs−i+1|θs−i)

· · · pi(θ′|θs−1)dη(θ1)dη(θ2) · · · dη(θs−1),

we have

p̂i(θ
′|θ) ≥ ϵiνi(θ

′),∀θ ∈ Θ·

Proof. The proof is straightforward by using the minorization of pi. Indeed, one has

p̂(θ′|θ) =
∫
ΘS−1

pi+1(θ1|θ)pi+2(θ2|θ1) · · · ps(θs−i+1|θs−i) · · · pi(θ′|θs−1)dη(θ1)dη(θ2) · · · dη(θs−1)

≥ ϵiνi(θ
′)

∫
ΘS−1

pi+1(θ1|θ)pi+2(θ2|θ1) · · · ps(θs−i+1|θs−i) · · · pi−1(θs−1|θs−2) dη(θ1) · · · dη(θs−1)

≥ ϵiνi(θ
′)

which establishes the result.

Note that in Algorithm 1, for each cycle, we go through s steps corresponding to the step size and balancing parameter
schedules ({α1, α2, · · ·αs}) and ({β1, β2, · · ·βs}). Let P1, P2, · · · , Ps be the Markov operators corresponding to them.

Corollary C.2. Let Assumptions 5.1 and 5.2 hold. Then

P1P2P3 · · ·Ps(θ,A) ≥ ϵsνs(A)

for any measurable subset A of Θ.

Proof. The proof is immediate from Proposition C.1.
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C.3. Additional Lemma

Lemma C.3. Let Assumption 5.2 hold with Θ compact. Then, there exists some m > 0 such that for any θ ∈ conv(Θ),
λmin(∇2 − U(θ)) > m.

Proof. Note that since Θ is compact conv(Θ) is also compact. This is easy to see as we only need to establish that conv(Θ)
is closed and bounded by the Heine-Borel Theorem. Take any element in θ ∈ conv(Θ). By definition, θ = αθ1 + (1−α)θ2
for some θ1, θ2 ∈ Θ and 0 ≤ α ≤ 1. Since Θ is compact, we know that there exists M > 0 such that ∥θi∥ < M for i = 1, 2.
Therefore ∥θ∥ < M by triangle inequality. Thus the set is bounded. The fact that it is closed is also easy to see. Take
any sequence xn in conv(Θ). This implies there exists αn, θ1,n, θ2,n such that xn = αn θ1,n + (1 − αn)θ2,n. Since xn

converges as our assumption, it is Cauchy which in turn implies each of αn, θ1,n, θ2,n is Cauchy as Θ is bounded. Thus the
proof immediately follows. Now, consider each θ ∈ conv(Θ). There exits a B(θ, rθ) such that∇2 − U(θ′) ≥ mθI for all
θ′ ∈ B(θ, rθ). Since conv(Θ) ⊂ ∪θ∈ΘB(θ, rθ), this is an open cover of conv(Θ). Since conv(Θ) is compact, there exists
θ1, θ2, · · · , θk such that conv(Θ) ⊂ ∪ki=1B(θi, rθi). Thus for each i we have ∇2 − U(θ′) ≥ mθiI when θ ∈ B(θi, rθi).
Thus ∇2 − U(θ) ≥ min1≤i≤k mθiI for all θ ∈ conv(Θ). Hence we are done.

D. Additional Experimental Results and Details
Here, we include the full details for all the experiments we include in this paper, as well as some additional results. All
experiments were run on a single RTX A6000.

D.1. Multi-modal Experiment Design

Synthetic Distribution In order to construct a distribution that is easy to visualize, we first must define a few experiment
parameters. We must define the space between the modes, the total number of modes, and the variance of each mode σ. For
convenience, we have the number of modes as 25, which is a perfect square. We define the space between modes as 75, and
the variance for each mode σ2 as .15. Given this, we can calculate the maximum value for each coordinate as follows:

MaxVal = (
√

NumModes + 1) ∗ SpaceBetweenModes

We can calculate the coordinate value for each mode µi,j as follows:

µi,j [0] =
MaxVal√

NumModes + 2
(i+ 1)

µi,j [1] =
MaxVal√

NumModes + 2
(j + 1)

Sampler Configuration Our goal in this experiment is to demonstrate how gradient-based samplers typically behave
when faced with a distribution with modes that are far apart. In order for this experiment to be meaningful, it is important
that the representation of each sample respect the notion of distance between the integer values. For this reason, we cannot
use a categorical distribution or represent each coordinate with a one-hot encoding, as every sample in this representation
would be within a 2-hamming ball of every other point.

