

# SPRINT: SPARSE-DENSE RESIDUAL FUSION FOR EFFICIENT DIFFUSION TRANSFORMERS

000  
001  
002  
003  
004  
005  
006  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
Anonymous authors  
Paper under double-blind review

## ABSTRACT

Diffusion Transformers (DiTs) deliver state-of-the-art generative performance but their quadratic training cost with sequence length makes large-scale pretraining prohibitively expensive. Token dropping can reduce training cost, yet naïve strategies degrade representations, and existing methods are either parameter-heavy or fail at high drop ratios. We present **SPRINT** (**S**pars**E**-**D**ense **R**esidual **F**usion for Efficient Diffusion Transformers), a simple method that enables aggressive token dropping (up to 75%) while preserving quality. SPRINT leverages the complementary roles of shallow and deep layers: early layers process all tokens to capture local detail, deeper layers operate on a sparse subset to cut computation, and their outputs are fused through residual connections. Training follows a two-stage schedule: long masked pre-training for efficiency followed by short full-token fine-tuning to close the train–inference gap. On ImageNet-1K 256<sup>2</sup>, SPRINT achieves 9.8 $\times$  training savings with comparable FID/FDD, and at inference, its **Path-Drop Guidance (PDG)** nearly halves FLOPs while improving quality. These results establish SPRINT as a simple, effective, and general solution for efficient DiT training.

## 1 INTRODUCTION

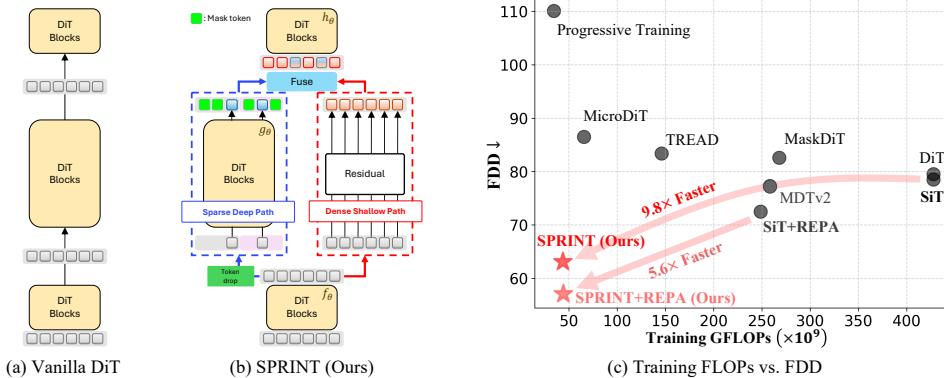


Figure 1: **S**pars**E**-**D**ense **R**esidual **F**usion improves the efficiency of diffusion transformer training. SPRINT decouples the computationally heavy middle blocks of DiT into a sparse–deep path and a dense–shallow residual path. Notably, SPRINT achieves up to 5.6 $\times$  and 9.8 $\times$  lower training cost compared to vanilla models, while improving generation quality.

Diffusion Transformers (DiTs) (Peebles & Xie, 2023; Esser et al., 2024b) have emerged as a powerful class of generative models (OpenAI, 2024; Labs, 2024a). Yet their training cost scales quadratically with sequence length, making large-scale pretraining prohibitively expensive in compute and memory. A natural way to reduce training cost is to shorten sequences by dropping tokens during training. However, naïve token dropping (Sehwag et al., 2025) degrades representations and leads to poor generalization when models are evaluated with full-token inputs at inference.

Another direction is to guide DiTs with external supervision. For instance, REPA (Yu et al., 2024) aligns intermediate DiT features with DINOv2, accelerating convergence. However, such auxiliary

054 losses can harm long-term performance or destabilize training (Wang et al., 2025), since pre-trained  
 055 vision features are not naturally aligned with diffusion’s iterative denoising. Recent work (Zheng et al.,  
 056 2024; Gao et al., 2023) has explored more advanced token-dropping strategies. While promising,  
 057 these methods either add substantial parameters (Sehwag et al., 2025) or only support moderate drop  
 058 ratios (Krause et al., 2025; Zheng et al., 2024), and break down under aggressive settings (e.g., 75%).  
 059

