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Abstract
Variational Autoencoders (VAEs), a class of
latent-variable generative models, have seen ex-
tensive use in high-fidelity synthesis tasks, yet
their loss landscape remains poorly understood.
Prior theoretical works on VAE loss analysis have
focused on their latent-space representational ca-
pabilities, both in the optimal and limiting cases.
Although these insights have guided better VAE
designs, they also often restrict VAEs to problem
settings where classical algorithms, such as Prin-
cipal Component Analysis (PCA), can trivially
guarantee globally optimal solutions. In this work,
we push the boundaries of our understanding of
VAEs beyond these traditional regimes to tackle
NP-hard sparse inverse problems, for which no
classical algorithms exist. Specifically, we exam-
ine the nontrivial Sparse Linear Regression (SLR)
problem of recovering optimal sparse inputs in
the presence of an ill-conditioned design matrix
having correlated features.We provably show that,
under a linear encoder-decoder architecture incor-
porating the product of the SLR design matrix
with a trainable, sparsity-promoting diagonal ma-
trix, any minimum of VAE loss is guaranteed to
be an optimal solution. This property is especially
useful for identifying (a) a preconditioning fac-
tor that reduces the eigenvalue spread, and (b)
the corresponding optimal sparse representation.
Lastly, our empirical analysis with different types
of design matrices validates these findings and
even demonstrates a higher recovery rate at low
sparsity where traditional algorithms fail. Over-
all, this work highlights the flexible nature of the
VAE loss, which can be adapted to efficiently
solve computationally hard problems under spe-
cific constraints.
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1. Introduction
Variational Autoencoders (VAEs) (Kingma & Welling,
2014) excel at modeling complex, unknown distributions
of observed data. Their ability to capture complex latent
structures makes them particularly effective for high-fidelity
image synthesis (Gulrajani et al., 2017), text generation in
natural language processing (NLP) (Serban et al., 2017), and
forecasting new data points in time-series analysis (Löwe
et al., 2022). Despite these successes, the theoretical under-
pinnings of VAEs remain only partially understood, leaving
open questions about their full potential.

Recent theoretical developments have primarily exam-
ined the latent space representational capabilities of
VAEs (Zheng et al., 2022; Dai et al., 2018; 2021), which
support high-quality reconstructions. However, when the
observed data lies in a low-dimensional space, an affine
VAE’s latent representation effectively reduces to proba-
bilistic PCA (Wipf, 2023). Under these conditions, there
is little difference between a VAE and a deterministic au-
toencoder (AE), as both can learn the principal subspace of
the data equally well (Dai et al., 2018; Lucas et al., 2019).
Consequently, the primary value of these analyses lies in
elucidating properties of the underlying energy functions,
which guide the design of VAEs capable of accurately learn-
ing data representations. Nonetheless, they constrain our
perspective on the broader capabilities that VAEs may offer.

Confirming these observations, recent work (Wipf, 2023)
leverages VAEs to solve an NP-hard sparse inverse prob-
lem—an area in which generative models remain largely
unexplored. In particular, (Wipf, 2023) finds the optimal
solution for Simultaneous Sparse Regression (SSR), a task
that conventional algorithms typically fail to address reli-
ably. This success stems from a remarkable property: under
specific encoder-decoder architectures, VAEs exhibit no lo-
cal minima. Consequently, all global minima correspond
to the optimal solutions, providing a maximally sparse rep-
resentation for SSR. These findings motivate the objective
of broadening our understanding of VAEs as tools for solv-
ing NP-hard problems under non-trivial conditions where
existing algorithms fail to yield reliable solutions.

In this work, we focus on Sparse Linear Regression
(SLR) (Donoho & Stark, 1989), a widely studied problem in
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high-dimensional statistics. The goal is to identify the opti-
mal sparse solution for a system of linear equations based on
observed data. The key challenge in SLR lies in identifying
the sparse solution with the minimum error from a combi-
natorial set of potential solutions. From an optimization
perspective, SLR features a non-convex ℓ0-norm constraint
coupled with a mean squared error objective, leading to a
large number of suboptimal local minima and rendering the
problem NP-hard. In this context, the ability of VAEs to
eliminate spurious local minima becomes pivotal for recov-
ering the optimally sparse solution.

Specifically, we consider two prominent non-trivial scenar-
ios in which the state-of-the-art SLR algorithm, LASSO,
provably fails (Kelner et al., 2022b). The challenge of
identifying an optimal sparse solution among a combina-
torial set of suboptimal local minima is exacerbated when
(a) the design matrix is ill-conditioned with highly corre-
lated columns, or (b) the ground-truth SLR coefficients are
not sparse. Such conditions commonly arise in real-world
settings, including signal-processing and compressed sens-
ing (Rudelson & Vershynin, 2006; Hassanieh et al., 2012),
as well as feature selection tasks in privacy-preserving ma-
chine learning (PPML) (Akavia et al., 2024; Li et al., 2021),
thereby making the search for an optimal solution substan-
tially more challenging.

For an ill-conditioned design matrix, preconditioning (Kel-
ner et al., 2022b; Wauthier et al., 2013) is often employed
to improve its condition number. However, finding an ap-
propriate preconditioner is a non-trivial task, and efficient
algorithms do not exist. In this context, we ask:

How can we adapt VAEs to intrinsically precondition
ill-conditioned design matrices?

While existing results show that VAEs with specific encoder-
decoder architectures can provably achieve optimal sparse
solutions for SSR (Wipf, 2023), they do not address the
condition number of the design matrix. In this work, we
propose a VAE architecture that intrinsically reduces the
eigenvalue spread for any arbitrary full-rank fat design ma-
trix, thereby preconditioning it. Consequently, design ma-
trices whose condition number improves via this reduced
eigenvalue spread can achieve the optimal SLR solution
using the proposed VAE architecture. Next, in the case of a
large number of non-sparse coefficients, the most common
strategy is to increase the number of observations in the SLR
problem (Wainwright, 2006). However, classical algorithms
typically fail when the level of sparsity is too low, leading
to the question:

Can VAEs intrinsically extend the sparsity threshold for
SLR with a fixed number of observations?

Through empirical evaluations of various design matrices,

we observe that the answer is affirmative. We conjecture
that the VAE’s inherent sparsity-inducing mechanisms con-
tribute to this improved tolerance for low-sparsity scenarios.

In this work, we leverage the ability of VAEs to eliminate
spurious local minima for the non-trivial settings of SLR.
To summarize, our main contributions are:

• Optimal Sparse Solution for SLR using VAEs: We
show, for the first time, that VAEs can provably identify
the optimal sparse solution for well-conditioned design
matrices. This result relies on a VAE architecture with
a linear encoder and decoder, both equipped with a
sparsity-promoting diagonal matrix that eliminates lo-
cal minima, thereby ensuring convergence to a global
minimum.

• Preconditioning for Ill-Conditioned SLR: We
demonstrate that VAEs inherently reduce the eigen-
value spread of any full-rank fat design matrix, ef-
fectively preconditioning it. In cases when the con-
ditioning of the design matrix improves through this
mechanism, VAEs achieve the optimal SLR solution.

• Greater Tolerance to Low-Sparsity: With the pro-
posed encoder-decoder architecture, VAEs maintain
a high recovery rate of sparse indices even at lower
sparsity levels. Notably, we empirically demonstrate
that for various types of design matrices, VAEs achieve
greater tolerance to low sparsity at a fixed number of
observations. In contrast, conventional algorithms such
as LASSO and augmented basis pursuit fail to perform
well at lower sparsity levels.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a detailed overview of the theoretical under-
pinnings of VAEs. In Section 3, we discuss the fundamentals
of SLR and its challenges. Section 4 begins by proving the
existence of an optimal SLR solution using a VAE in the
well-conditioned case, followed by our proposed VAE ar-
chitecture for preconditioning SLR. Section 5 details our
experimental results for different types of design matrices,
and finally, Section 6 concludes the paper.

2. Background and Related Works
2.1. Variational Autoencoder

Formally, VAEs achieve this by training a θ-parameterized
marginal distribution pθ(x), defined as:

pθ(x) =

∫
pθ(x, z) dz (1)

where x ∈ Rd is the d-dimensional observed data, z ∈ Rn

is n-dimensional unobserved latent variable. In scenarios
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where x has low dimension, one often enforces n < d to
limit the number of latent dimensions. However, directly
computing (1) is typically not feasible because the joint
distribution pθ(x, z), which is also needed to find the true
posterior pθ(z | x), is intractable in most practical set-
tings. Consequently, VAEs employ Variational Inference
(VI), which recasts the approximation of the ground-truth
distribution as an optimization problem by replacing the
intractable posterior pθ(z | x) with a simpler distribution
qϕ(z | x) (often Gaussian) and minimizing their Kullback–
Leibler (KL) divergence between them.

