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Abstract
Style transfer is to render given image contents in given styles, and it has an important role in both computer vision funda-
mental research and industrial applications. Following the success of deep learning-based approaches, this problem has been 
re-launched recently, but still remains a difficult task because of trade-off between preserving contents and faithful render-
ing of styles. Indeed, how well-balanced content and style are is crucial in evaluating the quality of stylized images. In this 
paper, we propose an end-to-end two-stream fully convolutional networks (FCNs) aiming at balancing the contributions of 
the content and the style in rendered images. Our proposed network consists of the encoder and decoder parts. The encoder 
part utilizes a FCN for content and a FCN for style where the two FCNs have feature injections and are independently trained 
to preserve the semantic content and to learn the faithful style representation in each. The semantic content feature and the 
style representation feature are then concatenated adaptively and fed into the decoder to generate style-transferred (stylized) 
images. In order to train our proposed network, we employ a loss network, the pre-trained VGG-16, to compute content loss 
and style loss, both of which are efficiently used for the feature injection as well as the feature concatenation. Our intensive 
experiments show that our proposed model generates more balanced stylized images in content and style than state-of-the-art 
methods. Moreover, our proposed network achieves efficiency in speed.
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1 Introduction

How New York looks like in “The Starry Night” by Vincent 
van Gogh is an interesting question and, at the same time, 
difficult to answer. In practice, re-painting a famous fine-
art style takes much time and requires well-trained artists. 
Answering this question can be stated as the problem of 
migrating semantic content of one image to different styles, 
and it is called style transfer.

Style transfer is long-standing and has fallen into the 
image synthesis problem which is a fundamental research 
in computer vision. Style transfer has its origin from non-
photo-realistic rendering [19] and is closely related to texture 
synthesis and color transfer [1, 5]. Along with the impressive 

progress of various tasks in computer vision using deep neu-
ral networks, this topic has recently been re-launched in both 
academy and industry. Gatys et al. [7] showed that the image 
representation derived from a Convolutional Neural Network 
(CNN) can be used to represent the semantic content of an 
image and the style, which opened up a new trend of CNN-
based style transfer.

CNN-based approaches in style transfer fall into two 
categories [15]: Image-Optimization-Based Online Neural 
Methods (IOB-NST) and Model-Optimization-Based Offline 
Neural Methods (MOB-NST). The key idea of IOB-NST 
is to synthesis a stylized image by directly updating pixels 
in the image iteratively through the back-propagation. The 
IOB-NST such as [7, 26, 28] starts with a noise image and 
iteratively updates the image by changing the distribution of 
noise along with the statistics of content and style until the 
defined loss function is minimized. MOB-NST such as [2, 
3, 13, 16, 18, 23, 30, 33, 34, 39], on the other hand, first 
optimizes a generative model through iterations and then 
renders the stylized image using a forward pass. In order to 
optimize the generative model, MOB-NST trains each feed-
forward model for each specific style by using the gradient 

 * Duc Minh Vo 
 vmduc@nii.ac.jp

 Akihiro Sugimoto 
 sugimoto@nii.ac.jp

1 Department of Informatics, SOKENDAI (The Graduate 
University for Advanced Studies), Tokyo, Japan

2 National Institute of Informatics, Tokyo, Japan

http://orcid.org/0000-0003-4839-032X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00138-020-01086-1&domain=pdf


 D. M. Vo, A. Sugimoto 

1 3

37 Page 2 of 18

descent over a large dataset. IOB-NST is known to produce 
better stylized results in quality than MOB-NST [15], while 
MOB-NST has more efficiency in speed.

Although existing methods [2, 3, 7, 13, 16, 18, 23, 26, 
28, 30, 33, 34, 39] show the capability of rendering image 
contents in different styles, generated stylized images are 
not always well balanced in content and style. Such meth-
ods take care of either the content or the style, but not 
both, producing unbalanced stylized images. IOB-NST is 
good at faithfully rendering the style while it tends to lose 
the content. MOB-NST, on the other hand, preserves more 
semantic content than the style. How to keep the balance 
between the content and the style in style transfer is a 
crucial issue to improve the quality of stylized images. 
This is because such balance is required in many applica-
tions; for instance, font transfer [40], realistic photo trans-
fer [24, 28]. IOB-NST and MOB-NST have the capability 
of controlling the balance between the content and the 
style. Namely, they allow to manually change the ratio of 
content and style. However, changing the ratio do not guar-
antee that network parameters for stylized images changes 
as expected, meaning that the contributions of the con-
tent and the style in a stylized image are uncontrollable 
in reality. Figure 1 shows examples obtained by IOB-NST 

(Gatys + [7]) and MOB-NST (Johnson + [16]) with vari-
ous settings of contributions of the content and the style. 
We can see although the ratio of content and style is sig-
nificantly changed, the results do not change much.

Another important issue to address is the computational 
speed. Although MOB-NST such as [2, 3, 13, 16, 18, 23, 
30, 33, 34, 39] are able to produce stylized images fast, 
they rely on a strong computational power. Therefore, 
either IOB-NST or MOB-NST is hard to apply to real-
time applications.

We propose an end-to-end two-stream network for bal-
ancing the content and style in stylized images where con-
tributions of the content and the style are adaptively taken 
into account. The encoder part of our network consists of 
the content stream and the style stream where the streams 
have different architectures. The two streams are connected 
by adaptive feature injection and independently trained to 
learn the semantic content or the style representation. The 
content features and the style features are then combined 
in our proposed adaptive concatenation to ensure the bal-
anced contribution of each stream. As the decoder part 
of our network, we use the feed-forward model to reduce 
the rendering time while we spend much time on learning 
like [3, 13, 16, 23, 34, 39]. Unlike other methods that train 
a new model from the scratch for a yet unknown style, we 
fine-tune parameters from an existing model, allowing our 
network not only to accommodate fast training but also to 
easily adapt new styles. Our experiments demonstrate that 
our method produces more balanced stylized images in both 
content and style than the state-of-the-art methods (Fig. 2). 
They also show that our method runs about 22 × faster than 
the state-of-the-art methods. We remark that our proposed 
model is trained for one style only, but it is easy to be fine-
tuned to other styles incrementally with a low cost.