060 In this work, we present a training algorithm that enables high-ratio token dropping while preserving  
 061 robust, semantically meaningful representations that transfer effectively to full-token fine-tuning. Our  
 062 design philosophy is to train DiTs efficiently with minimal architectural changes, achieving perfor-  
 063 mance on par with—or better than—strong baselines. The core idea is to exploit the complementary  
 064 roles of shallow and deep layers in neural networks: shallow layers capture fine-grained local details,  
 065 while deeper layers model global semantics. However, in standard DiT training, deeper layers often  
 066 waste computation on redundant local details that contribute little to modeling global semantics, due  
 067 to the homogeneous architecture of DiTs. This redundancy significantly slows training convergence  
 068 and reduces efficiency. We demonstrate that reformulating the architecture and coupling it with a  
 069 principled token-dropping strategy resolves this issue.

070 **Our Solution.** We introduce *Sparse–Dense Residual Fusion for Efficient Diffusion Transformers*  
 071 (**SPRINT**), a simple strategy that enables aggressive token dropping while preserving representation  
 072 quality. Specifically, we partition the DiT into three components: encoder, middle blocks, and decoder.  
 073 The encoder processes all tokens to encode local information, producing dense shallow features.  
 074 Before the middle blocks, we drop most tokens (typically 75%), forcing deeper layers to focus on  
 075 sparse global context with far lower compute, making sparse deep features. **Simple** residual fusion  
 076 mechanism then combines dense shallow features with sparse deep features, while dummy masking  
 077 tokens ensure dimensional alignment, and the fused representation is passed to the decoder.

078 Training proceeds in two stages. First, we perform long pre-training with 75% token dropping,  
 079 yielding large compute savings. Then, a short fine-tuning stage restores full-token processing in the  
 080 middle blocks, allowing them to adapt to dense inputs and closing the train–inference gap. Training  
 081 uses the standard diffusion loss, and the DiT block design remains unchanged, making SPRINT easy  
 082 to integrate into existing codebases.

083 **Notably, the dual-path structure of SPRINT (dense shallow and sparse deep) enables a surprisingly**  
 084 **efficient guidance sampling strategy, which we denote as *Path-Drop Guidance* (PDG).** Standard  
 085 classifier-free guidance requires two full forward passes of the model to compute conditional and  
 086 unconditional estimates, thereby doubling inference cost. In contrast, under our framework, we can  
 087 efficiently obtain the unconditional estimate by entirely bypassing the middle blocks and using only  
 088 the dense shallow path. We demonstrate that PDG reduces the cost of guidance sampling by nearly  
 089 50% *while improving generation quality*.

090 **Contributions.** Our work makes the following key contributions:

- 091 • We propose *Sparse–Dense Residual Fusion* (SPRINT), which fuses dense shallow and sparse  
 092 deep features for efficient DiT training, supporting up to 75% token dropping and yielding large  
 093 efficiency gains over prior methods (Tab. 1, Fig. 3c).
- 094 • We demonstrate faster convergence and improved efficiency on modern DiTs. On ImageNet-  
 095 1K 256<sup>2</sup> class-conditional generation, SPRINT reduces training GFLOPs by **9.8**× compared to  
 096 standard SiT training while achieving similar or better quality (Fig. 1c, Tab. 3).
- 097 • SPRINT provides new insights into DiT representations: our dense–shallow features are more  
 098 noise-invariant and semantically expressive (Fig. 6); achieve higher CKNNA scores than vanilla  
 099 DiT (Fig. 3b); and shallow versus deep paths specialize in local versus global semantics (Fig. 4).
- 100 • We introduce *Path-Drop Guidance* (PDG), a replacement for classifier-free guidance (CFG) that  
 101 computes the unconditional pass using only dense shallow features. PDG nearly halves inference  
 102 FLOPs while surpassing CFG in generation quality (Fig. 2, Tab. 3).
- 103 • We show that SPRINT is simple, architecture-agnostic, and complementary to alignment-based  
 104 methods. It applies seamlessly across architectures (SiT, UViT), latent spaces (SD, FLUX VAE),  
 105 and resolutions (256, 512), and provides further gains when combined with REPA (Yu et al., 2024).



