
Vol.:(0123456789)1 3

Machine Vision and Applications (2020) 31:37
https://doi.org/10.1007/s00138-020-01086-1

ORIGINAL PAPER

Two‑stream FCNs to balance content and style for style transfer

Duc Minh Vo1 · Akihiro Sugimoto2

Received: 4 July 2019 / Revised: 22 February 2020 / Accepted: 6 May 2020 / Published online: 8 June 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Style transfer is to render given image contents in given styles, and it has an important role in both computer vision funda-
mental research and industrial applications. Following the success of deep learning-based approaches, this problem has been
re-launched recently, but still remains a difficult task because of trade-off between preserving contents and faithful render-
ing of styles. Indeed, how well-balanced content and style are is crucial in evaluating the quality of stylized images. In this
paper, we propose an end-to-end two-stream fully convolutional networks (FCNs) aiming at balancing the contributions of
the content and the style in rendered images. Our proposed network consists of the encoder and decoder parts. The encoder
part utilizes a FCN for content and a FCN for style where the two FCNs have feature injections and are independently trained
to preserve the semantic content and to learn the faithful style representation in each. The semantic content feature and the
style representation feature are then concatenated adaptively and fed into the decoder to generate style-transferred (stylized)
images. In order to train our proposed network, we employ a loss network, the pre-trained VGG-16, to compute content loss
and style loss, both of which are efficiently used for the feature injection as well as the feature concatenation. Our intensive
experiments show that our proposed model generates more balanced stylized images in content and style than state-of-the-art
methods. Moreover, our proposed network achieves efficiency in speed.

Keywords Style transfer · Fully convolutional network · Convolution neural network · Two-stream

1 Introduction

How New York looks like in “The Starry Night” by Vincent
van Gogh is an interesting question and, at the same time,
difficult to answer. In practice, re-painting a famous fine-
art style takes much time and requires well-trained artists.
Answering this question can be stated as the problem of
migrating semantic content of one image to different styles,
and it is called style transfer.

Style transfer is long-standing and has fallen into the
image synthesis problem which is a fundamental research
in computer vision. Style transfer has its origin from non-
photo-realistic rendering [19] and is closely related to texture
synthesis and color transfer [1, 5]. Along with the impressive

progress of various tasks in computer vision using deep neu-
ral networks, this topic has recently been re-launched in both
academy and industry. Gatys et al. [7] showed that the image
representation derived from a Convolutional Neural Network
(CNN) can be used to represent the semantic content of an
image and the style, which opened up a new trend of CNN-
based style transfer.

CNN-based approaches in style transfer fall into two
categories [15]: Image-Optimization-Based Online Neural
Methods (IOB-NST) and Model-Optimization-Based Offline
Neural Methods (MOB-NST). The key idea of IOB-NST
is to synthesis a stylized image by directly updating pixels
in the image iteratively through the back-propagation. The
IOB-NST such as [7, 26, 28] starts with a noise image and
iteratively updates the image by changing the distribution of
noise along with the statistics of content and style until the
defined loss function is minimized. MOB-NST such as [2,
3, 13, 16, 18, 23, 30, 33, 34, 39], on the other hand, first
optimizes a generative model through iterations and then
renders the stylized image using a forward pass. In order to
optimize the generative model, MOB-NST trains each feed-
forward model for each specific style by using the gradient

 * Duc Minh Vo
 vmduc@nii.ac.jp

 Akihiro Sugimoto
 sugimoto@nii.ac.jp

1 Department of Informatics, SOKENDAI (The Graduate
University for Advanced Studies), Tokyo, Japan

2 National Institute of Informatics, Tokyo, Japan

http://orcid.org/0000-0003-4839-032X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00138-020-01086-1&domain=pdf

 D. M. Vo, A. Sugimoto

1 3

37 Page 2 of 18

descent over a large dataset. IOB-NST is known to produce
better stylized results in quality than MOB-NST [15], while
MOB-NST has more efficiency in speed.

Although existing methods [2, 3, 7, 13, 16, 18, 23, 26,
28, 30, 33, 34, 39] show the capability of rendering image
contents in different styles, generated stylized images are
not always well balanced in content and style. Such meth-
ods take care of either the content or the style, but not
both, producing unbalanced stylized images. IOB-NST is
good at faithfully rendering the style while it tends to lose
the content. MOB-NST, on the other hand, preserves more
semantic content than the style. How to keep the balance
between the content and the style in style transfer is a
crucial issue to improve the quality of stylized images.
This is because such balance is required in many applica-
tions; for instance, font transfer [40], realistic photo trans-
fer [24, 28]. IOB-NST and MOB-NST have the capability
of controlling the balance between the content and the
style. Namely, they allow to manually change the ratio of
content and style. However, changing the ratio do not guar-
antee that network parameters for stylized images changes
as expected, meaning that the contributions of the con-
tent and the style in a stylized image are uncontrollable
in reality. Figure 1 shows examples obtained by IOB-NST

(Gatys + [7]) and MOB-NST (Johnson + [16]) with vari-
ous settings of contributions of the content and the style.
We can see although the ratio of content and style is sig-
nificantly changed, the results do not change much.

Another important issue to address is the computational
speed. Although MOB-NST such as [2, 3, 13, 16, 18, 23,
30, 33, 34, 39] are able to produce stylized images fast,
they rely on a strong computational power. Therefore,
either IOB-NST or MOB-NST is hard to apply to real-
time applications.

We propose an end-to-end two-stream network for bal-
ancing the content and style in stylized images where con-
tributions of the content and the style are adaptively taken
into account. The encoder part of our network consists of
the content stream and the style stream where the streams
have different architectures. The two streams are connected
by adaptive feature injection and independently trained to
learn the semantic content or the style representation. The
content features and the style features are then combined
in our proposed adaptive concatenation to ensure the bal-
anced contribution of each stream. As the decoder part
of our network, we use the feed-forward model to reduce
the rendering time while we spend much time on learning
like [3, 13, 16, 23, 34, 39]. Unlike other methods that train
a new model from the scratch for a yet unknown style, we
fine-tune parameters from an existing model, allowing our
network not only to accommodate fast training but also to
easily adapt new styles. Our experiments demonstrate that
our method produces more balanced stylized images in both
content and style than the state-of-the-art methods (Fig. 2).
They also show that our method runs about 22 × faster than
the state-of-the-art methods. We remark that our proposed
model is trained for one style only, but it is easy to be fine-
tuned to other styles incrementally with a low cost.

The rest of this paper is organized as follows. We briefly
review and analyze related work in Sect. 2. Next, we analyze

1:5 1:11:5 1:1

Gatys+Johnson+

Fig. 1 Example of stylized results obtained by Johnson + [16] and
Gatys + [7] by changing the ratio of content and style from 1:5 to 1:1.
Leftmost column: content image (large) and style image (small). In
each block, from left to right: the stylized image with various ratio of
content and style

Fig. 2 Example of stylized results. Leftmost column: content image
(large) and style image (small). From left to right: the stylized image
by our method, Johnson + [16], Huang + [13], and Gatys + [7],

Sheng + [34], Chen + [3], and Li + [23]. Our results surrounded with
red rectangles are more balanced in content and style than the others

Two-stream FCNs to balance content and style for style transfer

1 3

Page 3 of 18 37

the semantic levels of image features for content and style in
Sect. 3. Then, we present the detail of our proposed method
in Sect. 4. Sections 5 and 6 discuss our experiments. Sec-
tion 7 draws the conclusion. We remark that this paper
extends the work reported in [38]. Our main extensions in
this paper are building a new network using both our pro-
posed adaptive feature injection and concatenation and add-
ing more experiments.

2 Related work

Early work on style transfer was reported in the context
of texture synthesis. Some methods there used histogram
matching [10] and/or nonparametric sampling [1, 5]. These
methods had limited results because they relied on hand-
crafted low-level features and often failed in capturing fea-
tures in semantic levels from the content and the style.

