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Abstract

Mispredictions caused by spuriosity and flawed model reasoning remain challenges
in predictive machine learning and artificial intelligence; Explainable AI (XAI)
aims to mitigate these issues by tackling model interpretability and explanability,
guided by principles such as explanation accuracy and knowledge limits. However,
these principles are largely qualitative, leaving researchers with few actionable
tools to quantify issues like spuriosity, limiting their usefulness in AI development
and research. This gap is problematic as it leaves researchers to perform laborious,
manual techniques to assess individual model predictions—assessments that are
subject to errors of human judgment. We introduce SemScore, an extensible toolkit
that applies a novel method to determine the semantic relevance of models by quan-
tifying visual explanation methods through semantic segmentation datasets. By
comparing visual explanation methods against ground-truth semantics, SemScore
evaluates models on spuriosity, enabling researchers to systematically measure
and quantify the semantic understanding of models. This provides a useful and
actionable toolkit for understanding model biases and behavior. We apply Sem-
Score to various computer vision domains and demonstrate that SemScore can
effectively evaluate and discern between models based on their semantic reasoning
capabilities. As the first practical method for quantifying semantic understanding
through spuriosity analysis, SemScore significantly advances the capabilities for
XAI research. We release the SemScore toolkit and experimentation code publicly
to provide researchers with the means to build more semantically relevant models
and to extend our work into additional domains.1

1 Introduction

The increasing depth and complexity of modern machine learning models have unlocked powerful
capabilities at the cost of interpretability [30, 44]. While improving prediction accuracy is a common
focus, a more subtle yet critical issue is often ignored: correct model predictions made for the wrong
reasons. These are cases in which models produce correct predictions based on irrelevant or spurious
features, suggesting a fortunate coincidence at best and a fundamental misunderstanding of the
predictive task at worst. These errors in reasoning, driven by spurious or irrelevant features, can mask
poor generalization and present a false sense of reliability, especially under domain shifts [46].

1https://github.com/JovinLeong/SemScore
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Figure 1: Overview of the SemScore workflow. Given a model, saliency method, and semantic
segmentation labels, SemScore computes the SSS by comparing saliency map activations with

semantically relevant regions. This enables multi-level analysis at the prediction, image, and class
levels. Example: PVT-v2 [56] correctly predicted broom class label; the high SSS (0.9997) computed

using GradCAM indicates a strong reliance on semantically irrelevant features despite high
confidence (0.8568), signaling spurious reasoning.

The essentiality of understanding model reasoning in high-stakes domains like healthcare, autonomous
systems, and finance, understanding model reasoning [6] has driven interest in Explainable AI (XAI),
yet most current methods rely on qualitative visualizations that are subjective, biased, and labor-
intensive. As a result, they fall short of delivering the scalable, objective insights necessary to build
trustworthy AI systems. Thus, there remains a critical need for generalizable, quantitative metrics
that can objectively assess and compare model reasoning at scale.

To address these challenges, we introduce SemScore, a toolkit for quantifying model semantic
spuriosity, which can be understood as the extent to which models rely on semantically irrelevant
concepts when making predictions. We define Semantic Spuriosity as the degree to which a model
relies on features that are not part of semantically relevant regions associated with the predicted class.
The semantically relevant region is specified by the semantic segmentation mask, which represents the
ground truth label for a given region. SemScore is a toolkit that supports relative model comparisons
using Semantic Spuriosity Score (SSS); SSS measures how much a model’s attention lies outside
relevant regions, which provides an effective, quantitative means to assess whether models are making
predictions for the right reasons. Our contributions are threefold:

• Semantic Spuriosity Score (SSS): A novel metric to quantify semantic understanding in
models at multiple levels: prediction, image, and class.

• SemScore toolkit: an open-source framework that enables researchers to readily use our
metrics to evaluate the semantic performance of their vision models.2

• We apply SemScore across CNNs, Vision Transformers, and Vision-Language Models to
uncover meaningful differences in semantic reasoning across architectures and tasks.

SemScore moves XAI beyond subjective interpretation, offering a rigorous, actionable path to trans-
parent and trustworthy AI. We further show that SSS captures information orthogonal to prediction
confidence, offering insight into model reasoning that is not reflected in output scores alone.

2 Related work

2.1 Saliency-Based Explainability

Saliency methods are central to visual explainability, offering post-hoc insights into model behavior.
Gradient-based techniques such as Grad-CAM [44], Integrated Gradients [48], and their variants
(e.g., LayerCAM, Grad-CAM++) aim to highlight input regions important for a model’s decision.
Gradient-free approaches such as ScoreCAM [54], Eigen-CAM [35], and AblationCAM [9] provide
alternatives without relying on model internals, bypassing gradients to improve compatibility across
architectures. These methods have been widely adopted in XAI due to their model flexibility and
visual interpretability. Yet, growing evidence has called into question the faithfulness and reliability
of saliency maps. Notably, Adebayo et al. [2], Kim et al. [23], and Zhou et al. [60] found that many
saliency methods are sensitive to randomization and may fail to capture true model reasoning.

2https://github.com/JovinLeong/SemScore
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These critiques highlight that saliency outputs can be misleading when interpreted at face value (e.g.,
via the "pointing game"). Rather than validate saliency maps themselves, SemScore addresses a
complementary question: given the saliency of a prediction, how well does this saliency align with
task-relevant semantics? This shifts the focus from attribution correctness to semantic congruence,
allowing researchers to compare models’ reasoning regardless of saliency reliability. SemScore’s
extensible design accommodates various attribution methods and model types precisely to account
for method-model compatibility.