Figure 2: **SPRINT improves visual quality over baseline with only 57% of inference FLOPs.** We present samples from two SiT-XL/2<sub>REPA</sub> models after 1M training iterations, where SPRINT is applied to one of the models. For our approach, we further incorporate the proposed Path-Drop Guidance (PDG), yielding improved FDD scores and higher visual quality compared to **vanilla** REPA.

## 2 RELATED WORK

**Accelerating DiT training via representation alignment.** Several works accelerate DiT convergence by aligning internal features with pre-trained vision transformers. REPA (Yu et al., 2024) aligns intermediate DiT activations with DINOv2 features, while Lee et al. (2025) extend this to text–image models via a contrastive loss. Wang & He (2025) instead propose a dispersive loss that spreads features without external alignment. However, HASTE (Wang et al., 2025) shows that alignment signals can conflict with diffusion objectives and destabilize training. These objectives are complementary to our token-dropping scheme and can be combined to further boost performance (Tab. 2).

**Efficient DiT training with token dropping.** Another direction reduces training cost by shortening sequences. Progressive training (Podell et al., 2024; Esser et al., 2024b) first pre-trains at  $128 \times 128$  before fine-tuning at  $256 \times 256$ . MDTv2 (Gao et al., 2023) restructures DiT into an encoder–decoder, processing masked tokens with skip connections and optimizing both reconstruction and diffusion losses. MaskDiT (Zheng et al., 2024) drops random patches, replaces them with mask tokens, and trains an auxiliary decoder, which adds inference cost. MicroDiT (Sehwag et al., 2025) adds a patch-mixer for high masking ratios; and TREAD (Krause et al., 2025) bypasses subsets of tokens through inner layers to optimize full denoising loss. These approaches work at moderate drop ratios ( $\leq 50\%$ ) but degrade at aggressive settings (*e.g.*, 75%) and are difficult to pair with alignment losses. In contrast, our approach remains alignment-friendly and robust even under high drop rates.

## 3 SPRINT: SPARSE-DENSE RESIDUAL FUSION FOR EFFICIENT DIFFUSION TRANSFORMERS

### 3.1 PRELIMINARIES

**Diffusion and flow-based generative models.** Diffusion and flow-based models Ho et al. (2020); Song et al. (2020); Lipman et al. (2023); Liu et al. (2023) learn a continuous transformation between a simple reference distribution  $\pi_1$  (*e.g.*, Gaussian noise) and a target data distribution  $\pi_0$ . Given  $\mathbf{x}_0 \sim \pi_0$  and  $\mathbf{x}_1 \sim \pi_1$ , the transformation evolves over  $t \in [0, 1]$  by the ODE

$$\frac{d\mathbf{x}_t}{dt} = v(\mathbf{x}_t, t), \quad (1)$$

where  $\mathbf{x}_t$  interpolates between  $\mathbf{x}_0$  and  $\mathbf{x}_1$ , and  $v : \mathbb{R}^d \times [0, 1] \rightarrow \mathbb{R}^d$  is the velocity field. We use  $\mathbf{x}_t \sim \mathcal{N}(\alpha_t \mathbf{x}_0, \sigma_t^2 I)$  with  $\alpha_0 = \sigma_1 = 1$ ,  $\alpha_1 = \sigma_0 = 0$ , and adopt a linear schedule Ma et al. (2024):  $\alpha_t = 1 - t$ ,  $\sigma_t = t$ . A neural network  $v_\theta$  (*e.g.*, DiT) learns  $v$  by minimizing

$$\min_{\theta} \mathbb{E}_{\mathbf{x}_0, \mathbf{x}_1, t} [\|v(\mathbf{x}_t, t) - v_\theta(\mathbf{x}_t, t)\|^2]. \quad (2)$$