Gatys et al. [7] for the first time proposed a method
using CNNs and showed remarkable results. Their method
trains CNNs to learn the semantic information from content
images and matched it with the distribution of the style. It
starts from a randomly distributed noise image and itera-
tively updates the image to produce an image satisfying the
semantic distribution of the content image and appearance
statistics of the style. During the iteration, the weighted sum
of style loss and content loss is minimized. As follow-up
work of [7], Luan et al. [26] proposed a structure preser-
vation method using Matting Laplacian for photo-realistic
style transfer. Mechrez et al. [28] utilized the screened Pois-
son equation to make a stylized image more photo-realistic.
Li et al. [21] proposed a Laplacian loss that computes the
Euclidean distance between the Laplacian filters responding
to a content image and a stylized image in order to keep a
fine structure of the content image. These approaches fall
into the IOB-NST category, and all face with the computa-
tional speed problem.

Johnson et al. [16] and Ulyanov et al. [36], on the other
hand, took MOB-NST, proposing a feed-forward CNN and
used the perceptual loss function for gradient-based optimi-
zation. The perceptual loss used there is similar to content
and style loss in [7]. Their models have only to pass the
content image to a single forward network to produce a styl-
ized image, which is fast. Their two models are different
only in the network architecture. Johnson et al. [16] follows
the design of [31] with their modification of using residual
blocks and fractionally strided convolutions while [36] uses
a multi-scale in their generator. Wang et al. [39] also utilized
the feed-forward network, and they used multiple-generator
to improve the quality of results. These methods are fast in
generating stylized images, but they are capable of dealing
with a single style only.

Dumoulin et al. [4] proposed a multi-style network that
introduces shared computation in many style images where
they used instance normalization (IN) [37] for balancing
features from the content and from the style. They also pro-
posed an improvement of IN to learn a different set of aff-
ine parameters for multi-styles in the batch way. However,
their model can train a limited number of styles because the
network capability is limited, meaning that the number of
styles to handle is limited. Chen and Schmidt [3] proposed
a method that overcomes the limitation of the number of
styles by using a patch-based method. Their method first
extracts a set of patches from the content and style each,
and then, for each content patch, the method finds its clos-
est style patch and swaps their activation. In this way, their
method transfers an unlimited number of styles; however, the
cost for patch extraction and swapping increases the com-
putational time significantly. Li et al. [23] also proposed a
method for multi-style transfer using feature transformations.
They first employ pre-trained VGG-19 as their encoder to
train an decoder for image reconstruction. Then, with fixing
both encoder (VGG-19) and decoder, their model performs
the style transfer through whitening and coloring transforms
on a given content image and a style image. Though their
method successfully solves the multi-style transfer, it still
suffers from the computational cost and loses the content
due to the feature transformations.

Huang and Belongie [13] and Sheng et al. [34] proposed
multi-style transfer models consisting of two CNN streams
for content and style. Huang and Belongie [13] employed
the pre-trained VGG-16 to extract content and style features
and introduced Adaptive Instance Normalization (AIN) to
make the mean and the variance of content features similar
to those of style features. Sheng et al. [34], on the other
hand, proposed AvatarNet which employed the pre-trained
VGG-19 to extract the content and style features. These fea-
tures are matched by using style swap [3] or AIN [13] before
being fed into the decoder. Different from [13], their models
have skip connections from the style encoder to the decoder.
Huang and Belongie [13] and Sheng et al. [34], however,
used the same architecture for the content CNN and for the
style CNN. Having the same CNN architecture for the con-
tent and the style causes unavoidable unbalance between
the content and the style because semantic levels extracted
from the content and the style should not be the same in style
transfer. Those models require expensive computational
cost as well. Furthermore, AIN [13] assumes the standard
distribution on pixel values of images, which is not always
ensured in styles when normalizing data. Indeed, AIN [13]
tends to produce a lot of artifacts; especially they are visible
on flat surfaces [33]. We remark that the skip connection in
AvatarNet [34] weights the style contribution more, causing
unbalance in stylized images.

 D. M. Vo, A. Sugimoto

1 3

37 Page 4 of 18

Along with using Generative Adversarial Network
(GAN) [8] in image synthesis, several GAN-based models
for style transfer are also proposed [2, 18, 20, 33]. These
models also optimize the network with a large number of
content images during the training step and thus fall in the
MOB-NST category. Though GAN-based models bring
a promising approach to improve the quality of stylized
images, their results, at this time, still are less impres-
sive [15]. Furthermore, as in common with other GAN-
based approaches, their training processes are also unstable.

Different from the methods above, we take into account
the contributions of the content and the style through a
two-stream feed-forward network to balance the content
and the style in stylized images. In particular, our proposed
two-stream network is different from [13, 34] in that our
network has different depths in layer for the content and
the style encoders to extract different semantic levels of the
content and the style. In addition, separating content and
style enables our method easy to fine-tune to other styles
with a cheaper computational cost (re-training time, required
numbers of training images) than other models possessing
only one encoder [3, 16, 39]. As a result, our method is able
to easily deal with multi-styles.

3 Semantic levels of image features
for content and style

Along with the depth, CNN is known to extract different
semantic levels of image features in layers. As demonstrated
in [7, 16], features in early layers reflect colors, textures,
and common patterns of images, while those in latter lay-
ers preserve content and spatial structure of images. We,
therefore, expect that the features in lower layers work as
style features and those in higher layers do as content fea-
tures. Using appropriate semantic levels of image features
in style transfer is crucial. We thus experimentally exploit
the semantic levels of image features in VGG-16 [35] to
design suitable numbers of layers in designing our network
to extract content and style features. We remark that we refer

[7, 16] in which image reconstruction is learned using hid-
den features in CNN layers.

For the content image reconstruction, we randomly pre-
pare 100 images. We then feed each of the 100 images into
the VGG-16 [35] pre-trained on object recognition using
ImageNet dataset [32] without any fine-tuning and extract
the features at each Rectified Linear Unit (ReLU) [29].
These features are employed to reconstruct original images
using inverting technique [27]. Hereafter, we use reluX_Y to
mention a specific ReLU layer; see the definition of VGG-
16 [35] architecture for details. Figure 3 shows some exam-
ples of image reconstruction at several layers. We see that
at low levels, i.e., from the 2nd layer (relu1_2) to the 5th
layer (relu3_1), the reconstructed images are similar to the
original image, meaning that these layers successfully keep
colors, textures, and common patterns of images. At higher
levels, i.e., from the 6th layer (relu3_2) to the 10th layer
(relu4_3), the reconstructed images preserve the content and
spatial structure. At even higher layers that start from the
11th layer (relu5_1), semantic features are gradually learned;
the exact shape, on the other hand, is not preserved.

For the style image reconstruction, we use Adam optimi-
zation [17] to find an image that minimizes the style recon-
struction loss (proposed in [7]). To obtain style reconstructed
images, we start from a noise image and optimize the style
loss as [7] using the VGG-16 pre-trained on ImageNet. Fig-
ure 4 shows an example of the style image reconstruction. We
see that the style of image can be obtained until the 7th layer
(relu3_3)

The above observation holds true for the images and the
styles that we evaluated. Combining the insight given by [7,
16], we may thus conclude that the low-level layers reflect
the style of the image while the high-level layers capture
the content of the image. More precisely, from the 6th layer
(relu3_2) to the 10th layer (relu4_3), the network is capa-
ble of appropriately capturing content information in the
images. The style information, on the other hand, can be
obtained from the 2nd (relu1_2) to the 7th (relu3_3) layers.

Gatys et al. [7] pointed out that image content and style
cannot be completely disentangled. This indicates that

Original image relu1_2 relu2_2 relu3_1 relu3_2 relu3_3 relu4_3 relu5_1

Fig. 3 Examples of the feature reconstruction for several layers from the VGG-16 pre-trained network

Two-stream FCNs to balance content and style for style transfer

1 3

Page 5 of 18 37

depending on the objective, we have to appropriately design
the layer levels of content and style features for their com-
bination. We thus further analyze effectiveness of the lay-
ers from the 6th (relu3_2) to the 10th (relu4_3) for content
matching to determine the best one for combination. We
follow [7] to synthesize the stylized images where we set
the contributions of content and style to be equal with each
other. To this end, we fix the style matching from the 2nd
(relu1_2) to the 7th (relu3_3) layers, while performing the
content matching at every single layer from the 6th (relu3_2)
to the 10th layers (relu4_3). Figure 5 shows examples of
stylized images having different layers in combination. We
see that the content matching at the 6th and the 7th layers
(relu3_2 and relu3_3) is most reasonable to keep the balance
of content and style in stylized images.

