
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPRINT: SPARSE-DENSE RESIDUAL FUSION
FOR EFFICIENT DIFFUSION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion Transformers (DiTs) deliver state-of-the-art generative performance but
their quadratic training cost with sequence length makes large-scale pretraining pro-
hibitively expensive. Token dropping can reduce training cost, yet naïve strategies
degrade representations, and existing methods are either parameter-heavy or fail at
high drop ratios. We present SPRINT (Sparse–Dense Residual Fusion for Efficient
Diffusion Transformers), a simple method that enables aggressive token dropping
(up to 75%) while preserving quality. SPRINT leverages the complementary roles
of shallow and deep layers: early layers process all tokens to capture local detail,
deeper layers operate on a sparse subset to cut computation, and their outputs are
fused through residual connections. Training follows a two-stage schedule: long
masked pre-training for efficiency followed by short full-token fine-tuning to close
the train–inference gap. On ImageNet-1K 2562, SPRINT achieves 9.8× training
savings with comparable FID/FDD, and at inference, its Path-Drop Guidance
(PDG) nearly halves FLOPs while improving quality. These results establish
SPRINT as a simple, effective, and general solution for efficient DiT training.

1 INTRODUCTION

DiT
Blocks

DiT
Blocks

DiT
Blocks

(a) Vanilla DiT

ℎ!DiT
Blocks

Fuse

𝑓!

𝑔!

DiT
Blocks

ResidualDiT
Blocks

Token
drop

Sparse Deep Path Dense Shallow Path

: Mask token

(b) SPRINT (Ours) (c) Training FLOPs vs. FDD

TREAD

Progressive Training

MicroDiT
MaskDiT

SiT+REPA

SiT

SPRINT+REPA (Ours)

DiT

5.6× Faster

Training GFLOPs ×𝟏𝟎𝟗

FD
D

 ↓

SPRINT (Ours)

9.8× Faster
MDTv2

Figure 1: Sparse–dense residual fusion improves the efficiency of diffusion transformer training.
SPRINT decouples the computationally heavy middle blocks of DiT into a sparse–deep path and a
dense–shallow residual path. Notably, SPRINT achieves up to 5.6× and 9.8× lower training cost
compared to vanilla models, while improving generation quality.

Diffusion Transformers (DiTs) (Peebles & Xie, 2023; Esser et al., 2024b) have emerged as a powerful
class of generative models (OpenAI, 2024; Labs, 2024a). Yet their training cost scales quadratically
with sequence length, making large-scale pretraining prohibitively expensive in compute and memory.
A natural way to reduce training cost is to shorten sequences by dropping tokens during training.
However, naïve token dropping (Sehwag et al., 2025) degrades representations and leads to poor
generalization when models are evaluated with full-token inputs at inference.

Another direction is to guide DiTs with external supervision. For instance, REPA (Yu et al., 2024)
aligns intermediate DiT features with DINOv2, accelerating convergence. However, such auxiliary

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

losses can harm long-term performance or destabilize training (Wang et al., 2025), since pre-trained
vision features are not naturally aligned with diffusion’s iterative denoising. Recent work (Zheng et al.,
2024; Gao et al., 2023) has explored more advanced token-dropping strategies. While promising,
these methods either add substantial parameters (Sehwag et al., 2025) or only support moderate drop
ratios (Krause et al., 2025; Zheng et al., 2024), and break down under aggressive settings (e.g., 75%).

In this work, we present a training algorithm that enables high-ratio token dropping while preserving
robust, semantically meaningful representations that transfer effectively to full-token fine-tuning. Our
design philosophy is to train DiTs efficiently with minimal architectural changes, achieving perfor-
mance on par with—or better than—strong baselines. The core idea is to exploit the complementary
roles of shallow and deep layers in neural networks: shallow layers capture fine-grained local details,
while deeper layers model global semantics. However, in standard DiT training, deeper layers often
waste computation on redundant local details that contribute little to modeling global semantics, due
to the homogeneous architecture of DiTs. This redundancy significantly slows training convergence
and reduces efficiency. We demonstrate that reformulating the architecture and coupling it with a
principled token-dropping strategy resolves this issue.

Our Solution. We introduce Sparse–Dense Residual Fusion for Efficient Diffusion Transformers
(SPRINT), a simple strategy that enables aggressive token dropping while preserving representation
quality. Specifically, we partition the DiT into three components: encoder, middle blocks, and decoder.
The encoder processes all tokens to encode local information, producing dense shallow features.
Before the middle blocks, we drop most tokens (typically 75%), forcing deeper layers to focus on
sparse global context with far lower compute, making sparse deep features. Simple residual fusion
mechanism then combines dense shallow features with sparse deep features, while dummy masking
tokens ensure dimensional alignment, and the fused representation is passed to the decoder.

Training proceeds in two stages. First, we perform long pre-training with 75% token dropping,
yielding large compute savings. Then, a short fine-tuning stage restores full-token processing in the
middle blocks, allowing them to adapt to dense inputs and closing the train–inference gap. Training
uses the standard diffusion loss, and the DiT block design remains unchanged, making SPRINT easy
to integrate into existing codebases.

Notably, the dual-path structure of SPRINT (dense shallow and sparse deep) enables a surprisingly
efficient guidance sampling strategy, which we denote as Path-Drop Guidance (PDG). Standard
classifier-free guidance requires two full forward passes of the model to compute conditional and
unconditional estimates, thereby doubling inference cost. In contrast, under our framework, we can
efficiently obtain the unconditional estimate by entirely bypassing the middle blocks and using only
the dense shallow path. We demonstrate that PDG reduces the cost of guidance sampling by nearly
50% while improving generation quality.

Contributions. Our work makes the following key contributions:

• We propose Sparse-Dense Residual Fusion (SPRINT), which fuses dense shallow and sparse
deep features for efficient DiT training, supporting up to 75% token dropping and yielding large
efficiency gains over prior methods (Tab. 1, Fig. 3c).

• We demonstrate faster convergence and improved efficiency on modern DiTs. On ImageNet-
1K 2562 class-conditional generation, SPRINT reduces training GFLOPs by 9.8× compared to
standard SiT training while achieving similar or better quality (Fig. 1c, Tab. 3).

• SPRINT provides new insights into DiT representations: our dense–shallow features are more
noise-invariant and semantically expressive (Fig. 6); achieve higher CKNNA scores than vanilla
DiT (Fig. 3b); and shallow versus deep paths specialize in local versus global semantics (Fig. 4).

• We introduce Path-Drop Guidance (PDG), a replacement for classifier-free guidance (CFG) that
computes the unconditional pass using only dense shallow features. PDG nearly halves inference
FLOPs while surpassing CFG in generation quality (Fig. 2, Tab. 3).

• We show that SPRINT is simple, architecture-agnostic, and complementary to alignment-based
methods. It applies seamlessly across architectures (SiT, UViT), latent spaces (SD, FLUX VAE),
and resolutions (256, 512), and provides further gains when combined with REPA (Yu et al., 2024).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

REPA + CFG Ours + CFG Ours + PDG

FDD=78.8
TFLOPs=0.475

FDD=75.6
TFLOPs=0.477

FDD=57.1
TFLOPs=0.274

REPA + CFG Ours + CFG Ours + PDG REPA + CFG Ours + CFG Ours + PDG

FDD=78.8
TFLOPs=0.475

FDD=75.6
TFLOPs=0.477

FDD=57.1
TFLOPs=0.274

FDD=78.8
TFLOPs=0.475

FDD=75.6
TFLOPs=0.477

FDD=57.1
TFLOPs=0.274

Figure 2: SPRINT improves visual quality over baseline with only 57% of inference FLOPs.
We present samples from two SiT-XL/2REPA models after 1M training iterations, where SPRINT
is applied to one of the models. For our approach, we further incorporate the proposed Path-Drop
Guidance (PDG), yielding improved FDD scores and higher visual quality compared to vanilla REPA.

2 RELATED WORK

Accelerating DiT training via representation alignment. Several works accelerate DiT convergence
by aligning internal features with pre-trained vision transformers. REPA (Yu et al., 2024) aligns
intermediate DiT activations with DINOv2 features, while Lee et al. (2025) extend this to text–image
models via a contrastive loss. Wang & He (2025) instead propose a dispersive loss that spreads features
without external alignment. However, HASTE (Wang et al., 2025) shows that alignment signals can
conflict with diffusion objectives and destabilize training. These objectives are complementary to our
token-dropping scheme and can be combined to further boost performance (Tab. 2).

Efficient DiT training with token dropping. Another direction reduces training cost by shortening
sequences. Progressive training (Podell et al., 2024; Esser et al., 2024b) first pre-trains at 128×128
before fine-tuning at 256×256. MDTv2 (Gao et al., 2023) restructures DiT into an encoder–decoder,
processing masked tokens with skip connections and optimizing both reconstruction and diffusion
losses. MaskDiT (Zheng et al., 2024) drops random patches, replaces them with mask tokens, and
trains an auxiliary decoder, which adds inference cost. MicroDiT (Sehwag et al., 2025) adds a
patch-mixer for high masking ratios; and TREAD (Krause et al., 2025) bypasses subsets of tokens
through inner layers to optimize full denoising loss. These approaches work at moderate drop ratios
(≤ 50%) but degrade at aggressive settings (e.g., 75%) and are difficult to pair with alignment losses.
In contrast, our approach remains alignment-friendly and robust even under high drop rates.