2.2 Detecting and Quantifying Spuriosity

A related research direction focuses on identifying and mitigating spurious correlations or shortcut
behaviours in deep models. This includes techniques for dataset debiasing, causal inference, and
feature attribution analysis. For example, SpRAy [24] applies spectral clustering to Layer-wise
Relevance Propagation to reveal “Clever Hans” predictors—models that learn to rely on irrelevant
visual artifacts that co-occur with certain labels. Other recent efforts, such as Friedrich et al. [12],
introduce taxonomies and metrics to detect and mitigate shortcut learning. Steinmann et al. [46]
provide a comprehensive taxonomy of techniques for detecting, analyzing, and mitigating model
shortcuts. Though primarily aimed at intervention and mitigation, these approaches also rely on
identifying model reliance on unintended cues. SemScore complements this line of work by offering
a scalable, model-agnostic diagnostic quantitative tool for post-hoc detection of semantic alignment.
It enables analysis of model reasoning without retraining or manual dataset curation, supporting
fine-grained inspection across predictions and classes.

Spuriosity in XAI has received less attention. Moayeri et al. [34] proposed human-guided spuriosity
rankings to assess model biases caused by reliance on spurious cues in ImageNet [42]. Le et al. [25]
introduced the neuron spurious score to quantify a neuron’s dependence on spurious features to study
shortcut learning, though limited by dependence on Grad-CAM. Unlike these works, which aim
to detect or correct spuriosity at the model level, SemScore provides a post-hoc, model-agnostic
evaluation of semantic alignment using saliency maps and semantic segmentation labels.

2.3 Explainability in Transformer and Vision-Language Architectures

For transformer-based models, attention-based methods aim to interpret how information flows
across layers. Attention Rollout and Attention Flow [1] model information flow in the network
as a directed acyclic graph, while Gradient Attention Rollout (GAR) by [14] extends Attention
Rollout by incorporating gradients to refine token relevance. Dynamic Accumulated Attention Map
(DAAM) [27] accumulates spatial features across layers and combines them with channel-wise
importance to generate fine-grained attention maps. These methods offer insight into hierarchical
reasoning but remain limited in evaluating semantic validity. For vision-language models (VLMs),
explainability remains an emerging area. Works such as Hashmi et al. [16] evaluate VLMs within the
specialized domain of medical imaging, while Suh et al. [47] explore the efficacy of conventional
saliency methods in interpreting VLMs. Others assess semantic continuity—the principle that similar
inputs should yield similar explanations [19]. However, most approaches stop at visual inspection,
lacking metrics to quantify semantic misalignment or domain overfitting. SemScore addresses this by
introducing a unified framework to measure semantic spuriosity across VLMs and unimodal models,
revealing whether model focus aligns with annotated semantically relevant regions.

2.4 Semantic Explanations and Segmentation-Based Approaches

In XAI, semantics refer to explanations grounded in human-understandable concepts. Semantic
segmentation-based attribution extends saliency analysis by aligning model attention with object
or region-level labels. For example, Seg-Grad-CAM [53] and Seg-XRes-CAM [15] adapt Grad-
CAM to pixel-wise outputs for semantic tasks. Other approaches D-RISE [37] and D-CLOSE [52]
offer black-box explanations for object detectors using randomized masking, but are sensitive to
noise, hyperparameters, and scene complexity. SemScore unifies and extends these ideas, offering a
standardized, quantitative measure of semantic alignment applicable to any task with segmentation
annotations. It supports comparative benchmarking across saliency methods and model types,
providing actionable insight into model reasoning. Despite the proliferation of attribution methods,
key gaps remain in how explanations are evaluated. Saliency outputs, when visually assessed, limit
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reproducibility and scalability [50, 36]. While toolkits like Quantus [45] provide standardized metrics
(e.g., faithfulness, sensitivity), they do not assess whether explanations align with task-relevant
semantics. Similarly, spatial metrics (e.g., explanation accuracy) capture overlap but not conceptual
alignment. SemScore addresses this by introducing SSS, a quantitative metric to evaluate how well
model explanations align with semantic regions. It supports multi-level aggregation (per-prediction,
per-class, per-image) to enable scalable, model-agnostic analysis of reasoning quality.

3 The SemScore Toolkit

The SemScore toolkit enables scalable, quantitative analysis of semantic spuriosity in vision models,
including CNNs, transformers, and VLMs. It supports any model with convolution or attention layers
by comparing model-generated saliency maps with semantic segmentation masks. This comparison
yields the Semantic Spuriosity Score (SSS), a metric that quantifies the extent to which a model’s
prediction relies on semantically irrelevant regions. SSS captures how well a model’s focus aligns
with human-understandable concepts. This involves comparing saliency maps to segmentation masks
(Figure 2). Using semantic segmentation datasets, SemScore enables systematic evaluation of a
model’s semantic reasoning across multiple vision tasks, reducing reliance on subjective visual
inspection of saliency maps. The toolkit provides modular components to configure datasets, models,
saliency methods, and evaluation parameters. Once a configuration is selected, SemScore computes
SSS and provides multi-level aggregations at the prediction, image, and class levels.

Figure 2: Variability of saliency maps and SSS across attribution methods. ScoreCAM fails to align
with annotated regions and has a high SSS of 0.9999; LayerCAM and EigenCAM exhibit accurate

activations with low SSS, indicating low spuriosity and strong semantic alignment.

Importantly, SemScore is designed for relative, not absolute evaluation. For any given model-dataset
pair, suitable thresholding and saliency configurations need to be initially determined. These settings
should then be held fixed when comparing model variants to ensure consistent and reproducible
comparisons. This design mitigates the risk of researchers drawing contradictory conclusions under
different parameterizations.

The utility of SSS inevitably depends on the quality of the initial configuration—a reflection of the
semantic gap between human interpretation grounded in semantic labels and the model’s internal
reasoning as approximated by saliency maps. Because different architectures are best evaluated with
different saliency methods, manual selection remains important to ensure compatibility with the
model under analysis. SemScore eases this selection process through a simple, modular configuration
process. All code, configurations, and experiment scripts are publicly released to support replication,
adoption, and extension of the framework.3

3.1 Semantic Spuriosity Score (SSS)

The Semantic Spuriosity Score (SSS) is defined as the normalized difference between the total saliency
mass within the semantically relevant region, defined as the combined semantic segmentation masks
across all specified classes, and the saliency mass outside the semantically relevant region, normalized
by the total saliency mass. SSS estimates the degree to which a model relies on irrelevant semantic
features, allowing researchers to identify and measure spuriosity.