Using above observation, we design our network to fully
exploit the characteristics of image features. We choose the
6th layer for content because it has a smaller number of
parameters than the 7th layer (it is faster to learn). We choose
the 4th layer for style because it is neither too early in layer
nor marginally different from the layer used for content. In
conclusion, we use the features at the 6th layer (relu3_2) for
content and those at the 4th layer (relu2_2) for style.

4 Proposed method

4.1 Network design

Our network follows end-to-end encoder-decoder archi-
tecture for rendering of the content in a given style [3,
16, 39]. The network in [3, 16, 39] possesses only one
encoder to extract the semantic content and style. This
means that the extracted semantic level of the content and
that of the style are the same. When we stylize images, the
role of the content should be different from that of the style
because the content gives us what exist (object shapes and
locations) in the rendered image and the style gives us
the impression of the rendered image. Accordingly, the
semantic level used for the rending should be different
depending on the content or the style. Otherwise, unbal-
ance between the content and style remains in stylized
images. We thus design a network having two encoders
in which their architectures are different from each other
to extract different semantic levels of the content and the
style. With the two encoders, our model treats the content
and the style in different ways, allowing the network to be
able to balance the roles of the content and the style better
than the model having only one encoder.

Style image relu1_2 relu2_2 relu3_3 relu4_3relu2_1 relu3_1 relu3_2

Fig. 4 Examples of style image reconstruction for several layers from the VGG-16 pre-trained network

relu3_2 relu3_3 relu4_1 relu4_2 relu4_3

Fig. 5 Examples of combination of content and style images from
relu3_2 to relu4_3 . Leftmost column: content image (large) and style
image (small). From left to right: the stylized images at different

combination levels by Gatys + [7] where the ratio of contributions of
content and style is 1:1

 D. M. Vo, A. Sugimoto

1 3

37 Page 6 of 18

Ideally, the network should be able to retain the semantics
of the content as well as the statistics of the style as much
as possible. The semantic content and style of an image are
captured at different layers in the network (see [7, 16] and
Sect. 3): the network obtains the style at low-level layers in
depth, while high-level layers become more sensitive to the
actual content of the image. We thus design the encoders
with different depths to retain useful information from both
the content and the style. Namely, we design a deep encoder
for the content and a shallow encoder for the style. Moreo-
ver, in order to reflect features extracted from the style at
low-level to those from the content, we employ the feature
injection via the skip connection technique from the shallow
encoder to the deep one. Because the content feature and
the style feature are extracted at different levels in the net-
work, they have different characteristics. We thus introduce
an effective concatenation to enhance the contribution of
these features for good performances instead of implement-
ing their simple ones.

4.2 Network architecture

Our proposed network consists of three fully convolutional
network (FCNs): two encoders and one decoder (Fig. 6).
The two encoders are a deep network, the content subnet,
to extract content feature �c from a content image, and a
shallow network, the style subnet, to extract style feature
�s from a style image. The feature injection is employed
between the content subnet and the style subnet using the
balance weight (cf. Sect. 4.4). This balance weight is also
used to adaptively concatenate the features �c and �s at the

top of content and style subnet before being fed into a deep
network, the generator subnet, to produce a stylized image.
We employ the VGG-16 model [35] as the loss network in
the training phase.

Our network receives the content and style images
where each image is with the size of n × n × 3 (n is the
size of image, 3 are for RGB channels), and synthesizes an
stylized image of n × n × 3 . In the training phase, we use
the images of 256 × 256 × 3 (n = 256). Although we train
the network on images with the size of 256 × 256 × 3 , the
network can accept any size of images in testing (n can be
64, 128, 256, or 512). We remark that the size of the con-
tent image and that of the style image have to be the same
to ensure the consistency of the feature size when injecting
and concatenating the content and the style features.

4.2.1 Content subnet

The content subnet is a stack of six convolution layers with
the filter size of 3 × 3 , and the padding size of 1 × 1 . We
use the stride of 2 × 2 at the third, the fifth, and the sixth
layers to reduce the size of feature maps and the stride of
1 × 1 at the other layers. The numbers of the output chan-
nels are 32, 48, 64, 80, 96, and 128, respectively. Each
convolution layer is followed by a spatial instance normali-
zation (IN) layer [37] and a Rectified Linear Unit (ReLU)
layer [29]. In order to avoid the border artifacts caused by
convolution, the reflection padding is used instead of the
zero padding similarly to [4].

Content image
256 x 256 x 3

Style image
256 x 256 x 3

Content subnet

Style subnet

C

Generator subnet
Stylized image
256 x 256 x 3

VGG-16
loss

network

ϕc

ϕs
25

6
x

25
6

x
32

25
6

x
25

6
x

48

12
8

x
12

8
x

64

12
8

x1
28

 x
 8

0

64
 x

 6
4

x
96

32
 x

 3
2

x
12

8

25
6

x
25

6
x

32

64
 x

 6
4

x
96

32
 x

 3
2

x
12

8

12
8

x
12

8
x

64

25
6

x
25

6
x

32

32
 x

 3
2

x
25

6

64
 x

 6
4

x
12

8

12
8

x
12

8
x

96

25
6

x
25

6
x

64

25
6

x
25

6
x

3

32
 x

 3
2

x
25

6

32
 x

 3
2

x
25

6

32
 x

 3
2

x
25

6

32
 x

 3
2

x
25

6

Convolution Residual block Deconvolution Adaptive concatenationC Adaptive feature injection

Training only (Training + Testing)

Fig. 6 Framework of our proposed method. Our network consists of two encoders having different architectures and one decoder. The loss net-
work is used to train the encoders and the decoder

Two-stream FCNs to balance content and style for style transfer

1 3

Page 7 of 18 37

4.2.2 Style subnet

The style subnet, which has four convolution layers, is shal-
low network (more precisely, shallower than the content sub-
net). All convolution layers have the filter size of 3 × 3 , the
reflection padding of 1 × 1 , and the stride of 2 × 2 , except for
the first layer that employs the stride of 1 × 1 . The numbers
of the output channels are 32, 64, 96, and 128, respectively.
Similarly to the content subnet, each convolution layer is
also followed by an IN layer [37] and a ReLU layer [29].

We employ feature injection from the feature �q
s at the qth

layer in the style subnet to those �p
c at the pth layer in the

content subnet, the size of whose feature map is the same
(Table 1). To take into account the contributions of �q

s and
�
p
c , we introduce the adaptive feature injection with the bal-

ance weight (cf. Sect. 4.4).

4.2.3 Generator subnet

The generator subnet consists of five residual blocks, three
deconvolution layers, and two convolution layers in this
order.

Johnson et al. [16] argue that the residual block can enrich
the information involved in the input feature. We, therefore,
use residual blocks to increase the impact of the balance
weight in the concatenated feature. Similarly to [16], we
use five residual blocks outputting 256 channels, where
each of them has two convolution layers with the filter size

of 3 × 3 , the reflection padding of 1 × 1 , the stride of 1 × 1 ,
and a summation layer as in [9]. All convolution layers are
followed by an IN layer [37] (we use it to replace the batch
normalization [14] in the original architecture [9]) and a
ReLU layer [29].

To upscale the feature map, we employ three deconvolu-
tion layers with the same filter size of 3 × 3 , the reflection
padding of 1 × 1 , and the stride of 2 × 2 , outputting 128, 96,
and 64 channels, respectively.