In order to determine the step sizes for the baselines, we tune each until we reach an acceptance rate around .574. For
DMALA, this ends up being around α = 53. For the any-scale sampler, we set the initial step size to be the same and use
their implemented adaptive algorithm.

For the cyclical sampler, we set αmax = 1575, αmin = 3, and steps per cycle s = 20. Because the goal of the experiment is
to demonstrate the need for larger step sizes along with smaller step sizes, we do not use the automatic tuning algorithm on
this example as restricting the space to be ordinal changes the optimal setting for αceil. In most practical cases, the samples
would be represented by a categorical or binary form, which the proposed tuning algorithm is able to handle as demonstrated
by the performance on real data distributions.
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D.2. RBM Sampling

RBM Overview We will give a brief overview of the Block-Gibbs sampler used to represent the ground truth of the RBM
distribution. For a more in-depth explanation, see (Grathwohl et al., 2021). Given the hidden units h and the sample x, we
define the RBM distribution as follows:

log p(x, h) = hTWx+ bTx+ cT − logZ (18)

As before, Z is the normalizing constant for the distribution. The sample x is represented by the visible layer with units
corresponding to the sample space dimension and h represents the model capacity. It can be shown that the marginal
distributions are as follows:

p(x|h) = Bernoulli(Wx+ c)

p(h|x) = Bernoulli(W th+ b)

The Block-Gibbs sampler updates x and h alternatively, allowing for many of the coordinates to get changed at the same
time, due to utilizing the specific structure of the RBM model.

Experiment Setup Similar to the experimental setup of (Zhang et al., 2022a), we use RBM models with 500 hidden
units and 784 visible units. We adopt the same training protocol, except we train the RBM with 100 steps of Contrastive
Divergence as opposed to 10. We also train the models for 1000 iterations as opposed to a single pass through the dataset.
We find that this enables the RBMs to generate more realistic samples. We include the generated images in Figure 5 to
demonstrate that these models have learned the dataset reasonably well.

(a) MNIST (b) eMNIST (c) kMNIST (d) Omniglot (e) Caltech

Figure 5. Images generated from RBMs trained by Contrastive-Divergence with Block Gibbs.

Sampler Configuration For GWG, we use the same settings as (Grathwohl et al., 2021), for DMALA, we set step size to
.2, and for AB we use the default hyper-parameters for the first order sampler.

For ACS, we use ρ∗ = .5, βmax = .95, ζ = .5, cycle length s = 20 for all the datasets. We also fix the total overhead of the
tuning algorithm to 10% of the total sampling steps.

Escape from Local Modes In addition to using the same initialization as (Zhang et al., 2022a; Grathwohl et al., 2021), we
extend the experiment to measure the ability of a sampler to escape from local modes. We initialize the sampler within the
most likely mode, as measured by unnormalized energy of the RBM. Samplers that are less prone to getting trapped in local
modes will be able to converge quicker to the ground truth, as measured by log MMD. We include the performance of the
various samplers across 11 random seeds in 6. ACS demonstrates superior robustness to mode-specific initialization due to
its capability to escape from local modes.

Generated Images We found that a visual inspection of the generated images demonstrates the ability of ACS to escape
local modes. We include the generated images in Figure 7.

We can make two primary inferences from the generated images: the first being that ACS is able to escape from local modes
and explore the distribution as a whole, as demonstrated by the wide range of generated images; and that ACS does not
compromise on the ability to characterize each mode as evidenced by the quality of generated samples.

21



Gradient-based Discrete Sampling with Automatic Cyclical Scheduling

0 5000 10000
Time (s)

6

5

4

3

2

Lo
g 

M
M

D

mnist
GWG
DMALA
AB
ACS (Ours)

0 5000 10000
6

5

4

3

2

kmnist

0 5000 10000

4.0

3.5

3.0

2.5

2.0

1.5

1.0
emnist

0 5000 10000

6

5

4

3

2
omniglot

0 5000 10000
5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0
caltech

Figure 6. Log MMDs v.s sampling iteration across various datasets. ACS demonstrates more robust sampling behavior across the datasets
than other methods, as evidenced by superior convergence on all datasets except KMNIST. We do note that ACS performance is still
competitive on KMNIST with the added benefit of a smaller standard error.