3 SPRINT: SPARSE-DENSE RESIDUAL FUSION FOR EFFICIENT DIFFUSION
TRANSFORMERS

3.1 PRELIMINARIES

Diffusion and flow-based generative models. Diffusion and flow-based models Ho et al. (2020);
Song et al. (2020); Lipman et al. (2023); Liu et al. (2023) learn a continuous transformation between
a simple reference distribution π1 (e.g., Gaussian noise) and a target data distribution π0. Given
x0 ∼ π0 and x1 ∼ π1, the transformation evolves over t ∈ [0, 1] by the ODE

dxt

dt
= v(xt, t), (1)

where xt interpolates between x0 and x1, and v : Rd × [0, 1] → Rd is the velocity field. We use
xt ∼ N (αtx0, σ

2
t I) with α0 = σ1 = 1, α1 = σ0 = 0, and adopt a linear schedule Ma et al. (2024):

αt = 1− t, σt = t. A neural network vθ (e.g., DiT) learns v by minimizing

min
θ

Ex0,x1,t

[
∥v(xt, t)− vθ(xt, t)∥2

]
. (2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0

-1

1

2

3

G
ra
di
en
tN
or
m

(a) ℓ2 gradient norm of fθ (b) CKNNA(fθ , DINOv2) (c) FID-10K

Figure 3: Training behavior of diffusion transformers. We empirically analyze the training
dynamics of SiT-B/2 and its SPRINT variants under different token-drop ratios. (a) We measure the
ℓ2 gradient norm of fθ, showing that SPRINT enables the encoder to receive stronger gradient signals
from the loss. (b) SPRINT variants achieve higher and earlier CKNNA scores than SiT, indicating
SPRINT learns more semantic, noise-robust representations. (c) SPRINT converges substantially
faster and to lower FID than SiT, with the gap further widening at higher drop ratios (up to 75%),
highlighting both the effectiveness and efficiency of our framework.

Token dropping in diffusion transformers. Given a noisy image xt, a DiT divides it into non-
overlapping p× p patches, producing tokens xt ∈ RB×N×D, where N = HW

p2 , D is the embedding
dimension, and H ×W the image resolution. Since the attention cost in DiTs scales quadratically
with N , dropping tokens reduces training cost. For a drop ratio r, we remove ⌊rN⌋ tokens and
process only the remaining N − ⌊rN⌋ with DiT blocks. Although described for 2D images, this
naturally extends to other modalities such as video.

3.2 BOTTLENECK IN STANDARD DIT TRAINING

Standard Diffusion Transformers (DiTs) use a homogeneous architecture where every layer, from
shallow to deep, processes the full set of dense tokens. This is inefficient: in deeper layers, token
representations become redundant as features shift from local, high-frequency patterns to global,
low-frequency semantics (Hoover et al., 2019; Voita et al., 2019). Inference-time pruning and merging
methods (Rao et al., 2021; Chang et al., 2023; Bolya & Hoffman, 2023) further show that large
fractions of tokens can be removed in later layers with minimal effect on output quality. Training
deep layers on all tokens thus wastes compute, spending a large portion of the FLOP budget on
fine-grained details that contribute little to modeling global structure.

We address this by introducing architectural specialization: 1. Early layers process dense tokens to
robustly capture local evidence under noisy input and build a rich foundation of features. 2. Deeper
layers operate on a sparse subset of tokens to efficiently model global semantic relationships without
redundant computation. 3. Final layers reintroduce all tokens for dense prediction. Based on these
principles, we reformulate the DiT architecture with a dense–sparse fusion mechanism.

3.3 SPARSE–DENSE RESIDUAL FUSION

We propose Sparse–Dense Residual Fusion for Efficient Diffusion Transformers (SPRINT), which
decouples dense local details from sparse global semantics, improving efficiency by accelerating
convergence and reducing compute. An overview is shown in Fig. 1. We begin with a standard DiT,
divided into encoder fθ (first two blocks), middle blocks gθ, and decoder hθ (final two blocks), and
reformulate the computation flow as:

1. Encoder fθ processes all noisy tokens to produce a feature map that retains fine-grained local
noise information across all spatial locations.

2. Dense shallow path creates a residual connection that directly forwards the dense feature map
from fθ to the fusion block, preserving local, high-frequency detail.

3. Sparse deep path drops a large fraction of tokens (e.g., 75%) before gθ, forcing the deep layers to
operate on a sparse subset, yielding sparse global context.

4. Fusion and decoder integrate dense local information from the shallow path with sparse global
context from the deep path to predict all tokens.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Formally, given input tokens xt ∈ RB×N×C , we first compute dense features ft = fθ(xt). A fraction
r of tokens (the drop ratio) is removed to form f drop

t , which is processed by the middle blocks:
gdrop
t = gθ(f

drop
t ). To fuse the dense and sparse paths, we restore gdrop

t to the original sequence length
by padding the dropped positions with a fixed [MASK] token (denoted M), yielding gpad

t ∈ RB×N×C .
We concatenate ft and gpad

t along the channel dimension, project back to the original size, and feed
the fused representation to the decoder hθ. This enables the decoder to combine local details from
the encoder with sparse global semantics from the middle blocks for full-token prediction. The entire
model is trained end-to-end by minimizing the flow matching loss in Eq. 2 (refer to Alg. 1).

Improving training efficiency with minimal modification. SPRINT improves training through
two key mechanisms. First, it reduces per-iteration compute cost by restricting the expensive middle
blocks gθ to a sparse token set, while the dense shallow path preserves fine-grained information.
Unlike prior methods, it remains stable even under aggressive drop ratios (Fig. 3c) where others fail.
Second, it accelerates iteration-wise convergence by enhancing a contextual and relation learning: the
decoder hθ must predict all tokens despite most deep-path inputs being [MASK] tokens. This forces
encoder (fθ) and middle blocks (gθ) to learn robust, context-aware features, as reflected in faster
FID improvement (Fig. 3c), stronger gradient flow (Fig. 3a), and richer representations (CKNNA
in Fig. 3b). These gains come with minimal architectural change: the standard DiT blocks remain
intact, making SPRINT easy to integrate into existing codebases. Analysis details are in Appendix A.

Dense–shallow vs. sparse–deep features. The ablation in Fig. 4 highlights their complementary
roles. The dense–shallow path preserves local textures (e.g., feathers, skin patterns) but fails to form
coherent global structure. The sparse–deep path captures global shapes (e.g., bird outline, shark
body) but introduces severe texture artifacts. Fusing both yields high-quality outputs with realistic
global semantics and fine local detail, showing that dense–shallow features encode local evidence
while sparse–deep features capture global semantics.

w/o sparse path w/o dense pathBoth path w/o sparse path w/o dense pathBoth path

Figure 4: Roles of dense–shallow and sparse–deep features. Dense–shallow features preserve local
textures but lose global structure, while sparse–deep features capture global shapes but distort local
details. Fusing both recovers high-quality outputs with coherent semantics and fine detail.

Fine-tuning with full tokens. After efficient sparse pre-training, we transition the middle blocks to
operate on the full token set for a brief fine-tuning stage, addressing the potential train–inference gap
as demonstrated in prior works (Zhang et al., 2024; Sehwag et al., 2025; Krause et al., 2025) (refer to
Alg. 2). Since pre-training typically dominates with 1M–4M iterations, this fine-tuning phase is short
(e.g., 100K–200K iterations), yet sufficient for the deeper layers to adapt to the full data distribution,
ensuring high inference quality while retaining most of the pre-training speedup.

3.4 EFFICIENT PATH-DROP GUIDANCE (PDG)

SPRINT’s dual-path design also enables efficient guidance during inference. Standard Classifier-Free
Guidance (CFG) doubles sampling cost by requiring two forward passes per step: one conditional
vθ(xt, c) and one unconditional vθ(xt, ∅). Auto Guidance (Karras et al., 2024a) shows that the
unconditional pass can be replaced by a weaker network. The SPRINT architecture inherently
contains a natural weaker network: the dense shallow path that bypasses the deep middle blocks.
We therefore introduce Path-Drop Guidance (PDG): For the conditional estimate, we perform a

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Training efficiency on ImageNet 2562. Iteration-wise results of different token-dropping
methods with same 75% dropping rate. We report total training TFLOPs (using Deepspeed library)
and performance with/without classifier-free guidance, along with SPRINT’s relative gains over SiT
(Gain ∆). All methods use 50 sampling steps with ODE sampler.

Method AE TFLOPs
(×106)

w/o CFG (w = 1.0) w CFG (w = 1.4)
FDD ↓ FID ↓ IS ↑ Pre. ↑ Rec. ↑ FDD ↓ FID ↓ IS ↑ Pre. ↑ Rec. ↑

400K training iterations
Improved SiT-XL/2 SD 24.4 351.1 12.8 97.4 0.66 0.65 185.0 3.09 211.6 0.81 0.55

+ Progressive Training SD 16.8 365.5 12.7 96.2 0.67 0.63 215.6 3.47 206.4 0.83 0.53
+ MDTv2 SD 21.2 558.5 21.1 68.9 0.61 0.63 366.5 5.61 176.3 0.76 0.54
+ MicroDiT SD 20.8 349.9 11.5 99.9 0.67 0.64 178.1 3.16 213.7 0.82 0.54
+ Tread SD 19.7 461.1 16.3 89.9 0.63 0.64 264.3 4.07 201.2 0.80 0.54
+ SPRINT (Ours) SD 18.7 262.6 9.30 118.5 0.68 0.65 136.5 2.56 247.1 0.82 0.56

Gain ∆ ×1.32 +88.5 +3.5 +24.1 +48.5 +0.53 +35.5
1M training iterations
Improved SiT-XL/2 SD 61.2 290.0 10.9 113.4 0.66 0.67 146.0 2.36 243.7 0.80 0.58

+ Progressive Training SD 25.8 359.4 12.3 102.2 0.67 0.65 188.1 2.95 222.2 0.82 0.55
+ MDTv2 SD 39.2 522.7 18.8 77.2 0.61 0.64 326.7 4.68 183.1 0.77 0.55
+ MicroDiT SD 37.5 293.4 10.9 113.8 0.68 0.65 147.6 2.53 241.4 0.82 0.55
+ Tread SD 34.5 372.6 12.3 112.1 0.66 0.66 197.7 2.82 242.9 0.80 0.57
+ SPRINT (Ours) SD 31.5 248.8 9.15 129.5 0.67 0.67 126.1 2.29 268.3 0.81 0.59