In order to eliminate the affect of the convolution stride,
we use two convolution layers which have the filter size of
1 × 1 , the padding of 0 × 0 , and the stride of 1 × 1 , outputting
32 and 3 channels. All deconvolution layers and convolu-
tion layers are followed by an IN layer [37] and a ReLU
layer [29], except for the last convolution layer that uses the
tanh activation to guarantee that the range of the output can
be normalized to be [0, 255].

4.3 Loss function

We employ two loss functions for content loss and style loss,
which are computed from layers of the loss network. The
content loss Lc computes the similarity of high-level fea-
tures between the content image and the stylized image. The
style loss Ls , on the other hand, computes the similarity of
low-level features between the style image and the stylized
image.

Table 1 Architecture of our
encoders

The arrow (←) indicates the adaptive feature injection

Content subnet Style subnet

No. Layer Output channel No. Layer Output channel

0 Content image 3 0 Style image 3
1 Convolution 32 1 Convolution 32
2 Instance normalization 32 2 Instance normalization 32
3 ReLU 32 ← 3 ReLU 32
4 Convolution 48
5 Instance normalization 48
6 ReLU 48
7 Convolution 64 4 Convolution 64
8 Instance normalization 64 5 Instance normalization 64
9 ReLU 64 ← 6 ReLU 64
10 Convolution 80
11 Instance normalization 80
12 ReLU 80
13 Convolution 96 7 Convolution 96
14 Instance normalization 96 8 Instance normalization 96
15 ReLU 96 ← 9 ReLU 96
16 Convolution 128 10 Convolution 128
17 Instance normalization 128 11 Instance normalization 128
18 ReLU 128 12 ReLU 128

 D. M. Vo, A. Sugimoto

1 3

37 Page 8 of 18

The overall loss is a weighted sum of the content loss and
the style loss:

where yc, ys , and ŷ denote the content image, the style, and
the stylized image, respectively. � is the combination weight
(we set � = 0.5 in our experiments to equally weight these
two loss functions).

We obtain the content loss at M layers as follows:

where Φk(⋅) denotes the normalized feature map at the kth
layer, which has Ck × Hk ×Wk elements. The range of Lc is
[0, 1].

The style loss is computed at N layers as follows:

where ‖⋅‖F denotes the Frobenius norm [11]. G(�k(⋅)) is the
Gram matrix [11] of the normalized feature map at the kth
layer. The Gram matrix GCk×Ck

 has elements Gij = ⟨�i, �j⟩
where �i, �j are features at the ith and the jth channels,
respectively, of the feature map �k(⋅) . The range of Ls is
[0, 1].

4.4 Adaptive feature injection and concatenation

In our network, we employ the feature injection between
the content features and the style features. We also concat-
enate them to feed into the generator subnet. To weight the
contributions of the content features and the style features,
we introduce the balance weight � . This balance weight is
adaptively updated during the training so that it retains the
balance between the content and the style in stylized images.

At the tth iteration in training phase, �t is computed as
follows:

where Ls(t) and Lc(t) are the style loss and the content loss
at the tth iteration in the training phase. To restrict the fluc-
tuation of the balance weight, we compute � at every non-
overlapping T iterations and use it for the next T iterations:

Using � , we sum up the content feature at the pth layer �p
c

and the style feature at the qth layer �q
s for the feature in

adaptive feature injection as follows:

(1)L(ŷ, yc, ys) = 𝛼Lc(ŷ, yc) + (1 − 𝛼)Ls(ŷ, ys),

(2)Lc(ŷ, yc) =
1

M

�
k∈M

1

Ck × Hk ×Wk

‖Φk(ŷ) − Φk(yc)‖2,

(3)Ls(ŷ, ys) =
1

N

�
k∈N

‖G(Φk(ŷ)) − G(Φk(ys))‖F,

(4)�t =
Ls(t)

Ls(t) + Lc(t)
,

(5)� =
1

T

T∑
t=1

�t.

Similarly, we concatenate the content feature �c and the style
feature �s in the adaptive concatenation as follows:

The learned balance weight � ensures the balance of the
contributions of the content feature and the style feature in
both feature injection and concatenation layers. For example,
when Ls is smaller than Lc (meaning � ≤ 0.5 in Eq. (5)), the
contribution of style feature is increased in the next itera-
tions, and vice verse. Moreover, the learned balance weight
� is more advantageous than the fixed balance weight that
does not concern the balance of losses.

In order to explicitly control the contribution ratio of the
content and the style, we manually set the expected contribu-
tion ratio in the loss function and then introduce the learnable
weight that allows us to change stylized images as we expect.
The combination weight � takes the former role, while the
learnable balance weight � does the latter role. In other words,
in our method, � sets an expected contribution ratio of content
and style in stylized images through the loss function while
� controls the learning direction of the network during the
training to achieve the contribution ratio specified by � . In our
experiments where we set � = 0.5 , we see that � works for the
equal contribution ratio of the content and the style as expected
(see Sects. 6.1 and 6.2 for details). We remark that � and �
together play the role of the indicator for how much the content
and the style are emphasized in obtained stylized images.

5 Experimental setup

5.1 Dataset and compared methods

5.1.1 Dataset

We used in our experiments images in the MS-COCO 2014
dataset [25] as our content images, and six famous paintings
widely used in style transfer [7, 13, 16], as our style images
(cf. Fig. 7).

We used the MS-COCO 2014 training set for our train-
ing, and we randomly selected 20 images from the MS-COCO
2014 validation set for our validation. In the testing phase, on
the other hand, we randomly selected 50 images from MS-
COCO 2014 validation (different ones from the 20 images
used in our validation).

5.1.2 Compared methods

We compared our method with SOTA methods: Gatys + [7],
Johnson + [16], Huang + [13], Sheng + [34], Chen + [3],
and Li + [23]. We note that Gatys + is based on IOB-NST

(6)�pq = (� × �p
c
) + ((1 − �) × �q

s
).

(7)𝜙 = (𝛾 × 𝜙c)⊕ ((1 − 𝛾) × 𝜙s).

Two-stream FCNs to balance content and style for style transfer

1 3

Page 9 of 18 37

and the others are on MOB-NST. For Gatys +, we used the
re-implementation version by J. Johnson.1 For the others, we
used publicly available source codes with parameters recom-
mended by the authors (Johnson +,2 Huang +,3 Sheng +,4
Chen +,5 Li +6). We remark that we set 1000 iterations for
Gatys +.

5.2 Implementation details

5.2.1 Implementation setup

We implemented our method in PyTorch.7 We used the
instance incremental learning strategy for dealing with mul-
tiple styles. We conducted all experiments using a PC with
CPU core i7 3.7 GHz, 12 GB of RAM, and GTX 770 GPU
(4 GB of VRAM).

We performed the adaptive feature injection from layers
q = 3, 6, 9 in the style subnet to layers p = 3, 9, 15 in the con-
tent subnet, respectively (Table 1). We adopted the VGG-16
model [35] pre-trained on the ImageNet [32] as the loss net-
work without any fine-tuning. All layers after relu4_3 layer
were dropped. We obtained the content loss at M = 1 layer,
e.g., relu4_3 , and the style loss at N = 3 layers, e.g., relu1_2 ,
relu2_2 , and relu3_3 (M and N are defined in Sect. 4.3).

5.2.2 Training the model

Our method addresses a one-style model to reduce compu-
tational time. For training a new yet unknown style, we fine-
tune parameters from an existing model. With this learn-
ing strategy, our method can easily adapt a new style with
a lower cost than existing work [7, 13, 16, 39]. Moreover,
the fine-tuning learning enables our method to deal with
an unlimited number of styles fast unlike existing methods
such as [3, 4].

We first trained an initial model on the Starry Night style
and then incrementally fine-tuned on the other styles one by
one. We trained the network on the Starry Night style with a
batch size of 2 for 80k iterations corresponding to 2 epochs.
The balance weight � in Eq. (5) is re-computed at every
T = 500 iterations. All the training and validation images are
resized to 256 × 256 . To train the model, we used the Adam
optimizer [17] with the learning rate of 10−3 , the moments
�1 = 0.9 and �2 = 0.999 , and the division from zero param-
eter � = 10−8 . We did not use the learning rate decay and
the weight decay.