Let M be the saliency map, and let R ⊂ Ω denote the semantically significant region within the
image domain Ω. We have an initial result SSS′ in (1) where SSS′ ∈ [−1, 1]. Thereafter, we
linearly map SSS′ to the range [0, 1] and invert it by subtracting SSS′ from 1 to obtain SSS where

3https://github.com/JovinLeong/SemScore
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SSS ∈ [0, 1] in (2):

SSS′ =

∑
x∈R M(x)−

∑
x∈Ω\R M(x)∑

x∈Ω M(x)
SSS= 1− SSS′ + 1

2
(1,2)

The SSS measures the degree to which features deemed important by a model overlap with seman-
tically irrelevant regions—areas unrelated to the target class. SSS aims to quantify the negative
influence of irrelevant features on the model’s prediction. A high score would mean the model may
be relying on spurious cues or background artifacts stemming from incorrect or misleading attention.

SSS differs fundamentally from standard segmentation evaluation metrics such as IoU or pixel-wise
accuracy. While segmentation metrics compare a predicted mask to the ground-truth mask to assess
output correctness, SSS compares the saliency map of the model (a post-hoc explanation of where the
model is focusing attention) to the ground-truth semantic segmentation mask to estimate semantic
alignment of a model’s reasoning to human labels. This is distinct from standard segmentation
evaluation metrics like IoU or pixel-wise accuracy, which assess the degree of prediction correctness.
Thus, SSS provides insight into model behavior and interpretability, even when predictions are
accurate.

SSS is based on the premise that correct model reasoning aligns with task-relevant semantics. By mea-
suring the overlap between saliency maps and ground-truth segments, SSS quantifies this alignment.
High SSS implies attention to irrelevant areas, reflecting poor task localization or shortcut learning.
Hence, SSS serves as a proxy for faithfulness, assuming saliency maps reflect true model reasoning.

3.2 Pixel Importance Thresholding and Aggregations

Saliency maps often contain noisy activations that obscure the model’s true focus. To improve the
signal-to-noise ratio, we apply thresholding techniques to filter out low-importance pixels. This
process sharpens saliency maps by suppressing diffuse, irrelevant activations and preserving more
meaningful ones. By doing so, the resulting SSS more accurately reflects a model’s reliance on
semantically relevant regions. Thresholding can be configured in either soft or hard modes, depending
on whether original saliency values are preserved or binarized. The detailed mathematical formulation
and thresholding function are provided in Appendix C.

Additionally, SemScore supports per-prediction, per-image, and per-class aggregation for multi-level
insights into model reasoning. Per-prediction aggregation enables fine-grained analysis of individual
outputs. Per-image aggregation summarizes reasoning quality across predictions in a single context.
Per-class aggregation highlights class-specific spuriosity patterns to identify bias or underperforming
classes. Together, these views offer a comprehensive framework for evaluating semantic alignment
across tasks.

3.3 Significance of SemScore and SSS

SemScore provides a systematic, architecture-agnostic framework for evaluating semantic reasoning
in vision models. By comparing saliency maps against semantic segmentation masks, it reveals
subtle failure cases, such as correct predictions made for the wrong reasons, that standard metrics
overlook. This makes SemScore especially valuable for AI safety, robustness, and bias analysis. SSS
extends prior metrics like the "pointing game" by: (1) handling multi-class, multi-region inputs, (2)
supporting soft thresholding for continuous saliency values, and (3) enabling flexible aggregation at
the prediction, image, and class levels across complex tasks such as detection and vision-language
grounding. Several cases illustrating the utility of SemScore are discussed in Section 4.5 with further
cases discussed in Appendix A.

4 Experiments

All experiments were conducted on Amazon Web Services’ g4dn.4xlarge instances with NVIDIA T4
GPUs and Deep Learning OSS Nvidia Driver Amazon Linux 2 Amazon Machine Image for PyTorch
1.13.1.4. We evaluate a range of publicly available computer vision models across different tasks,
using default model hyperparameters. In each case, we compute SSS to quantify the extent to which a

4https://aws.amazon.com/ec2/instance-types/g4/
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model relies on semantically irrelevant regions, where higher SSS values indicate greater spuriosity
and poorer semantic alignment. We compute SSS at the per-prediction, per-image, and per-class score
aggregation, but report only per-image results for brevity; full results are provided in Appendix D.

4.1 Image Classification

We evaluate leading image classification models trained on ImageNet-1K [42], using ImageNet-S
[13], an extension of ImageNet-1K with semantic segmentation annotations for SSS computation.
All validation images from ImageNet-S were passed through each model, and saliency maps were
generated using various CAM methods.

Table 1: Per-image SSS for image classifiers on ImageNet-S [13]

Model GradCAM ↓ Grad
CAM++ ↓ Score

CAM ↓ Layer
CAM ↓ Eigen

CAM ↓ Eigen
GradCAM ↓ Ablation

CAM ↓

DeiT Tiny [51] 0.1844 0.4423 0.3323 0.2402 0.6205 0.6174 0.2394
DeiT Small [51] 0.1759 0.4118 0.4418 0.1951 0.4140 0.4581 0.1828
DeiT Base [51] 0.3614 0.3971 0.5193 0.1724 0.5777 0.6472 0.3136
ViT Base [38] 0.2759 0.556 0.4272 0.2670 0.3813 0.8639 0.3864

FlexiViT Base [3] 0.1436 0.5802 0.3019 0.2159 0.3434 0.2691 0.2248
ConViT Small [8] 0.1650 0.4858 0.4939 0.1379 0.4778 0.2948 0.1600

Hiera-Base-Plus [43] 0.8035 0.8339 0.5303 0.5338 0.4655 0.3100 0.2789
PVT-v2 [56] 0.6203 0.6860 0.4339 0.2696 0.2786 0.1991 0.8272

Swin-Base [32] 0.3881 0.7480 0.5192 0.7967 0.3267 0.2286 0.8918

From Table 1, we observe substantial variation in spuriosity across both models and attribution
methods. Notably, FlexiViT and ConViT-Small consistently yield the lowest SSS across most
attribution methods despite their smaller model size, suggesting that architectural design, rather
than model size, plays a more significant role in achieving semantic alignment. FlexiViT’s content-
adaptive token aggregation and ConViT’s soft convolutional biases likely promote attention to
task-relevant regions, improving robustness against spurious correlations. In contrast, Swin-Base
and Hiera-Base-Plus exhibit the highest semantic spuriosity. These hierarchical vision transformers
rely on window-based attention mechanisms that process local patches and aggregate information
progressively. While efficient, this localized structure may limit global contextual understanding and
lead to overfitting on background textures or co-occurring artifacts. Our results reveal clear disparities
in semantic reasoning among ViT-based models; this is an indication that SSS provides insight into
model behavior beyond accuracy, especially in safety-critical or generalization-sensitive applications.