Gain ∆ ×1.94 +41.2 +1.75 +16.1 +14.9 +0.07 24.6
400K training iterations
Improved SiT-XL/2 Flux 24.6 358.9 14.8 84.4 0.64 0.63 178.7 3.95 210.7 0.83 0.50

+ Progressive Training Flux 17.0 375.3 13.5 89.2 0.66 0.63 186.3 4.02 205.4 0.84 0.49
+ MicroDiT Flux 20.9 420.9 17.8 76.8 0.61 0.64 212.9 4.45 196.2 0.81 0.51
+ Tread Flux 19.8 470.1 19.9 72.2 0.60 0.63 255.0 5.18 187.5 0.79 0.50
+ SPRINT (Ours) Flux 18.8 268.4 11.4 101.9 0.66 0.63 135.4 3.77 239.8 0.83 0.51

Gain ∆ ×1.31 +90.2 +3.4 +17.5 +43.3 +0.18 +29.1

full forward pass. For the unconditional estimate, we bypass gθ entirely, replacing it with [MASK]
tokens. Formally, the conditional and unconditional velocities are:

v(xt, c) = hθ(Fusion(gθ(fθ(xt, c)), fθ(xt, c)), c), (3)
v(xt, ∅) = hθ(Fusion(M, fθ(xt, c)), c), (4)

where M denotes the [MASK] token tensor. This provides high-quality generation while nearly
halving FLOPs and latency per step, since the expensive middle blocks are executed only once.

3.5 STRUCTURED GROUP-WISE TOKEN SUBSAMPLING

The effectiveness of token dropping depends not just on how many tokens are removed, but on which
are kept. Uniform random sampling risks leaving large contiguous holes in the feature map. To avoid
this, we propose a structured group-wise subsampling strategy that guarantees local coverage while
maintaining global irregularity. Specifically, we partition tokens into small, non-overlapping groups
in their native topology (e.g., 2D for images). For images, we divide the (H/p)× (W/p) grid into
n× n groups. At each training iteration, we randomly select k tokens per group, giving a drop ratio
r = 1 − k/n2. We use n = 2, k = 1, corresponding to a 75% drop ratio. This ensures that every
local patch is represented while preventing the model from overfitting to fixed sampling patterns.

4 EXPERIMENT

4.1 EXPERIMENTAL DETAILS

Training details. Our framework follows the setups of DiT (Peebles & Xie, 2023) and SiT (Ma
et al., 2024). Unless stated otherwise, most of the experiments are trained on ImageNet-1K at
256 × 256 resolution using pretrained VAEs from Stable Diffusion (Rombach et al., 2022) and
Flux (Labs, 2024b), both with 8× downsampling but encoding into 4 and 16 channels, respectively.
Unless stated otherwise, models are pre-trained with a 75% token drop ratio using our structured
group-wise subsampling. We adopt the SiT architecture, where each block contains a self-attention
and a feed-forward layer, and apply standard improvements: RMS Normalization for queries and
keys (Touvron et al., 2023a;b), 2D RoPE for positional embeddings (Wang et al., 2024), and lognormal
timestep sampling (Esser et al., 2024a). Experiments focus on SiT-B/2 and SiT-XL/2. Additional
hyperparameters and training details are provided in Appendix C. Pre-training and fine-tuning
algorithm is provided in Alg. 1 and 2, respectively.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Compatibility with other architectures. We apply SPRINT to REPA and U-ViT on the
SD autoencoder, reporting performance at 400K iterations with/without classifier-free guidance and
SPRINT’s relative gains over SiT (Gain ∆). All metrics use 50 ODE sampling steps.

Method w/o CFG (w = 1.0) w CFG (w = 1.4)

FDD ↓ FID ↓ IS ↑ Pre. ↑ Rec. ↑ FDD ↓ FID ↓ IS ↑ Pre. ↑ Rec. ↑
Improved SiT-XL/2REPA 279.6 10.0 114.0 0.67 0.66 146.6 2.42 237.1 0.81 0.57

+ SPRINT (Ours) 234.5 8.68 129.6 0.67 0.67 125.1 2.38 259.8 0.80 0.59
Gain ∆ +45.1 +1.32 +15.6 +21.5 +0.04 +22.7

Improved U-ViT-XL/2 335.1 12.1 98.6 0.67 0.64 193.7 3.36 200.3 0.80 0.56
+ SPRINT (Ours) 271.7 9.20 114.4 0.69 0.64 146.4 2.97 236.7 0.83 0.54

Gain ∆ +63.4 +2.9 +15.8 +30.1 +0.39 +36.4

100K 400K 100K 400K

Si
T-

XL
/2

 +
 

RE
PA

Si
T-

XL
/2

 +
 R

EP
A

+ 
O
ur

s

Figure 5: SPRINT improves visual scaling. Qual-
itative comparison of images generated without
classifier-free guidance at 400K iterations using two
SiT-XL/2REPA models, with SPRINT applied to the
model in the upper row.

Si
T-

XL
/2

Si
T-

XL
/2

 +
 O
ur

s

x!

f!

g!

f!

g!

𝑡 = 1 𝑡 = 0

Figure 6: SPRINT improves feature seman-
tics. We visualize the PCA features of fθ and
gθ from two SiT-XL/2 models at 400K itera-
tions, with SPRINT applied to the model in
the upper row.

Evaluation details. We evaluate generation quality using standard metrics: FDD (Fréchet Distance
on DINOv2 (Oquab et al., 2023) features), FID (Fréchet Inception Distance (Heusel et al., 2017)),
Inception Score (IS) (Salimans et al., 2016), Precision, and Recall (Kynkäänniemi et al., 2019).
Among these, FDD has been shown to be more reliable for diffusion models (Stein et al., 2023).
To assess training and inference efficiency, we report total training FLOPs and inference FLOPs
computed with the DeepSpeed library. We provide details in Appendix C, D. Inference algorithm is
provided in Alg. 3.

4.2 SYSTEM-LEVEL COMPARISON

We compare against following methods to demonstrate the effectiveness and efficiency of our method:

1. Dense SOTA: We use SiT (Ma et al., 2024) models as our primary baseline. This represents a
state-of-the-art model trained with full, dense tokens, providing a direct measure of the trade-off
between performance and our efficiency gains.

2. Sparse SOTA: We compare against recent methods that leverage a token-dropping strategy to
accelerate training, e.g., MicroDiT (Sehwag et al., 2025) and Tread (Krause et al., 2025).

3. Alternative methods: We also compare against progressive training, a popular strategy where a
model is pretrained on a lower resolution and finetuned on the full resolution.

A more detailed description of each baseline is provided in Appendix E. We adopt the same archi-
tectural improvements for all models and report the performance during training in Tab. 1. SPRINT
demonstrates superior performance and efficiency across all settings. At just 400K training iterations
with the SD-VAE, our model significantly outperforms SiT-XL/2 baseline (e.g., a +88.5 improve-
ment in FDD) while using 1.32× fewer FLOPs. As training progresses to 1M iterations, SPRINT
consistently improves over the baseline while becoming even more efficient, achieving a 1.95×
computational speedup. This result highlights SPRINT’s dual acceleration: achieving higher sample
quality in the same training iterations with lower computational budget. In contrast, competing
token-dropping methods fail to match the performance of SiT-XL/2, even at a higher computational
cost than our method. These trends hold when using classifier-free guidance.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Comprehensive comparison on ImageNet 256× 256 class-conditioned generation with
classifier-free guidance. ↓ / ↑ indicate whether lower or higher values are better, respectively. ∗

denotes training with batch size 1024, † our reproduction with architectural improvements, and ‡

use of guidance scheduling. Metrics are evaluated with 250 sampling steps using the SDE sampler.
TFLOPs are measured with the DeepSpeed library (refer to Appendix D for details.)

Method Epochs #Params.
Training

TFLOPs ↓
(×106)

Inference
TFLOPs ↓ FDD ↓ FID ↓ Pre. ↑ Rec. ↑

ADM (Dhariwal & Nichol, 2021) 400 673M – – – 3.94 0.82 0.52
CDM (Ho et al., 2022) 2160 – – – – 4.88 – –
LDM-4 (Rombach et al., 2022) 200 400M – – – 3.60 0.87 0.48

U-ViT-H∗ (Bao et al., 2023) 240 501M – – – 2.29 0.82 0.57
DiT-XL (Peebles & Xie, 2023) 1400 675M 427.7 0.475 79.5 2.27 0.83 0.57
FiTv2-XL (Wang et al., 2024) 400 671M – – 80.5 2.26 0.81 0.59

MDTv2-XL (Gao et al., 2023) 1080 742M 258.3 0.521 77.3 1.86 0.81 0.60
MDTv2-XL‡ (Gao et al., 2023) 1080 742M 258.3 0.521 75.2 1.58 0.79 0.65
MaskDiT (Zheng et al., 2024) 1600 730M 268.0 0.513 82.4 2.28 0.80 0.61
Tread (Krause et al., 2025) 740 675M 146.0 0.475 – 2.09 0.81 0.62

SiT-XL (Ma et al., 2024) 1400 675M 427.7 0.475 78.5 2.06 0.82 0.59
SiT-XL† 400 675M 122.2 0.474 79.5 2.04 0.82 0.60

+ SPRINT 200 677M 43.7 0.477 79.0 2.01 0.82 0.60
+ SPRINT 400 677M 65.1 0.477 75.4 1.96 0.80 0.61
+ SPRINTPDG 400 677M 65.1 0.274 58.4 1.62 0.80 0.63
+ SPRINT‡