The rest of this paper is organized as follows. We briefly 
review and analyze related work in Sect. 2. Next, we analyze 

1:5 1:11:5 1:1

Gatys+Johnson+

Fig. 1  Example of stylized results obtained by Johnson  +  [16] and 
Gatys + [7] by changing the ratio of content and style from 1:5 to 1:1. 
Leftmost column: content image (large) and style image (small). In 
each block, from left to right: the stylized image with various ratio of 
content and style

Fig. 2  Example of stylized results. Leftmost column: content image 
(large) and style image (small). From left to right: the stylized image 
by our method, Johnson  +  [16], Huang  +  [13], and Gatys  +  [7], 

Sheng + [34], Chen + [3], and Li + [23]. Our results surrounded with 
red rectangles are more balanced in content and style than the others
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the semantic levels of image features for content and style in 
Sect. 3. Then, we present the detail of our proposed method 
in Sect. 4. Sections 5 and 6 discuss our experiments. Sec-
tion 7 draws the conclusion. We remark that this paper 
extends the work reported in [38]. Our main extensions in 
this paper are building a new network using both our pro-
posed adaptive feature injection and concatenation and add-
ing more experiments.

2  Related work

Early work on style transfer was reported in the context 
of texture synthesis. Some methods there used histogram 
matching [10] and/or nonparametric sampling [1, 5]. These 
methods had limited results because they relied on hand-
crafted low-level features and often failed in capturing fea-
tures in semantic levels from the content and the style.

Gatys et  al. [7] for the first time proposed a method 
using CNNs and showed remarkable results. Their method 
trains CNNs to learn the semantic information from content 
images and matched it with the distribution of the style. It 
starts from a randomly distributed noise image and itera-
tively updates the image to produce an image satisfying the 
semantic distribution of the content image and appearance 
statistics of the style. During the iteration, the weighted sum 
of style loss and content loss is minimized. As follow-up 
work of [7], Luan et al. [26] proposed a structure preser-
vation method using Matting Laplacian for photo-realistic 
style transfer. Mechrez et al. [28] utilized the screened Pois-
son equation to make a stylized image more photo-realistic. 
Li et al. [21] proposed a Laplacian loss that computes the 
Euclidean distance between the Laplacian filters responding 
to a content image and a stylized image in order to keep a 
fine structure of the content image. These approaches fall 
into the IOB-NST category, and all face with the computa-
tional speed problem.

Johnson et al. [16] and Ulyanov et al. [36], on the other 
hand, took MOB-NST, proposing a feed-forward CNN and 
used the perceptual loss function for gradient-based optimi-
zation. The perceptual loss used there is similar to content 
and style loss in [7]. Their models have only to pass the 
content image to a single forward network to produce a styl-
ized image, which is fast. Their two models are different 
only in the network architecture. Johnson et al. [16] follows 
the design of [31] with their modification of using residual 
blocks and fractionally strided convolutions while [36] uses 
a multi-scale in their generator. Wang et al. [39] also utilized 
the feed-forward network, and they used multiple-generator 
to improve the quality of results. These methods are fast in 
generating stylized images, but they are capable of dealing 
with a single style only.

Dumoulin et al. [4] proposed a multi-style network that 
introduces shared computation in many style images where 
they used instance normalization (IN) [37] for balancing 
features from the content and from the style. They also pro-
posed an improvement of IN to learn a different set of aff-
ine parameters for multi-styles in the batch way. However, 
their model can train a limited number of styles because the 
network capability is limited, meaning that the number of 
styles to handle is limited. Chen and Schmidt [3] proposed 
a method that overcomes the limitation of the number of 
styles by using a patch-based method. Their method first 
extracts a set of patches from the content and style each, 
and then, for each content patch, the method finds its clos-
est style patch and swaps their activation. In this way, their 
method transfers an unlimited number of styles; however, the 
cost for patch extraction and swapping increases the com-
putational time significantly. Li et al. [23] also proposed a 
method for multi-style transfer using feature transformations. 
They first employ pre-trained VGG-19 as their encoder to 
train an decoder for image reconstruction. Then, with fixing 
both encoder (VGG-19) and decoder, their model performs 
the style transfer through whitening and coloring transforms 
on a given content image and a style image. Though their 
method successfully solves the multi-style transfer, it still 
suffers from the computational cost and loses the content 
due to the feature transformations.

Huang and Belongie [13] and Sheng et al. [34] proposed 
multi-style transfer models consisting of two CNN streams 
for content and style. Huang and Belongie [13] employed 
the pre-trained VGG-16 to extract content and style features 
and introduced Adaptive Instance Normalization (AIN) to 
make the mean and the variance of content features similar 
to those of style features. Sheng et al. [34], on the other 
hand, proposed AvatarNet which employed the pre-trained 
VGG-19 to extract the content and style features. These fea-
tures are matched by using style swap [3] or AIN [13] before 
being fed into the decoder. Different from [13], their models 
have skip connections from the style encoder to the decoder. 
Huang and Belongie [13] and Sheng et al. [34], however, 
used the same architecture for the content CNN and for the 
style CNN. Having the same CNN architecture for the con-
tent and the style causes unavoidable unbalance between 
the content and the style because semantic levels extracted 
from the content and the style should not be the same in style 
transfer. Those models require expensive computational 
cost as well. Furthermore, AIN [13] assumes the standard 
distribution on pixel values of images, which is not always 
ensured in styles when normalizing data. Indeed, AIN [13] 
tends to produce a lot of artifacts; especially they are visible 
on flat surfaces [33]. We remark that the skip connection in 
AvatarNet [34] weights the style contribution more, causing 
unbalance in stylized images.
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Along with using Generative Adversarial Network 
(GAN) [8] in image synthesis, several GAN-based models 
for style transfer are also proposed [2, 18, 20, 33]. These 
models also optimize the network with a large number of 
content images during the training step and thus fall in the 
MOB-NST category. Though GAN-based models bring 
a promising approach to improve the quality of stylized 
images, their results, at this time, still are less impres-
sive [15]. Furthermore, as in common with other GAN-
based approaches, their training processes are also unstable.

Different from the methods above, we take into account 
the contributions of the content and the style through a 
two-stream feed-forward network to balance the content 
and the style in stylized images. In particular, our proposed 
two-stream network is different from [13, 34] in that our 
network has different depths in layer for the content and 
the style encoders to extract different semantic levels of the 
content and the style. In addition, separating content and 
style enables our method easy to fine-tune to other styles 
with a cheaper computational cost (re-training time, required 
numbers of training images) than other models possessing 
only one encoder [3, 16, 39]. As a result, our method is able 
to easily deal with multi-styles.