To perform this optimization, VAEs adopt an autoencoder-
style architecture in which the encoder, parameterized by
ϕ, approximates the posterior qϕ(z | x), and the decoder,
parameterized by θ, models the likelihood pθ(x | z). In
practice, both are often chosen to be Gaussian:

pθ(x | z) = N
(
x | µx(z; θ), γI

)
,

qϕ(z | x) = N
(
z | µz(x;ϕ),Σz(x;ϕ)

)
, (2)

together with the prior p(z) = N
(
z | 0, I

)
. Here, γ > 0

is a (trainable or fixed) scalar variance, and the functions
µx(z; θ), µz(x;ϕ), and Σz(x;ϕ) are instantiated by neural
networks. With the above modeling, the KL-divergence
between intractable posterior pθ(z|x) with a simpler distri-
bution qϕ(z|x) can be simplified to obtain VAE loss L(ϕ, θ)
given by:

−Eqϕ(z|x)
[
log pθ(x | z)

]
+KL

[
qϕ(z | x)

∥∥ p(z)]. (3)

The first term in this expression is the reconstruction loss,
while the second is the regularization term expressed as the
KL divergence between the learned latent distribution and
the prior. The loss in (3) is then optimized over (ϕ, θ) on the
training data using stochastic gradient descent (SGD) to find
the optimal latent representation or to generate synthetic
samples from the input.

2.2. VAE Global Minima Analysis

Prior theoretical analyses of VAEs have shown that global
minima of the VAE objective can indeed recover the un-
derlying data manifold (Zheng et al., 2022; Koehler et al.,
2022; Dai et al., 2017; Lucas et al., 2019), demonstrating
their excellence in approximating the ground-truth distri-
bution. However, reaching these global minima is often
delegated to an optimization algorithm such as SGD, which
can be hindered by spurious local minima in the VAE loss
landscape. Interestingly, it has been shown that certain ar-
chitectural modifications to VAEs can eliminate these bad
local minima, thereby facilitating convergence to the global
optimum. First conjectured in (Dai & Wipf, 2019) and later
proven in (Wipf, 2023), marginalizing over the posterior
distribution effectively smooths away spurious minima that
exploit an excessive number of latent dimensions to reduce

reconstruction error. Moreover, the global minima of such a
marginalization-based VAE loss correspond to the optimal
sparse representation for the NP-hard Simultaneous Sparse
Regression (SSR) problem, where no polynomial-time al-
gorithm is known. This smoothing mechanism thus helps
eliminate the exponential number of suboptimal sparse so-
lutions in SSR that arise for a given sparsity level. Several
other studies have also examined the optimization trajectory
of VAEs (Dai et al., 2018; Shekhovtsov et al., 2022; Zietlow
et al., 2021; Damm et al., 2023). These insights pave the
way for designing VAE architectures that remove bad local
minima in other sparse inverse problems, such as sparse
linear regression (SLR), the primary focus of our work.

In the next section, we elaborate on the challenges of solving
SLR that motivate the construction of our proposed VAE
technique.

3. Challenges in Solving Sparse Linear
Regression

In sparse linear regression (SLR), we are given a design
matrix Φ ∈ Rd×n and observations x ∈ Rd satisfying

x = Φz∗ + η, (4)

where z∗ ∈ Rn is κ-sparse coefficient vector, meaning it
has at most κ non-zero entries, and η ∈ Rd is a small noise
term. This is a hard problem compared to standard linear
regression, where there are no constraints on the sparsity
of z∗ and can be optimally solved using the ordinary least
squares (OLS) algorithm. The SLR hardness arises from
the difficulty in searching through an exponential solution
space where both the location and the value of the sparse
coefficients are unknown. Our goal is to find a κ-sparse ẑ
that minimizes the ℓ2 error with the sparsity constraint:

ẑ = arg min
z: ∥z∥0=κ

∥x−Φz∥22. (5)

Because the ℓ0 constraint makes (5) nonconvex, a frequent
strategy is to add a sparsity-inducing penalty term g(zi) for
each coefficient:

ẑ = argmin
z

∥x−Φz∥22 + λ

n∑
i=1

g(zi), (6)

where λ > 0 is a trade-off parameter. A widely used choice
for g(zi) is the ℓ1 norm, which gives the LASSO (Tibshirani,
1996), i.e.

∑
i g(zi) = ∥z∥1.

However, the performance of LASSO depends on the con-
ditioning of the design matrix Φ. In particular, a random
Φ must often satisfy a small Restricted Isometry Constant
(RIC) (Candes & Tao, 2005), which ensures that Φ behaves
nearly like an orthonormal system on every κ-sparse subset
of coefficients (see below for definition). Concretely, no set
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of κ columns in Φ is nearly linearly dependent, so no sparse
vector z is “collapsed” or “inflated” by Φ.
Definition 3.1 (Restricted Isometry Constant). Let Φ ∈
Rd×n be a real matrix. For an integer κ ≤ n, the κ-
Restricted Isometry Constant δ of Φ is the smallest non-
negative number such that,

(1− δ) ∥z∥22 ≤ ∥Φz∥22 ≤ (1 + δ) ∥z∥22 (7)

for every vector z ∈ Rn that has at most κ nonzero entries.
We abbreviate this condition as Restricted Isometry Property
(RIP) for future use.

One can equivalently interpret this definition in terms of
singular values of all κ-column submatrices of Φ: a small δ
forces those submatrices to be well-conditioned.

3.1. Requirements for Well-conditioning

A helpful viewpoint is to examine the (scaled) “Gram matrix”
Σ = 1

d Φ
⊤Φ ∈ Rn×n. This Gram matrix perspective

also arises when the rows of Φ are sampled i.i.d. from a
distribution with covariance Σ. In that setting, Σ = 1

dΦ
⊤Φ

serves as the empirical (sample) covariance. If Φ satisfies
the RIP with δ sufficiently small (e.g. δ < 1), then for every
κ-sparse vector z ∈ Rn,

∥Φz∥22 = d z⊤
(

1
d Φ

⊤Φ
)
z = d

[
z⊤Σz

]
; (8)

(1− δ) ∥z∥22 ≤ d
[
z⊤Σz

]
≤ (1 + δ) ∥z∥22. (9)

Hence, all eigenvalues σ of Σ lie in the interval [ 1− δ, 1 +
δ ], which implies,

cond(Σ) =
σmax(Σ)

σmin(Σ)
≤ 1 + δ

1− δ
, (10)

where cond(.) is the condition number. Thus, a small RIC
δ guarantees not only that Φ acts almost as an isometry
on all κ-sparse vectors, but also that the Gram matrix Σ is
well-conditioned.

3.2. Preconditioning for Ill-Conditioned Design
Matrices

When Φ does not satisfy the RIP, or equivalently when
cond(Σ) is large (indicating ill-conditioning typically
caused by highly correlated columns), finding an optimal κ-
sparse solution is generally computationally intractable (Kel-
ner et al., 2022a). Nonetheless, methods such as LASSO
and other sparse estimators can often perform well in prac-
tice if Σ is sufficiently well-conditioned (Gupte et al., 2024;
Kelner et al., 2022a).

A standard approach for improving conditioning is precondi-
tioning: we multiply both Φ and x by a matrix P ∈ Rn×n.
The resulting preconditioned SLR is given by:

Px = PΦz∗ + Pw =⇒ x̃ = Φ̃ z∗ + w̃, (11)

where Φ̃ ≡ PΦ, x̃ ≡ Px, and z∗ remains the same κ-
sparse solution as in (4). The key requirement is that Φ̃ be
better conditioned (exhibit a smaller δ and a bounded condi-
tion number), thus enabling LASSO or related algorithms
to recover the optimal sparse representation more reliably.

However, constructing a suitable preconditioner can be chal-
lenging and often relies on specific properties of Φ, such as
low treewidth in a Markov structure (Kelner et al., 2022a).
Moreover, (Gupte et al., 2024) shows that there exist ill-
conditioned Φ for which no polynomial-time algorithm can
produce a preconditioner sufficient to achieve the optimal
solution, implying an average-case hardness for SLR.

3.3. Sample Complexity in Solving SLR

Although LASSO is the de facto algorithm for sparse
linear regression (SLR) when the design matrix is well-
conditioned, it requires on the order of d = Ω(κ log n)
observations to reliably recover the optimal solution (Kel-
ner et al., 2024; 2022b). Consequently, if the number of
non-zero elements κ is large and the number of samples is in-
sufficient, LASSO fails. In fact, (Zhang et al., 2011) shows
that solving SLR with lower sparsity levels (i.e., fewer zero
entries) can be significantly more challenging than the case
of higher sparsity. Confirming this limitation of LASSO,
prior works on preconditioning SLR generally target higher
sparsity levels (Kelner et al., 2022b; Wainwright, 2006; Jia
& Rohe, 2015). However, in this work, we also consider the
regime of lower sparsity.

Next, we describe how VAEs can help overcome these chal-
lenges in solving SLR despite ill-conditioning and an unfa-
vorable sparsity regime.

4. Optimal SLR Solution using VAE
Leveraging the bad local minima smoothening property of
VAEs (Wipf, 2023), we first demonstrate how VAEs, con-
structed with a specific encoder-decoder architecture, can
achieve an optimal sparse representation for SLR (6). We
do so in the noise-free scenario when the design matrix Φ
is well-conditioned. Thereafter, for an ill-conditioned Φ
we propose a VAE architecture with intrinsic precondition-
ing that reduces the spread in the eigenvalues, leading to a
well-conditioned Φ̃ under certain conditions.