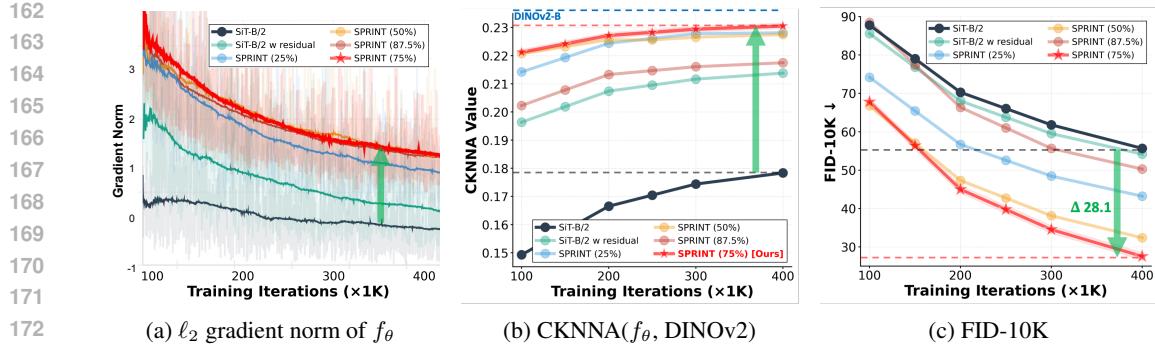


Figure 3: **Training behavior of diffusion transformers.** We empirically analyze the training dynamics of SiT-B/2 and its SPRINT variants under different token-drop ratios. (a) We measure the  $\ell_2$  gradient norm of  $f_\theta$ , showing that SPRINT enables the encoder to receive stronger gradient signals from the loss. (b) SPRINT variants achieve higher and earlier CKNNA scores than SiT, indicating SPRINT learns more semantic, noise-robust representations. (c) SPRINT converges substantially faster and to lower FID than SiT, with the gap further widening at higher drop ratios (up to 75%), highlighting both the effectiveness and efficiency of our framework.

**Token dropping in diffusion transformers.** Given a noisy image  $\mathbf{x}_t$ , a DiT divides it into non-overlapping  $p \times p$  patches, producing tokens  $\mathbf{x}_t \in \mathbb{R}^{B \times N \times D}$ , where  $N = \frac{HW}{p^2}$ ,  $D$  is the embedding dimension, and  $H \times W$  the image resolution. Since the attention cost in DiTs scales quadratically with  $N$ , dropping tokens reduces training cost. For a drop ratio  $r$ , we remove  $\lfloor rN \rfloor$  tokens and process only the remaining  $N - \lfloor rN \rfloor$  with DiT blocks. Although described for 2D images, this naturally extends to other modalities such as video.

### 3.2 BOTTLENECK IN STANDARD DiT TRAINING

Standard Diffusion Transformers (DiTs) use a homogeneous architecture where every layer, from shallow to deep, processes the full set of dense tokens. This is inefficient: in deeper layers, token representations become redundant as features shift from local, high-frequency patterns to global, low-frequency semantics (Hoover et al., 2019; Voita et al., 2019). Inference-time pruning and merging methods (Rao et al., 2021; Chang et al., 2023; Bolya & Hoffman, 2023) further show that large fractions of tokens can be removed in later layers with minimal effect on output quality. Training deep layers on all tokens thus wastes compute, spending a large portion of the FLOP budget on fine-grained details that contribute little to modeling global structure.

We address this by introducing architectural specialization: 1. **Early layers** process *dense* tokens to robustly capture local evidence under noisy input and build a rich foundation of features. 2. **Deeper layers** operate on a *sparse* subset of tokens to efficiently model global semantic relationships without redundant computation. 3. **Final layers** reintroduce all tokens for dense prediction. Based on these principles, we reformulate the DiT architecture with a dense–sparse fusion mechanism.

### 3.3 SPARSE–DENSE RESIDUAL FUSION

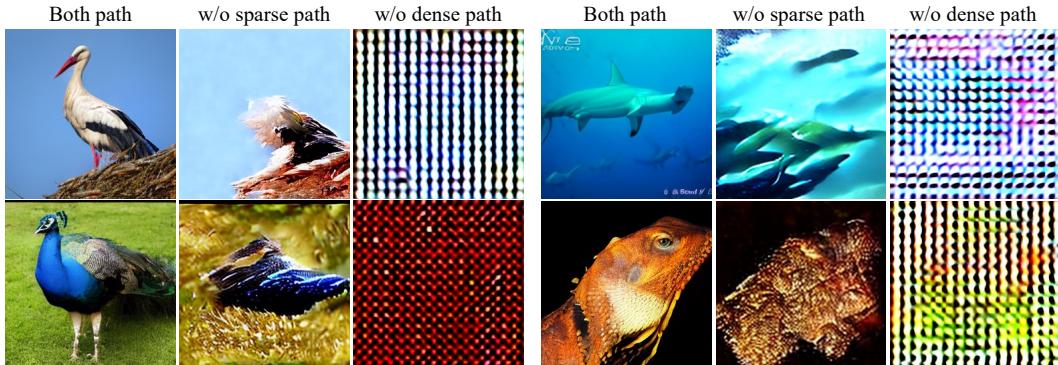
We propose ***Sparse–Dense Residual Fusion*** for Efficient Diffusion Transformers (SPRINT), which decouples dense local details from sparse global semantics, improving efficiency by accelerating convergence and reducing compute. An overview is shown in Fig. 1. We begin with a standard DiT, divided into encoder  $f_\theta$  (first two blocks), middle blocks  $g_\theta$ , and decoder  $h_\theta$  (final two blocks), and reformulate the computation flow as:

1. **Encoder**  $f_\theta$  processes all noisy tokens to produce a feature map that retains fine-grained local noise information across all spatial locations.
2. **Dense shallow path** creates a residual connection that directly forwards the dense feature map from  $f_\theta$  to the fusion block, preserving local, high-frequency detail.
3. **Sparse deep path** drops a large fraction of tokens (e.g., 75%) before  $g_\theta$ , forcing the deep layers to operate on a sparse subset, yielding sparse global context.
4. **Fusion and decoder** integrate dense local information from the shallow path with sparse global context from the deep path to predict all tokens.

216 Formally, given input tokens  $\mathbf{x}_t \in \mathbb{R}^{B \times N \times C}$ , we first compute dense features  $\mathbf{f}_t = f_\theta(\mathbf{x}_t)$ . A fraction  
 217  $r$  of tokens (the *drop ratio*) is removed to form  $\mathbf{f}_t^{\text{drop}}$ , which is processed by the middle blocks:  
 218  $\mathbf{g}_t^{\text{drop}} = g_\theta(\mathbf{f}_t^{\text{drop}})$ . To fuse the dense and sparse paths, we restore  $\mathbf{g}_t^{\text{drop}}$  to the original sequence length  
 219 by padding the dropped positions with a fixed [MASK] token (denoted  $\mathbf{M}$ ), yielding  $\mathbf{g}_t^{\text{pad}} \in \mathbb{R}^{B \times N \times C}$ .  
 220 We concatenate  $\mathbf{f}_t$  and  $\mathbf{g}_t^{\text{pad}}$  along the channel dimension, project back to the original size, and feed  
 221 the fused representation to the decoder  $h_\theta$ . This enables the decoder to combine local details from  
 222 the encoder with sparse global semantics from the middle blocks for full-token prediction. **The entire**  
 223 **model is trained end-to-end by minimizing the flow matching loss in Eq. 2 (refer to Alg. 1).**  
 224

225 **Improving training efficiency with minimal modification.** SPRINT improves training through  
 226 two key mechanisms. First, it reduces *per-iteration compute cost* by restricting the expensive middle  
 227 blocks  $g_\theta$  to a sparse token set, while the dense shallow path preserves fine-grained information.  
 228 Unlike prior methods, it remains stable even under aggressive drop ratios (Fig. 3c) where others fail.  
 229 Second, it *accelerates iteration-wise convergence* by enhancing a contextual and relation learning: the  
 230 decoder  $h_\theta$  must predict all tokens despite most deep-path inputs being [MASK] tokens. This forces  
 231 encoder ( $f_\theta$ ) and middle blocks ( $g_\theta$ ) to learn robust, context-aware features, as reflected in faster  
 232 FID improvement (Fig. 3c), stronger gradient flow (Fig. 3a), and richer representations (CKNNA  
 233 in Fig. 3b). These gains come with *minimal architectural change*: the standard DiT blocks remain  
 234 intact, making SPRINT easy to integrate into existing codebases. Analysis details are in Appendix A.  
 235

236 **Dense–shallow vs. sparse–deep features.** The ablation in Fig. 4 highlights their complementary  
 237 roles. The *dense–shallow path* preserves local textures (e.g., feathers, skin patterns) but fails to form  
 238 coherent global structure. The *sparse–deep path* captures global shapes (e.g., bird outline, shark  
 239 body) but introduces severe texture artifacts. Fusing both yields high-quality outputs with realistic  
 240 global semantics and fine local detail, showing that dense–shallow features encode *local evidence*  
 241 while sparse–deep features capture *global semantics*.  
 242