3  Semantic levels of image features 
for content and style

Along with the depth, CNN is known to extract different 
semantic levels of image features in layers. As demonstrated 
in [7, 16], features in early layers reflect colors, textures, 
and common patterns of images, while those in latter lay-
ers preserve content and spatial structure of images. We, 
therefore, expect that the features in lower layers work as 
style features and those in higher layers do as content fea-
tures. Using appropriate semantic levels of image features 
in style transfer is crucial. We thus experimentally exploit 
the semantic levels of image features in VGG-16 [35] to 
design suitable numbers of layers in designing our network 
to extract content and style features. We remark that we refer 

[7, 16] in which image reconstruction is learned using hid-
den features in CNN layers.

For the content image reconstruction, we randomly pre-
pare 100 images. We then feed each of the 100 images into 
the VGG-16 [35] pre-trained on object recognition using 
ImageNet dataset [32] without any fine-tuning and extract 
the features at each Rectified Linear Unit (ReLU)  [29]. 
These features are employed to reconstruct original images 
using inverting technique [27]. Hereafter, we use reluX_Y  to 
mention a specific ReLU layer; see the definition of VGG-
16 [35] architecture for details. Figure 3 shows some exam-
ples of image reconstruction at several layers. We see that 
at low levels, i.e., from the 2nd layer ( relu1_2 ) to the 5th 
layer ( relu3_1 ), the reconstructed images are similar to the 
original image, meaning that these layers successfully keep 
colors, textures, and common patterns of images. At higher 
levels, i.e., from the 6th layer ( relu3_2 ) to the 10th layer 
( relu4_3 ), the reconstructed images preserve the content and 
spatial structure. At even higher layers that start from the 
11th layer ( relu5_1 ), semantic features are gradually learned; 
the exact shape, on the other hand, is not preserved.

For the style image reconstruction, we use Adam optimi-
zation [17] to find an image that minimizes the style recon-
struction loss (proposed in [7]). To obtain style reconstructed 
images, we start from a noise image and optimize the style 
loss as [7] using the VGG-16 pre-trained on ImageNet. Fig-
ure 4 shows an example of the style image reconstruction. We 
see that the style of image can be obtained until the 7th layer 
( relu3_3)

The above observation holds true for the images and the 
styles that we evaluated. Combining the insight given by [7, 
16], we may thus conclude that the low-level layers reflect 
the style of the image while the high-level layers capture 
the content of the image. More precisely, from the 6th layer 
( relu3_2 ) to the 10th layer ( relu4_3 ), the network is capa-
ble of appropriately capturing content information in the 
images. The style information, on the other hand, can be 
obtained from the 2nd ( relu1_2 ) to the 7th ( relu3_3 ) layers.

Gatys et al. [7] pointed out that image content and style 
cannot be completely disentangled. This indicates that 

Original image relu1_2 relu2_2 relu3_1 relu3_2 relu3_3 relu4_3 relu5_1

Fig. 3  Examples of the feature reconstruction for several layers from the VGG-16 pre-trained network
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depending on the objective, we have to appropriately design 
the layer levels of content and style features for their com-
bination. We thus further analyze effectiveness of the lay-
ers from the 6th ( relu3_2 ) to the 10th ( relu4_3 ) for content 
matching to determine the best one for combination. We 
follow [7] to synthesize the stylized images where we set 
the contributions of content and style to be equal with each 
other. To this end, we fix the style matching from the 2nd 
( relu1_2 ) to the 7th ( relu3_3 ) layers, while performing the 
content matching at every single layer from the 6th ( relu3_2 ) 
to the 10th layers ( relu4_3 ). Figure 5 shows examples of 
stylized images having different layers in combination. We 
see that the content matching at the 6th and the 7th layers 
( relu3_2 and relu3_3 ) is most reasonable to keep the balance 
of content and style in stylized images.

Using above observation, we design our network to fully 
exploit the characteristics of image features. We choose the 
6th layer for content because it has a smaller number of 
parameters than the 7th layer (it is faster to learn). We choose 
the 4th layer for style because it is neither too early in layer 
nor marginally different from the layer used for content. In 
conclusion, we use the features at the 6th layer ( relu3_2 ) for 
content and those at the 4th layer ( relu2_2 ) for style.

4  Proposed method

4.1  Network design

Our network follows end-to-end encoder-decoder archi-
tecture for rendering of the content in a given style [3, 
16, 39]. The network in [3, 16, 39] possesses only one 
encoder to extract the semantic content and style. This 
means that the extracted semantic level of the content and 
that of the style are the same. When we stylize images, the 
role of the content should be different from that of the style 
because the content gives us what exist (object shapes and 
locations) in the rendered image and the style gives us 
the impression of the rendered image. Accordingly, the 
semantic level used for the rending should be different 
depending on the content or the style. Otherwise, unbal-
ance between the content and style remains in stylized 
images. We thus design a network having two encoders 
in which their architectures are different from each other 
to extract different semantic levels of the content and the 
style. With the two encoders, our model treats the content 
and the style in different ways, allowing the network to be 
able to balance the roles of the content and the style better 
than the model having only one encoder.

Style image relu1_2 relu2_2 relu3_3 relu4_3relu2_1 relu3_1 relu3_2

Fig. 4  Examples of style image reconstruction for several layers from the VGG-16 pre-trained network

relu3_2 relu3_3 relu4_1 relu4_2 relu4_3

Fig. 5  Examples of combination of content and style images from 
relu3_2 to relu4_3 . Leftmost column: content image (large) and style 
image (small). From left to right: the stylized images at different 

combination levels by Gatys + [7] where the ratio of contributions of 
content and style is 1:1
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Ideally, the network should be able to retain the semantics 
of the content as well as the statistics of the style as much 
as possible. The semantic content and style of an image are 
captured at different layers in the network (see  [7, 16] and 
Sect. 3): the network obtains the style at low-level layers in 
depth, while high-level layers become more sensitive to the 
actual content of the image. We thus design the encoders 
with different depths to retain useful information from both 
the content and the style. Namely, we design a deep encoder 
for the content and a shallow encoder for the style. Moreo-
ver, in order to reflect features extracted from the style at 
low-level to those from the content, we employ the feature 
injection via the skip connection technique from the shallow 
encoder to the deep one. Because the content feature and 
the style feature are extracted at different levels in the net-
work, they have different characteristics. We thus introduce 
an effective concatenation to enhance the contribution of 
these features for good performances instead of implement-
ing their simple ones.