PDG 400 677M 65.1 0.263 54.9 1.55 0.80 0.64

SiT-XLREPA (Yu et al., 2024) 800 675M 248.6 0.475 72.5 1.80 0.81 0.61
SiT-XL†

REPA 200 675M 62.1 0.474 78.8 1.93 0.81 0.60
+ SPRINT 200 677M 44.3 0.477 75.6 1.87 0.81 0.61
+ SPRINTPDG 200 677M 44.3 0.274 57.1 1.61 0.80 0.64
+ SPRINTPDG 400 677M 66.7 0.274 54.7 1.59 0.80 0.64
+ SPRINT‡

PDG 400 677M 66.7 0.263 49.6 1.49 0.81 0.64

Generalization to other diffusion architectures. To demonstrate that our method is a general
training strategy and not limited to a specific DiT architecture, we apply SPRINT to two other
prominent models: REPA (Yu et al., 2024) and U-ViT (Bao et al., 2023). We integrate our dense-sparse
fusion mechanism into their respective backbones and report the results after 400K training iterations
in Tab. 2. The results show that SPRINT provides significant improvements in all cases. When
applied to REPA, SPRINT improves the FDD by +45.1 and FID by +1.32 (w/o CFG). Similarly, for
U-ViT, we observe a +63.4 improvement in FDD and a +2.9 improvement in FID. These experiments
confirm that SPRINT is a broadly applicable and effective method for accelerating the training.

Visual analysis. In Fig. 5, we show that SPRINT not only accelerates convergence quantitatively
but also enhances the visual progression. At just 100K iterations, SPRINT produces coherent global
structures (e.g., the shape of a car) along with fine details, whereas REPA lags behind. Furthermore,
in Fig. 6, we analyze the PCA of features from fθ and gθ, demonstrating that SPRINT learns more
noise-invariant and semantically vivid representations than the SiT model across diffusion timesteps.

4.3 COMPARISON WITH STATE-OF-THE-ART MODELS

Tab. 3 compares SPRINT against recent state-of-the-art diffusion transformers. Our improved SiT
closely matches the original SiT performance after 400 epochs (78.5 vs. 79.5 FDD). In contrast, SiT
trained with SPRINT achieves comparable performance 79.0 FDD in only 200 epochs. At 400 epochs,
SPRINT outperforms the improved SiT baseline by 4.4 FDD (from 79.5 to 75.4) and 0.08 FID while
using just 53% of the training FLOPs. This shows that SPRINT both accelerates convergence and
substantially reduces training cost. At inference, Path-Drop Guidance (PDG) further boosts efficiency:
with only 57% of the inference cost, SPRINT improves performance by 21.1 FDD (from 79.5 to
58.4) over the improved SiT.

Similar trends hold when combined with REPA. SPRINT reduces FDD from 78.8 to 75.6 using only
71% of the training FLOPs. With PDG sampling at 400 epochs, it surpasses the official REPA model
trained for 800 epochs by 17.8 FDD and 0.21 FID, while using only 27% of the training FLOPs.
Overall, SPRINT consistently improves generation quality while drastically lowering both training
and inference cost, outperforming strong baselines and alignment-augmented models. Moreover,
incorporating the recent guidance schedule (Kynkäänniemi et al., 2024) further boosts performance.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Effect of token-drop
strategies on FID.

Strategy FID ↓
Random 30.1
Structured (Ours) 27.5

Table 5: Effect of dense–
sparse residuals on FID.

Dense Sparse FID ↓
✗ ✓ 85.1
✓ ✗ 81.4
✓ ✓ 27.5

Table 6: Effect of fθ, gθ, hθ on
compute and performance.

fθ gθ hθ
FLOPs
/ iter ↓ FID ↓

2 8 2 7.47G 27.5
3 6 3 9.33G 29.1
5 2 5 13.1G 49.2

Table 7: Effect of dense residuals
and drop ratio r on FID.

Method Dense
residual r FID ↓

SiT-B/2 ✗ 0 55.6

SPRINT

✓ 0 54.1
✓ 25% 43.2
✓ 50% 32.3
✓ 75% 27.5
✓ 87.5% 50.2

Table 8: Effect of fθ and
hθ depth on FID.

fθ gθ hθ FID ↓
0 8 4 79.7
1 8 3 61.5
2 8 2 27.5
3 8 1 44.4
4 8 0 81.5

Figure 7: Effect of guidance
scale on SiT and our SPRINT.

4.4 ANALYSIS

We mostly use SiT-B/2 configuration at 400K training iterations (detailed in Tab. 9) in following
analysis unless stated otherwise.

Sparse–dense residual fusion (Tab. 5). To evaluate the importance of each path in sparse–dense
residual fusion, we perform an ablation by disabling each of the two parallel paths during training.
Removing the dense shallow path causes a sharp performance drop, with FID rising from 27.5 to
85.1, underscoring its role in accurate velocity prediction. Conversely, removing the sparse deep path
reduces the model to a standard dense DiT with only four layers, which also degrades performance
due to limited capacity. These results confirm that the parallel sparse–dense design is critical for
maintaining high performance under token dropping.

Token sampling strategy (Tab. 4). We compare our structured group-wise sampling strategy with
standard uniform random sampling. At the same 75% drop ratio, structured sampling improves FID
from 30.1 to 27.5, demonstrating that preserving local coverage is crucial for effective sparse training.

Effect of gθ depth (Tab. 6). We study the trade-off between performance and computation as a
function of middle block depth. The default configuration yields the best FID (27.3) with the lowest
cost (7.47G). Shifting layers from the middle block to the encoder and decoder (e.g., 3-6-3 or 5-2-5)
increases cost without benefit, and FID degrades to 29.1 and 49.2, respectively. Thus, the default
configuration strikes the best balance between efficiency and performance.

Effect of fθ and hθ depth (Tab. 8). We find that allocating at least two blocks to both fθ (dense
shallow path) and hθ (sparse deep path) is critical for high performance. Reducing either to a
single block already degrades results (FID 61.5 and 44.4). Moreover, entirely removing either block
collapses performance (FID > 79): this supports our encoder (dense)–middle (sparse)–decoder
(dense) design. The encoder must first operate on dense tokens to transform noisy inputs into noise-
invariant features, after which the middle blocks can safely work on sparse tokens, and the decoder is
applied after residual fusion. This is necessary for accurate prediction under high drop-ratio training.

Drop ratio r (Tab. 7). As the drop ratio increases from 0 to 75%, model performance steadily
improves, with FID decreasing from 54.1 to 27.5. This trend indicates that higher sparsity in SPRINT
promotes complementary interactions between the encoder and middle blocks, leading to more
robust and efficient representations. However, at an extreme drop ratio of 87.5%, FID rises to 50.2,
suggesting that excessive sparsity limites the model’s representational capacity.

Path-drop guidance (Fig. 7). We compare FDD across guidance scales w for CFG (SiT-XL/2), CFG
(SPRINT), and PDG (SPRINT). PDG consistently outperforms both CFG baselines, achieving a
lower (better) peak FDD. Moreover, it delivers these gains at nearly half the inference cost, since the
unconditional estimate bypasses the middle blocks. These results show that PDG provides a superior
trade-off, generating higher-quality samples while substantially reducing computational cost.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0K 20K 200K 0K 20K 200K

Finetune Finetune

Figure 8: Visual progression over fine-tuning steps.
Before fine-tuning (0K), SPRINT already produces class-
aligned samples but exhibits slight artifacts in fine details
(e.g., the turtle’s eye, the ram’s leg). After a short 20K-
step fine-tuning, SPRINT largely recovers these details
and overall visual quality.

Figure 9: FID over fine-tuning steps
for CFG and PDG sampling. Just 20K
fine-tuning steps recover over 94% of the
200K performance, indicating that a rela-
tively short fine-tuning stage is sufficient
to close the train–inference gap.

Training at higher resolution (Appendix F.1, Fig. 33). We also evaluate our model against baselines
at 5122 resolution with XL config. Results are provided in Tab. 10 and show that SPRINT achieves
1.96 FID compared to 2.63 of SiT baseline with only 50% of training compute (184.8 vs. 366.6).

Lower sampling steps (Appendix F.2). SPRINT remains competitive at few-step inference, consis-
tently surpassing SiT-XL/2 in Tab. 11. At 10 steps, it reduces FID from 7.37 to 6.29 and FDD from
205.2 to 174.5, highlighting the representational strength of our method.

4.5 BENEFITS OF FINE-TUNING

Here, we analyze the train–inference gap of SPRINT after the pre-training stage and the effect of
the subsequent fine-tuning. Specifically, we perform qualitative and quantitative ablations over the
number of fine-tuning steps after 2M pre-training iterations, reported in Fig. 8 and Fig. 9, respectively.

In Fig. 8, we observe that, before fine-tuning, SPRINT already produces class-aligned samples with
globally coherent structure, but tends to miss some high-frequency details (e.g., the turtle’s eye in
second row, the ram’s leg in third row), which is expected given that most tokens are dropped during
pre-training. The role of the fine-tuning stage is therefore to recover these local details. Notably,
after only 20K fine-tuning steps, SPRINT largely restores these details and improves overall visual
quality. This observation is consistent with the quantitative trends in Fig. 9. For both CFG and PDG
sampling, FID improvements beyond 50K fine-tuning iterations are marginal and eventually plateau.
In particular, after just 20K steps, SPRINT recovers over 94% of the FID improvement achieved
at 200K fine-tuning steps. This indicates that the majority of the train–inference gap closes very
early—within 20K–50K iterations, corresponding to only 2.5% of the pre-training steps. This further
confirms that SPRINT learns the necessary representations for high-quality generation during sparse
pre-training, and that these representations transfer effectively to the full-token regime.