4.2 Object Detection

We select leading object detection models trained on the COCO dataset [28] and evaluate them on
the COCO-Stuff 10K validation dataset [4, 22]. All models achieved a detection coverage of 0.999,
defined as the percentage of positive samples where the model outputs at least one detection.

Table 2: Per-image SSS results for object detectors on COCO-Stuff 10K [4, 22]

Model GradCAM ↓ Grad
CAM++ ↓ Layer

CAM ↓ Eigen
CAM ↓ Eigen

GradCAM ↓ Ablation
CAM ↓

FCOS [49] 0.7191 0.7003 0.6222 0.8094 0.6502 0.7399
SSDLite320 Large [18] 0.6873 0.7358 0.5882 0.6608 0.5832 0.7164

RetinaNet [29] 0.5753 0.5387 0.4079 0.6867 0.4236 0.5861
Faster R-CNN [40] 0.6583 0.6228 0.5122 0.7511 0.5167 0.6672

SSD300 [31] 0.4955 0.3169 0.2580 0.5091 0.3444 0.4549

The results from Table 2 show that SSD300 has consistently lower SSS than all other detectors
evaluated, indicating stronger semantic grounding. Given SSD300’s relatively shallow, single-shot
architecture, this suggests that simpler detectors with dense anchor coverage may encourage more
localized, object-centered attention patterns. Meanwhile, FCOS and SSDLite320 exhibit the highest
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semantic spuriosity. These more complex, anchor-free detectors may suffer from less precise spatial
modeling or over-reliance on contextual features, leading to increased activation in background or
co-occurring regions and increased semantic spuriosity. Further, LayerCAM and EigenGradCAM
seem best suited for evaluating spuriosity in object detectors as they yield the most consistent and
varied scores.

4.3 Vision-Language Models (VLMs)

We evaluate CLIP-based VLMs on the COCO-Stuff 10K [4, 22] validation dataset using semantic
class labels of each image as text prompts and compute SSS for each prediction.

Table 3: Per-image SSS results for VLMs on COCO-Stuff 10K [4, 22]

Model GradCAM ↓ Grad
CAM++ ↓ Score

CAM ↓ Layer
CAM ↓ Eigen

CAM ↓ Eigen
GradCAM ↓ Ablation

CAM ↓

TinyCLIP-8M [57] 0.4902 0.6191 0.4104 0.6118 0.8617 0.7524 0.3909
TinyCLIP-40M [57] 0.4815 0.6782 0.5442 0.7472 0.6699 0.6255 0.4714
TinyCLIP-61M [57] 0.4745 0.7197 0.5310 0.7506 0.6667 0.6244 0.4593

CLIP-ViT-B [38] 0.4748 0.6165 0.6642 0.7819 0.6704 0.6054 0.4546
MetaCLIP-400m [59] 0.4643 0.5116 0.7218 0.6755 0.6820 0.6196 0.5863

DFN [11] 0.4947 0.5399 0.6721 0.5823 0.7509 0.7072 0.4677
CLIP-rsicd-v2 5 0.4668 0.6201 0.6316 0.8063 0.6765 0.6073 0.4473

QuiltNet-B-32 [21] 0.5255 0.7239 0.6217 0.8834 0.7489 0.6784 0.5535
PLIP [20] 0.5087 0.6768 0.6221 0.8145 0.6965 0.6492 0.5091

FashionCLIP [5] 0.5046 0.7321 0.5570 0.7748 0.6678 0.6455 0.5146
PubMedCLIP [10] 0.5028 0.6114 0.6089 0.7250 0.7055 0.6579 0.5186

From Table 3, we observe that the VLMs studied generally exhibit higher spuriosity than models in
other modalities. This likely stems from their reliance on token-based text encodings, which introduce
additional abstraction and increase the risk of ambiguous associations between textual prompts and
image regions. Unlike supervised classifiers that focus on discrete object categories, VLMs are
trained to align global image features with rich, entangled text representations, often resulting in
attention to co-occurring background elements or contextually related but semantically irrelevant
regions. This suggests that VLMs benefit from multimodal flexibility but are prone to semantic
diffusion, causing spurious focus in their visual grounding. Despite these challenges, TinyCLIP-8M
and MetaCLIP consistently achieve lower SSS, suggesting that lightweight or carefully regularized
variants can better maintain semantic alignment. Their compact architectures and curated training
regimes may limit overfitting to spurious background signals and scene-level shortcuts.

By contrast, models such as QuiltNet-B-32 [21], FashionCLIP [5], and PLIP [20] show elevated
SSS likely due to their specialization in domain-specific tasks (e.g., pathology, fashion). When
evaluated on general-purpose datasets like COCO-Stuff, these models rely more heavily on contextual
or domain-specific priors, leading to greater spuriosity, thus validating SSS as a diagnostic tool.
Crucially, this serves as an implicit falsifiability test: had FashionCLIP or PLIP achieved lower
SSS than CLIP variants pretrained on general-purpose datasets like COCO or ImageNet, this would
have cast doubt on the utility of SSS as a meaningful indicator of semantic alignment. However,
SSS reliably captured this disparity, supporting the hypothesis that it is sensitive to semantically
misaligned reasoning, providing an empirical sanity check on SSS.