253 **Figure 4: Roles of dense–shallow and sparse–deep features.** Dense–shallow features preserve local  
 254 textures but lose global structure, while sparse–deep features capture global shapes but distort local  
 255 details. Fusing both recovers high-quality outputs with coherent semantics and fine detail.  
 256

257 **Fine-tuning with full tokens.** After efficient sparse pre-training, we transition the middle blocks to  
 258 operate on the full token set for a brief fine-tuning stage, addressing the potential train–inference gap  
 259 as demonstrated in prior works (Zhang et al., 2024; Sehwag et al., 2025; Krause et al., 2025) (refer to  
 260 Alg. 2). Since pre-training typically dominates with 1M–4M iterations, this fine-tuning phase is short  
 261 (e.g., 100K–200K iterations), yet sufficient for the deeper layers to adapt to the full data distribution,  
 262 ensuring high inference quality while retaining most of the pre-training speedup.  
 263

### 3.4 EFFICIENT PATH-DROP GUIDANCE (PDG)

264 SPRINT’s dual-path design also enables efficient guidance during inference. Standard Classifier-Free  
 265 Guidance (CFG) doubles sampling cost by requiring two forward passes per step: one conditional  
 266  $\mathbf{v}_\theta(\mathbf{x}_t, \mathbf{c})$  and one unconditional  $\mathbf{v}_\theta(\mathbf{x}_t, \emptyset)$ . Auto Guidance (Karras et al., 2024a) shows that the  
 267 unconditional pass can be replaced by a weaker network. The SPRINT architecture inherently  
 268 contains a natural weaker network: the dense shallow path that bypasses the deep middle blocks.  
 269 We therefore introduce **Path-Drop Guidance** (PDG): For the conditional estimate, we perform a

270 Table 1: **Training efficiency on ImageNet 256**<sup>2</sup>. Iteration-wise results of different token-dropping  
 271 methods *with same 75% dropping rate*. We report total training TFLOPs (using DeepSpeed library)  
 272 and performance with/without classifier-free guidance, along with SPRINT’s relative gains over SiT  
 273 (**Gain  $\Delta$** ). All methods use 50 sampling steps with ODE sampler.