Overall, these results show that SPRINT is not overly sensitive to the precise length of the fine-tuning
stage: a relatively short full-token fine-tuning is sufficient to recover the high-frequency details
missing from sparse pre-training.

5 CONCLUSION

We introduced SPRINT, a simple and architecture-agnostic training framework for DiTs that com-
bines dense–shallow and sparse–deep features through residual fusion. By exploiting the complemen-
tary strengths of shallow and deep layers, it enables aggressive token dropping (up to 75%) while
preserving representation quality, and a two-stage schedule with masked pre-training and short full-
token fine-tuning closes the train–inference gap. Experiments on ImageNet-1K show that SPRINT
reduces training cost by up to 9.8× while matching or surpassing the quality of strong baselines.
SPRINT also enables Path-Drop Guidance, a simple replacement for CFG that halves inference
cost while improving sample quality. Thus, SPRINT is a simple, effective, and general approach for
efficient DiT training, applicable across architectures, resolutions, and alignment methods.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY

We have made every effort to ensure the reproducibility of our results. Detailed hyper-parameters,
training schedules, and architectural configurations are provided in the Appendix, including model
definitions, pre-training and fine-tuning iterations, number of sampling steps at inference, and compute
resources. Our framework follows the well-established setups of DiT (Peebles & Xie, 2023) and
SiT (Ma et al., 2024), which are widely adopted in diffusion research. Although our training code
cannot be released at submission time, the use of these standardized setups, along with the provided
experimental details, should allow independent reproduction of our results.

REFERENCES

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In Conference on Computer Vision and Pattern
Recognition, CVPR, 2023.

Daniel Bolya and Judy Hoffman. Token merging for fast stable diffusion. In Conference on Computer
Vision and Pattern Recognition, CVPR, 2023.

Shuning Chang, Pichao Wang, Ming Lin, Fan Wang, David Junhao Zhang, Rong Jin, and Mike Zheng
Shou. Making vision transformers efficient from a token sparsification view. In Conference on
Computer Vision and Pattern Recognition, CVPR, 2023.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In Advances
in Neural Information Processing Systems, NeurIPS, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In arXiv preprint
arXiv:2010.11929, 2020.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In International Conference on Machine Learning, ICML, 2024a.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In
ICML, 2024b. URL https://openreview.net/forum?id=FPnUhsQJ5B.

Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Mdtv2: Masked diffusion
transformer is a strong image synthesizer. arXiv preprint arXiv:2303.14389, 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural
Information Processing Systems, NeurIPS, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, NeurIPS, 2020.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
Cascaded diffusion models for high fidelity image generation. Journal of Machine Learning
Research, 2022.

Benjamin Hoover, Hendrik Strobelt, and Sebastian Gehrmann. exbert: A visual analysis tool to
explore learned representations in transformers models. In arXiv preprint arXiv:1910.05276, 2019.

Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation
hypothesis. In International Conference on Machine Learning, ICML, 2024.

11

https://openreview.net/forum?id=FPnUhsQJ5B


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tero Karras, Miika Aittala, Tuomas Kynkäänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
Guiding a diffusion model with a bad version of itself. In Advances in Neural Information
Processing Systems, NeurIPS, 2024a.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
and improving the training dynamics of diffusion models. In Conference on Computer Vision and
Pattern Recognition, CVPR, 2024b.

Felix Krause, Timy Phan, Ming Gui, Stefan Andreas Baumann, Vincent Tao Hu, and Björn Ommer.
Tread: Token routing for efficient architecture-agnostic diffusion training, 2025.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. In Advances in Neural Information
Processing Systems, NeurIPS, 2019.

Tuomas Kynkäänniemi, Miika Aittala, Tero Karras, Samuli Laine, Timo Aila, and Jaakko Lehtinen.
Applying guidance in a limited interval improves sample and distribution quality in diffusion
models. In arXiv preprint arXiv:2404.07724, 2024.

Black Forest Labs. Flux: A generative model by black forest labs. https://github.com/
black-forest-labs/flux, 2024a. Accessed: 2025-05-14.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024b.

Jaa-Yeon Lee, Byunghee Cha, Jeongsol Kim, and Jong Chul Ye. Aligning text to image in diffusion
models is easier than you think, 2025. URL https://arxiv.org/abs/2503.08250.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
for generative modeling. In International Conference on Learning Representations, ICLR, 2023.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In International Conference on Learning Representations, ICLR,
2023.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. In European Conference on Computer Vision, ECCV, 2024.

OpenAI. Video generation models as world simulators: Introducing sora. https://openai.
com/index/video-generation-models-as-world-simulators/, 2024. Ac-
cessed: 2025-05-14.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. In arXiv preprint arXiv:2304.07193, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Conference on
Computer Vision and Pattern Recognition, CVPR, 2023.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
synthesis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=di52zR8xgf.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. In Advances in Neural Information
Processing Systems, NeurIPS, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Conference on Computer Vision and
Pattern Recognition, CVPR, 2022.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems,
NeurIPS, 2016.

12

https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux
https://arxiv.org/abs/2503.08250
https://openai.com/index/video-generation-models-as-world-simulators/
https://openai.com/index/video-generation-models-as-world-simulators/
https://openreview.net/forum?id=di52zR8xgf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Vikash Sehwag, Xianghao Kong, Jingtao Li, Michael Spranger, and Lingjuan Lyu. Stretching each
dollar: Diffusion training from scratch on a micro-budget. In Conference on Computer Vision and
Pattern Recognition, CVPR, 2025.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In arXiv
preprint arXiv:2010.02502, 2020.

George Stein, Jesse Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Ross, Valentin Villecroze,
Zhaoyan Liu, Anthony L Caterini, Eric Taylor, and Gabriel Loaiza-Ganem. Exposing flaws of
generative model evaluation metrics and their unfair treatment of diffusion models. In Advances in
Neural Information Processing Systems, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. In arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. In arXiv preprint arXiv:2307.09288, 2023b.

Elena Voita, Rico Sennrich, and Ivan Titov. The bottom-up evolution of representations in the
transformer: A study with machine translation and language modeling objectives. In Empirical
Methods in Natural Language Processing, EMNLP, 2019.

Runqian Wang and Kaiming He. Diffuse and disperse: Image generation with representation
regularization, 2025. URL https://arxiv.org/abs/2506.09027.

ZiDong Wang, Zeyu Lu, Di Huang, Cai Zhou, Wanli Ouyang, et al. Fitv2: Scalable and improved
flexible vision transformer for diffusion model. In arXiv preprint arXiv:2410.13925, 2024.

Ziqiao Wang, Wangbo Zhao, Yuhao Zhou, Zekai Li, Zhiyuan Liang, Mingjia Shi, Xuanlei Zhao,
Pengfei Zhou, Kaipeng Zhang, Zhangyang Wang, Kai Wang, and Yang You. Repa works until it
doesn’t: Early-stopped, holistic alignment supercharges diffusion training, 2025. URL https:
//arxiv.org/abs/2505.16792.

Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
than you think. In arXiv preprint arXiv:2410.06940, 2024.

Yuzhe Zhang, Jiawei Zhang, Hao Li, Zhouxia Wang, Luwei Hou, Dongqing Zou, and Liheng Bian.
Diffusion-based blind text image super-resolution. In Conference on Computer Vision and Pattern
Recognition, CVPR, 2024.

Hongkai Zheng, Weili Nie, Arash Vahdat, and Anima Anandkumar. Fast training of diffusion models
with masked transformers. In Transactions on Machine Learning Research, TMLR, 2024.

13

https://arxiv.org/abs/2506.09027
https://arxiv.org/abs/2505.16792
https://arxiv.org/abs/2505.16792


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ANALYSIS DETAILS

Training behavior (Fig. 3). We provide the implementation details used to measure the training
behavior shown in Fig. 3. We adopt the SiT-B/2 configuration from the SiT paper (Ma et al.,
2024), which consists of 2 encoder blocks, 8 middle blocks, and 2 decoder blocks. In Fig. 3a,
we plot the ℓ2 gradient norm of the encoder fθ with respect to the flow-matching loss L, i.e.,
∥∇fθL∥, across pretraining iterations. This analysis highlights the improved gradient flow within
the encoder blocks. Compared to the SiT baseline, SPRINT exhibits consistently stronger gradient
propagation to the encoder as sparsity increases, leading to more effective parameter updates and
faster convergence—reflected in both higher CKNNA scores and lower FID values.

In Fig. 3b, we report the Centered Kernel Nearest-Neighbor Alignment (CKNNA) (Huh et al., 2024)
score, a relaxed variant of Centered Kernel Alignment (CKA). CKNNA is commonly used to assess
the semantic alignment (Yu et al., 2024) between diffusion models and large-scale self-supervised
visual encoders such as DINOv2. Intuitively, given a noisy input xt, CKNNA quantifies how well
the intermediate features of a diffusion model capture noise-invariant semantics by comparing them
with DINOv2 features extracted from the corresponding clean image x0. Higher CKNNA scores
indicate more semantically meaningful and noise-robust representations that align more closely with
the features of the visual encoder. We follow the definition and implementation provided in the
original work (Huh et al., 2024). Specifically, we compute the CKNNA score between the output
of the encoder fθ on noisy inputs xt and the output of DINOv2 on clean inputs x0. We randomly
sample 10K images from the ImageNet-1K validation set and report results with k = 10.

Finally, in Fig. 3c, we report FID values computed with 10K generated images. Consistent with
previous findings (Yu et al., 2024), we observe a strong negative correlation between the CKNNA
values of intermediate diffusion features and FID scores. This suggests that higher alignment between
diffusion features and high-quality visual representations leads to better generation quality.