For the initial model, we trained all subnets simultane-
ously with independently updating the weight of each sub-
net. Validation was performed at every 100 iterations during
the training process. When observing the content loss and
the style loss on the validation set, if any loss function raises
the overfitting problem, we stopped updating the weight of
the corresponding subnet.

We incrementally fine-tuned the initial model to the other
styles one by one. 2000 images in the MS-COCO 2014 train-
ing set [25] were randomly selected as content images for
training. The network was trained for 1000 iterations with
the batch size of 2. The Adam optimizer [17] was also used
with the same parameters as the training of the initial model.
The balance weight � in Eq. (5) was re-computed at every
T = 50 iterations. The loss-based training technique was also
applied to avoid overfitting, where the validation was per-
formed at every 50 iterations.

5.3 Evaluation metric

In order to evaluate the quality of synthesized images, most
previous work employed user studies although they are sub-
jective and have ambiguity in evaluation. We, on the other
hand, evaluate stylized images by quantifying the content
and style losses. Intuitively, when the total loss is sufficiently
small, we may say that the overall quality of stylized images
is good. Furthermore, the quality of stylized images also
depends on how the content and the style are reflected in
them. We have to consider these two factors in evaluating
the quality of stylized images. Since the contributions of the
content and the style are controlled by � (set in advance) in
our method, we may see if a synthesized image is good in
quality by evaluating (i) whether its total loss is sufficiently

Fig. 7 Styles used in experiments. From left to right: starry night, mosaic, composition VII, La Muse, the wave, and feathers

1 https ://githu b.com/jcjoh nson/neura l-style .
2 https ://githu b.com/jcjoh nson/fast-neura l-style .
3 https ://githu b.com/xunhu ang19 95/AdaIN -style .
4 https ://githu b.com/Lucas Sheng /avata r-net.
5 https ://githu b.com/rtqic hen/style -swap.
6 https ://githu b.com/Yijun maver ick/Unive rsalS tyleT ransf er.
7 https ://pytor ch.org/.

https://github.com/jcjohnson/neural-style
https://github.com/jcjohnson/fast-neural-style
https://github.com/xunhuang1995/AdaIN-style
https://github.com/LucasSheng/avatar-net
https://github.com/rtqichen/style-swap
https://github.com/Yijunmaverick/UniversalStyleTransfer
https://pytorch.org/

 D. M. Vo, A. Sugimoto

1 3

37 Page 10 of 18

Two-stream FCNs to balance content and style for style transfer

1 3

Page 11 of 18 37

small, and (ii) whether the ratio between its content and style
losses consistently agrees with the preset contribution ratio
(i.e., combination weight �) between the content and the
style. We thus introduce a metric to evaluate the quality of
synthesized images using these two criteria. We remind that
we set � = 0.5 (for simplicity) in our experiments to see the
content and style losses converge to almost the same values.

For each pair of content image c and style image s, we
compute content loss Lc and style loss Ls . In the 2D plane
whose coordinate system is defined by content loss and
style loss, the criterion (i) can be measured using the dis-
tance between the origin and (Lc,Ls) . The criterion (ii), on
the other hand, can be measured by evaluating how close
(Lc,Ls) is to the line of “content loss”=“style loss” (called
the balanced axis hereafter).

We assume that we have K stylized images. We normal-
ize content loss and style loss for each stylized image over
K images:

where Lc , �c , Ls , and �s are the mean and the standard devia-
tion of content loss and style loss over K stylized images,
respectively.

The quality of stylized images with respect to the crite-
rion (i) is measured using

Let �
(
∈ [0,

�

4
]
)
 denote the angle between the line going

through the origin and (L̃c, L̃s) and the content loss axis or
the style loss axis (the smaller angle is selected):

Larger � indicates that (L̃c, L̃s) is closer to the balanced axis,
meaning that the stylized image is more balanced in content
and style. This reflects the criterion (ii).

Using length and � above, we define our metric balance:

(8)
L̃c =

1

1 + exp
(

Lc−Lc

�c

) , L̃s =
1

1 + exp
(

Ls−Ls

�s

) ,

(9)length =

√
L̃c

2
+ L̃s

2
.

(10)� =

⎧
⎪⎨⎪⎩

tan−1
L̃s

L̃c

if L̃c ≥ L̃s

�∕2 − tan−1
L̃s

L̃c

otherwise
.

(11)balance =
tan(�)

length
.

balance concerns both the two criteria (i) and (ii). Therefore,
it is a useful metric for evaluating stylized images. We note
that larger balance is better because tan(�) should be larger
and length should be smaller for better stylized images.

6 Experimental results

6.1 Qualitative evaluation

Figure 8 shows examples of the obtained results, showing
that the stylized images obtained by our method are more
balanced in content and style. We also see that overall the
results obtained by Gatys + [7], Sheng + [34], and Li + [23]
reflect the style well, but they mostly lose content (we cannot
understand the content of stylized results using La Muse and
Feathers styles). In some styles (Starry Night, Composition
VII, and The Wave), we see that Johnson + [16] seems to
randomly select a patch in the style and paste it into the
content image. Huang + [13] also loses the content and suf-
fers from a so-called checkerboard effect. We also see that
Chen + [3] loses almost style and tends to keep the original
content images.

To objectively compare the obtained results, we con-
ducted three user studies, including overall quality, content
preserving, and style look-like. From the visual comparison
in Fig. 8, we see that evaluating all stylized results among
compared methods is pretty difficult. We thus picked up
three methods only for our user studies. To this end, we
investigated the quantitative comparison (Sect. 6.2). As
Gatys + [7] is known to keep styles most while Johnson +
[16] retain the content most, these methods are appropriate
to choose for our user studies. Among the remaining com-
pared methods, we see that Huang + [13] is most balanced
(the loss distributions of Huang + [13] appear near balanced
axis (Fig. 10)). We, therefore, chose Gatys + [7], Johnson +
[16] and Huang + [13] for our user studies.

For our user studies, we randomly selected 20 images
from the 50 testing images as content images and chose 5
styles by excluding The Wave style because it is simpler
than the other styles (Fig. 7). We remark that the combina-
tion of 20 content images and 5 styles results in 100 stylized
images by each method. In each user study, we presented
100 sets of images to 31 subjects where each set consists
of a content image, a style image, and four output images
obtained by our method and the three comparison meth-
ods [7, 13, 16]. We then asked the subjects to rank the four
output stylized images at each set (1st is best, and 4th is
worst). For the overall quality study, the subjects were asked
to give the ranking based on the overall quality at each set.
For the content preserving study, the subjects were asked
to rank output images in each set based on how faithfully
the images preserve the content in content images. For the

Fig. 8 Visual comparison of our method against the state-of-the-art
methods. Leftmost column: content image (large) and style image
(small). From left to right: the stylized image by our method, John-
son + [16], Huang + [13], and Gatys + [7], Sheng + [34], Chen +
[3], and Li + [23]. Our results surrounded with red rectangles are
more balanced in content and style than the others. Note that all styl-
ized images are with the size of 512 × 512

◂

 D. M. Vo, A. Sugimoto

1 3

37 Page 12 of 18

style look-like study, on the other hand, the subjects ranked
output images in each set based on how the images look like
the style in style images. We note that four output images
are aligned in the random order in each set and that each set
was displayed for 6 s.

Tables 2, 3, and 4 show the average of rankings over the
100 sets for the overall quality, the content preserving, and
the style look-like studies, respectively. We also computed
the average of rankings in each style, which is also illustrated
in Tables 2, 3, and 4.

We see that our method takes the best ranking among the
four methods in overall quality (Table 2). Looking into the
results in more detail, we see that our method is ranked in
the first place at the Mosaic style, and in the second place
at others (except for Composition VII style). This indicates
that our method performs stably well in overall quality in
accordance with human cognition. We remark that the Com-
position VII style is rather complex (Fig. 7) and the results
for this style are difficult to evaluate. We also remark that the
single-style models (ours, Gatys +[7], and Johnson +[16])
performed better than the multi-style model (Huang +[13]).