| Method                          | AE   | TFLOPs<br>( $\times 10^6$ )     |                  | w/o CFG ( $w = 1.0$ ) |                 |                 |                  | w CFG ( $w = 1.4$ ) |               |                 |                 |
|---------------------------------|------|---------------------------------|------------------|-----------------------|-----------------|-----------------|------------------|---------------------|---------------|-----------------|-----------------|
|                                 |      | FDD $\downarrow$                | FID $\downarrow$ | IS $\uparrow$         | Pre. $\uparrow$ | Rec. $\uparrow$ | FDD $\downarrow$ | FID $\downarrow$    | IS $\uparrow$ | Pre. $\uparrow$ | Rec. $\uparrow$ |
| <b>400K training iterations</b> |      |                                 |                  |                       |                 |                 |                  |                     |               |                 |                 |
| Improved SiT-XL/2               | SD   | 24.4                            | 351.1            | 12.8                  | 97.4            | 0.66            | <b>0.65</b>      | 185.0               | 3.09          | 211.6           | 0.81            |
| + Progressive Training          | SD   | <b>16.8</b>                     | 365.5            | 12.7                  | 96.2            | 0.67            | 0.63             | 215.6               | 3.47          | 206.4           | <b>0.83</b>     |
| + MDTv2                         | SD   | 21.2                            | 558.5            | 21.1                  | 68.9            | 0.61            | 0.63             | 366.5               | 5.61          | 176.3           | 0.76            |
| + MicroDiT                      | SD   | 20.8                            | 349.9            | 11.5                  | 99.9            | 0.67            | 0.64             | 178.1               | 3.16          | 213.7           | 0.82            |
| + Tread                         | SD   | 19.7                            | 461.1            | 16.3                  | 89.9            | 0.63            | 0.64             | 264.3               | 4.07          | 201.2           | 0.80            |
| + SPRINT (Ours)                 | SD   | 18.7                            | <b>262.6</b>     | <b>9.30</b>           | <b>118.5</b>    | <b>0.68</b>     | <b>0.65</b>      | <b>136.5</b>        | <b>2.56</b>   | <b>247.1</b>    | 0.82            |
| Gain $\Delta$                   |      | <b><math>\times 1.32</math></b> | <b>+88.5</b>     | <b>+3.5</b>           | <b>+24.1</b>    |                 |                  | <b>+48.5</b>        | <b>+0.53</b>  | <b>+35.5</b>    |                 |
| <b>IM training iterations</b>   |      |                                 |                  |                       |                 |                 |                  |                     |               |                 |                 |
| Improved SiT-XL/2               | SD   | 61.2                            | 290.0            | 10.9                  | 113.4           | 0.66            | <b>0.67</b>      | 146.0               | 2.36          | 243.7           | 0.80            |
| + Progressive Training          | SD   | <b>25.8</b>                     | 359.4            | 12.3                  | 102.2           | 0.67            | 0.65             | 188.1               | 2.95          | 222.2           | <b>0.82</b>     |
| + MDTv2                         | SD   | 39.2                            | 522.7            | 18.8                  | 77.2            | 0.61            | 0.64             | 326.7               | 4.68          | 183.1           | 0.77            |
| + MicroDiT                      | SD   | 37.5                            | 293.4            | 10.9                  | 113.8           | <b>0.68</b>     | 0.65             | 147.6               | 2.53          | 241.4           | <b>0.82</b>     |
| + Tread                         | SD   | 34.5                            | 372.6            | 12.3                  | 112.1           | 0.66            | 0.66             | 197.7               | 2.82          | 242.9           | 0.80            |
| + SPRINT (Ours)                 | SD   | 31.5                            | <b>248.8</b>     | <b>9.15</b>           | <b>129.5</b>    | 0.67            | <b>0.67</b>      | <b>126.1</b>        | <b>2.29</b>   | <b>268.3</b>    | 0.81            |
| Gain $\Delta$                   |      | <b><math>\times 1.94</math></b> | <b>+41.2</b>     | <b>+1.75</b>          | <b>+16.1</b>    |                 |                  | <b>+14.9</b>        | <b>+0.07</b>  | <b>24.6</b>     |                 |
| <b>400K training iterations</b> |      |                                 |                  |                       |                 |                 |                  |                     |               |                 |                 |
| Improved SiT-XL/2               | Flux | 24.6                            | 358.9            | 14.8                  | 84.4            | 0.64            | 0.63             | 178.7               | 3.95          | 210.7           | 0.83            |
| + Progressive Training          | Flux | <b>17.0</b>                     | 375.3            | 13.5                  | 89.2            | <b>0.66</b>     | 0.63             | 186.3               | 4.02          | 205.4           | <b>0.84</b>     |
| + MicroDiT                      | Flux | 20.9                            | 420.9            | 17.8                  | 76.8            | 0.61            | <b>0.64</b>      | 212.9               | 4.45          | 196.2           | 0.81            |
| + Tread                         | Flux | 19.8                            | 470.1            | 19.9                  | 72.2            | 0.60            | 0.63             | 255.0               | 5.18          | 187.5           | 0.79            |
| + SPRINT (Ours)                 | Flux | 18.8                            | <b>268.4</b>     | <b>11.4</b>           | <b>101.9</b>    | <b>0.66</b>     | 0.63             | <b>135.4</b>        | <b>3.77</b>   | <b>239.8</b>    | 0.83            |
| Gain $\Delta$                   |      | <b><math>\times 1.31</math></b> | <b>+90.2</b>     | <b>+3.4</b>           | <b>+17.5</b>    |                 |                  | <b>+43.3</b>        | <b>+0.18</b>  | <b>+29.1</b>    |                 |

293 full forward pass. For the unconditional estimate, we bypass  $g_\theta$  entirely, replacing it with [MASK]  
 294 tokens. Formally, the conditional and unconditional velocities are:

$$v(\mathbf{x}_t, \mathbf{c}) = h_\theta(\text{Fusion}(g_\theta(f_\theta(\mathbf{x}_t, \mathbf{c})), f_\theta(\mathbf{x}_t, \mathbf{c})), \mathbf{c}), \quad (3)$$

$$v(\mathbf{x}_t, \emptyset) = h_\theta(\text{Fusion}(\mathbf{M}, f_\theta(\mathbf{x}_t, \mathbf{c})), \mathbf{c}), \quad (4)$$

299 where  $\mathbf{M}$  denotes the [MASK] token tensor. This provides high-quality generation while nearly  
 300 halving FLOPs and latency per step, since the expensive middle blocks are executed only once.