We define optimal sparse representations as such that x =
Φz with κ-sparse z achieves zero reconstruction error:

∥x− µx[µz(x;ϕ); θ]∥22 = 0, (12)

where µz is the encoder output and µx is the decoder output
for VAE (2). This condition, described in (Dai et al., 2021),
is admittedly restrictive but is nonetheless employed as the
search objective in many sparse-inverse problems (Candes
& Tao, 2005; Candès et al., 2006). Thereafter, we use the
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following lemma from (Dai & Wipf, 2019) to ascertain the
sparse representational properties of VAE:

Lemma 4.1. Assume a Gaussian VAE model of continuous
data defined by (2), where µx = Wx z + bx for some
weight matrix Wx and bias vector bx; similarly, µz =
Wz x + bz for some weight matrix Wz and bias vector
bz and Σz = diag[s]2, where s is an arbitrary parameter
vector independent of x. Then for any fixed value of γ, all
local minima of the resulting VAE objective with respect
to the parameters {Ŵx, b̂x,Ŵz, b̂z, ŝ} are also global
minima. Moreover, these global minima produce optimally
sparse representations (12), when γ → 0.

This lemma highlights how linear encoder-decoder architec-
tures can attain sparse latent representations when the data
lies on a low-dimensional manifold. Intuitively, an optimal
sparse representation occurs because each local/global mini-
mum selects a principal subspace of the data while using the
fewest possible nonzero columns of Wx. Furthermore, at
the indices of those zero-valued columns, elements of s tend
to zero as γ → 0. In contrast, the corresponding elements
of µz convey the information about x (i.e., the active, non-
random dimensions) needed for exact data reconstruction.
Next, we propose a VAE architecture, following Lemma 4.1,
for the SLR objective (6).

The SLR objective is closely tied to learning a data-specific
latent prior p(z) in variational Bayes (VB) methods (Wipf
et al., 2011). However, in contrast to VB methods that
model the prior distribution on the latent space, we pro-
pose encoding the “sparsity” information via a trainable
diagonal matrix in the VAE decoder, assuming a standard
Gaussian as the latent prior. We later demonstrate that such
an encoding is beneficial for learning the optimal sparse
representation (12) as opposed to finding the optimal latent
prior for VB methods.

The resulting decoder’s Gaussian distribution pθ(x|z) =
N
(
x; Φdiag[wx] z, γI

)
is parameterized by: µx =

Φdiag[wx] z, and Σx = γI, where diag[wx] is a sparsity-
promoting diagonal matrix which selects the non-zero sparse
features from Φ implicitly during the training process. Next,
for the encoder, we use a linear mean vector µz = Wz x
where Wz ∈ Rn×d and a full-rank covariance Σz = SS⊤,
with S ∈ Rn×n arbitrary and independent of x. Note that,
we assume Φ ∈ Rd×n is a fat, full-rank matrix, i.e. d < n
and rank(Φ) = min(d, n) = d. This full-rank constraint
ensures that Φ has d nonzero eigenvalues.

With these choices, the VAE energy from (2), applied to the
training data x, reduces to:

L(θ, ϕ) = Eqϕ(z|x)

[
1

γ

∥∥∥x−Φdiag[wx] z
∥∥∥2] + d log γ

+ tr
[
SS⊤] − log

∣∣SS⊤∣∣ + ∥Wzx∥22, (13)

where θ = {wx, γ} and ϕ = {Wz,S}.

We are now positioned to show that, when the design matrix
Φ is well-conditioned (i.e. there are no closely correlated
columns), the loss function in (13) does not admit any “bad”
local minima.

Theorem 4.2. Any local minimum of (13), {ŵx,Ŵz, Ŝ}
with a fixed γ, is also a global minimum. When γ → 0, and
Φ is well-conditioned, satisfying the RIP condition for small
δ, the global minima achieve the optimal sparse solution for
SLR in (4). The resulting sparse coefficients are given by:

ẑ = diag
[
ŵx

]2
Φ⊤(Φ diag

[
ŵx

]2
Φ⊤)−1

x. (14)

For brevity, the proof has been deferred to the Appendix A.
We first show that (13) has no bad local minima, under the
assumption that Φ is well-conditioned or satisfies the (κ, δ)-
RIP with δ < 1. With a perfect optimizer, a full rank Φ
ensures the presence of a unique inverse Σ−1(w) for each
w, leading to no bad local minima. However, practical SGD
might identify distinct w’s with close inverse values. We
use the RIP bound δ to ensure that the difference in inverse
terms is large enough to be detectable by SGD. For a κ-
sparse z, the RIP bound δ can be expressed as a weighted
sum of activated column norms of Φ and cross correlations
between them. However, the presence of aligned columns
leads to large correlations, increasing the δ value. This
reduces the difference in inverse terms for distinct w’s that
differ along the indices of the aligned columns, leading
to the requirement of a small δ to find the true optimum.
Thereafter, using Lemma 4.1, we show that for such a well-
conditioned Φ, this global minimum of (13) coincides with
the optimal sparse solution in the limit γ → 0.

Interpretation of Theorem 4.2: The key takeaway for The-
orem 4.2 is that one can construct a VAE architecture for
SLR with a trainable diagonal matrix to enforce sparsity
rather than relying on an explicit ℓ1 penalty (as in LASSO).
Moreover, the VAE-based approach, grounded in variational
inference, can learn both the mean (Wz) and covariance
(SS⊤) of the sparse coefficients, thus embedding informa-
tion about both the number of nonzero coefficients and their
distribution. This is distinct from classical ℓ1 regularization
algorithms such as LASSO, which focus on constraining the
number of nonzero coefficients but do not explicitly model
their distribution.

Nonetheless, the requirement that Φ be well-conditioned
motivates further consideration of how VAEs can be adapted
for ill-conditioned dictionaries, which we address next.

4.1. Preconditioning using VAEs

In order to achieve the loss-smoothing property for (13),
the columns of Φ must be non-collinear. When Φ is ill-
conditioned, its columns are nearly linearly dependent, lead-
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ing to multiple local minima with distinct solutions in (13).
Ill-conditioning can be reflected in various properties, such
as failing the (κ, δ)- RIP for smaller δ or having a large
condition number. Here we focus on reducing the condition
number of Φ using VAEs, as it is directly tied to the spread
of its eigenvalues. The well-known ridge regularizer (Hoerl
& Kennard, 1970) provides a way to shrink this spread for a
given γ via the preconditioning factor:

P = (ΦΦ⊤ + γ I)−1 ∈ Rd×d. (15)

While conventionally employed to boost the eigenvalues
of low-rank matrices, we use (15) to reduce the difference
between the largest and smallest eigenvalues of the (fat)
full-rank matrix Φ.

Lemma 4.3. Let Φ ∈ Rd×n have rank r ≤ min{d, n}, and
let P be defined by (15). Then,

cond
(
PΦ

)
= cond(Φ) · σ2

min(Φ) + γ

σ2
max(Φ) + γ

≤ cond(Φ),

where σmax(Φ) and σmin(Φ) are the largest and smallest
singular values of Φ, respectively.

This lemma shows that left-multiplying Φ by (ΦΦ⊤ +
γ I)−1 compresses its singular values, reducing the con-
dition number unless Φ originally had all singular values
equal (Appendix B). Under the assumption that Φ has d
nonzero eigenvalues (i.e., Φ is full rank), any γ > 0 strictly
improves cond(Φ). Whether this improvement is sufficient
to satisfy the RIP condition (with small δ) depends on the
chosen γ.

We now define a VAE architecture that simultaneously seeks
to evaluate the optimal sparse coefficients z and the regu-
larization term γ, to target satisfying (κ, δ)-RIP for some
δ < 1. The key idea is to precondition Φ by P directly
within the VAE training process, potentially revealing a
global optimum that meets the RIP condition. Specifically,
the decoder’s Gaussian distribution is updated to:

pθ(x | z) = N
(
x; PΦdiag(wx) z, γ I

)
, (16)

where we reuse the same γ for both the decoder covariance
γ I and the preconditioning term P. This unifies the effect
of γ on preconditioning and the variance for the sparse com-
ponents in the decoder. As Φ is of full rank, its condition
number improves through multiplication by P. Similarly,
we adjust the mean vector µz = WzPx in the encoder and
maintain the full-rank covariance SS⊤. Consequently, the
original VAE loss in (13) becomes:

L(θ, ϕ) = Eqϕ(z|x)

[
1

γ

∥∥∥Px − PΦdiag(wx) z
∥∥∥2]

+ d log γ + tr
[
SS⊤]

− log
∣∣SS⊤∣∣ +

∥∥Wz Px
∥∥2
2
, (17)

and we show that (17) can eliminate unwanted local minima
if the optimal γ also yields an P∗Φ satisfying (κ, δ)-RIP
for some δ < 1.
Theorem 4.4 (VAE-Induced Preconditioning). Any mini-
mum {ŵx,Ŵz, Ŝ} of (17) for a given γ∗ is a global min-
imum if, P̂Φ =

(
ΦΦ⊤ + γ∗ I

)−1
Φ satisfies the RIP con-

dition with δ < 1. Under this circumstance, the global
minimum matches the optimal sparse solution for SLR in (6)
only if γ∗ is small enough to meet the limiting conditions of
Theorem 4.2. The resulting sparse coefficient ẑ is given by:

diag
[
ŵx

]2
Φ⊤ P̂⊤

(
P̂Φ diag

[
ŵx

]2
Φ⊤ P̂⊤

)−1

P̂x.