(a) GWG (b) AB (c) DMALA (d) ACS

Figure 7. Images sampled from RBM trained on MNIST when the sampler is initialized to most likely mode. ACS is able to generate a
diverse range of digits, demonstrating its ability to escape from modes. It should also noted that while AB is able to generate a diverse
range of digits as well, the images are slightly less clear than those generated by ACS.

Sampling Speed While the run time can vary depending on the specific implementation of a given sampling algorithm,
we illustrate the efficiency of ACS in Figure 8. ACS is able to capture both the efficiency of DMALA while displaying the
accuracy of the AB sampler, seemingly capturing the best of both worlds.

D.3. EBM Sampling

Base EBM Training In order to train the EBMs, we use Gibbs-with-Gradient to sample the EBM distribution during PCD,
following the same training protocol as (Grathwohl et al., 2021). We train these models for 50,000 iterations total with 40
sampling steps per iteration and use the parameters corresponding to the best log likelihood scores on the validation dataset.

Experimental Design For each of the trained models, we evaluate the samplers based on how quickly the average
energy of the generated samples rises. This gives an estimate of the speed at which a sampler is able to reach a stationary
distribution.

Sampler Configuration For GWG, we use the same settings as (Grathwohl et al., 2021), for DMALA, we set step size to
.2, and for AB we use the default hyper-parameters for the diagonal variant of the AB sampler. We choose this variant as
this is what they evaluate for their experiments when measuring mixing speed of samplers on EBMs.

For ACS, we use ρ∗ = .5, βmax = .8, ζ = .5, cycle length s = 20 for all the datasets. As in RBM Sampling, we fix the total
overhead of the tuning algorithm to 10% of the total sampling steps.

Sampler Performance It is worth commenting on the similarity in performance between ACS and DMALA when
sampling from Caltech. We find that when sampling from the EBM trained on the Caltech dataset, ACS finds a αmax similar
to αmin, thus making the ACS sampler similar to DMALA for this specific case. We hypothesize that small step sizes are
most effective for this dataset. The results in Figure ?? demonstrate that ACS can handle such cases automatically: while
the step size for DMALA must be hand-tuned, the ACS method can automatically adapt to a suitable step size schedule.

Generated Images We include the images generated by ACS when sampling from deep EBMs in Figure 9.
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Figure 8. RBM sampling with 5,000 sampling steps with results measured against time in seconds. The top row displays results for
random initialization. ACS is competitive both in terms of accuracy and efficiency.

(a) Static (b) Dynamic (c) Omniglot (d) Caltech

Figure 9. Generated Images from sampling deep EBMs trained with GWG. These samples capture multiple different modes while retaining
good sample quality, demonstrating the benefit of our ACS method.

D.4. RBM Learning

Experiment Design We use the same RBM structure as the sampling task, with 500 hidden units and 784 visible units.
However, we apply the samplers of interest to the PCD algorithm introduced by (Tieleman, 2008). The model parameters
are tuned via the Adam optimizer with a learning rate of .001.

In order to evaluate the learned RBMs, we run AIS with Block-Gibbs as the sampler to calculate the log likelihood values
for the models (Neal, 2001). We run AIS for 100,000 steps, which is adequate given the efficiency of Block Gibbs for this
specific model.

Sampler Configuration For DMALA, we use a step size of .2. For the ACS algorithm, we set βmax = .9, ρ∗ = .5 for all
the data-sets. We do modify the number of cycles for each data-set as different distributions require different amounts of
exploration and exploitation. We use cycle length of 8 for MNIST, eMNIST, and kMNIST; we use 20 for Omniglot and
Caltech silhouettes. This difference reflects the specific needs for each dataset in terms of exploration and exploitation –
more complex datasets tend to need longer cycles in order to better exploit each region, while simpler datasets tend to need
shorter cycles in order to capture all the modes of the learned distribution. In Figure 10, we show the samples generated
from AIS for 100,000 steps as opposed to the persistent buffer as this forms a longer MCMC chain, thus giving a better
visual of what the learned distribution represents.

In order to ensure that the overhead for the tuning algorithm does not add to the overall computational cost, we spread out
the computations of the EstimateAlphaMin algorithm throughout the training process. We keep a running list of αmin and
set αfloor to be one standard deviation below the mean of this list. By doing this, we start closer to what the ideal αmin. For
EstimateAlphaMax, we simply call the tuning function every 50 cycles containing 50 training iterations, with αceil = 5. As
the initial step does not use the Metropolis-Hastings correction and has half the sampling steps, the budget for each call of
EstimateAlphaMax can be seen as coming in part by the computation saved.