Interestingly, some models (e.g. TinyCLIP-8M and DFN) show low spuriosity under GradCAM
and AblationCAM but exhibit higher scores under EigenGradCAM and LayerCAM. This variability
underscores the sensitivity of SSS to the choice of explanation method, and hence highlights the value
of SemScore in providing a method to derive suitable configuration settings.

4.4 Attention Mapping Methods

We evaluate Vision Transformers (ViTs) trained on ImageNet1K [42] using the ImageNet1K-S [13]
dataset, which includes semantic segmentation annotations. For each model, we compute SSS using
DAAM [27], GAR [14], and Attention Rollout [1].
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Table 4: Per-image SSS results for ViT attention maps on ImageNet-S [13]
Model DAAM ↓ GAR ↓ Attention Rollout ↓

DeiT Tiny [51] 0.5143 0.2856 0.4161
DeiT Small [51] 0.4990 0.3256 0.6462
DeiT Base [51] 0.4983 0.3996 0.8072
ViT Base [38] 0.5219 0.4583 0.8283
ViT Small [38] 0.5605 0.6254 0.7509

FlexiViT Base [3] 0.4968 0.3513 0.6062

As shown in Table 4, smaller DeiT variants like DeiT-Tiny and DeiT-Small achieve lower SSS
than DeiT-Base, particularly under GAR and Attention Rollout, suggesting that smaller models
may be less susceptible to semantic spuriosity and more likely to focus on object-centric regions.
For example, DeiT-Tiny achieves the lowest SSS with GAR (0.2856), indicating strong semantic
alignment. This supports prior observations that smaller models can generalize more cleanly by
avoiding overfitting to background or co-occurring noise. Interestingly, FlexiViT-Base achieves the
overall lowest SSS score under DAAM (0.4968) and performs competitively across other methods.
Its flexible token aggregation likely promotes stronger spatial grounding, enabling the model to focus
on task-relevant regions more effectively than standard ViTs of similar size. In contrast, ViT-Small
and ViT-Base show the highest SSS scores across nearly all methods, particularly under GAR (0.6254
and 0.4583) and Attention Rollout (0.7509 and 0.8283). These results suggest greater reliance on
semantically irrelevant features, possibly due to training configurations or a lack of inductive bias
compared to DeiT and FlexiViT variants. Among attention attribution methods, Attention Rollout
shows the greatest spread in SSS across models, indicating higher sensitivity to attention variations.
This suggests that Attention Rollout may be the most discriminative and informative method for
detecting spuriosity in ViTs, making it a strong candidate for use with SSS in probing transformer
representations. Overall, these results highlight that semantic spuriosity is shaped by model size,
architecture, and attention behavior, and that method choice (e.g., Attention Rollout vs. DAAM)
significantly impacts interpretability outcomes.

4.5 Qualitative Analysis: Interpreting SSS Outcomes

In this section, we present two illustrative cases where SemScore is particularly effective at uncov-
ering model weaknesses. A more extensive set of examples is provided in Appendix A to further
demonstrate SemScore’s value and practical significance.

4.5.1 High-confidence, correct predictions with high SSS reveal reliance on spurious features

(a) Model focuses on
vegetation instead of the

bunting.

(b) Model highlights
background regions rather

than the parrot.

(c) Model’s attention
centers on the janitor, not

the broom.

Figure 3: Correct image classification predictions by PVT-v2 [56] on ImageNet-S [13] with high SSS.
SemScore can identify cases where models make correct predictions by relying on spurious features;

these cases are overlooked by conventional performance metrics that do not account for saliency.

The examples in Figure 3 illustrate the scenario of correct predictions made with high confidence
scores and high SSS. This result suggests that although the model is confident in its prediction, the
prediction may have been driven by spurious or semantically irrelevant features rather than true
task-relevant cues. By surfacing such hidden reasoning flaws, SemScore reveals insidious model
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behavior that might otherwise go unnoticed, enabling targeted analysis and intervention to improve
robustness and generalization.

4.5.2 Incorrect, low-confidence predictions with high SSS highlight spurious reasoning

(a) Water bottle mispredicted as
Megalith

(b) Indian Elephant mispredicted as
Tusker

(c) Candle mispredicted as
Pedestal

Figure 4: Incorrect image classification predictions by PVT-v2 [56] on ImageNet-S [13] with high
SSS, indicating reliance on spurious features.

Figure 4 shows examples of incorrect predictions with high SSS, indicating reliance on spurious or
irrelevant features. This reflects mispredictions due to the model’s failure to attend to semantically
meaningful cues necessary for correct classification. SemScore enables the discovery of such
instances where mispredictions are likely to stem from reliance on semantically irrelevant features,
offering insight into the underlying model reasoning flaws to facilitate targeted model improvements.

5 Limitations

While broadly applicable, SemScore entails some practical considerations. First, SemScore exhibits
dependence on parameters and attribution methods, resulting in SSS variability. As shown in Figure 2,
inappropriate methods may yield uninformative explanations, reducing SSS’s reliability. Similarly,
omitting thresholding can produce noisy or diffuse saliency maps (see Appendix C). While the SSS
variability caused by inherent differences in saliency behavior across models is not a limitation of
SemScore itself, it can nevertheless inhibit SemScore’s usability. To mitigate this, SemScore includes
tools and templates to help users select appropriate configurations with minimal effort. SemScore’s
parameter sensitivity and optimal configuration for specific models could be explored in future studies
to better understand the theoretical impact and contributions of each component to the overall score.

Additionally, SemScore depends on semantic segmentation masks to define task-relevant regions; this
dependence will limit SemScore’s usability in contexts without labeled data. This is an unavoidable
limitation as SemScore relies on semantic labels to measure spuriosity. The use of pre-trained
segmentation models such as SAM 2[39] or F-LMM [58] can alleviate this bottleneck by facilitating
the generation of pseudo-ground truth semantic labels. Alternatively, synthetic data can be generated
by compositing objects onto diverse backgrounds and producing aligned semantic segmentation
masks at scale.