(18)

The γ term is a training parameter in Theorem 4.4, which
effectively penalizes the condition number of Φ in the VAE
objective (17). As shown in Lemma 4.3, any positive value
of γ improves the condition number of PΦ compared to Φ.
Therefore, adding γ to the overall loss function improves
the effective condition number of Φ, pushing it to satisfy
the RIP property (Appendix C). This assists in achieving the
optimal sparse solutions for ill-conditioned design matrices
where LASSO fails (Kelner et al., 2022a).

Interpretation of Theorem 4.4: From the proof of Theo-
rem 4.4, we see that there can be multiple values of γ∗ that
make the preconditioned design matrix Φ̃ satisfy the RIP
condition. For each such γ∗, the VAE smoothens out bad
local minima and converges to global minima. However,
Theorem 4.2 tells us that the final solution only matches the
true sparse representation when we choose γ approaching
zero. Thus, the desired solution for γ∗ must be sufficiently
small so that the global minimum of (17) aligns with the
limiting case of γ → 0 (using the preconditioned Φ and
x). Consequently, if an ill-conditioned design matrix can
be preconditioned with a suitably small γ∗ to satisfy the
RIP condition, a VAE can solve the corresponding SLR
problem. Although this requirement is restrictive, it does
occur in practice for certain ill-conditioned design matrices,
as shown in Section 5.

4.2. Additional Perspectives

We now highlight some of the additional perspectives that
can be drawn from the results in this section. They include a
comparison with statistical methods for SLR, such as sparse
Bayesian learning (SBL), and the role of VAEs in addressing
challenging cases of ill-conditioned SLR design matrices.

4.2.1. COMPARISON WITH SPARSE BAYESIAN
LEARNING

Addressing one of the key discussion points brought forth
by an ICML 2025 reviewer during the evaluation of this
paper, we compare our approach with Sparse Bayesian
learning (SBL) (Tipping, 2001; Wipf et al., 2011; 2015)
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in detail. SBL is an empirical Bayesian method for solv-
ing SLR, which outperforms LASSO in support recovery
accuracy (Lin et al., 2022). However, it relies on type II
maximum likelihood estimation, which benefits from prior
knowledge of the distribution of the nonzero coefficients in
z. In the absence of this prior information, SBL resorts to
expectation maximization (EM) algorithms to optimize the
SLR objective. Our proposed VAE addresses the limitations
of SBL as described below:

1. Global Optimum: The global minimum in SBL
for SLR corresponds to the optimally sparse coeffi-
cients (Wipf & Rao, 2004); however, EM algorithms
may converge to spurious local minima. Our VAE
architecture smooths the loss landscape, enabling con-
vergence to the global minimum, which coincides with
the optimal sparse solution (Theorem 4.4).

2. Handling Ill-conditioned Matrices: Design matrices
that violate the RIP bound can cause numerical instabil-
ity in the matrix inversion step of SBL’s EM algorithm,
reducing the sparse recovery rate. In contrast, our VAE
preconditions the design matrices to satisfy the RIP
bound, achieving a higher recovery rate at the same
sparsity level.

3. Computational Complexity: Each EM iteration in-
volves a matrix inversion of time complexity O(n3),
making SBL computationally expensive and limiting
its scalability. In contrast, training our linear VAE via
backpropagation runs in O(n2) time per epoch, since
it avoids matrix inversion.

4. Implicit Sparsity Prior: Our VAE overcomes the lack
of prior knowledge on the sparse coefficients by in-
corporating a trainable diagonal matrix diag(w) in the
decoder, which implicitly captures sparsity information
without requiring an explicit prior distribution.

4.2.2. HARD CASES OF ILL-CONDITIONED DESIGN
MATRICES

While Theorem 4.4 shows that VAEs can narrow the eigen-
value range of an ill-conditioned design matrix, it remains
to be seen whether different kinds of ill-conditioned ma-
trices truly benefit from such preconditioning and can be
considered as a future direction. Interestingly, there are
certain special classes of ill-conditioned matrices with a
unique sparse solution, for which achieving lower error than
LASSO is tantamount to breaking post-quantum assump-
tions in lattice problems (Gupte et al., 2024). As a result,
some matrices may stay intractable even if a VAE-based
approach reduces their eigenvalue separation. Nonetheless,
whenever preconditioning succeeds in shrinking the spread
of eigenvalues, the improved conditioning has the potential

to facilitate sparse recovery. However, the impact of precon-
ditioning on the solvability of SLR depends on the matrix
structure and how significantly its eigenvalues can be equal-
ized. Hereafter, to validate our theoretical results in this
section, we conduct the corresponding empirical analysis of
SLR using various design matrices in Section 5.

5. Empirical Validation
To re-iterate, our VAE-based sparse recovery aims to iden-
tify the positions of non-zero coefficients rather than directly
estimating their values. Once the correct support (non-zero
coefficient positions) is identified, the SLR problem sim-
plifies significantly and can be solved using ordinary least
squares (OLS). Under a full-rank design matrix and Gauss-
Markov assumptions, OLS is an unbiased estimator leading
to optimal sparse recovery with no bias.

Our experiments cover three types of design matrices in a
noiseless setting 1. We compare our approach, presented
in Theorems 4.2 and 4.4, with established methods like
LASSO (Tibshirani, 1996), SBL (Lin et al., 2022), and
augmented basis pursuit (Kelner et al., 2024), for both well-
conditioned and ill-conditioned design matrices. The VAE
is trained using SGD with x. We first select κ uniformly
random sparse locations within an n-dimensional vector,
then sample κ non-zero coefficients from a standard normal
distribution to obtain sparse coefficients z. Thereafter, x is
generated by multiplying z with the design matrix Φ. These
x values are used to train the VAE using SGD.

All the relevant codes and a detailed user manual
for replicating the experiments in this work are avail-
able at https://github.com/SEAL-IIT-KGP/
Be-a-Goldfish-Solving-SLR-using-VAE.

5.1. Design Matrix from a Standard Gaussian
Distribution

In our first scenario, we construct a design matrix Φ by
drawing its features from a standard Gaussian distribution
(Φi,: ∼ N (0, I)). We set n = 200 features and d = 100 ob-
servations, then recover the sparse coefficients ẑ at different
sparsity levels κ ∈ {2, 10, 20, 30, 40, 50, 60}. Repeating
the experiment 10 times with randomly sampled features
and non-zero coefficients yields the sparse support recovery
rates shown in Fig. 1(a). Compared to standard LASSO
and SBL, our linear VAE approach, as presented in The-
orem 4.2, achieves a higher recovery rate, particularly at
lower sparsity.

For LASSO, the probability of recovering the correct
sparse coefficients is governed by a control parameter
θc =

n−κ−1
2κ log(d−κ) , when the features are drawn from a stan-

1Our technique also applies to noisy sparse recovery, as dis-
cussed in Appendix D
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Well-conditioned standard 
Gaussian design matrix

observations n = 500
features d =100 

Proposed VAE

(a)

Ill-conditioned Random 
Walk design matrix
observations n=200

features d =100 

Proposed 
preconditioned VAE

(b)

Practical Riboflavin 
design matrix

observations n=71
features d =100 

Proposed 
preconditioned VAE

(c)

Figure 1. Sparse support recovery rate for SLR vs. increasing
number of non-zero entries in z or the κ-sparsity level for features
of design matrix Φi,: sampled from (a) standard Gaussian, (b)
Gaussian random walk, and (c) Riboflavin dataset (Bühlmann
et al., 2014) for different recovery methods.

dard Gaussian (Wainwright, 2006). This sample complexity
relationship aligns with our observations in Fig. 1(a), where
LASSO’s recovery rate diminishes as κ increases. Indeed,
for κ > 30, LASSO’s recovery rate falls to zero, reflecting
the near-zero success probability reported in (Wainwright,
2006) for θc < 0.22. By contrast, our VAE-based method

exhibits a higher tolerance to lower sparsity (i.e., larger κ).
We conjecture that this robustness arises because the VAE
can learn both the mean and covariance parameters of the
sparse coefficients. In contrast, LASSO focuses explicitly
on reducing its ℓ1 norm for promoting sparsity.

5.2. Design Matrix from a Gaussian Random Walk

Next, we construct an ill-conditioned Φ by drawing its
features from a Gaussian random walk distribution. Specif-
ically, the rows of Φ are i.i.d. copies of the elements of a
random walk with Φi,: = {r1, r2, . . . , rk} where,

ri = ri−1 + z ∀ i > 1,

z ∼ N (0, 1), r1 ∼ N (0, 1). (19)

This construction yields a covariance matrix Σi,j =
min(i, j), which has a high condition number. As shown
in (Kelner et al., 2022b), such a design matrix cannot be
solved using LASSO without appropriate preconditioning.
We employ the same matrix dimension and the sparsity val-
ues as the previous case of standard Gaussian covariance in
Section 5.1.

Our empirical results in Fig. 1(b) confirm that, while solu-
tions without preconditioning fail, SBL (Lin et al., 2022),
augmented basis pursuit (Kelner et al., 2024), and our pre-
conditioned VAE (Theorem 4.4) recover sparse solutions for
low sparsity levels (e.g., κ = 2). However, as κ increases
(i.e., as sparsity decreases), the preconditioned VAE out-
performs other methods by maintaining a higher recovery
rate until κ ≤ 20. We conjecture that the VAE’s learned
preconditioning factor γ effectively improves the condition
number of Φ and enforces the RIP condition for small δ,
leading to high recovery rates for κ < 20.