For the content preserving (Table 3) and the style look-
like (Table 4) studies, our method takes the second best
ranking. Note that the scores in these studies more largely
distributed than those in the overall quality study. As MOB-
NST is known to perform better in content preserving than
IOB-NST [15]; Johnson + [16], which is MOB-NST, takes
the best ranking in the content preserving study. Gatys + [7],
on the other hand, which is IOB-NST, takes the best ranking
in the style look-like study. In contrast, our method is ranked
in the second place for all styles in the content preserving
study (except for Composition VII style) (Table 3) and in the
style look-like study (except for Feathers style) (Table 4).
These indicate that our method stably produces stylized
images balanced in content and style for almost all the styles.
We remark that in the case of the Feathers style, the two
best methods for the look-like study follow the MOB-NST
approach. As MOB-NST is known not to keep styles well
[15], this suggests that the Feathers style is a difficult style
for users to evaluate stylized images.

6.2 Quantitative evaluation

In order to quantitatively evaluate the obtained results, we
computed the averages of length’s and balance’s over 300
(= 50 contents × 6 styles) sets for each method (Table 5).
We see that our method performs best both in length and
balance. We also computed the averages of length’s and bal-
ance’s in each style, which is illustrated in Fig. 9. Figure 9

Table 2 Average of rankings in the overall quality study

The best and the second best results are given in bold values and
italic values, respectively

Style Ours Johnson + Huang + Gatys +
[16] [13] [7]

Starry night 2.12 2.72 3.14 2.01
Mosaic 2.21 2.25 2.91 2.63
Composition VII 2.47 2.95 2.4 2.18
La Muse 2.38 2.28 2.82 2.51
Feathers 2.15 1.82 3.28 2.74
All together 2.27 2.40 2.91 2.41

Table 3 Average of rankings in the content preserving study

The best and the second best results are given in bold values and
italic values, respectively

Style Ours Johnson + Huang + Gatys +
[16] [13] [7]

Starry night 2.53 1.96 2.67 2.84
Mosaic 2.13 1.60 3.05 3.22
Composition VII 3.02 1.81 2.50 2.67
La Muse 1.99 1.82 3.06 3.13
Feathers 2.02 1.81 2.50 2.67
All together 2.34 1.80 2.87 2.99

Table 4 Average of rankings in the style look-like study

The best and the second best results are given in bold values and
italic values, respectively

Style Ours Johnson + Huang + Gatys +
[16] [13] [7]

Starry night 2.27 2.77 3.34 1.61
Mosaic 2.26 2.66 2.94 2.13
Composition VII 2.49 2.96 2.65 1.90
La Muse 2.71 2.81 2.81 1.67
Feathers 1.69 2.34 3.42 2.55
All together 2.28 2.71 3.03 1.97

Table 5 Averages of length (smaller is better) and balance (larger is
better)

Method Length (⇓) Balance (⇑)

Ours 0.37 2.95
Johnson + [16] 0.54 1.60
Huang + [13] 0.45 1.23
Gatys + [7] 0.45 1.36
Sheng + [34] 0.52 1.21
Chen + [3] 0.59 0.72
Li + [23] 0.49 1.40

Two-stream FCNs to balance content and style for style transfer

1 3

Page 13 of 18 37

0

0.2

0.4

0.6

0.8

Starry night Mosaic Composition
VII

La muse The wave Feathers

Ours Johnson+ Huang+ Gatys+ Sheng+ Chen+ Li+

(a) length (⇓).

0

1

2

3

4

5

6

Starry night Mosaic Composition
VII

La muse The wave Feathers

Ours Johnson+ Huang+ Gatys+ Sheng+ Chen+ Li+

(b) balance (⇑).

Fig. 9 Averages of length and balance in each style

0

1

0 1

St
yl

e
lo

ss

Content loss

Ours Johnson+ Huang+ Gatys+

Sheng+ Chen+ Li+

(a) Starry Night style.

0

1

0 1

St
yl

e
lo

ss

Content loss

Ours Johnson+ Huang+ Gatys+

Sheng+ Chen+ Li+

(b) Mosaic style.

0

1

0 1
St

yl
e

lo
ss

Content loss

Ours Johnson+ Huang+ Gatys+
Sheng+ Chen+ Li+

(c) Composition VII style.

0

1

0 1

St
yl

e
lo

ss

Content loss

Ours Johnson+ Huang+ Gatys+

Sheng+ Chen+ Li+

(d) La Muse style.

0

1

0 1

St
yl

e
lo

ss

Content loss

Ours Johnson+ Huang+ Gatys+
Sheng+ Chen+ Li+

(e) The Wave style.

0

1

0 1

St
yl

e
lo

ss

Content loss

Ours Johnson+ Huang+ Gatys+

Sheng+ Chen+ Li+

(f) Feathers style.

Fig. 10 Loss distribution in each style. Red lines denote the balanced axis. Our method has the distributions nearer the balanced axis than the
other methods

 D. M. Vo, A. Sugimoto

1 3

37 Page 14 of 18

shows that our method performs best in length and best in
balance for all the styles.

To look into the results in more detail, we show the loss
distribution of 50 stylized images in each style (Fig. 10).
We see that (1) the content loss and the style loss (for each
stylized result) in our method are similar with each other
and that (2) loss distributions in our method appear densely
near the balanced axis for all the styles while those in the
other methods do not.

6.3 Computational speed

We measured the running time for generating 300 stylized
images with the sizes of 256 × 256 and 512 × 512 by each
method and compared the average for generating one styl-
ized image by each method.

Table 6 illustrates the average of the running time in gen-
erating one stylized image. As we see, our method is the fast-
est and speeds up 22 times for the image size of 256 × 256
and 21 times for that of 512 × 512 when compared with the
fastest state of the arts [16]. We can thus conclude that our
method is promising for real-time applications.

6.4 More detailed analysis

6.4.1 Behavior of balance weight
 during the training

We investigate the behavior of balance weight � to verify
that � is adaptively updated to converge to an expected value.

Figure 11 illustrates how balance weight � changes dur-
ing the training on the Starry Night style. We see that � is
adaptively updated corresponding to the content and style
losses. We remark that since we set � = 0.5 in the loss func-
tion, � is expected to be close to 0.5 after the training. At
the beginning of training, the style loss Ls is far larger than

the content loss Lc , resulting in � far larger than 0.5 (close
to 1.0). As the training proceeds, the network is gradually
optimized, resulting � close to 0.5 in the end of the training.

We observe that � quickly decreases after one epoch
(about 40k iterations). This can be explained as follows.
After one epoch, the overfitting problem on the style image
occurs since our network is trained using a single-style
image. Hence, the style loss quickly drops. As a result, the
behavior of � becomes different. Indeed, we observed that
the style loss raised the overfitting problem through the
validation phase. We thus stopped the training of the style
subnet while kept updating the weights of the other subnets.
As a result, the content loss decreased more quickly than the
style loss. Then, � was gradually recovered; its value became
close to 0.5 in the end of training.

This evaluation confirms that � gradually adapts to
achieve the equal contributions of content and style in
stylized images during the training thanks to our adaptive
feature injection and concatenation. We remark that we
observed similar behaviors of � for other styles.

6.4.2 Effectiveness of feature injection

In this section, we evaluate the effectiveness of the introduc-
tion to the adaptive feature injection between the content
subnet and the style subnet.