Finally, we acknowledge that SemScore’s reliance on saliency maps implies that SemScore is
ultimately a proxy measure of the internal reasoning process of a model. Due to the absence of
absolute ground truth labels for model reasoning in a causal, human-aligned sense, SemScore can at
best be understood as a diagnostic measure for model analysis, rather than a definitive explanation of
model reasoning. However, by demonstrating consistent SSS degradation in models evaluated out-of-
domain (e.g., FashionCLIP on COCO) compared to in-domain models, our falsifiable, task-grounded
experiments have shown SemScore’s efficacy in providing valid insight into model understanding. We
have shown that SemScore remains a purposeful and effective framework that provides researchers
with an additional vector in understanding semantic alignment and surface model vulnerabilities
across diverse architectures and tasks.
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6 Discussion

SemScore provides a scalable, quantitative approach to evaluate semantic alignment in vision models,
addressing limitations of qualitative XAI methods. By measuring the extent of model attention
overlap with semantically relevant regions, SemScore highlights cases where models rely on spurious
features—insights not captured by standard metrics alone. Results indicate that semantic spuriosity
is influenced more by training regime and architectural design than model size, clearing the path
for further exploration. Models like FlexiViT and ConViT generally show stronger alignment,
while hierarchical transformers and some VLMs exhibit high spuriosity, due to attention diffusion
or domain-specific biases. Multi-level aggregations (per-prediction, per-image, per-class) further
enable fine-grained analysis of failure modes and class-specific biases. These capabilities are crucial
for high-stakes applications, where correct predictions made for the wrong reasons can undermine
trust. Furthermore, findings of the investigation of the relationship between confidence scores and
SSS highlight that SSS provides complementary information beyond confidence scores and cannot
be substituted by prediction confidence alone. While SemScore depends on saliency quality and
segmentation labels, its modular design supports adaptable configurations and consistent model
comparisons. By quantifying semantic spuriosity, SemScore advances explainability beyond visual
inspection to support more reliable, interpretable model development.

6.1 Social Impact and Ethical Considerations

Our work enhances the capabilities of researchers by supporting model evaluation and explainabil-
ity—promoting greater transparency and more semantically coherent models. As an open-source
toolkit, SemScore is widely accessible, enabling broad adoption and extension without significant
barriers. While the method can be computationally demanding—an expected tradeoff in deep learning
workflows—it introduces minimal ethical or social risks. Rather, SemScore serves as a transparent,
objective tool for evaluating model behavior, contributing positively to responsible AI development.

6.2 Future Work

Future work could enhance SemScore’s breadth and usability. Support for emerging saliency tech-
niques like Attention Guided CAM [26] and perturbation-based methods like LIME [41] and Shapley
values [33, 7, 55] may enrich interpretability by offering complementary views of model behavior.
Further, SemScore may be extended to feature-level annotations to enable the evaluation of non-
spatial spuriosity beyond object boundaries by comparing non-spatial attributions to annotated feature
maps.

Beyond vision, SemScore could be adapted to language tasks by analyzing textual attention over
labeled text, enabling the assessment of semantic relevance in NLP models. In AI safety and robust-
ness, SSS could help detect vulnerabilities by evaluating reasoning under adversarial or distributional
shifts. Finally, SemScore outputs could also inform training by serving as auxiliary supervision
(e.g., regularizing models toward low-spuriosity regions). Integration into popular explainability
libraries like Quantus [17] could further streamline adoption and standardize evaluation across the
XAI community.
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A Additional examples of SemScore’s utility

A.1 Case 1: SSS provides informative scores even when saliency maps are difficult for
humans to interpret

Figure 5: Sample image classification predictions made by PVT-v2 [56] on ImageNet-S [13] where
the saliency maps are patchy and ambiguous. Visually, it is unclear if the model exhibits spuriosity
for these predictions, however, the low SSS enables a decisive assessment. SemScore provides an

unambiguous quantification of spuriosity, removing the need for subjective qualitative assessments.

In scenarios where the saliency map used for visual explanation is visually ambiguous (e.g. when
highlighted regions are patchy and diffuse or extend beyond subject-relevant areas) like the samples
in Figure 5, human evaluators may struggle to objectively assess the relevance or spuriosity of the
model-identified features. Factors like cognitive bias, fatigue, or inattention can further impede
reliable assessment. In such situations, SemScore’s SSS provides an objective and quantitative
means of evaluating spuriosity, thereby reducing ambiguity and supporting objective model reasoning
interpretation.
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A.2 Case 2: High-confidence, correct predictions with low SSS suggest strong semantic
alignment

Figure 6: Correct image classification predictions, low SSS from PVT-v2 [56] on ImageNet-S [13],
reflecting strong semantic alignment.

Examples provided in Figure 6 depict instances where a low SSS accompanies a correct and high
confidence prediction, indicating strong interpretability as the model’s reasoning is well-aligned with
semantically relevant features.

A.3 Case 3: Incorrect, low-confidence prediction, with low SSS reveal semantically valid but
challenging cases.

Figure 7: Sample image classification predictions made by PVT-v2 [56] on ImageNet-S [13] where
the predicted class is wrong and the prediction has a low SSS indicating low spuriosity. SemScore
enables the discovery of such instances where, even though the model appears to correctly identify

semantically relevant features, the model nonetheless makes an erroneous prediction.

As illustrated in Figure 7, instances where an incorrect prediction is made with low confidence but
also low SSS suggest that the model relied on semantically relevant features despite misclassifying
the input. This may occur in fine-grained classification tasks where classes are difficult to distinguish
due to shared attributes that make them highly similar. For example, while tusks are a valid cue for
identifying elephants, a model may still face challenges differentiating between Indian and African
elephants, as both elephant classes share this feature and exhibit high visual similarity. This specific
case on elephants is explored in Appendix A.4.

A.4 Case 4: Class-based analysis of similar classes

Table 5: Class-based analysis of SSS for DeiT Small [51] Image Classification on elephants from the
ImageNet-S dataset [13] with EigenCAM.