5.3. Practical Design Matrix from Riboflavin Dataset

Lastly, we evaluate SLR on a design matrix constructed
from real-life biological measurements in the riboflavin
dataset (Bühlmann et al., 2014). The genetic features in this
dataset are correlated, making Φ inherently ill-conditioned.
Practical constraints limit the number of features to d = 100
and the number of observations to n = 71. Given the sam-
ple complexity for successful LASSO is in the order of
Ω(κ log(d)) (Kelner et al., 2022b), the smaller sample size
in this case tests the low-sparsity tolerance of our precon-
ditioned VAE (Theorem 4.4) in a particularly challenging
setting. Nevertheless, Fig. 1(c) shows that the precondi-
tioned VAE achieves the highest recovery rate for κ ≤ 10.
Although κ = 10 represents a higher sparsity limit than
in Fig. 1(a) and (b), our method still surpasses existing al-
ternatives under these challenging conditions. Increasing
the number of features to d = 200 leads to similar support
recovery as Fig. 1(c), as shown in additional experimental
results in Appendix D.
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5.4. Impact of SLR Parameters on Sparse Recovery

As suggested by reviewers during the ICML 2025 rebuttal
phase, we evaluate the effect of changing SLR parameters
on the support recovery performance using our proposed
VAE. All detailed results can be found in Appendix D. We
summarize the key takeaways as follows:

1. Design matrix dimensions: The preconditioned VAE
consistently outperforms competing methods in sup-
port recovery rate, both as the number of features n and
the number of observations d increase. The reason is
the presence of more information for solving the SLR
problem.

2. Nonzero coefficient distribution: Our VAE’s focus on
support identification makes it insensitive to the non-
zero coefficient distribution. Empirical results confirm
similar recovery rates across various distributions of
the nonzero coefficients.

3. Noise level: To assess the impact of additive noise
η, we conducted experiments at different SNR lev-
els. While all methods improve with higher SNR, our
VAE achieves superior recovery rates even at lower
SNR. This robustness can be further enhanced by pre-
processing techniques such as filtering or mixture-of-
Gaussians models (Guo et al., 2021).

5.5. Fixed vs. Trainable γ during Preconditioning

Theorems 4.2 and 4.4 show the existence of optimal sparse
solutions when γ → 0, and our empirical results in achieve
the same for most cases except when SGD fails to attain
the limiting solution. The trainable γ assists in achieving
a higher support recovery rate of the preconditioned VAE
for ill-conditioned SLR compared to fixed γ. Although pro-
posed VAE architecture can achieve no bad local minima
condition for a fixed γ, optimal sparse recovery with γ → 0
is contingent on the success of the optimization algorithm.
Imperfect optimization can hinder achieving this ideal sce-
nario, as evidenced by our empirical results in Appendix D.

5.6. Insights on Higher Tolerance to Low-Sparsity

A higher tolerance for low sparsity translates into obtaining
an optimal sparse solution using fewer observations, thereby
reducing data collection overhead. This advantage is par-
ticularly beneficial in biological contexts, where datasets
can contain millions of features (Rives et al., 2021). To
encourage the adoption of VAE-based methods in such set-
tings, a solid theoretical understanding of SLR’s solvability
is essential. Although prior work (Kelner et al., 2020; 2024;
Wainwright, 2006) has explored sample complexity limits
for LASSO-based SLR, our findings suggest that variational

methods, such as VAEs, may offer greater flexibility in han-
dling lower sparsity. With all the above interesting insights,
next, we conclude our paper.

6. Conclusion and Future Work
In this work, we broaden our understanding of the local
minima smoothing property of VAEs in the context of a
well-known NP-hard problem in high-dimensional statistics:
Sparse Linear Regression (SLR). Our primary focus is on
scenarios involving ill-conditioned design matrices and low
sparsity, where classic methods such as LASSO often fail.
A key limitation of LASSO is that it reformulates the ℓ0
sparsity constraint into an ℓ1 regularization objective, which
can struggle to recover the optimal solution when the design
matrix is poorly conditioned or the sparsity level is low.

By contrast, our central insight is that VAEs can simulta-
neously impose sparsity constraints and learn the under-
lying distribution of sparse coefficients, enabling more in-
formed feature selection. Leveraging this capability, we pro-
pose a VAE architecture that intrinsically preconditions ill-
conditioned design matrices, thereby surpassing LASSO in
specific matrix classes. Across different types of design ma-
trices, the VAE-based approach consistently demonstrates
a higher tolerance for sparsity compared to LASSO and
previously introduced preconditioning techniques. Overall,
our findings expand the applicability of VAEs to NP-hard
sparse inverse problems—an area where generative models
have yet to be thoroughly explored. This work opens several
promising research directions:

1. SLR in Challenging Domains: The ability of VAEs
to handle low-sparsity and ill-conditioned design ma-
trices in SLR is highly relevant to applications such
as feature selection for privacy-preserving machine
learning (Akavia et al., 2024; Li et al., 2021), neu-
ral imaging of brain function (Shen et al., 2022), and
genome selection in cancer research (Fan et al., 2024).

2. Theoretical Underpinnings for VAE-Based Solu-
tions: Our results suggest that existing limits on the
solvability of SLR under LASSO can be pushed by em-
ploying variational methods for sparse recovery, which
account for both the sparsity constraint and the distri-
bution of sparse coefficients. Future work includes
investigating new preconditioning strategies for ill-
conditioned design matrices and sample complexity
bounds for accurate recovery in low-sparsity regimes.

By uniting insights from generative modeling and high-
dimensional statistics, our work broadens the theoretically
grounded approach of VAEs in solving NP-hard inverse
problems under specific constraints.
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Impact Statement
This work bridges the fields of generative modeling and
high-dimensional statistics. We leverage VAEs to solve the
well-known NP-hard problem of sparse linear regression
(SLR). Traditional SLR methods often fail in real-world
settings that feature correlated features or have a limited
number of observations. VAEs can intrinsically “precondi-
tion” these matrices under certain conditions, leading to a
higher recovery rate.

From a societal perspective, this result holds significant
promise. It enables the accurate recovery of sparse signals
in domains such as neurological imaging, cancer genomics,
and system identification. This VAE-based approach pro-
vides faster and more precise insights, which can improve
healthcare outcomes and drive scientific progress. Addition-
ally, in privacy-preserving machine learning, a reliable SLR
method can reduce training data requirements. This, in turn,
helps safeguard sensitive information while lowering com-
munication costs. Looking forward, employing VAEs for
NP-hard inverse problems opens new avenues for innovation
in machine learning and statistical modeling. Researchers
and practitioners can harness these generative capabilities to
tackle applications where data is limited. Therefore, our pro-
posed approach makes a meaningful contribution to broader
scientific and societal benefits.
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Appendix
In this section, we provide the proofs for the lemmas and theorems used in this paper. We begin by listing the notation for
both variables and functions. Boldface uppercase Greek symbols (e.g., Φ) and boldface uppercase Latin letters (e.g., P)
denote matrices. Vectors are denoted by boldface lowercase letters (e.g., µx or x). All scalars appear in regular font weight
and lowercase letters. To minimize notation overload, we occasionally reuse symbols for related variables. For example, x
represents both the input vector to the VAE and the observation vector in SLR.

Table 1. List of all variables used throughout the paper

Variable Dimension Description Variable Dimension Description

Sparse Linear Regression (SLR)

d Scalar Observation dimension n Scalar Coefficient dimension
x Rd Observation vector z Rn Coefficient vector
Φ Rd×n Design matrix η Rd Noise vector
Φi,: Rn ith row of Φ Φ:,j Rd jth column of Φ
P Rd×d Preconditioning matrix η̃ Rd Preconditioned η

Φ̃ Rd×n Preconditioned Φ x̃ Rd Preconditioned x

δ Scalar Restricted isometry constant of Φ Σ Rn×n Gram/ Covariance matrix of Φ†

λ Scalar Regularizer for LASSO σ Scalar Eigenvalues of a Matrix
κ Scalar Sparsity value z∗ Rn Ground truth z

Variational Autoencoder (VAE)

d Scalar Input dimension n Scalar Latent Dimension
x Rd Input vector z Rn Latent Vector
γ Scalar Decoder variance Wx Rd×n Linear decoder matrix

wx or s Rn Decoder parameter w Rn Element-wise squared wx
2

µx Rd Decoder mean Σx Rd×d Decoder covariance γI
bx Rd Linear decoder bias bz Rn Linear encoder bias
µz Rn Encoder mean Σz Rn×n Encoder covariance
I Rd×d or Rn×n Identity matrix (θ, ϕ) Arbitrary (Encoder, Decoder) parameter

† We also use Σ for denoting the singular values matrix in singular value decomposition (SVD).