Results We include the AIS results for RBMs trained with different sampling methods in Table 1. We see that ACS
achieves superior log likelihood results when compared to other sampling methods across all datasets. Furthermore, the AIS
results are consistently close to those achieved by Block-Gibbs, which can be considered close to ideal for RBMs since it
leverages the known structure of the model.
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Generated Images We include the generated images from the RBMs trained using different samplers in Figure 10.

Figure 10. Generated images from RBMs trained with different samplers. First row corresponds to GWG, second row corresponds to
DMALA, and final row corresponds to ACS. First column represents models trained on MNIST, second on eMNIST, third on kMNIST,
fourth on Omniglot, and fifth on Caltech Silhouettes. Images are generated via AIS for 100,000 steps.

In general, the images generated from the ACS-trained RBM capture more modes than other methods, except for the Caltech
Silhouettes dataset. In particular, all the methods struggle to generate reasonable images for this dataset. We hypothesize
that this is due to the increased complexity of the distribution relative to the other datasets – Caltech Silhouettes is composed
of the silhouettes from real objects, whereas the other datasets are hand-written symbols. This hypothesis is supported by
the generated images in Figure 5, where the images generated when using Block-Gibbs on Caltech Silhouettes also seem
less reasonable than the samples obtained from different datasets. Since Block-Gibbs is the best sampler for this specific
model as it leverages the known structure of the RBM, this appears to be unavoidable as a result of limited model capacity.
This motivates our experiments with deep convolutional EBMs, where we can understand how our method does when using
a model architecture with sufficient capacity.

D.5. EBM Learning

Experiment Design We use the same EBM model architecture as (Zhang et al., 2022a; Grathwohl et al., 2021) and follow
the same experimental design, with the only change being to the number of sampling steps alotted for each sampler.

In order to determine the number of sampling steps that we could use for ACS-PCD, we tested different sampling steps. For
Static/Dynamic MNIST and Omniglot, we found that we only needed to use 10 sampling steps to achieve good models.
However, we observed divergence when training models on Caltech. In order to determine what number of sampling steps
to use for ACS, we do a grid search over the number of sampling steps and ρ∗ with all other values remaining the same.
We test sampling steps of 10, 20, and 30; and we use ρ∗.5, .6, .7, .8. We decide which hyper-parameters to use based on
when training diverged the latest; and we use the best model parameters as indicated by validation log likelihood. We
use 10 sampling steps for Static, Dynamic MNIST, and Omniglot, while we found 30 was the minimum we could use for
Caltech Silhouettes and obtain reasonable results. We apply this number of sampling steps for both DMALA and ACS to
demonstrate how the methods compare when facing a similar budget constraint.

In order to evaluate these learned models, we use the same evaluation protocol as (Zhang et al., 2022a; Grathwohl et al.,
2021). We run AIS for 300,000 iterations using Gibbs-With-Gradient as the evaluation sampler. By following the same
experimental design as previous works, we can draw meaningful comparisons from previous results in (Grathwohl et al.,
2021).
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Sampler Configuration For DMALA, we use a step size of .15 as used in (Zhang et al., 2022b). For ACS, we use 200
sampling steps for EstimateAlphaMax and EstimateAlphaMin. For Static MNIST, Dynamic MNIST, and Omniglot, we set
the algorithm to tune αmax and αmin every 25 cycles, where each cycle has 50 training iterations. The additional overhead
of this is 16,000 extra sampling steps, which is a 3.2% of the total budget of 500,000 sampling steps. For Caltech Silhouettes,
we have to adapt every 10 cycles with the same number of training iterations. This results in 40,000 additional sampling
steps due to the tuning algorithm. For this specific dataset, because we use 30 sampling steps, the additional cost is 2.6% of
the total sampling steps 1,500,000.

In terms of the final parameters for cycle length and sampling steps, we find that we can use the same ρ∗ across all datasets,
with the exception of Caltech Silhouettes. For Static/Dynamic MNIST and Omniglot, we were able to use ρ∗ = .5 and For
this dataset, we found good results by setting ρ∗ = .7. We hypothesize that the need for a higher acceptance rate is due to
the fundamental difference between Caltech Silhouettes and the other datasets, as previously mentioned. Because Caltech
Silhouettes contain samples are derived from real objects, they are more complex than the hand-written figures.