Class name SSS↓
Indian elephant 0.5219
African elephant 0.3367

In Table 5, we present a class-level SSS analysis of DeiT Small’s [51] performance on African and
Indian elephant classifications with EigenCAM. The results indicate that DeiT Small demonstrates
substantially higher semantic alignment when predicting African elephants. This disparity may reflect
an imbalance in training data, such as fewer Indian elephant examples, or a limitation in the model’s
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ability to differentiate between overlapping features shared by both classes. This example illustrates
how SemScore might be used to evaluate class-specific performance or deficiencies in the training
regime.

A.5 Case 5: Class-based analysis of top and bottom classes

Table 6: Top-5 classes in terms of SSS for DeiT Small [51] image classifier with EigenCAM.
Class name SSS↓
Waffle iron 0.999
Pinwheel 0.9971

Maze 0.9813
Swing 0.978

Paddlewheel 0.9734

Table 7: Bottom-5 classes in terms of SSS for DeiT Small [51] image classifier with EigenCAM.
Class name SSS↓
Pool table 0.0051
Projectile 0.0026
Warplane 0.002

Dishwasher 0.0019
Plate 0.0005

In Tables 6 and 7, we highlight the ImageNet-S classes [13] for which the DeiT Small [51] classifier
exhibits the highest and lowest spuriosity, as measured by SSS with EigenCAM. These results
demonstrate how SSS can be used to uncover training deficiencies and potential model biases at a
class-specific level.

A.6 Failure case 1: Limitations of SSS under suboptimal saliency methods

Figure 8: Image classification examples illustrating poor SemScore outcomes due to the use of
inappropriate saliency map methods for the given task and dataset. Saliency is dispersed across

and/or concentrated at semantically irrelevant regions of the image.

When a suboptimal saliency method (e.g., CAM) is applied to a task it is ill-suited for, the resulting
explanation may fail to highlight semantically meaningful features. Figure 8 illustrates several such
instances; in such cases, SemScore cannot yield a reliable or informative SSS, as the input explanation
lacks the interpretability necessary for meaningful evaluation.

A.7 Failure Case 2: Limitations of SSS with inappropriate saliency map thresholding

As shown in Figure 9, the saliency map correctly highlights the target object but also includes a
significant number of pixels in the target object’s immediate surroundings. Although the core region
of the saliency map corresponds well to the relevant object, the additional surrounding activations
introduce noise that undermines the interpretability of the explanation. Without thresholding (i.e.,
zero threshold), all pixels are treated as equally salient, resulting in an overly diffuse explanation.
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Figure 9: Image classification examples illustrating poor SemScore outcomes due to inappropriate
thresholding. Even though the model correctly identified relevant features, the lack of thresholding

caused the noisy saliency weights to skew SSS upwards, indicating higher spuriosity.

This can hinder the evaluation process by making it harder to distinguish between truly informative
features and irrelevant neighboring pixels.

B Code snippets for SemScore’s usage in Python

Snippet 1: DataLoader Setup

Code snippet of the Data Loader classes that we provide and can be extended to align datasets to
SemScore.

from d a t a _ l o a d e r s import (
ImageNetSDataLoader ,
COCODataLoader ,
PascalVOCDataLoader ,
ADE20KDataLoader

)

# Users can s e l e c t e x i s t i n g d a t a l o a d e r s
# Or e x t e n d t h e base DataLoader c l a s s f o r t h e i r s p e c i f i c d a t a s e t s
# D a t a l o a d e r s are c u r r e n t l y imp lemen ted f o r :
# COCO10k , PascalVOC , ADE20K , ImageNet −S
d a t a _ d i r = ’ . . / d a t a / s s s e g m e n t a t i o n ’
d a t a _ l o a d e r = ImageNetSDataLoader ( d a t a _ d i r )

Snippet 2: Using SemScore

Code snippet depicting sample usage of SemScore to generate prediction-level, image-level, and
class-based scores:

# Get p a r t i c u l a r sample
n = 42
image , masks , c l a s s _ i d s , c l a s s _ l a b e l s = d a t a _ l o a d e r . g e t _ s a m p l e ( n )

# I n s t a n t i a t e model and t a r g e t l a y e r s
model = timm . c r e a t e _ m o d e l ( ’ v i t _ b a s e _ p a t c h 1 6 _ 2 2 4 ’ , p r e t r a i n e d =True )
model . t o ( t o r c h . d e v i c e ( ’ cuda ’ ) ) . e v a l ( )
t a r g e t _ l a y e r s = [ model . b l o c k s [ − 1 ] . norm1 ]

# A l t e r n a t i v e l y , t h e SemScore repo p r o v i d e s do ze ns o f model c o n f i g f i l e s
# W i t h i n t h i s , models and t a r g e t l a y e r s and p r e s p e c i f i e d f o r immed ia t e use
m o d e l _ c o n f i g _ d i r = ’ . . / c o n f i g / v i t _ c o n f i g . yaml ’
model , t a r g e t _ l a y e r s = l o a d _ m o d e l _ c o n f i g (
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m o d e l _ c o n f i g _ d i r , mode l_ id = ’ v i t _ b a s e _ p a t c h 1 6 _ 2 2 4 ’
)

# I n s t a n t i a t e SemScore w i t h c o n f i g − s p e c i f y i n g s a l i e n c y map method , e t c .
# Advanced c o n f i g i s managed u s i n g a SemScore c o n f i g f i l e
s s = SemScore (

method=" eigencam " ,
i n p u t _ t y p e =" c l a s s _ i d " ,
model=model ,
t a r g e t _ l a y e r s = t a r g e t _ l a y e r s

)

# Compute per − p r e d i c t i o n s c o r e s from SemScore f o r a g i v e n image
s c o r e s = s s . c o m p u t e _ s i n g l e _ p e r _ p r e d i c t i o n _ s s s (

image , masks , c l a s s _ i d s , c l a s s _ l a b e l s , t h r e s h o l d = 0 . 5 ,
)