Table 2. List of all functions used throughout the paper

Function Description

Sparse Linear Regression (SLR)

||z||p ℓp norm of z where p ∈ {0, 1, 2}
cond(Σ) Condition number for Σ

Variational Autoencoder (VAE)

N (x|µ,Σ) Multivariate Gaussian distribution over x with mean µ and Covariance Σ
pθ(x) Marginal probability distribution of x parameterized by θ
pθ(x, z) Joint probability distribution of x, z parameterized by θ
pθ(x|z) Conditional likelihood distribution of x given z parameterized by θ
p(z) Prior distribution of the latent variable z

pθ(z|x) Posterior probability distribution of z given x parameterized by θ
qϕ(z|x) Approximate posterior distribution of z given x parameterized by ϕ

Eqϕ(z|x)(x) Expectation of x over the probability distribution qϕ(z|x)
KL[qϕ(z|x)||p(z)] Kullback-Liebler divergence between two distributions qϕ(z|x), p(z)

L(θ, ϕ) VAE loss function w.r.t. encoder ϕ and decoder θ parameters

Furthermore, we denote local or global minima with a “hat,” for instance, ŵx represents the vector wx that minimizes the
VAE loss L(θ, ϕ). We use “star,” for the ground-truth variable z∗ in (4) and for γ∗ in Theorem 4.4. Preconditioned matrices
and vectors carry a “tilde,” for example, Φ̃ = PΦ for the preconditioned design matrix.
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A. Proof of Theorem 4.2
We first optimize over the encoder parameters to obtain a condensed loss, which is then analyzed with respect to the decoder
parameter, the latter occupying the majority of the proof. For the encoder-decoder architecture choice objective in (13)
reduces to:

L(θ, ϕ) = 1

γ
∥x−Φdiag[wx]Wz x∥22 +

1

γ
tr
[
diag[wx]Φ

⊤ Φdiag[wx]SS⊤]
+ d log γ + tr

[
SS⊤]− log

∣∣SS⊤∣∣+ ∥Wz x∥22, (20)

with θ = {wx, γ} and ϕ = {Wz,S}. Although this loss is nonconvex, we can still take derivatives with respect to SS⊤ to
show the existence of a single stationary point. In doing so, we find that

SS⊤ =

(
1

γ
diag[wx]Φ

⊤ Φdiag[wx] + I

)−1

(21)

is the unique minimizer. Note that the identity matrix in (21) is of dimension n× n. Substituting (21) into (20), yields the
revised cost as:

L(θ, ϕ) = 1

γ
∥x−Φdiag[wx]Wz x∥22 + d log γ + log

∣∣∣∣ 1γ diag[wx]Φ
⊤Φdiag[wx] + I

∣∣∣∣+ ∥Wz x∥22. (22)

Since (22) is convex in Wz , we can also optimize these parameters without encountering local minima issues, noting that
the optimal value satisfies:

Wz x = diag[wx]Φ
⊤
(
Φdiag[wx]

2 Φ⊤ + γ I
)−1

x. (23)

Note that the I in (23) is of dimension d × d, which we obtain after applying standard determinant identities (e.g., the
Woodbury matrix identity). Column-wise, this expression is tantamount to µx(x;ϕ) = Wz x. To simplify notation, let us
write w ≜ w2

x ≥ 0 (elementwise). We also define W ≜ diag[w]. Substituting (23) into (22) further reduces the remaining
parameters. The VAE loss can be equivalently expressed as:

L(w, γ) = x⊤Σ−1
x x+ log

∣∣Σx

∣∣, with Σx ≜ ΦWΦ⊤ + γ I. (24)

We now show that for a fixed γ any minimum of (24) is a global minimum and that, in the limiting case γ → 0, the global
minimum approaches the optimal sparse representation for SLR, provided the design matrix is well-conditioned satisfying
the RIP condition with a small delta.

A.1 Deriving the Stationarity Conditions

Let us denote Φdiag[w]Φ⊤ + γ I using the matrix Σ(w). The VAE loss then depends only on w and is given by:

L(w) = x⊤Σ−1(w)x + log
∣∣Σ(w)

∣∣. (25)

We now compute the stationary points by finding
∂L
∂wj

for each wj ∈ w, for each of the two terms in (25).

Derivative of the Inverse-Quadratic Term.

Consider T1(w) = x⊤Σ−1(w)x. When the following matrix-calculus identity for an arbitrary matrix A:

∂

∂θ

[
A(θ)−1

]
= −A(θ)−1 ∂A(θ)

∂θ
A(θ)−1, (26)

is applied to Σ−1(w) we get:
∂

∂wj
Σ−1(w) = −Σ−1(w)

∂Σ(w)

∂wj
Σ−1(w). (27)

13
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Since
∂Σ(w)

∂wj
= ϕj ϕ

⊤
j (because differentiating diag[w] with respect to wj picks out the jth diagonal element, yielding

the jth rank-1 component), we substitute it back into (27) to get:

∂

∂wj
Σ−1(w) = −Σ−1(w)

(
ϕjϕ

⊤
j

)
Σ−1(w). (28)

By the chain rule of differentiation,

∂

∂wj

(
x⊤Σ−1(w)x

)
= x⊤

[∂Σ−1(w)

∂wj

]
x = x⊤

[
−Σ−1(w)ϕjϕ

⊤
j Σ−1(w)

]
x. (29)

Since x⊤Ax is a scalar for an arbitrary matrix A, we can rewrite (29) as:

∂

∂wj

(
x⊤Σ−1(w)x

)
= −

(
ϕ⊤

j Σ
−1(w)x

)2
. (30)

Derivative of the Log-Det Term.

Next, consider the second term, T2(w) = log
∣∣Σ(w)

∣∣. Applying the identity:

∂

∂θ
log

∣∣A(θ)
∣∣ = trace

[
A(θ)−1 ∂A(θ)

∂θ

]
, (31)

we get,
∂

∂wj
log

∣∣Σ(w)
∣∣ = trace

[
Σ−1(w) ∂Σ(w)

∂wj

]
= trace

[
Σ−1(w)ϕjϕ

⊤
j

]
. (32)

Using the cyclic property of trace, trace(AB) = trace(BA), and the fact that trace(uv⊤) = v⊤u for vectors, we get

∂

∂wj
log

∣∣Σ(w)
∣∣ = ϕ⊤

j Σ
−1(w)ϕj . (33)

Adding the two contributions and setting the derivative w.r.t. wj to zero,

∂L(w)

∂wj
= −

(
ϕ⊤

j Σ
−1(w)x

)2
+ ϕ⊤

j Σ
−1(w)ϕj = 0 (34)

=⇒
(
ϕ⊤

j Σ
−1(w)x

)2
= ϕ⊤

j Σ
−1(w)ϕj . (35)

This stationarity condition balances the “weighted prediction” for the jth coordinate against its corresponding diagonal
element in Σ(w)−1. The equations for all j couple together, much like in sparse Bayesian regression.

We next show, by contradiction, that when Φ is well-conditioned and satisfies the RIP condition, these coupled equations
admit no spurious local minima: every minimum of the loss corresponds to a global minimum. Finally, we show that in the
limit γ → 0, this global minimum converges to the sparse optimal solution.

A.2 No Bad Local Minima for Well-Conditioned Design Matrix

Lemma .1. Suppose there exist two distinct vectors w(1) and w(2), both satisfying the stationarity conditions over x:(
ϕ⊤

j Σ(w(1))−1x
)2

= ϕ⊤
j Σ(w(1))−1ϕj ,

(
ϕ⊤

j Σ(w(2))−1x
)2

= ϕ⊤
j Σ(w(2))−1ϕj , ∀ j. (36)

Then w(1) = w(2) if Φ satisfies the RIP condition with small δ. In other words, there are no “bad” local minima under
these stationarity conditions.

Proof. The main requirement for Lemma 1 is the absence of distinct w(1) and w(2) that satisfy (34). With a perfect
optimizer, the full rank assumption ensures the presence of a unique inverse Σ−1(w) for unique w, leading to no bad local
minima. However, practical optimizers such as SGD might identify distinct w(1) and w(2) as minima for the loss function
in (25) that satisfy Σ−1(w(1)) ≈ Σ−1(w(2)). We use the RIP bound δ to ensure that the difference in inverse terms is large
enough to be detectable by SGD.

Let z =
∑

i∈S αiei, where S ⊆ {1, . . . , n} with |S| = κ, be a κ-sparse vector and let Φ ∈ Rd×n with columns ϕ1, . . . ,ϕn.

Then, Φz =
∑

i∈S αiϕi and its squared norm of Φz becomes: ∥Φz∥22 =
∥∥∑

i∈S αiϕi

∥∥2
2
.
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A.2.1 DEVIATION FROM ISOMETRY AND RIP CONSTANT

The RIP condition for κ-sparse vectors requires:

(1− δ)∥z∥22 ≤ ∥Φz∥22 ≤ (1 + δ)∥z∥22 (37)

Subtracting ∥z∥22, we obtain the deviation:

∥Φz∥22 − ∥z∥22 =
∑
i∈S

α2
i (∥ϕi∥22 − 1) +

∑
i,j∈S
i ̸=j

αiαj⟨ϕi,ϕj⟩ (38)

Thus, the RIP constant δ is defined as the worst-case deviation over all κ-sparse unit-norm vectors z:

δ = max
S⊆{1,...,n}

|S|=κ∑
i∈S α2

i=1

∣∣∣∣∣∣∣∣
∑
i∈S

α2
i (∥ϕi∥22 − 1) +

∑
i,j∈S
i̸=j

αiαj⟨ϕi,ϕj⟩

∣∣∣∣∣∣∣∣ (39)

A.2.2 RELATIONSHIP BETWEEN δ AND SGD

For a κ-sparse z, the RIP bound δ can be expressed as a weighted sum of activated column norms of Φ and cross correlations
between them. However, the presence of aligned columns leads to large correlations, increasing the δ value.