4.2  Network architecture

Our proposed network consists of three fully convolutional 
network (FCNs): two encoders and one decoder (Fig. 6). 
The two encoders are a deep network, the content subnet, 
to extract content feature �c from a content image, and a 
shallow network, the style subnet, to extract style feature 
�s from a style image. The feature injection is employed 
between the content subnet and the style subnet using the 
balance weight (cf. Sect. 4.4). This balance weight is also 
used to adaptively concatenate the features �c and �s at the 

top of content and style subnet before being fed into a deep 
network, the generator subnet, to produce a stylized image. 
We employ the VGG-16 model [35] as the loss network in 
the training phase.

Our network receives the content and style images 
where each image is with the size of n × n × 3 (n is the 
size of image, 3 are for RGB channels), and synthesizes an 
stylized image of n × n × 3 . In the training phase, we use 
the images of 256 × 256 × 3 (n = 256). Although we train 
the network on images with the size of 256 × 256 × 3 , the 
network can accept any size of images in testing (n can be 
64, 128, 256, or 512). We remark that the size of the con-
tent image and that of the style image have to be the same 
to ensure the consistency of the feature size when injecting 
and concatenating the content and the style features.

4.2.1  Content subnet

The content subnet is a stack of six convolution layers with 
the filter size of 3 × 3 , and the padding size of 1 × 1 . We 
use the stride of 2 × 2 at the third, the fifth, and the sixth 
layers to reduce the size of feature maps and the stride of 
1 × 1 at the other layers. The numbers of the output chan-
nels are 32, 48, 64, 80, 96, and 128, respectively. Each 
convolution layer is followed by a spatial instance normali-
zation (IN) layer [37] and a Rectified Linear Unit (ReLU) 
layer [29]. In order to avoid the border artifacts caused by 
convolution, the reflection padding is used instead of the 
zero padding similarly to [4].
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Fig. 6  Framework of our proposed method. Our network consists of two encoders having different architectures and one decoder. The loss net-
work is used to train the encoders and the decoder
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4.2.2  Style subnet

The style subnet, which has four convolution layers, is shal-
low network (more precisely, shallower than the content sub-
net). All convolution layers have the filter size of 3 × 3 , the 
reflection padding of 1 × 1 , and the stride of 2 × 2 , except for 
the first layer that employs the stride of 1 × 1 . The numbers 
of the output channels are 32, 64, 96, and 128, respectively. 
Similarly to the content subnet, each convolution layer is 
also followed by an IN layer [37] and a ReLU layer [29].

We employ feature injection from the feature �q
s at the qth 

layer in the style subnet to those �p
c at the pth layer in the 

content subnet, the size of whose feature map is the same 
(Table 1). To take into account the contributions of �q

s and 
�
p
c , we introduce the adaptive feature injection with the bal-

ance weight (cf. Sect. 4.4).

4.2.3  Generator subnet

The generator subnet consists of five residual blocks, three 
deconvolution layers, and two convolution layers in this 
order.

Johnson et al. [16] argue that the residual block can enrich 
the information involved in the input feature. We, therefore, 
use residual blocks to increase the impact of the balance 
weight in the concatenated feature. Similarly to [16], we 
use five residual blocks outputting 256 channels, where 
each of them has two convolution layers with the filter size 

of 3 × 3 , the reflection padding of 1 × 1 , the stride of 1 × 1 , 
and a summation layer as in [9]. All convolution layers are 
followed by an IN layer [37] (we use it to replace the batch 
normalization [14] in the original architecture [9]) and a 
ReLU layer [29].

To upscale the feature map, we employ three deconvolu-
tion layers with the same filter size of 3 × 3 , the reflection 
padding of 1 × 1 , and the stride of 2 × 2 , outputting 128, 96, 
and 64 channels, respectively.

In order to eliminate the affect of the convolution stride, 
we use two convolution layers which have the filter size of 
1 × 1 , the padding of 0 × 0 , and the stride of 1 × 1 , outputting 
32 and 3 channels. All deconvolution layers and convolu-
tion layers are followed by an IN layer [37] and a ReLU 
layer [29], except for the last convolution layer that uses the 
tanh activation to guarantee that the range of the output can 
be normalized to be [0, 255].

4.3  Loss function

We employ two loss functions for content loss and style loss, 
which are computed from layers of the loss network. The 
content loss Lc computes the similarity of high-level fea-
tures between the content image and the stylized image. The 
style loss Ls , on the other hand, computes the similarity of 
low-level features between the style image and the stylized 
image.

Table 1  Architecture of our 
encoders

The arrow ( ← ) indicates the adaptive feature injection

Content subnet Style subnet

No. Layer Output channel No. Layer Output channel

0 Content image 3 0 Style image 3
1 Convolution 32 1 Convolution 32
2 Instance normalization 32 2 Instance normalization 32
3 ReLU 32 ← 3 ReLU 32
4 Convolution 48
5 Instance normalization 48
6 ReLU 48
7 Convolution 64 4 Convolution 64
8 Instance normalization 64 5 Instance normalization 64
9 ReLU 64 ← 6 ReLU 64
10 Convolution 80
11 Instance normalization 80
12 ReLU 80
13 Convolution 96 7 Convolution 96
14 Instance normalization 96 8 Instance normalization 96
15 ReLU 96 ← 9 ReLU 96
16 Convolution 128 10 Convolution 128
17 Instance normalization 128 11 Instance normalization 128
18 ReLU 128 12 ReLU 128
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The overall loss is a weighted sum of the content loss and 
the style loss:

where yc, ys , and ŷ denote the content image, the style, and 
the stylized image, respectively. � is the combination weight 
(we set � = 0.5 in our experiments to equally weight these 
two loss functions).

We obtain the content loss at M layers as follows:

where Φk(⋅) denotes the normalized feature map at the kth 
layer, which has Ck × Hk ×Wk elements. The range of Lc is 
[0, 1].

The style loss is computed at N layers as follows:

where ‖⋅‖F denotes the Frobenius norm [11]. G(�k(⋅)) is the 
Gram matrix [11] of the normalized feature map at the kth 
layer. The Gram matrix GCk×Ck

 has elements Gij = ⟨�i, �j⟩ 
where �i, �j are features at the ith and the jth channels, 
respectively, of the feature map �k(⋅) . The range of Ls is 
[0, 1].

4.4  Adaptive feature injection and concatenation

In our network, we employ the feature injection between 
the content features and the style features. We also concat-
enate them to feed into the generator subnet. To weight the 
contributions of the content features and the style features, 
we introduce the balance weight � . This balance weight is 
adaptively updated during the training so that it retains the 
balance between the content and the style in stylized images.