# SemScore a l s o computes per −image and per − c l a s s s c o r e s
p e r _ i m a g e _ s c o r e = s s . c o m p u te _ p e r_ i m a g e_ s s s ( s c o r e s )
p e r _ c l a s s _ s c o r e = s s . c o m p u t e _ p e r _ c l a s s _ s s s ( s c o r e s )

# SemScore can a l s o work w i t h b a t c h e s o f da ta
# Users s p e c i f y s e t s o f i n d i c e s f o r t h e d a t a l o a d e r t o r e t u r n t o SemScore
# C u r r e n t l y , b a t c h e d p r e d i c t i o n d e f a u l t s t o a l l samp les i n a d a t a s e t
i n d i c e s = [ : 24]
d a t a _ l o a d e r . s e t _ i n d i c e s ( i n d i c e s )

s c o r e s = s s . c o m p u t e _ b a t c h _ p e r _ p r e d i c t i o n _ s s s ( d a t a _ l o a d e r , t h r e s h o l d = 0 . 5 )
p e r _ i m a g e _ s c o r e = s s . c o m p u te _ p e r_ i m a g e_ s s s ( s c o r e s )
p e r _ c l a s s _ s c o r e = s s . c o m p u t e _ p e r _ c l a s s _ s s s ( s c o r e s )

C Pixel importance thresholding

Saliency maps are often noisy, making raw pixel importances unreliable for assessing model spuriosity.
As shown in Figure 10, we found that applying a threshold improves SSS performance by filtering
out low-importance noise.

Soft thresholding involves applying a threshold to the saliency map pixel scores, retaining the original
saliency value at pixel (x, y) if it is above the threshold τ , and setting it to 0 otherwise. Thereafter,
we compute SSS on the remaining pixels. Formally, we define a unified thresholding function
Mmode

τ (x, y), where mode ∈ {soft, hard}, as:

Mmode
τ (x, y) =

{
M(x, y) or 1, if M(x, y) ≥ τ

0, otherwise
(3)

This function retains original saliency values in soft mode (Mmode
τ (x, y) = M(x, y)) and binarizes

them in hard mode (Mmode
τ (x, y) = 1). In both cases, pixels below the threshold τ are set to zero.

The resulting map Mmode
τ is then used to compute the SSS.

While thresholding improves semantic alignment by suppressing irrelevant activations, it introduces
information loss and requires manual tuning based on dataset complexity and saliency map behavior.

D Additional results from experiments
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Figure 10: Effect of soft thresholding on saliency map sparsity and SSS. Increasing the threshold
removes low-importance activations, resulting in sparser but more focused maps, highlighting the

trade-off between noise reduction and signal preservation.

Table 8: SemScore Per-prediction SSS for ViT Image Classifier Saliency Maps on ImageNet-S [13].

Model Grad
CAM ↓

Grad
CAM

++
↓ Score

CAM ↓ Layer
CAM ↓ Eigen

CAM ↓
Eigen
Grad
CAM

↓ Ablation
CAM ↓ XGrad

CAM ↓

DeiT
Tiny [51] 0.2048 0.4567 0.3511 0.2639 0.6346 0.6295 0.2592 0.6739

DeiT
Small [51] 0.1942 0.4221 0.4550 0.2190 0.4380 0.4691 0.2022 0.6688

DeiT
Base [51] 0.3718 0.4106 0.5307 0.1970 0.5932 0.6518 0.3279 0.6974

ViT
Base [38] 0.2882 0.5653 0.4272 0.2843 0.4058 0.8632 0.3979 0.7455

FlexiViT
Base [3] 0.1590 0.5845 0.3215 0.2358 0.3718 0.2902 0.2450 0.6352

ConViT
Small [8] 0.1832 0.4948 0.5064 0.1627 0.4992 0.3146 0.1805 0.6607

Hiera-Base
Plus [43] 0.8055 0.8336 0.5422 0.5412 0.4866 0.3299 0.3028 0.7319

PVT
v2 [56] 0.6304 0.6938 0.4499 0.2909 0.3093 0.2243 0.8270 0.5472

Swin
Base [32] 0.4074 0.7515 0.5330 0.8010 0.3548 0.2533 0.8923 0.6147

Table 9: SemScore Per-prediction SSS for VLM Saliency Maps on COCO-Stuff 10K [4, 22].

Model Grad
CAM ↓

Grad
CAM

++
↓ Score

CAM ↓ Layer
CAM ↓ Eigen

CAM ↓
Eigen
Grad
CAM

↓ Ablation
CAM ↓ XGrad

CAM ↓ Full
Grad ↓

TinyCLIP
8M [57] 0.5159 0.6386 0.4259 0.6593 0.8606 0.7641 0.4114 0.8066 0.7727

TinyCLIP
40M [57] 0.5119 0.6840 0.5985 0.7981 0.7251 0.6659 0.5022 0.7910 0.8055

TinyCLIP
61M [57] 0.5046 0.7186 0.5883 0.7959 0.7230 0.6637 0.4899 0.7906 0.8056

CLIP
ViT-B [38] 0.5065 0.6477 0.6769 0.8104 0.7196 0.6552 0.4780 0.7990 0.8155

MetaCLIP
400m [59] 0.4891 0.5355 0.7257 0.7114 0.7295 0.6617 0.5733 0.8083 0.8098

DFN [11] 0.4984 0.5445 0.6805 0.5865 0.7606 0.7104 0.4715 0.8080 0.7767
CLIP

rsicd-v2 6 0.4975 0.6459 0.6499 0.8281 0.7275 0.6543 0.4711 0.7947 0.8090

QuiltNet
B-32 [21] 0.5387 0.7280 0.6436 0.8922 0.7708 0.6932 0.5624 0.7821 0.8026

PLIP [20] 0.5435 0.6956 0.6480 0.8342 0.7421 0.6922 0.5367 0.7970 0.7984
Fashion
CLIP [5] 0.5245 0.7265 0.5997 0.8119 0.7150 0.6771 0.5332 0.8109 0.8162

PubMed
CLIP [10] 0.5331 0.6399 0.6345 0.7585 0.7470 0.6991 0.5448 0.7854 0.7723
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