Without loss of generality, pick an index j ∈ S1 but j /∈ S2. Thus, w(1) “turns on” column ϕj while w(2) has w(2)
j = 0.

If ϕj is co-linear with other columns it will lead to a large δ. Furthermore, it also means a small difference in Σ−1(w(1))

and Σ−1(w(2)) as w(1) and w(2) differ along the indices of the aligned columns having large correlations. It is due to the
common large correlation term with ϕj both in Σ−1(w(1)) and Σ−1(w(2)), they will have a small difference.

Therefore small δ suggests small correlation and therefore a larger separation between Σ−1(w(1)) and Σ−1(w(2)). This
indicates that a small δ is essential to find the true local/global optimum.

A.2.3 PROOF BY CONTRADICTION

We argue by contradiction. Assume w(1) ̸= w(2) while both vectors satisfy (36). Define the active set Sm = { j | w(m)
j > 0}

for m = 1, 2. Note that each w(m) is strictly positive in its active coordinates, and hence corresponds to selecting a certain
subset of columns from Φ. Our goal is to show that this situation cannot arise if Φ is well-conditioned.

Case 1: S1 ̸= S2. Without loss of generality, pick an index j ∈ S1 but j /∈ S2. Thus, w(1) “turns on” column ϕj while

w(2) has w(2)
j = 0. Because Φ satisfied the RIP condition (Candes & Tao, 2005), ϕj cannot be near-collinear with the

other active columns in S2. Consequently, Σ(w(1)) and Σ(w(2)) differ in a way that prevents both from simultaneously
satisfying the stationarity conditions for the same x. This yields a contradiction, so w(1) and w(2) cannot both be solutions.

Case 2: S1 = S2. In this case, both w(1) and w(2) activate exactly the same set of columns. For each j ∈ S1, the
single-observation stationarity equation admits a unique positive solution for wj . Consequently, w(1) and w(2) must
coincide on every active coordinate, contradicting our assumption that they are distinct.

Since neither case can consistently support two different solutions, there cannot be a bad local minimum that allows for
multiple solutions of w. All local minima must provide the same solution as the global minimizer, implying no spurious
local minima arise when Φ is well-conditioned. ■

If Φ is ill-conditioned, some columns can become nearly dependent, causing Σ(w(1)) and Σ(w(2)) to be nearly identical
even when w(1) ̸= w(2). This may introduce suboptimal local minima that trap optimization algorithms. Later, we show
that VAEs can be used to find the preconditioning for Φ to reduce its eigenvalue spread, potentially leading to an optimal
sparse solution in specific cases.
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A.3 Optimal Sparse Solution at Global Minima

Lemma .2. Consider the single-data-point loss in (24), and let γ → 0. Suppose we fix k − d elements of w to zero, and
denote by wd ∈ Rd the remaining nonzero elements, with Φd ∈ Rd×d the corresponding columns of Φ, and zd = Φ−1

d x.
Then any minimizer of the loss matches these nonzero coordinates of w satisfying ŵd =

(
Φ−1

d x
) 2

.

Proof. In the presence of non-zero γ, the optimal sparse solution requires us to solve (34) the implicit stationarity condition
for which a closed form solution does not exist. We leverage Theorem 4 from (Dai & Wipf, 2019), which states that for any
γ > 0, there exists a γ

′
< γ for which the VAE loss can be reduced. Our proposed VAE architecture satisfies the conditions

for Theorem 4 from (Dai & Wipf, 2019) implying that γ → 0 leads to minimizing the VAE loss. Therefore, it is valid to
evaluate the limiting value of the loss function in (24), and use it to obtain the local/ global minimum solution. When γ → 0,
the loss in (24) takes the form

x⊤ Σ(wd)
−1 x = x⊤

[(
Φ⊤

d

)−1
diag

(
1
wd

)
Φ−1

d

]
x =

(
Φ−1

d x
)⊤

diag
(

1
wd

) (
Φ−1

d x
)
. (40)

Defining zd = Φ−1
d x, we isolate the d elements {zi}di=1 corresponding to the nonzero coordinates {wd,i}di=1. This gives

x⊤ Σ(wd)
−1 x =

d∑
i=1

z2i
wd,i

. (41)

Using the multiplicative property of determinants,

∣∣Σ(wd)
∣∣ =

∣∣Φd diag(wd)Φ
⊤
d

∣∣ = |Φd|
∣∣diag(wd)

∣∣ |Φ⊤
d | = |Φd|2

d∏
i=1

wd,i, (42)

=⇒ log
∣∣Σ(wd)

∣∣ = 2 log |Φd| +

d∑
i=1

logwd,i. (43)

The term 2 log |Φd| is a constant with respect to wd,i and thus does not affect minimization. Combining these, the loss is
separated over the coordinates:

L(wd) =

d∑
i=1

z2i
wd,i

+

d∑
i=1

logwd,i + constant, where zi =
(
Φ−1

d x
)
i
. (44)

Since the summation is separable in each wd,i, we optimize each coordinate independently. For the ith term, setting the
derivative to zero gives:

d

dwd,i

(
z2
i

wd,i
+ logwd,i

)
= − z2i

w2
d,i

+
1

wd,i
= 0,

=⇒ ŵd,i = z2i =
(
Φ−1

d x
) 2

i
.

A second-derivative check confirms this is a global minimum, since the objective is strictly convex in each wd,i. Consequently,
the unique minimizer over wd is given by ŵd,i =

(
Φ−1

d x
) 2

i
. ■

Lemma .2 shows that the global optimal solution for the VAE loss in (24) recovers the sparse representation defined by the
coefficients z∗ underlying the observation x in (4). Moreover, according to Lemma 4.1 any global minima of a VAE with a
linear encoder-decoder achieves the optimal sparse representation for z when γ → 0. Therefore resulting encoder mean
given by (24) also satisfies optimal reconstruction under the limiting condition of γ → 0 leading to:

Φdiag[ŵx]µz = Φdiag[ŵx]
2ΦT (Φdiag[ŵx]Φ

⊤)−1x = x (45)

=⇒ diag[ŵx]
2µz = diag[ŵx]

2ΦT (Φdiag[ŵx]
2Φ⊤)−1x = ẑ (46)

=⇒ ẑ = diag[ŵx](Φdiag[ŵx])
†x, (47)

where † denotes the pseudo-inverse operation. ■
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B. Proof of Lemma 4.3
We aim to compare the condition number of PΦ with that of Φ. Following the SLR setting in the main-text, Φ ∈ Rd×k is a
full-rank matrix with rank(Φ) = d ≤ min{d, k} and preconditioner P =

(
ΦΦ⊤ + γ I

)−1
with γ > 0 and I is the d× d

identity matrix.

We start with computing the singular value decomposition (SVD) of Φ = UΣV⊤, where U ∈ Rd×d and V ∈ Rn×d have
orthonormal columns, and Σ ∈ Rd×d is diagonal matrix with the d eigenvalues following the order σ1 ≥ · · · ≥ σd > 0.
Then ΦΦ⊤ = UΣ2 U⊤ which yields,

ΦΦ⊤ + γ I = U
(
Σ2 + γ I

)
U⊤ + γ (I−UU⊤). (48)

and hence,

P =
(
ΦΦ⊤ + γ I

)−1
= U

(
Σ2 + γ I

)−1
U⊤ +

1

γ

(
I−UU⊤). (49)

The preconditioned design matrix PΦ is given by,

PΦ =
[
U

(
Σ2 + γ I

)−1
U⊤ + 1

γ

(
I−UU⊤)] (UΣV⊤) (50)

=⇒ PΦ = U
(
Σ2 + γ I

)−1
ΣV⊤ = UMV⊤. (51)

where
M =

(
Σ2 + γ I

)−1
Σ = diag

(
σ1

σ2
1+γ

, . . . , σd

σ2
d+γ

)
. (52)

Since U and V are orthonormal, the singular values of PΦ are the diagonal entries of M, i.e. σi/(σ
2
i + γ) for i = 1, . . . , d.