We compared our complete model with the model w/o
feature injection (i.e., the model that disabled only the
adaptive feature injection), which is shown in Fig. 12.
Figure 12 shows that the stylized images obtained by the
complete model are in general more balanced in content
and style than those by the model w/o feature injection.
However, we can see roughly global structure appearing in
the synthesized images in Fig. 12 upper set (in particular,
the leftmost which is with Starry Night style). This can
be explained as follows. In general, the model w/o feature
injection tends to preserve more content than style while
the complete model does more style than content. This is

Table 6 The average wall-clock time in second for producing one
stylized image

The best results are given in bold values

Method Image size Imple-
mented
framework

256 × 256 512 × 512

Ours 0.05 0.18 PyTorch
Johnson + [16] 1.12 3.79 Torch
Huang + [13] 1.98 6.78 Torch
Gatys + [7] 74.12 269.74 Torch
Sheng + [34] 3.04 10.67 TensorFlow
Chen + [3] 2.74 9.33 Torch
Li + [23] 3.53 9.42 Torch

0

0.5

1 80k40k
Number of iterations

1.0

Fig. 11 Behavior of � during the training on the starry night style

Two-stream FCNs to balance content and style for style transfer

1 3

Page 15 of 18 37

because the feature injection from the style subnet to the
content subnet tries to reduce the style loss (see below).
The feature injection at multiple layers employed in the
content and style subnets helps to keep both global and
local structure in rendering. As a result, global structure
in stylized images such as the stroke in the Starry Night
may sometimes become impressive.

We also compared the length and balance of stylized
images (Table 7). We see that the complete model performs
better both in length and balance than the model w/o fea-
ture injection. Table 7 also shows that employing adaptive
feature injection improves both length and balance for each
style (except for La Muse style). This indicates that adaptive
feature injection is effective to improve not only the quality
but also the balance in content and style of stylized images.
With respect to the La Muse style, length of the complete
model is comparable to that of model w/o feature injection;
however, balance is not the case. This can be explained as
follows. The La Muse style follows Cubism and thus it is
very unique. Because of this, the adaptive feature injection
tends to keep more style to reflect the impression of this
style.

Finally, we compare the loss distributions of 50 stylized
images in each style (Fig. 13). We see that for all styles
(except for the La Muse style) the loss distributions of the
complete model appears more densely near the balanced axis
and is closer to the origin than those of the model w/o fea-
ture injection for all styles. In the case of the Starry Night
style (Fig. 13a), we see that the model w/o feature injec-
tion preserves much more content than the style because the
loss distribution appears far above the balanced axis. This
observation also holds true for the Mosaic style (Fig. 13b),
the Composition VII (Fig. 13c), and the La Muse (Fig. 13d).
By using adaptive feature injection, the complete model is
able to reduce the style loss in stylized images (e.g., the
Starry Night, the Mosaic, the Composition VII, the La Muse
styles), compared to the model w/o feature injection. These
observations indicate that the adaptive feature injection
effectively improves to keep the balance in content and style
of stylized images.

6.4.3 Effectiveness of combination weight ̨ and balance
weight

Here, we evaluate the necessity of combination weight �
in Eq. (1) and balance weight � in Eq. (4). In particular, we
evaluate whether � plays the role of explicitly controlling the
contribution ratio of the content and the style.

We generated stylized images using different values of
� : � = 0.1, 0.3, 0.7, 0.9 . The results are illustrated in Fig. 14
where the complete model denotes the model using � and �
together, while the model w/o � denotes the model using �
only (i.e., � is disabled). Ideally, for smaller � , the style is
more emphasized and results become more similar to those
by Gatys + [7]. For larger � , on the other hand, the content is
more emphasized and results become more similar to those
by Johnson + [16]. We observe these in Fig. 14 and see that
� of the complete model indeed controls the contribution
ratio of the content and the style as we expected. However,

Fig. 12 Visual comparison of the complete model and the model w/o
feature injection. In each block, from left to right, a content image
(large one) with a style (small one) is followed by outputs by the

complete model and the model w/o feature injection. Note that all
stylized images are with the size of 512 × 512

Table 7 Averages of length (smaller is better) and balance (larger is
better) in the complete model (denoted by complete) and the model
w/o feature injection (denoted by w/o injection)

Style Length (⇓) Balance (⇑)

Complete w/o injection Complete w/o injection

Starry Night 0.34 0.46 2.12 1.35
Mosaic 0.45 0.57 1.80 1.03
Composition

VII
0.21 0.26 3.61 3.21

La Muse 0.30 0.27 1.72 2.54
The Wave 0.15 0.24 5.39 3.15
Feathers 0.23 0.28 3.71 3.20
All together 0.28 0.35 3.06 2.41

 D. M. Vo, A. Sugimoto

1 3

37 Page 16 of 18

we see that the model w/o � is not the case. This observation
suggests the necessity of both � and �.

7 Conclusion

We presented an end-to-end two-stream network for balanc-
ing the content and style in stylized images. Our proposed
method utilizes a deep FCN to preserve the semantic content
and a shallow FCN to faithfully learn the style representa-
tion, whose outputs are adaptively feature injected and con-
catenated using the balance weight and fed into the decoder
to generate stylized images. Our intensive experiments using
six famous styles widely used in style transfer demonstrate
the effectiveness of our proposed method against state-of-
the-art methods in terms of balancing content and style.
Furthermore, our proposed method outperforms the state-
of-the-art methods in speed.

Our proposed method requires fine-tuning of parameters
from an existing model to deal with different styles. This
limits the applicability of our proposed method to multi-style
transfer. Extending our proposed method so that it can deal
with a large style dataset such as Wikiart or unseen styles is
left for future work.

As an extension of image style transfer, the real-time
video stylization methods are currently proposed [6, 12,
22]. Since our proposed method runs fast, we believe that it
can be useful for real-time video stylization. Though video
stylization is out of the scope of this paper, we applied our
method in the frame-by-frame manner to several videos
for video stylization demonstration. Figure 15 shows some
examples of stylized frames from a video. Our approach
was able to stylize videos in real-time with the resolution
480 × 640 at 30 FPS or more. As we see, our method pro-
duces reasonable results for consecutive frames with vary-
ing appearance, meaning that the usage of our method for

0

1

0 1

St
yl

e
lo

ss

Content loss

w/ adaptive skip-connection

w/o adaptive skip-connection

Complete model
Model w/o feature injection

(a) Starry Night style.

0

1

0 1

St
yl

e
lo

ss

Content loss

w/ adaptive skip-connection

w/o adaptive skip-connection

Complete model

Model w/o feature injection

(b) Mosaic style.

0

1

0 1

St
yl

e
lo

ss

Content loss

w/ adaptive skip-connection
w/o adaptive skip-connection

Complete model
Model w/o feature injection

(c) Composition VII style.

0

1

0 1

St
yl

e
lo

ss

Content loss

w/ adaptive skip-connection

w/o adaptive skip-connection

Complete model
Model w/o feature injection

(d) La Muse style.

0

1

0 1

St
yl

e
lo

ss

Content loss

w/ adaptive skip-connection
w/o adaptive skip-connection

Complete model
Model w/o feature injection

(e) The Wave style.

0

1

0 1

St
yl

e
lo

ss

Content loss

w/ adaptive skip-connection

w/o adaptive skip-connection

Complete model

Model w/o feature injection

(f) Feathers style.

Fig. 13 Loss distribution in each style obtained by the complete model and the model w/o feature injection. Red lines denote the balanced axis

Two-stream FCNs to balance content and style for style transfer

1 3

Page 17 of 18 37

real-time video stylization is promising. We remark that we
did not use either temporal regularization or post-processing.
Different from image style transfer, real-time video styli-
zation needs to pay attentions to the temporal consistency
among adjacent video frames. Incorporating the temporal
consistency into our method for real-time video stylization
is left for our future work.

Acknowledgements This work was in part supported by JST CREST
(Grant No. JPMJCR14D1). The authors are thankful to Dr. Trung-
Nghia Le for his valuable comments on this work.