Roles of dense-shallow and sparse-deep features (Fig. 4). In Fig. 4, we analyze the contribution
of each path in SPRINT. To generate samples using only a single path, we replace the feature
representation of one path with that of the other. In other words, we duplicate the features from one
path and concatenate the original and duplicated features before feeding them into the decoder.

PCA visualization of diffusion features (Fig. 6). In Fig. 6, we perform a principal component
analysis (PCA) of the intermediate features to better understand what the model has learned. PCA
identifies the principal axes that capture the greatest variance in the feature space and is widely
used to analyze representations learned by neural networks (Oquab et al., 2023). We compute
PCA across patch embeddings and visualize the first three principal components as RGB channels.
Specifically, we examine the outputs of the encoder fθ and the middle blocks gθ at different timesteps
to observe how the feature representations evolve throughout the diffusion process. Additional PCA
visualizations are provided in Fig. 34.

B SPRINT WITH DIFFERENT DIFFUSION TRANSFORMERS

We provide details of the different diffusion transformers used in the main paper and describe how
SPRINT is implemented on top of them.

SiT (Ma et al., 2024). We closely follow the architecture of SiT. The SiT model is structurally
analogous to a Vision Transformer (ViT) (Dosovitskiy et al., 2020), consisting of a sequence of
identical transformer blocks that process a patchified 1D token sequence. SiT adapts this for the
diffusion task by incorporating timestep and class conditioning, which is injected into each block
via AdaIN-zero layers. Because the architecture is a simple, homogeneous stack of blocks, it is
straightforward to decouple it into our encoder, middle, and decoder blocks when applying SPRINT.

REPA (Yu et al., 2024). Representation Alignment (REPA)regularizes a DiT by aligning hidden
states with clean image features from a pre-trained DINOv2 model. The architecture largely follows
SiT, with the key modification being a projection layer inserted at the 8th transformer block to perform
the alignment. To integrate SPRINT with REPA, we place this projection layer at the corresponding

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 9: Hyperparameters used for SPRINT.
SiT-B+SPRINT
(Fig. 3, Tab. 5-8)

SiT-XL+SPRINT
(Tab. 1, 3)

SiT-XLREPA+SPRINT
(Tab. 2, 3)

SiT-XL+SPRINT
(Tab. 10)

U-ViT-XL+SPRINT
(Tab. 2)

Architecture
Target latent res. 32× 32 32× 32 32× 32 64× 64 32× 32
Patch size 2 2 2 2 2
Total Num. Layers 12 28 28 28 28
Num. fθ Layers 2 2 2 2 2
Num. gθ Layers 8 24 24 24 24
Num. hθ Layers 2 2 2 2 2
Hidden dims 384 1152 1152 1152 1152
Num. heads 6 16 16 16 16

Pretraining config.
Optimizer AdamW AdamW AdamW AdamW AdamW
Learning rate 0.0001 0.0001 0.0001 0.0001 0.0001
Batch size 256 256 256 256 256
Visual Encoder – – DINOv2-B (λ = 0.5) – –
Drop ratio r 75% 75% 75% 75% 75%

Finetuning config.
Training iterations – 100K 100K 200K 100K
Warmup iterations – 5K 5K 5K 5K
Optimizer – AdamW AdamW AdamW AdamW
Learning rate – 0.0002 0.0002 0.00015 0.0002
Batch size – 512/1024 512/1024 1024 512
Drop ratio r – 0% 0% 0% 0%
Evaluation config.
Sampler ODE ODE/SDE ODE/SDE SDE ODE
Sampling steps 50 50/250 50/250 250 50

location within our sparse middle block, gθ. A key consideration is that the hidden states in gθ
operate on a sparse token set of length N ′, while the target DINOv2 features have a full sequence
length of N . To resolve this, we simply apply the same token-dropping mask to the DINOv2 feature
sequence, ensuring a one-to-one correspondence for the alignment loss. Since DINOv2 also uses a
standard transformer architecture with positional encodings, aligning the corresponding tokens is
straightforward.

U-ViT (Bao et al., 2023). U-ViT extends the Vision Transformer with a U-Net (Ho et al., 2020)-
style architecture. Similar to U-Net, it stacks transformer blocks with long skip-connections between
encoder and decoder stages, directly passing features from encoder to decoder. To apply SPRINT, we
first conceptually decompose the U-ViT into our standard fθ, gθ, and hθ sections while preserving
all original skip-connections. We then introduce our dense residual path between fθ and hθ and
apply token dropping to the middle section, gθ. The U-Net skip-connections remain compatible
with this design. The long-range skips between the encoder and decoder are unaffected. The shorter
skip-connections within the sparse middle section naturally operate on the reduced set of tokens. This
allows SPRINT to be integrated cleanly without disrupting the U-ViT’s core component.

C IMPLEMENTATION DETAILS AND HYPERPARAMETERS

C.1 TRAINING DETAILS

We follow the model configuration of the original SiT implementation (Ma et al., 2024), with the only
modification being a single linear projection layer for sparse–dense residual fusion. This adds only a
marginal number of parameters, approximately 0.3% of the original model size. We use pre-computed
latent vectors from raw images via Stable Diffusion (Rombach et al., 2022) and Flux (Labs, 2024b)
VAEs, and, following common practice, do not apply any data augmentation. For pretraining, we train
SPRINT with a batch size of 256, a learning rate of 1e-4, a fixed drop ratio of 75%, and an EMA decay
rate of 0.9999. After pre-training, we switch the middle blocks to operate on the full token set for a
short fine-tuning stage for 100K iterations. We increase the batch size and the learning rate, following
standard practice (Zheng et al., 2024; Krause et al., 2025). We found that applying a linear learning
rate warm-up from 2e-6 to 2e-4 over the first 5K iterations stabilizes the training. During the warm-up
stage, we use an EMA decay rate of 0.999, which is restored to 0.9999 afterward. For both training
phases, we introduce a path-drop learning strategy to maximize the effectiveness of our path-drop

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 SPRINT Pre-training

Require: Input x0, Drop ratio r, Path-drop prob p, encoder fθ, middle blocks gθ, decoder hθ,
condition c

1: while not converged do
2: Sample t ∼ [0, 1] and ϵ ∼ N (0, I)
3: xt ← (1− t)x0 + t ϵ ▷ xt ∈ RB×N×C

4: ft ← fθ(xt, c) ▷ ft ∈ RB×N×C

5: fdropt ← Drop(ft, r) ▷ fdropt ∈ RB×(1−r)N×C

6: gdrop
t ← gθ(f

drop
t , c) ▷ gdrop

t ∈ RB×(1−r)N×C

7: gpad
t ← PadWithMask(gdrop

t ) ▷ gpad
t ∈ RB×N×C

8: gpad
t ← [MASK] with probability p ▷ Path-drop learning

9: ht ← Fusion(ft,g
pad
t ) ▷ Sparse–dense residual fusion

10: v̂t ← hθ(ht, c) ▷ v̂t ∈ RB×N×C

11: Lvel ← ∥v̂t − vt∥2
12: Update θ using ∇θLvel

13: end while
14: return fθ, gθ, hθ

Algorithm 2 SPRINT Fine-tuning

Require: Input x0, Path-drop prob p, encoder fθ, middle blocks gθ, decoder hθ, condition c
1: while not converged do
2: Sample t ∼ [0, 1] and ϵ ∼ N (0, I)
3: xt ← (1− t)x0 + t ϵ ▷ xt ∈ RB×N×C

4: ft ← fθ(xt, c) ▷ ft ∈ RB×N×C

5: gt ← gθ(ft, c) ▷ gt ∈ RB×N×C

6: gt ← [MASK] with probability p ▷ Path-drop learning
7: ht ← Fusion(ft,gt) ▷ Sparse–dense residual fusion
8: v̂t ← hθ(ht, c) ▷ v̂t ∈ RB×N×C

9: Lvel ← ∥v̂t − vt∥2
10: Update θ using ∇θLvel

11: end while
12: return fθ, gθ, hθ

guidance, in addition to the standard class-condition dropping. Specifically, following the practice in
CFG training, we randomly drop the features of the sparse–deep path with a probability of 10% and
replace the dropped features with mask tokens. This random dropping is performed independently of
the condition dropping in CFG. To accelerate training, we adopt mixed-precision (bf16) training and
apply gradient norm clipping at 1.0 during both pretraining and finetuning. Detailed hyperparameters
are summarized in Table 9. All experiments are conducted on 8 NVIDIA A100 80GB GPUs.

C.2 EVALUATION DETAILS

Metrics. We evaluate generation performance using several standard metrics: FDD (Stein et al.,
2023) (Fréchet Distance on DINOv2), FID (Heusel et al., 2017) (Fréchet Inception Distance),
IS (Salimans et al., 2016) (Inception Score), and Precision/Recall (Kynkäänniemi et al., 2019).
Unless otherwise specified, we follow the evaluation protocol of (Dhariwal & Nichol, 2021) and
report results using 50K generated samples.

FID is the most widely used metric, measuring the feature distance between the distributions of real
and generated images. It relies on the Inception-V3 network and assumes both feature distributions
follow multivariate Gaussian distributions. IS also uses the Inception-V3 network but instead evaluates
the quality and diversity of generated images by computing the KL-divergence between the marginal
label distribution and the conditional label distribution predicted from logits.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 3 SPRINT Inference

Require: encoder fθ, middle blocks gθ, decoder hθ, condition c, guidance scale w, sampling steps
N , sampler S

1: x1 ∼ N (0, I)
2: for i = N to 1 do
3: t← i

N
4: if Path-drop guidance then
5: v(xt, ∅)← hθ(Fusion(M, fθ(xt, c)), c) ▷ Path-drop guidance
6: else
7: v(xt, ∅)← hθ(Fusion(gθ(fθ(xt, c), c), fθ(xt, ∅)), ∅) ▷ Classifier-free guidance
8: end if
9: ṽ(xt, c)← v(xt, ∅) + w ·

(
v(xt, c)− v(xt, ∅)

)
10: xt− 1

N
← S(xt, ṽ(xt, c))

11: end for
12: return x0

FDD adopts the same formulation as FID but replaces Inception features with DINOv2 features,
which provide stronger semantic alignment and robustness to noise. Notably, FDD has been shown to
be more reliable for diffusion models (Stein et al., 2023; Karras et al., 2024b).