At the tth iteration in training phase, �t is computed as 
follows:

where Ls(t) and Lc(t) are the style loss and the content loss 
at the tth iteration in the training phase. To restrict the fluc-
tuation of the balance weight, we compute � at every non-
overlapping T iterations and use it for the next T iterations:

Using � , we sum up the content feature at the pth layer �p
c 

and the style feature at the qth layer �q
s  for the feature in 

adaptive feature injection as follows:

(1)L(ŷ, yc, ys) = 𝛼Lc(ŷ, yc) + (1 − 𝛼)Ls(ŷ, ys),

(2)Lc(ŷ, yc) =
1

M

�
k∈M

1

Ck × Hk ×Wk

‖Φk(ŷ) − Φk(yc)‖2,

(3)Ls(ŷ, ys) =
1

N

�
k∈N

‖G(Φk(ŷ)) − G(Φk(ys))‖F,

(4)�t =
Ls(t)

Ls(t) + Lc(t)
,

(5)� =
1

T

T∑
t=1

�t.

Similarly, we concatenate the content feature �c and the style 
feature �s in the adaptive concatenation as follows:

The learned balance weight � ensures the balance of the 
contributions of the content feature and the style feature in 
both feature injection and concatenation layers. For example, 
when Ls is smaller than Lc (meaning � ≤ 0.5 in Eq. (5)), the 
contribution of style feature is increased in the next itera-
tions, and vice verse. Moreover, the learned balance weight 
� is more advantageous than the fixed balance weight that 
does not concern the balance of losses.

In order to explicitly control the contribution ratio of the 
content and the style, we manually set the expected contribu-
tion ratio in the loss function and then introduce the learnable 
weight that allows us to change stylized images as we expect. 
The combination weight � takes the former role, while the 
learnable balance weight � does the latter role. In other words, 
in our method, � sets an expected contribution ratio of content 
and style in stylized images through the loss function while 
� controls the learning direction of the network during the 
training to achieve the contribution ratio specified by � . In our 
experiments where we set � = 0.5 , we see that � works for the 
equal contribution ratio of the content and the style as expected 
(see Sects. 6.1 and 6.2 for details). We remark that � and � 
together play the role of the indicator for how much the content 
and the style are emphasized in obtained stylized images.

5  Experimental setup

5.1  Dataset and compared methods

5.1.1  Dataset

We used in our experiments images in the MS-COCO 2014 
dataset [25] as our content images, and six famous paintings 
widely used in style transfer [7, 13, 16], as our style images 
(cf. Fig. 7).

We used the MS-COCO 2014 training set for our train-
ing, and we randomly selected 20 images from the MS-COCO 
2014 validation set for our validation. In the testing phase, on 
the other hand, we randomly selected 50 images from MS-
COCO 2014 validation (different ones from the 20 images 
used in our validation).

5.1.2  Compared methods

We compared our method with SOTA methods: Gatys + [7], 
Johnson + [16], Huang + [13], Sheng + [34], Chen + [3], 
and Li + [23]. We note that Gatys + is based on IOB-NST 

(6)�pq = (� × �p
c
) + ((1 − �) × �q

s
).

(7)𝜙 = (𝛾 × 𝜙c)⊕ ((1 − 𝛾) × 𝜙s).
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and the others are on MOB-NST. For Gatys +, we used the 
re-implementation version by J. Johnson.1 For the others, we 
used publicly available source codes with parameters recom-
mended by the authors (Johnson +,2 Huang +,3 Sheng +,4 
Chen +,5 Li +6). We remark that we set 1000 iterations for 
Gatys +.

5.2  Implementation details

5.2.1  Implementation setup

We implemented our method in PyTorch.7 We used the 
instance incremental learning strategy for dealing with mul-
tiple styles. We conducted all experiments using a PC with 
CPU core i7 3.7 GHz, 12 GB of RAM, and GTX 770 GPU 
(4 GB of VRAM).

We performed the adaptive feature injection from layers 
q = 3, 6, 9 in the style subnet to layers p = 3, 9, 15 in the con-
tent subnet, respectively (Table 1). We adopted the VGG-16 
model [35] pre-trained on the ImageNet [32] as the loss net-
work without any fine-tuning. All layers after relu4_3 layer 
were dropped. We obtained the content loss at M = 1 layer, 
e.g., relu4_3 , and the style loss at N = 3 layers, e.g., relu1_2 , 
relu2_2 , and relu3_3 (M and N are defined in Sect. 4.3).

5.2.2  Training the model

Our method addresses a one-style model to reduce compu-
tational time. For training a new yet unknown style, we fine-
tune parameters from an existing model. With this learn-
ing strategy, our method can easily adapt a new style with 
a lower cost than existing work [7, 13, 16, 39]. Moreover, 
the fine-tuning learning enables our method to deal with 
an unlimited number of styles fast unlike existing methods 
such as [3, 4].

We first trained an initial model on the Starry Night style 
and then incrementally fine-tuned on the other styles one by 
one. We trained the network on the Starry Night style with a 
batch size of 2 for 80k iterations corresponding to 2 epochs. 
The balance weight � in Eq. (5) is re-computed at every 
T = 500 iterations. All the training and validation images are 
resized to 256 × 256 . To train the model, we used the Adam 
optimizer [17] with the learning rate of 10−3 , the moments 
�1 = 0.9 and �2 = 0.999 , and the division from zero param-
eter � = 10−8 . We did not use the learning rate decay and 
the weight decay.

For the initial model, we trained all subnets simultane-
ously with independently updating the weight of each sub-
net. Validation was performed at every 100 iterations during 
the training process. When observing the content loss and 
the style loss on the validation set, if any loss function raises 
the overfitting problem, we stopped updating the weight of 
the corresponding subnet.

We incrementally fine-tuned the initial model to the other 
styles one by one. 2000 images in the MS-COCO 2014 train-
ing set [25] were randomly selected as content images for 
training. The network was trained for 1000 iterations with 
the batch size of 2. The Adam optimizer [17] was also used 
with the same parameters as the training of the initial model. 
The balance weight � in Eq. (5) was re-computed at every 
T = 50 iterations. The loss-based training technique was also 
applied to avoid overfitting, where the validation was per-
formed at every 50 iterations.