References

 1. Ashikhmin, M.: Synthesizing natural textures. In: Symposium on
Interactive 3D Graphics (2001)

 2. Azadi, S., Fisher, M., Kim, V., Wang, Z., Shechtman, E., Darrell,
T.: Multi-content gan for few-shot font style transfer. In: CVPR
(2018)

 3. Chen, T.Q., Schmidt, M.: Fast patch-based style transfer of arbi-
trary style. In: NIPS (2016)

 4. Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for
artistic style. In: ICLR (2017)

 5. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis
and transfer. In: SIGGRAPH (2001)

 6. Gao, C., Gu, D., Zhang, F., Yu, Y.: Reconet: real-time coherent
video style transfer network. In: ACCV (2018)

 7. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using
convolutional neural networks. In: CVPR (2016)

 8. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative
adversarial nets. In: NIPS (2014)

 9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. In: CVPR (2016)

 10. Heeger, D.J., Bergen, J.R.: Pyramid-based texture analysis/syn-
thesis. In: SIGGRAPH (1995)

 11. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cam-
bridge University Press, New York (2012)

 12. Huang, H., Wang, H., Luo, W., Ma, L., Jiang, W., Zhu, X., Li,
Z., Liu, W.: Real-time neural style transfer for videos. In: CVPR
(2017)

 13. Huang, X., Belongie, S.: Arbitrary style transfer in real-time
with adaptive instance normalization. In: ICCV (2017)

 14. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep
network training by reducing internal covariate shift. In: ICML
(2015)

 15. Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., Song, M.: Neu-
ral style transfer: a review. IEEE Trans. Vis. Comput. Graph.
(2019). https ://doi.org/10.1109/TVCG.2019.29213 36

 16. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-
time style transfer and super-resolution. In: ECCV (2016)

 17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimiza-
tion. In: ICLR (2015)

α = 0.1 α = 0.3 α = 0.7 α = 0.9 α = 0.1 α = 0.3 α = 0.7 α = 0.9

Complete model Model w/o Gatys+ Johnson+

Fig. 14 Example of stylized images by changing � from 0.1 to 0.9. Leftmost column: the content image (large) and the style image (small). From
left to right: the stylized image using various � . The last column shows results obtained by Gatys + [7] and Johnson + [16] for the reference

Fig. 15 Examples of stylized video in real-time using the “starry
night” style. We use the video of Eadweard Muybridge “The horse
in motion” (1878) as the content input. Our model processes every
frame independently without any post-processing. Video resolution is
480 × 640 at 30 FPS

https://doi.org/10.1109/TVCG.2019.2921336

 D. M. Vo, A. Sugimoto

1 3

37 Page 18 of 18

 18. Kotovenko, D., Sanakoyeu, A., Ma, P., Lang, S., Ommer, B.: A
content transformation block for image style transfer. In: CVPR
(2019)

 19. Kyprianidis, J.E., Collomosse, J., Wang, T., Isenberg, T.: State
of the “art”: a taxonomy of artistic stylization techniques for
images and video. IEEE Trans. Vis. Comput. Graph. 19, 866–
885 (2013)

 20. Li, C., Wand, M.: Precomputed real-time texture synthesis with
Markovian generative adversarial networks. In: ECCV (2016)

 21. Li, S., Xu, X., Nie, L., Chua, T.S.: Laplacian-steered neural style
transfer. In: ACM-MM (2017)

 22. Li, W., Wen, L., Bian, X., Lyu, S.: Evolvement constrained adver-
sarial learning for video style transfer. In: ACCV (2018)

 23. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Universal
style transfer via feature transforms. In: NIPS (2017)

 24. Li, Y., Liu, M.Y., Li, X., Yang, M.H., Kautz, J.: A closed-form
solution to photorealistic image stylization. In: ECCV (2018)

 25. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,
D., Dollár, P., Zitnick, C.L.: Microsoft coco: common objects in
context. In: ECCV (2014)

 26. Luan, F., Paris, S., Shechtman, E., Bala, K.: Deep photo style
transfer. In: CVPR (2017)

 27. Mahendran, A., Vedaldi, A.: Understanding deep image represen-
tations by inverting them. In: CVPR (2015)

 28. Mechrez, R., Shechtman, E., Zelnik-Manor, L.: Photorealistic style
transfer with screened Poisson equation. In: BMVC (2017)

 29. Nair, V., Hinton, G.E.: Rectified linear units improve restricted
Boltzmann machines. In: ICML (2010)

 30. Park, D.Y., Lee, K.H.: Arbitrary style transfer with style-atten-
tional networks. In: CVPR (2019)

 31. Radford, A., Metz, L., Chintala, S.: Unsupervised representation
learning with deep convolutional generative adversarial networks.
In: ICLR (2016)

 32. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma,
S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.S., Berg,
A.C., Li, F.: Imagenet large scale visual recognition challenge. Int.
J. Comput. Vis. 115, 211–252 (2015)

 33. Sanakoyeu, A., Kotovenko, D., Lang, S., Ommer, B.: A style-
aware content loss for real-time hd style transfer. In: ECCV (2018)

 34. Sheng, L., Lin, Z., Shao, J., Wang, X.: Avatar-net: multi-scale
zero-shot style transfer by feature decoration. In: CVPR (2018)

 35. Simonyan, K., Zisserman, A.: Very deep convolutional networks
for large-scale image recognition. In: ICLR (2015)

 36. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.: Texture
networks: feed-forward synthesis of textures and stylized images.
In: ICML (2016)

 37. Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Instance normaliza-
tion: the missing ingredient for fast stylization. In: ICML (2016)

 38. Vo, D.M., Le, T.N., Sugimoto, A.: Balancing content and style
with two-stream FCNs for style transfer. In: WACV (2018)

 39. Wang, X., Oxholm, G., Zhang, D., Wang, Y.F.: Multimodal trans-
fer: a hierarchical deep convolutional neural network for fast artis-
tic style transfer. In: CVPR (2017)

 40. Zhang, Y., Zhang, Y., Cai, W.: Separating style and content for
generalized style transfer. In: CVPR (2018)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Duc Minh Vo obtained his B.S. and M.S. degrees in computer sci-
ence from University of Science – Vietnam National University, Ho
Chi Minh City, in 2012 and 2016, respectively. He is currently in his
third year of Ph.D. in computer science at SOKENDAI (The Gradu-
ate University for Advanced Studies), Tokyo, Japan. His current main
research interests include computer vision, deep learning, and genera-
tive model. He is a regular reviewer for international conferences in
computer vision.

Akihiro Sugimoto received the B.S., M.S., and Dr.Eng. degrees in
mathematical engineering from the University of Tokyo. After work-
ing for Hitachi, ATR, and Kyoto University, he joined the National
Institute of Informatics, Tokyo, Japan, where he is currently a full pro-
fessor. From 2006 to 2007, he was a visiting professor at the Univer-
sity of Paris-Est, France. He is interested in mathematical methods in
engineering. In particular, his current main research interests include
discrete mathematics, optimization algorithm, vision geometry, and
modeling of human vision. He is the author or coauthor of more than
150 peer-reviewed journal/international conference papers. He is a
regular reviewer for international conferences/journals in computer
vision. He has also served several international conferences, including
ACCV2012, 2020, 3DV2020 (general chair), ACCV2010, PSIVT2019
(program chair), ACCV2009, 3DV2018, ICCV2019, ECCV2020 (area
chair). He received the Best Paper Awards from the Information Pro-
cessing Society of Japan in 2001 and from the Institute of Electronics,
Information and Communication Engineers (IEICE) in 2011.

	Two-stream FCNs to balance content and style for style transfer
	Abstract
	1 Introduction
	2 Related work
	3 Semantic levels of image features for content and style
	4 Proposed method
	4.1 Network design
	4.2 Network architecture
	4.2.1 Content subnet
	4.2.2 Style subnet
	4.2.3 Generator subnet

	4.3 Loss function
	4.4 Adaptive feature injection and concatenation

	5 Experimental setup
	5.1 Dataset and compared methods
	5.1.1 Dataset
	5.1.2 Compared methods

	5.2 Implementation details
	5.2.1 Implementation setup
	5.2.2 Training the model

	5.3 Evaluation metric

	6 Experimental results
	6.1 Qualitative evaluation
	6.2 Quantitative evaluation
	6.3 Computational speed
	6.4 More detailed analysis
	6.4.1 Behavior of balance weight during the training
	6.4.2 Effectiveness of feature injection
	6.4.3 Effectiveness of combination weight and balance weight

	7 Conclusion
	Acknowledgements
	References