Finally, Precision measures the fraction of generated images that are realistic, while Recall measures
the fraction of the training data manifold covered by generated samples.

Guidance scale. We use the following formulation for guidance sampling (Ho & Salimans, 2022):

ṽ(xt, c) = v(xt, ∅) + w · (v(xt, c)− v(xt, ∅)) , (5)

where w denotes the guidance scale. In standard Classifier-Free Guidance (CFG), the unconditional
velocity v(xt, ∅) is computed using the full model path with a null condition. In contrast, our
Path-Drop Guidance (PDG) replaces the unconditional branch with a weaker network, as defined in
Eq. 4.

For the results in Tables 1 and 2, we consistently use a CFG scale of 1.4 with the ODE sampler across
all methods.

For Table 3, we adopt the SDE sampler (Ma et al., 2024) to compare baselines. Under this setting,
we use a CFG scale of 1.35 to achieve the best FID and 2.0 to achieve the best FDD. For our PDG
sampling, the optimal scales are 1.35 for FID and 1.9 for FDD.

For our model in Table 10, we use the scale of 1.35 and 1.8 for FID and FDD, respectively, for both
CFG and PDG.

D COMPUTATION ANALYSIS

We use the SiT-XL/2 configuration for evaluating computational analysis below.

FLOPs. To estimate the total training FLOPs, we measure the forward-pass FLOPs over 100
iterations with a batch size of 256, average the results, and multiply by the total number of training
iterations. For inference FLOPs, we sum the forward-pass FLOPs across all sampling timesteps using
a batch size of 32 and report the average over both timesteps and batch size. This procedure provides
a consistent and reproducible measure of computational cost across methods. Note that we report
floating-point operations (FLOPs), not multiply–accumulate operations (MACs), where one MAC
corresponds to approximately two FLOPs.

Training speed. Here, we compare the actual run-time performance of each method on Stable
Diffusion VAE latents. For all token-dropping methods, we use a fixed drop rate of 75%. At
the ImageNet resolution of 2562, SPRINT achieves a pretraining speed of 5.2 iters/sec, which
is more than 2× faster than the SiT baseline (2.5 iters/sec) and clearly outperforms other token-
dropping baselines, including MaskDiT (4.57 iters/sec), MicroDiT (3.9 iters/sec), and Tread (4.7

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 10: Comprehensive performance comparison on ImageNet 512× 512 class-conditioned
generation with classifier-free guidance. ↓ / ↑ indicate whether lower or higher values are better,
respectively. All metrics are evaluated with 250 sampling steps using the SDE sampler. Training and
inference TFLOPs are measured with the DeepSpeed library.

Method Epochs #Params.
Training

TFLOPs ↓
(×106)

Inference
TFLOPs ↓ FDD ↓ FID ↓ Pre. ↑ Rec. ↑

ADM (Dhariwal & Nichol, 2021) 400 – – – – 2.85 0.84 0.53
Simple diffusion (U-Net) 800 – – – – 4.28 – –
Simple diffusion (U-ViT-L) 800 – – – – 4.53 – –

MaskDiT (Zheng et al., 2024) 800 730M 327.2 1.029 – 2.50 0.83 0.56
DiT-XL (Peebles & Xie, 2023) 600 675M 366.6 0.952 – 3.04 0.84 0.54
SiT-XL (Ma et al., 2024) 600 675M 366.6 0.952 – 2.62 0.84 0.57

SiT-XL
+ SPRINT 400 677M 184.8 0.954 53.6 2.23 0.83 0.57
+ SPRINTPDG 400 677M 184.8 0.471 46.9 1.96 0.83 0.58

iters/sec). At the higher ImageNet resolution of 5122, SPRINT maintains its advantage, achieving 2.01
iters/sec—over 2.5× faster than the SiT baseline (0.79 iters/sec)—and again surpassing MaskDiT
(1.77 iters/sec), MicroDiT (1.54 iters/sec), and Tread (1.79 iters/sec). This acceleration results in
substantial reductions in wall-clock training time and GPU consumption, making large-scale diffusion
model training significantly more practical and resource-efficient.

VRAM memory consumption. In addition to reducing computational cost, SPRINT significantly
lowers GPU memory requirements during training. For example, when training with a batch size
of 32 and image resolution 2562 on a single GPU, SPRINT requires only 19.6 GB of memory,
compared to 29.6 GB for the baseline SiT-XL/2 model. At resolution 5122, our SPRINT requires
37.9 GB, whereas the baseline SiT-XL/2 model requires 77.7 GB. This represents a 33.8% reduction
in memory usage at 2562 and a 51.2% reduction at 5122. Such efficiency enables training with
larger batch sizes or higher resolutions on the same hardware, making our method more accessible
for researchers with limited GPU resources. Importantly, this reduction comes without sacrificing
performance, underscoring the practicality of SPRINT in resource-constrained environments.

E BASELINES

E.1 BASELINE DETAILS ON TABLE 1

For a fair system-level comparison in Tab. 1, we apply the same pretraining and finetuning strategies,
along with identical transformer block configurations, a fixed drop ratio of 75%, and consistent
evaluation hyperparameters, across all baselines.

Progressive training. We adopt the same network architecture for progressive training. The model
is first pretrained on 128 × 128 images and then finetuned on 256 × 256 images, with positional
embeddings resized using bilinear interpolation during the resolution transition. This approach is
slightly more efficient than SPRINT in terms of computational cost per iteration, achieving 25.8
vs. 31.5 GFLOPs (×109) at 1M training iterations. However, despite the efficiency advantage,
progressive training lags behind SPRINT in performance and even fails to match the baseline SiT
results, underscoring its limited effectiveness.

MicroDiT (Sehwag et al., 2025). MicroDiT introduces deferred masking, where token dropping is
applied only after several additional patch-mixing blocks. These modules allow local patch tokens
to fuse information, enriching their semantic content. Following the original protocol, we modify
the SiT-XL/2 model by inserting patch-mixing modules composed of six transformer blocks. As
shown in Tab. 1, this modification substantially increases computational cost and the number of
parameters. Nevertheless, despite the additional overhead, MicroDiT underperforms relative to
SPRINT, highlighting that the deferred masking strategy and additional compute does not translate
into superior efficiency or accuracy.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 11: Performance of SiT-XL/2 and SPRINT across NFEs. Results are reported at 1M training
iterations using the ODE sampler with 50K generated samples.

Method NFE FDD ↓ FID ↓ IS ↑ Pre. ↑ Rec. ↑
SiT-XL/2 200 132.3 2.18 249.9 0.81 0.59

+ SPRINT (Ours) 200 120.4 2.08 272.2 0.81 0.60
Gain ∆ +11.9 +0.1 +22.3

SiT-XL/2 150 133.1 2.19 249.6 0.81 0.59
+ SPRINT (Ours) 150 121.1 2.09 271.5 0.81 0.59

Gain ∆ +12.0 +0.1 +21.9
SiT-XL/2 100 134.7 2.22 248.4 0.81 0.58

+ SPRINT (Ours) 100 122.2 2.10 271.0 0.81 0.59
Gain ∆ +12.4 +0.12 +22.6

SiT-XL/2 50 140.6 2.34 244.0 0.80 0.58
+ SPRINT (Ours) 50 126.5 2.19 267.7 0.81 0.59
Gain ∆ +14.1 +0.15 +23.7

SiT-XL/2 25 156.1 2.91 234.4 0.80 0.57
+ SPRINT (Ours) 25 138.2 2.59 256.3 0.80 0.58
Gain ∆ +17.9 +0.32 +21.9

SiT-XL/2 10 222.4 7.37 187.3 0.74 0.54
+ SPRINT (Ours) 10 191.7 6.29 211.3 0.74 0.54

Gain ∆ +30.7 +1.08 +24.0

Tread (Krause et al., 2025). Tread introduces a token-routing strategy in which randomly dropped
tokens at early layers are routed directly to deeper layers. While this resembles SPRINT in that tokens
bypass the middle layers, the two approaches differ fundamentally. In Tread, only the dropped tokens
are bypassed, forcing the middle block to encode local noise information in order to estimate velocity.
In contrast, SPRINT employs a full dense residual path that delivers complete local noise information
to the decoder, freeing the middle block to focus on modeling global contextual information. This
design choice makes SPRINT highly effective under aggressive dropping ratios (75%), whereas
Tread fails under the same setting. We follow the implementation details provided in the original
Tread paper.

E.2 MORE DISCUSSION ON OTHER BASELINES

MaskDiT (Zheng et al., 2024). MaskDiT introduces an additional reconstruction task for masked
tokens alongside the diffusion objective, encouraging the model to recover missing information and
thereby improve contextual understanding. While this approach provides some efficiency gains,
it requires an extra decoder module, increasing the model size from 675M to 730M and adding
computational overhead. Moreover, its effectiveness is limited to moderate dropping ratios (e.g.,
50%). As shown in Tab. 3, these limitations restrict its overall efficiency compared to our framework.
Specifically, MaskDiT requires 1600 training epochs to reach 65.4 FDD and 2.28 FID, whereas
SPRINT surpasses this in just 200 epochs with 61.8 FDD and 2.01 FID. This underscores the superior
effectiveness and efficiency of SPRINT over MaskDiT.