5.3  Evaluation metric

In order to evaluate the quality of synthesized images, most 
previous work employed user studies although they are sub-
jective and have ambiguity in evaluation. We, on the other 
hand, evaluate stylized images by quantifying the content 
and style losses. Intuitively, when the total loss is sufficiently 
small, we may say that the overall quality of stylized images 
is good. Furthermore, the quality of stylized images also 
depends on how the content and the style are reflected in 
them. We have to consider these two factors in evaluating 
the quality of stylized images. Since the contributions of the 
content and the style are controlled by � (set in advance) in 
our method, we may see if a synthesized image is good in 
quality by evaluating (i) whether its total loss is sufficiently 

Fig. 7  Styles used in experiments. From left to right: starry night, mosaic, composition VII, La Muse, the wave, and feathers

1 https ://githu b.com/jcjoh nson/neura l-style .
2 https ://githu b.com/jcjoh nson/fast-neura l-style .
3 https ://githu b.com/xunhu ang19 95/AdaIN -style .
4 https ://githu b.com/Lucas Sheng /avata r-net.
5 https ://githu b.com/rtqic hen/style -swap.
6 https ://githu b.com/Yijun maver ick/Unive rsalS tyleT ransf er.
7 https ://pytor ch.org/.

https://github.com/jcjohnson/neural-style
https://github.com/jcjohnson/fast-neural-style
https://github.com/xunhuang1995/AdaIN-style
https://github.com/LucasSheng/avatar-net
https://github.com/rtqichen/style-swap
https://github.com/Yijunmaverick/UniversalStyleTransfer
https://pytorch.org/
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small, and (ii) whether the ratio between its content and style 
losses consistently agrees with the preset contribution ratio 
(i.e., combination weight � ) between the content and the 
style. We thus introduce a metric to evaluate the quality of 
synthesized images using these two criteria. We remind that 
we set � = 0.5 (for simplicity) in our experiments to see the 
content and style losses converge to almost the same values.

For each pair of content image c and style image s, we 
compute content loss Lc and style loss Ls . In the 2D plane 
whose coordinate system is defined by content loss and 
style loss, the criterion (i) can be measured using the dis-
tance between the origin and (Lc,Ls) . The criterion (ii), on 
the other hand, can be measured by evaluating how close 
(Lc,Ls) is to the line of “content loss”=“style loss” (called 
the balanced axis hereafter).

We assume that we have K stylized images. We normal-
ize content loss and style loss for each stylized image over 
K images:

where Lc , �c , Ls , and �s are the mean and the standard devia-
tion of content loss and style loss over K stylized images, 
respectively.

The quality of stylized images with respect to the crite-
rion (i) is measured using

Let � 
(
∈ [0,

�

4
]
)
 denote the angle between the line going 

through the origin and (L̃c, L̃s) and the content loss axis or 
the style loss axis (the smaller angle is selected):

Larger � indicates that (L̃c, L̃s) is closer to the balanced axis, 
meaning that the stylized image is more balanced in content 
and style. This reflects the criterion (ii).

Using length and � above, we define our metric balance:

(8)
L̃c =

1

1 + exp
(

Lc−Lc

�c

) , L̃s =
1

1 + exp
(

Ls−Ls

�s

) ,

(9)length =

√
L̃c

2
+ L̃s

2
.

(10)� =

⎧
⎪⎨⎪⎩

tan−1
L̃s

L̃c

if L̃c ≥ L̃s

�∕2 − tan−1
L̃s

L̃c

otherwise
.

(11)balance =
tan(�)

length
.

balance concerns both the two criteria (i) and (ii). Therefore, 
it is a useful metric for evaluating stylized images. We note 
that larger balance is better because tan(�) should be larger 
and length should be smaller for better stylized images.

6  Experimental results

6.1  Qualitative evaluation

Figure 8 shows examples of the obtained results, showing 
that the stylized images obtained by our method are more 
balanced in content and style. We also see that overall the 
results obtained by Gatys + [7], Sheng + [34], and Li + [23] 
reflect the style well, but they mostly lose content (we cannot 
understand the content of stylized results using La Muse and 
Feathers styles). In some styles (Starry Night, Composition 
VII, and The Wave), we see that Johnson + [16] seems to 
randomly select a patch in the style and paste it into the 
content image. Huang + [13] also loses the content and suf-
fers from a so-called checkerboard effect. We also see that 
Chen + [3] loses almost style and tends to keep the original 
content images.

To objectively compare the obtained results, we con-
ducted three user studies, including overall quality, content 
preserving, and style look-like. From the visual comparison 
in Fig. 8, we see that evaluating all stylized results among 
compared methods is pretty difficult. We thus picked up 
three methods only for our user studies. To this end, we 
investigated the quantitative comparison (Sect. 6.2). As 
Gatys + [7] is known to keep styles most while Johnson + 
[16] retain the content most, these methods are appropriate 
to choose for our user studies. Among the remaining com-
pared methods, we see that Huang + [13] is most balanced 
(the loss distributions of Huang + [13] appear near balanced 
axis (Fig. 10)). We, therefore, chose Gatys + [7], Johnson + 
[16] and Huang + [13] for our user studies.

For our user studies, we randomly selected 20 images 
from the 50 testing images as content images and chose 5 
styles by excluding The Wave style because it is simpler 
than the other styles (Fig. 7). We remark that the combina-
tion of 20 content images and 5 styles results in 100 stylized 
images by each method. In each user study, we presented 
100 sets of images to 31 subjects where each set consists 
of a content image, a style image, and four output images 
obtained by our method and the three comparison meth-
ods [7, 13, 16]. We then asked the subjects to rank the four 
output stylized images at each set (1st is best, and 4th is 
worst). For the overall quality study, the subjects were asked 
to give the ranking based on the overall quality at each set. 
For the content preserving study, the subjects were asked 
to rank output images in each set based on how faithfully 
the images preserve the content in content images. For the 

Fig. 8  Visual comparison of our method against the state-of-the-art 
methods. Leftmost column: content image (large) and style image 
(small). From left to right: the stylized image by our method, John-
son + [16], Huang + [13], and Gatys + [7], Sheng + [34], Chen + 
[3], and Li  + [23]. Our results surrounded with red rectangles are 
more balanced in content and style than the others. Note that all styl-
ized images are with the size of 512 × 512

◂
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style look-like study, on the other hand, the subjects ranked 
output images in each set based on how the images look like 
the style in style images. We note that four output images 
are aligned in the random order in each set and that each set 
was displayed for 6 s.

Tables 2, 3, and 4 show the average of rankings over the 
100 sets for the overall quality, the content preserving, and 
the style look-like studies, respectively. We also computed 
the average of rankings in each style, which is also illustrated 
in Tables 2, 3, and 4.