Experimental Results In addition to the empirical results in Table 2, we provide some qualitative data in the form of the
generated images from the PCD buffer when using ACS. We choose to include the buffer images for this experiment as the
chain from the persistent buffer is much longer than the chain from AIS due to the increased training duration: the chain
from AIS is obtained using 300,000 sampling steps whereas the persistent buffer is obtained from 500,000 sampling steps
on Static/Dynamic MNIST and Omniglot, 1,500,000 sampling steps for Caltech Silhouettes. By visualizing the generated
images from the longer chain, we get a better understanding of the quality of the trained distribution. We put the images in
Figure 11.

We also observe that this behavior is not unique to ACS and does occur when Gibbs-With-Gradient and DMALA are used
with 40 sampling steps as indicated. Instability is common when training deep EBMs, and this is most likely why the
original experimental design included check-pointing throughout the training process as well as comparisons based on the
validation set. We also note that despite this behavior, the trained models are able to generate fairly realistic images. We
present the images from the PCD buffer for ACS below in figure.

(a) Static (b) Dynamic (c) Omniglot (d) Caltech

(e) Static (f) Dynamic (g) Omniglot (h) Caltech

Figure 11. The example images from the representative datasets, along with the samples generated from the persistent buffer when using
ACS as the sampler for PCD. The images on the top row are examples from the dataset, while the bottom row are from the trained EBM.
The images generated from ACS are remarkably similar to those from the dataset, demonstrating that the model is capable of generating
high-quality samples.

When the images in Figure 11 are taken in context of the improvements in log likelihoods as presented in 2, the results
indicate the benefits of using ACS when learning multi-modal discrete distributions.
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• The comedy that follows feels hackneyed or just plain crude, calculated to provoke shocked stares, without opening up to a deeper truth.

• This comedy could either be hacky, or just plain crude, calculated to provoke shocked curiosity, without opening up to a deeper insight.

• A comedy that feels slightly hacky, or just plain crude, calculated to achieve shocked results, without coming up with a deeper message.

• The comedy was either unnecessarily hacky, or just plain crude, calculated to create shocked humor, without leading up to a deeper plot.

• Most comedy is flat or hack-ish or just plain crude, calculated to evoke shocked laughs, without opening up to a deeper audience.

(a) ACS

• This comedy is either plain hacky, or just plain crude, calculated to provoke shocked discussion, without linking up to a deeper message.

• And comedy that can be hacky, or just plain crude, calculated to provoke shocked discussion, without opening up to a deeper topic.

• Modern comedy can be deliberately hacklish, or just plain crude, calculated to provoke shocked disbelief, without opening up to a deeper meaning.

• Simple comedy has all things hacky, or just plain crude, calculated to be shocked away, without opening up to a deeper meaning.

• A comedy usually ranges from hacky, or just plain crude, calculated to provoke shocked surprise, without opening up to a deeper reality.

(b) DMALA

Figure 12. Text Generations using ACS and DMALA. As demonstrated empirically in 3, the ACS examples demonstrate higher diversity
than the DMALA generations.

D.6. Text Infilling

Experimental Design For both datasets, we sample 100 sentences randomly and mask 50% of the tokens. We use a
pretrained RoBERTa model available through the Hugging Face API (Liu et al., 2019). We run 25 separate chains for each
example and take the final state of each chain to be a sample. We then take the top-5 most likely samples and use these for
empirical comparisons.

We define the energy function the same as in (Zhang et al., 2022a). Let us define a sentence of length d θ = {θ1, θ2, . . . θd},
where θi is a one hot vector over vocabulary V . Let M ⊂ {1, 2, . . . d} the set of indices we wish to sample. We define the
function f(θi|θ¬i) to be the log probability distribution over V for the i position conditioned on all other positions. Given
this, we define the energy function for the sentence θ to be as follows:

U(θ) =
∑
m∈M

f(θm|θ¬m) (19)

Sampler Configuration For DMALA, we tune the step-size to achieve an acceptance rate of 50%, which ends up being
α = .5. For ACS, we use a cycle length of 20. We use the same hyper-parameters for the tuning algorithms as in previous
tasks, demonstrating that our algorithm can be applied across domains and tasks with little modification. We include example
generations for both ACS and DMALA in Figure 12.
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