MDT (Gao et al., 2023). The Masked Diffusion Transformer (MDT) also aims to improve the
contextual understanding of diffusion models through token dropping. They designed masked
diffusion transformer with encoder-decoder split of the diffusion transformer, where the encoder
processes masked tokens and forwards them to the decoder along with remaining tokens through
additional side-interpolator model. It adds additional long shorcut connections between encoder
blocks along with long full token input to all decoder blocks. The added complexity in the training
and architectural changes is aimed for better generative performance. Similar to MaskDiT, this work
also operates only with moderate token dropping ratios (e.g., [30%, 50%]). MDT does not work well
with high token dropping ratio such as 75%.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F ADDITIONAL QUANTITATIVE RESULTS

F.1 IMAGENET 512X512 EXPERIMENT

In the main text, we have already demonstrate that SPRINT outperforms many existing training
methods and state-of-the-art models at 2562 class conditional image generation. In this experiment,
we train our models to generation images at 5122 resolution.

Tab. 10 compares our method with strong baselines on ImageNet-1K class-conditional generation at
5122. We pre-train SPRINT for 1.8M iterations and finetune for 200K iterations (refer to Table 9).
SPRINT achieves better generation quality while using substantially fewer training TFLOPs (×106):
only 184.8 at 400 epochs, versus 366.6 for SiT-XL at 600 epochs. This demonstrates much faster
convergence, reaching better FID (2.23 vs. 2.62) with nearly 2× lower training cost. At inference,
Path-Drop Guidance provides further benefits, nearly halving inference TFLOPs (0.471 vs. 0.952)
while improving both FID and FDD. Overall, SPRINT consistently demonstrates significant efficiency
compared to the baselines at 5122, by combining lower training and inference costs. Refer to Fig. 33
for qualitative results.

F.2 PERFORMANCE WITH FEW-STEP GENERATION

Tab. 11 compares SiT-XL/2 and SiT-XL/2 + SPRINT across lower inference steps (NFEs), an essential
setting for achieving efficient and practical image generation. In real-world scenarios, reducing the
number of function evaluations (NFEs) directly translates to faster sampling and lower inference
cost, often at the expense of generation quality. While both models perform similarly at large NFEs
(200), SPRINT consistently outperforms the baseline as the number of steps decreases. At 50 steps,
SPRINT improves FID from 2.34 to 2.19 and IS from 244.0 to 267.7, and at only 10 steps it achieves
a much larger gain, reducing FID from 7.37 to 6.29 and improving IS from 187.3 to 211.3. These
results highlight that SPRINT is more competitive under low-step inference. This demonstrates the
strong representational power of fused dense–shallow and sparse–deep features.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G ADDITIONAL QUALITATIVE RESULTS

G.1 VISUAL COMPARISON ON IMAGENET 256× 256

Figure 10: SPRINT improves visual quality over baseline with only 57% of inference FLOPs
(additional examples). We present samples from two SiT-XL/2 + REPA models after 1M iterations,
where SPRINT is applied to one of the models. For our approach, we further incorporate the proposed
Path-Drop Guidance (PDG), yielding higher visual quality compared to the REPA.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

G.2 UNSELECTED GENERATED RESULTS BY SPRINT ON IMAGENET 256× 256

Figure 11: Unselected generation results of SiT-XL/2 + SPRINTCFG. We use classifier-free
guidance with w = 4.0. Class label = “park bench” (706)

Figure 12: Unselected generation results of SiT-XL/2 + SPRINTPDG. We use our path-drop
guidance with w = 4.0. Class label = “park bench” (706)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 13: Unselected generation results of SiT-XL/2 + SPRINTCFG. We use classifier-free
guidance with w = 4.0. Class label = “hammerhead, hammerhead shark” (4)

Figure 14: Unselected generation results of SiT-XL/2 + SPRINTPDG. We use our path-drop
guidance with w = 4.0. Class label = “hammerhead, hammerhead shark” (4)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 15: Unselected generation results of SiT-XL/2 + SPRINTCFG. We use classifier-free
guidance with w = 4.0. Class label = “magpie” (18)

Figure 16: Unselected generation results of SiT-XL/2 + SPRINTPDG. We use our path-drop
guidance with w = 4.0. Class label = “magpie” (18)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 17: Unselected generation results of SiT-XL/2 + SPRINTCFG. We use classifier-free
guidance with w = 4.0. Class label = “bullfrog, Rana catesbeiana” (30)

Figure 18: Unselected generation results of SiT-XL/2 + SPRINTPDG. We use our path-drop
guidance with w = 4.0. Class label = “bullfrog, Rana catesbeiana” (30)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 19: Unselected generation results of SiT-XL/2 + SPRINTCFG. We use classifier-free
guidance with w = 4.0. Class label = “tusker” (101)

Figure 20: Unselected generation results of SiT-XL/2 + SPRINTPDG. We use our path-drop
guidance with w = 4.0. Class label = “tusker” (101)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 21: Unselected generation results of SiT-XL/2 + SPRINTCFG. We use classifier-free
guidance with w = 4.0. Class label = “beagle” (162)

Figure 22: Unselected generation results of SiT-XL/2 + SPRINTPDG. We use our path-drop
guidance with w = 4.0. Class label = “beagle” (162)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 23: Unselected generation results of SiT-XL/2 + SPRINTCFG. We use classifier-free
guidance with w = 4.0. Class label = “coffeepot” (505)

Figure 24: Unselected generation results of SiT-XL/2 + SPRINTPDG. We use our path-drop
guidance with w = 4.0. Class label = “coffeepot” (505)

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 25: Unselected generation results of SiT-XL/2 + SPRINTCFG. We use classifier-free
guidance with w = 4.0. Class label = “computer keyboard, keypad” (508)

Figure 26: Unselected generation results of SiT-XL/2 + SPRINTPDG. We use our path-drop
guidance with w = 4.0. Class label = “computer keyboard, keypad” (508)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 27: Unselected generation results of SiT-XL/2 + SPRINTCFG. We use classifier-free
guidance with w = 4.0. Class label = “convertible” (511)

Figure 28: Unselected generation results of SiT-XL/2 + SPRINTPDG. We use our path-drop
guidance with w = 4.0. Class label = “convertible” (511)

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 29: Unselected generation results of SiT-XL/2 + SPRINTCFG. We use classifier-free
guidance with w = 4.0. Class label = “cornet, horn, trumpet, trump” (513)

Figure 30: Unselected generation results of SiT-XL/2 + SPRINTPDG. We use our path-drop
guidance with w = 4.0. Class label = “cornet, horn, trumpet, trump” (513)

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 31: Unselected generation results of SiT-XL/2 + SPRINTCFG. We use classifier-free
guidance with w = 4.0. Class label = “cowboy hat, ten-gallon hat” (515)

Figure 32: Unselected generation results of SiT-XL/2 + SPRINTPDG. We use our path-drop
guidance with w = 4.0. Class label = “cowboy hat, ten-gallon hat” (515)

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

G.3 GENERATED RESULTS BY SPRINT ON IMAGENET 512× 512

Figure 33: Generation results of SiT-XL/2 + SPRINTPDG. We use our path-drop guidance with w
= 3.0.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

G.4 ADDITIONAL FEATURE PCA VISUALIZATION

In the main text (Figure 6), we analyzed PCA visualizations of features from fθ and gθ, showing that
SPRINT learns more noise-invariant and semantically vivid representations than the SiT baseline
across diffusion timesteps. Figure 34 presents additional examples of these dense–shallow and
sparse–deep features learned by SPRINT, contrasted with those from a standard SiT-XL/2 model
trained with full tokens.

Figure 34: SPRINT improves feature semantics (additional examples). We visualize PCA features
of fθ and gθ from two SiT-XL/2 models at 400K iterations. The top rows show the model trained
with SPRINT, while the bottom rows show the baseline. Compared to the baseline, features from
SPRINT exhibit clearer semantic structure across both images.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

H LIMITATION AND FUTURE WORK

Our study is limited by the available computational resources, which prevented us from conducting
experiments on large-scale text-to-image or video diffusion models. Exploring the scalability of
SPRINT in such settings remains an important direction. In particular, the quadratic complexity
of transformers becomes increasingly prohibitive as model size and input resolution grow. Since
SPRINT is specifically designed to reduce redundant computation in deeper layers, we expect it to
be especially beneficial for large-scale architectures where efficiency bottlenecks are most severe.
Thus, extending SPRINT to other modalities such as video, 3D, or multi-modal generative models
is an exciting direction. These domains pose even greater computational and memory challenges,
particularly in video, where the temporal dimension compounds complexity, making our sparse–dense
residual fusion especially relevant for future research.

Another promising avenue is the integration of SPRINT with recent advances in efficient attention
mechanisms and scalable training strategies. Such combinations could amplify the benefits of our
approach, further reducing training and inference costs while maintaining or improving performance.

35


	Introduction
	Related Work
	SPRINT: Sparse-Dense Residual Fusion for Efficient Diffusion Transformers
	Preliminaries
	Bottleneck in Standard DiT Training
	Sparse–Dense Residual Fusion
	Efficient Path-Drop Guidance (PDG)
	Structured Group-wise Token Subsampling

	Experiment
	Experimental details
	System-level comparison
	Comparison with state-of-the-art models
	Analysis
	Benefits of Fine-tuning

	Conclusion
	Analysis Details
	SPRINT with Different Diffusion Transformers
	Implementation Details and Hyperparameters
	Training details
	Evaluation details

	Computation Analysis
	Baselines
	Baseline Details on Table 1
	More Discussion on Other Baselines

	Additional quantitative results
	ImageNet 512x512 experiment
	Performance with few-step generation

	Additional Qualitative results
	Visual comparison on ImageNet 256x256
	Unselected generated results by SPRINT on ImageNet 256x256
	Generated results by SPRINT on ImageNet 512x512
	Additional feature PCA visualization

	Limitation and Future Work