We see that our method takes the best ranking among the 
four methods in overall quality (Table 2). Looking into the 
results in more detail, we see that our method is ranked in 
the first place at the Mosaic style, and in the second place 
at others (except for Composition VII style). This indicates 
that our method performs stably well in overall quality in 
accordance with human cognition. We remark that the Com-
position VII style is rather complex (Fig. 7) and the results 
for this style are difficult to evaluate. We also remark that the 
single-style models (ours, Gatys +[7], and Johnson +[16]) 
performed better than the multi-style model (Huang +[13]).

For the content preserving (Table 3) and the style look-
like (Table 4) studies, our method takes the second best 
ranking. Note that the scores in these studies more largely 
distributed than those in the overall quality study. As MOB-
NST is known to perform better in content preserving than 
IOB-NST [15]; Johnson + [16], which is MOB-NST, takes 
the best ranking in the content preserving study. Gatys + [7], 
on the other hand, which is IOB-NST, takes the best ranking 
in the style look-like study. In contrast, our method is ranked 
in the second place for all styles in the content preserving 
study (except for Composition VII style) (Table 3) and in the 
style look-like study (except for Feathers style) (Table 4). 
These indicate that our method stably produces stylized 
images balanced in content and style for almost all the styles. 
We remark that in the case of the Feathers style, the two 
best methods for the look-like study follow the MOB-NST 
approach. As MOB-NST is known not to keep styles well 
[15], this suggests that the Feathers style is a difficult style 
for users to evaluate stylized images.

6.2  Quantitative evaluation

In order to quantitatively evaluate the obtained results, we 
computed the averages of length’s and balance’s over 300 
( = 50 contents × 6 styles) sets for each method (Table 5). 
We see that our method performs best both in length and 
balance. We also computed the averages of length’s and bal-
ance’s in each style, which is illustrated in Fig. 9. Figure 9 

Table 2  Average of rankings in the overall quality study

The best and the second best results are given in bold values and 
italic values, respectively

Style Ours Johnson + Huang + Gatys +
[16] [13] [7]

Starry night 2.12 2.72 3.14 2.01
Mosaic 2.21 2.25 2.91 2.63
Composition VII 2.47 2.95 2.4 2.18
La Muse 2.38 2.28 2.82 2.51
Feathers 2.15 1.82 3.28 2.74
All together 2.27 2.40 2.91 2.41

Table 3  Average of rankings in the content preserving study

The best and the second best results are given in bold values and 
italic values, respectively

Style Ours Johnson + Huang + Gatys +
[16] [13] [7]

Starry night 2.53 1.96 2.67 2.84
Mosaic 2.13 1.60 3.05 3.22
Composition VII 3.02 1.81 2.50 2.67
La Muse 1.99 1.82 3.06 3.13
Feathers 2.02 1.81 2.50 2.67
All together 2.34 1.80 2.87 2.99

Table 4  Average of rankings in the style look-like study

The best and the second best results are given in bold values and 
italic values, respectively

Style Ours Johnson + Huang + Gatys +
[16] [13] [7]

Starry night 2.27 2.77 3.34 1.61
Mosaic 2.26 2.66 2.94 2.13
Composition VII 2.49 2.96 2.65 1.90
La Muse 2.71 2.81 2.81 1.67
Feathers 1.69 2.34 3.42 2.55
All together 2.28 2.71 3.03 1.97

Table 5  Averages of length (smaller is better) and balance (larger is 
better)

Method Length ( ⇓) Balance ( ⇑)

Ours 0.37 2.95
Johnson + [16] 0.54 1.60
Huang + [13] 0.45 1.23
Gatys + [7] 0.45 1.36
Sheng + [34] 0.52 1.21
Chen + [3] 0.59 0.72
Li + [23] 0.49 1.40
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Fig. 9  Averages of length and balance in each style
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Fig. 10  Loss distribution in each style. Red lines denote the balanced axis. Our method has the distributions nearer the balanced axis than the 
other methods
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shows that our method performs best in length and best in 
balance for all the styles.

To look into the results in more detail, we show the loss 
distribution of 50 stylized images in each style (Fig. 10). 
We see that (1) the content loss and the style loss (for each 
stylized result) in our method are similar with each other 
and that (2) loss distributions in our method appear densely 
near the balanced axis for all the styles while those in the 
other methods do not.

6.3  Computational speed

We measured the running time for generating 300 stylized 
images with the sizes of 256 × 256 and 512 × 512 by each 
method and compared the average for generating one styl-
ized image by each method.

Table 6 illustrates the average of the running time in gen-
erating one stylized image. As we see, our method is the fast-
est and speeds up 22 times for the image size of 256 × 256 
and 21 times for that of 512 × 512 when compared with the 
fastest state of the arts [16]. We can thus conclude that our 
method is promising for real-time applications.

6.4  More detailed analysis

6.4.1  Behavior of balance weight 
 during the training

We investigate the behavior of balance weight � to verify 
that � is adaptively updated to converge to an expected value.

Figure 11 illustrates how balance weight � changes dur-
ing the training on the Starry Night style. We see that � is 
adaptively updated corresponding to the content and style 
losses. We remark that since we set � = 0.5 in the loss func-
tion, � is expected to be close to 0.5 after the training. At 
the beginning of training, the style loss Ls is far larger than 

the content loss Lc , resulting in � far larger than 0.5 (close 
to 1.0). As the training proceeds, the network is gradually 
optimized, resulting � close to 0.5 in the end of the training.

We observe that � quickly decreases after one epoch 
(about 40k iterations). This can be explained as follows. 
After one epoch, the overfitting problem on the style image 
occurs since our network is trained using a single-style 
image. Hence, the style loss quickly drops. As a result, the 
behavior of � becomes different. Indeed, we observed that 
the style loss raised the overfitting problem through the 
validation phase. We thus stopped the training of the style 
subnet while kept updating the weights of the other subnets. 
As a result, the content loss decreased more quickly than the 
style loss. Then, � was gradually recovered; its value became 
close to 0.5 in the end of training.

This evaluation confirms that � gradually adapts to 
achieve the equal contributions of content and style in 
stylized images during the training thanks to our adaptive 
feature injection and concatenation. We remark that we 
observed similar behaviors of � for other styles.

6.4.2  Effectiveness of feature injection

In this section, we evaluate the effectiveness of the introduc-
tion to the adaptive feature injection between the content 
subnet and the style subnet.