Hence,

σmax(PΦ) = max
1≤i≤d

σi

σ2
i + γ

, σmin(PΦ) = min
1≤i≤d

σi

σ2
i + γ

. (53)

Therefore, the condition number satisfies

cond
(
PΦ

)
=

σmax(PΦ)

σmin(PΦ)
≤

σ1

σ2
1+γ

σd

σ2
d+γ

=
(
σ1

σd

) (σ2
d+γ

σ2
1+γ

)
= cond(Φ) · σ2

d(Φ) + γ

σ2
1(Φ) + γ

. (54)

Since
(
σ2
d(Φ) + γ

)
/
(
σ2
1(Φ) + γ

)
≤ 1, we have

cond
(
PΦ

)
≤ cond(Φ). (55)

Equality holds only if all singular values of Φ are equal; otherwise, multiplying Φ on the left by (ΦΦ⊤ + γ I)−1 strictly
reduces its condition number. ■

C. Proof of Theorem 4.4
This proof builds on the arguments from the proof of Theorem 4.2 (see Appendix A), except for the limiting behavior
of γ. Here, we do not require γ → 0, but rather allow it to take a value which would satisfy the RIP condition. After
preconditioning the design matrix Φ and the observation vector x by P =

(
ΦΦ⊤ + γ I

)−1
, the loss in (21) becomes

L(θ, ϕ) = 1

γ
∥Px−PΦdiag[wx]Wz Px∥22 +

1

γ
tr
[
diag[wx]Φ

⊤ P⊤PΦdiag[wx]SS⊤]
+ d log γ + tr

[
SS⊤]− log

∣∣SS⊤∣∣+ ∥Wz Px∥22, (56)

with θ = {wx, γ} and ϕ = {Wz,S}. Replacing Φ̃ = PΦ and x̃ = Px in (56) we get:
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L(θ, ϕ) = 1

γ
∥x̃− Φ̃diag[wx]Wz x̃∥22 +

1

γ
tr
[
diag[wx] Φ̃

⊤
Φ̃diag[wx]SS⊤]

+ d log γ + tr
[
SS⊤]− log

∣∣SS⊤∣∣+ ∥Wz x̃∥22. (57)

For a fixed γ, it follows from Theorem 4.2 that (57) has no bad local minima if the RIP condition holds for Φ̃ with the
chosen γ. Clearly, Φ̃ will not satisfy RIP for every γ because Φ itself is not guaranteed to satisfy RIP. Lemma 4.3 implies
that cond(Φ̃) ≤ cond(Φ), but does not assure that Φ̃ satisfies RIP for all γ.

Suppose there exists a γ = γ∗ such that Φ̃ satisfies RIP (i.e., its columns are linearly independent for the required support).
In that case, (57) has no bad local minima, and any minimum of (57) is also a global minimum. This minimum leads to the
loss-minimizing ŵx, consistent with the stationarity conditions:

L(w) = x⊤Σ−1
x x+ log

∣∣Σx

∣∣, where Σx ≜ Φ̃WΦ̃
⊤
+ γ∗ I. (58)

The uniqueness of γ∗ that induces an RIP-compliant Φ̃, and hence eliminates bad minima in (57), is not guaranteed.
However, since Φ̃ meets RIP, Theorem 4.2 implies that using Φ̃ as the design matrix and x̃ as observations, the loss in (24)
can attain the optimal sparse representation as γ → 0. Because the optimal sparse representation z∗ is unique, the specific
γ∗ that enhances the RIP condition will also converge to this optimal sparse solution if it is sufficiently small to meet the
limiting conditions for γ → 0. This holds when

lim
γ→0

diag[ŵx]
2 Φ̃

⊤(
Φ̃diag[ŵx]

2 Φ̃
⊤
+ γ I

)−1
x̃ → diag[ŵx]

2 Φ̃
⊤(

Φ̃diag[ŵx]
2 Φ̃

⊤)−1
x̃

≈ diag[ŵx]
2 Φ̃

⊤(
Φ̃diag[ŵx]

2 Φ̃
⊤
+ γ∗I

)−1
x̃, (59)

where
Φ̃ =

(
ΦΦ⊤ + γ∗ I

)−1
Φ, x̃ =

(
ΦΦ⊤ + γ∗ I

)−1
x. (60)

Thus,

ẑ = diag[ŵx]
2 Φ̃

⊤(
Φ̃diag[ŵx]

2 Φ̃
⊤)−1

x̃

= diag[ŵx]
2 Φ⊤P̂⊤

(
P̂Φdiag[ŵx]

2 Φ⊤P̂⊤
)−1

P̂ x. (61)

■

D. Additional Experimental Results
In this section, we provide all the additional experimental results comparing our technique with other works for different
design matrices. First, summarize the methodology and key findings for each parameter variation (Section 5.4), followed
by the additional results for the Riboflavin dataset (Section 5.3) and the impact of fixed vs. trainable γ on sparse recovery
(Section 5.5).

D.1 Design Matrix Dimensions

To quantify the impact of feature dimension n and number of observations d on SLR support recovery, we chose the
Gaussian Random Walk design matrix from Section 5.2 with sparsity level κ = 20 and κ = 10 respectively. First, we
fixed the number of observations at d = 100 and varied the number of features n from 150 to 300 in steps of 50. Then,
holding n = 200 constant, we varied d from 10 to 100. In each configuration, the nonzero coefficients were drawn i.i.d.
from N (0, 1), and we performed 10 independent trials, measuring the fraction of trials in which the estimated support
matched the ground truth exactly. As shown in Fig. 2(a), recovery performance for all methods degrades as n increases (i.e.,
as the effective sparsity k/n decreases), but our preconditioned VAE consistently achieves the highest support recovery rate
across the entire range. Likewise, Fig. 2(b) demonstrates that increasing the observation count d improves recovery for all
algorithms, with the VAE maintaining a 5–10% advantage over LASSO, and Augmented basis pursuit at each sample size.
Both observations follow the insight that as more information becomes available for solving the SLR, the support recovery
rate improves, with preconditioned VAE performing better than the others.
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Gaussian Random Walk 
design matrix 
sparsity 𝜅 = 20 
observations d = 100

Preconditioned VAE 
performs better in all cases

(a)

Gaussian Random Walk
design matrix 
sparsity 𝜅 = 10 
features n = 200

Preconditioned 
VAE performs 
better for d > 25

(b)
Figure 2. Sparse recovery rate vs. (a) number of features n, and (b) number of observations d for Gaussian random walk design matrix.

observations n=200
features d =100 

(a)

observations n=200
features d =100 

(b)

Figure 3. (a) Support recovery rate and (b) mean squared error using proposed VAE followed by standard least squares for different
distributions of non-zero coefficients on standard Gaussian design matrix.

D.2 Nonzero Coefficient Distribution

We next evaluated whether the distribution of the nonzero coefficients affects recovery. Keeping (n, d) = (200, 100), we
sampled the nonzero entries from five distinct distributions: the standard Gaussian, Rayleigh, Chi-squared, Uniform, and
Poisson distributions. For each distribution, we ran 10 trials and recorded both the support recovery rate (Fig. 3(a)) and
the mean-squared error (MSE) of the coefficient estimates (Fig. 3(b)). The MSE curves for cases overlap, and the support
recovery rates differ by no more than two percentage points. This confirms that our VAE’s mechanism for identifying
support is essentially invariant to the actual value distribution of the nonzero coefficients.

D.3 Noise Level

We evaluated performance under additive measurement noise. Using (n, d) = (200, 100) and Gaussian distributed nonzero
coefficients, we injected noise η ∼ N (0, σ2) and defined the signal-to-noise ratio as SNR = 10 log10

(
Var(Φz)/σ2

)
. We

varied SNR from 0 dB to 80 dB, running 10 trials for each evaluation. For the standard Gaussian design matrix (Fig. 4(a)),
we found that although all methods improve with increasing SNR, our VAE outperforms LASSO and SBL at low SNR
(20 dB to 40 dB). Similarly, for the Gaussian random walk design matrix (Fig. 4(b)), we observed that while all methods fail
at low SNR, only the preconditioned VAE succeeds at SNR above 60 dB. These results suggest promising directions for
future work, such as integrating VAE-based denoising or mixture-of-Gaussians preprocessing to extend reliable support
recovery into even lower SNR regimes.
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Standard Gaussian design 
matrix (sparsity = 2)
observations n=200
features d =100 

(a)

Gaussian random walk 
design matrix (sparsity = 20)
observations n=200
features d =100 

(b)
Figure 4. Sparse recovery rate for (a) standard Gaussian design matrix and (b) Gaussian random walk matrix vs. increasing SNR.

Practical Riboflavin 
design matrix

observations n=71
features d =100 

Proposed 
preconditioned VAE

Figure 5. Sparse recovery rate vs. sparsity for a general-
ized Riboflavin matrix.
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Figure 6. Sparse recovery rate vs. sparsity for Gaussian
random walk design matrix with preconditioned VAE and
(a) fixed gamma, and (b) trainable gamma.

D.4 Additional Experiments on Riboflavin Dataset

The Riboflavin dataset used for experiments in Section 5.3 is the set of 100 genetic features exhibiting the highest empirical
variances from a total of 4088 available features (Bühlmann et al., 2014). Indeed, this subset yields the worst condition
number (2248). When selecting a more general subset consisting of n = 200 randomly chosen features, we observed an
improved condition number of 1345. Notably, in this scenario with a better-conditioned matrix, our preconditioned VAE
demonstrates better support recovery performance compared to others, as illustrated in Fig. 5.

D.5 Fixed vs. Trainable γ during Preconditioning

The trainable hyperparameter gamma significantly enhances the performance of the preconditioned VAE in addressing
ill-conditioned SLR problems. According to Lemma 4.3, a positive gamma term directly improves the condition number of
the design matrix. Incorporating gamma as a trainable component during optimization further facilitates superior support
recovery. In Fig. 6, we examine both fixed and trainable gamma scenarios, demonstrating that the trainable gamma approach
achieves higher support recovery rates. Although the VAE architecture satisfies the criterion of having no bad local minima
under a fixed gamma setting (Theorem 4.2), optimal sparse recovery is contingent upon approaching the limiting value of the
minima as gamma approaches zero. Imperfect optimization can hinder the achievement of this ideal scenario, as evidenced
by our empirical results. Nevertheless, the proposed method outperforms LASSO and related techniques, underscoring its
potential for effectively solving sparse inverse problems.
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