We compared our complete model with the model w/o 
feature injection (i.e., the model that disabled only the 
adaptive feature injection), which is shown in Fig. 12. 
Figure 12 shows that the stylized images obtained by the 
complete model are in general more balanced in content 
and style than those by the model w/o feature injection. 
However, we can see roughly global structure appearing in 
the synthesized images in Fig. 12 upper set (in particular, 
the leftmost which is with Starry Night style). This can 
be explained as follows. In general, the model w/o feature 
injection tends to preserve more content than style while 
the complete model does more style than content. This is 

Table 6  The average wall-clock time in second for producing one 
stylized image

The best results are given in bold values

Method Image size Imple-
mented 
framework

256 × 256 512 × 512

Ours 0.05 0.18 PyTorch
Johnson + [16] 1.12 3.79 Torch
Huang + [13] 1.98 6.78 Torch
Gatys + [7] 74.12 269.74 Torch
Sheng + [34] 3.04 10.67 TensorFlow
Chen + [3] 2.74 9.33 Torch
Li + [23] 3.53 9.42 Torch

0

0.5

1 80k40k
Number of iterations

1.0

Fig. 11  Behavior of � during the training on the starry night style



Two-stream FCNs to balance content and style for style transfer  

1 3

Page 15 of 18 37

because the feature injection from the style subnet to the 
content subnet tries to reduce the style loss (see below). 
The feature injection at multiple layers employed in the 
content and style subnets helps to keep both global and 
local structure in rendering. As a result, global structure 
in stylized images such as the stroke in the Starry Night 
may sometimes become impressive.

We also compared the length and balance of stylized 
images (Table 7). We see that the complete model performs 
better both in length and balance than the model w/o fea-
ture injection. Table 7 also shows that employing adaptive 
feature injection improves both length and balance for each 
style (except for La Muse style). This indicates that adaptive 
feature injection is effective to improve not only the quality 
but also the balance in content and style of stylized images. 
With respect to the La Muse style, length of the complete 
model is comparable to that of model w/o feature injection; 
however, balance is not the case. This can be explained as 
follows. The La Muse style follows Cubism and thus it is 
very unique. Because of this, the adaptive feature injection 
tends to keep more style to reflect the impression of this 
style.

Finally, we compare the loss distributions of 50 stylized 
images in each style (Fig. 13). We see that for all styles 
(except for the La Muse style) the loss distributions of the 
complete model appears more densely near the balanced axis 
and is closer to the origin than those of the model w/o fea-
ture injection for all styles. In the case of the Starry Night 
style (Fig. 13a), we see that the model w/o feature injec-
tion preserves much more content than the style because the 
loss distribution appears far above the balanced axis. This 
observation also holds true for the Mosaic style (Fig. 13b), 
the Composition VII (Fig. 13c), and the La Muse (Fig. 13d). 
By using adaptive feature injection, the complete model is 
able to reduce the style loss in stylized images (e.g., the 
Starry Night, the Mosaic, the Composition VII, the La Muse 
styles), compared to the model w/o feature injection. These 
observations indicate that the adaptive feature injection 
effectively improves to keep the balance in content and style 
of stylized images.

6.4.3  Effectiveness of combination weight ̨  and balance 
weight 


Here, we evaluate the necessity of combination weight � 
in Eq. (1) and balance weight � in Eq. (4). In particular, we 
evaluate whether � plays the role of explicitly controlling the 
contribution ratio of the content and the style.

We generated stylized images using different values of 
� : � = 0.1, 0.3, 0.7, 0.9 . The results are illustrated in Fig. 14 
where the complete model denotes the model using � and � 
together, while the model w/o � denotes the model using � 
only (i.e., � is disabled). Ideally, for smaller � , the style is 
more emphasized and results become more similar to those 
by Gatys + [7]. For larger � , on the other hand, the content is 
more emphasized and results become more similar to those 
by Johnson + [16]. We observe these in Fig. 14 and see that 
� of the complete model indeed controls the contribution 
ratio of the content and the style as we expected. However, 

Fig. 12  Visual comparison of the complete model and the model w/o 
feature injection. In each block, from left to right, a content image 
(large one) with a style (small one) is followed by outputs by the 

complete model and the model w/o feature injection. Note that all 
stylized images are with the size of 512 × 512

Table 7  Averages of length (smaller is better) and balance (larger is 
better) in the complete model (denoted by complete) and the model 
w/o feature injection (denoted by w/o injection)

Style Length ( ⇓) Balance ( ⇑)

Complete w/o injection Complete w/o injection

Starry Night 0.34 0.46 2.12 1.35
Mosaic 0.45 0.57 1.80 1.03
Composition 

VII
0.21 0.26 3.61 3.21

La Muse 0.30 0.27 1.72 2.54
The Wave 0.15 0.24 5.39 3.15
Feathers 0.23 0.28 3.71 3.20
All together 0.28 0.35 3.06 2.41
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we see that the model w/o � is not the case. This observation 
suggests the necessity of both � and �.

7  Conclusion

We presented an end-to-end two-stream network for balanc-
ing the content and style in stylized images. Our proposed 
method utilizes a deep FCN to preserve the semantic content 
and a shallow FCN to faithfully learn the style representa-
tion, whose outputs are adaptively feature injected and con-
catenated using the balance weight and fed into the decoder 
to generate stylized images. Our intensive experiments using 
six famous styles widely used in style transfer demonstrate 
the effectiveness of our proposed method against state-of-
the-art methods in terms of balancing content and style. 
Furthermore, our proposed method outperforms the state-
of-the-art methods in speed.

Our proposed method requires fine-tuning of parameters 
from an existing model to deal with different styles. This 
limits the applicability of our proposed method to multi-style 
transfer. Extending our proposed method so that it can deal 
with a large style dataset such as Wikiart or unseen styles is 
left for future work.

As an extension of image style transfer, the real-time 
video stylization methods are currently proposed [6, 12, 
22]. Since our proposed method runs fast, we believe that it 
can be useful for real-time video stylization. Though video 
stylization is out of the scope of this paper, we applied our 
method in the frame-by-frame manner to several videos 
for video stylization demonstration. Figure 15 shows some 
examples of stylized frames from a video. Our approach 
was able to stylize videos in real-time with the resolution 
480 × 640 at 30 FPS or more. As we see, our method pro-
duces reasonable results for consecutive frames with vary-
ing appearance, meaning that the usage of our method for 
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Fig. 13  Loss distribution in each style obtained by the complete model and the model w/o feature injection. Red lines denote the balanced axis
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real-time video stylization is promising. We remark that we 
did not use either temporal regularization or post-processing. 
Different from image style transfer, real-time video styli-
zation needs to pay attentions to the temporal consistency 
among adjacent video frames. Incorporating the temporal 
consistency into our method for real-time video stylization 
is left for our future work.
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