### 3.5 STRUCTURED GROUP-WISE TOKEN SUBSAMPLING

303 The effectiveness of token dropping depends not just on how many tokens are removed, but on which  
 304 are kept. Uniform random sampling risks leaving large contiguous holes in the feature map. To avoid  
 305 this, we propose a *structured group-wise subsampling* strategy that guarantees local coverage while  
 306 maintaining global irregularity. Specifically, we partition tokens into small, non-overlapping groups  
 307 in their native topology (*e.g.*, 2D for images). For images, we divide the  $(H/p) \times (W/p)$  grid into  
 308  $n \times n$  groups. At each training iteration, we randomly select  $k$  tokens per group, giving a drop ratio  
 309  $r = 1 - k/n^2$ . We use  $n = 2$ ,  $k = 1$ , corresponding to a 75% drop ratio. This ensures that every  
 310 local patch is represented while preventing the model from overfitting to fixed sampling patterns.

## 4 EXPERIMENT

### 4.1 EXPERIMENTAL DETAILS

314 **Training details.** Our framework follows the setups of DiT (Peebles & Xie, 2023) and SiT (Ma  
 315 et al., 2024). Unless stated otherwise, most of the experiments are trained on ImageNet-1K at  
 316  $256 \times 256$  resolution using pretrained VAEs from Stable Diffusion (Rombach et al., 2022) and  
 317 Flux (Labs, 2024b), both with 8 $\times$  downsampling but encoding into 4 and 16 channels, respectively.  
 318 Unless stated otherwise, models are pre-trained with a 75% token drop ratio using our structured  
 319 group-wise subsampling. We adopt the SiT architecture, where each block contains a self-attention  
 320 and a feed-forward layer, and apply standard improvements: RMS Normalization for queries and  
 321 keys (Touvron et al., 2023a;b), 2D RoPE for positional embeddings (Wang et al., 2024), and lognormal  
 322 timestep sampling (Esser et al., 2024a). Experiments focus on SiT-B/2 and SiT-XL/2. Additional  
 323 hyperparameters and training details are provided in Appendix C. **Pre-training and fine-tuning**  
 324 **algorithm is provided in Alg. 1 and 2, respectively.**

324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1129  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1198  
1199  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1298  
1299  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1398  
1399  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
1458  
1459  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466  
1467  
1468  
1469  
1469  
1470  
1471  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1479  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1489  
1489  
1490  
1491  
1492  
1493  
1494  
1495  
1496  
1497  
1498  
1498  
1499  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1509  
1510  
1511  
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
1519  
1520  
1521  
1522  
1523  
1524  
1525  
1526  
1527  
1528  
1529  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1598  
1599  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619  
1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1669  
1670  
1671  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1679  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1689  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1696  
1697  
1698  
1698  
1699  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1779  
1780  
1781  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1798  
1798  
1799  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1829  
1830  
1831  
1832  
1833  
1834  
1835  
1836  
1837  
1838  
1839  
1839  
1840  
1841  
1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1849  
1850  
1851  
1852  
1853  
1854  
1855  
1856  
1857  
1858  
1859  
1859  
1860  
1861  
1862  
1863  
1864  
1865  
1866  
1867  
1868  
1869  
1869  
1870  
1871  
1872  
1873  
1874  
1875  
1876  
1877  
1878  
1879  
1879  
1880  
1881  
1882  
1883  
1884  
1885  
1886  
1887  
1888  
1889  
1889  
1890  
1891  
1892  
1893  
1894  
1895  
1896  
1897  
1898  
1898  
1899  
1899  
1900  
1901  
1902  
1903  
1904  
1905  
1906  
1907  
1908  
1909  
1909  
1910  
1911  
1912  
1913  
1914  
1915  
1916  
1917  
1918  
1919  
1919  
1920  
1921  
1922  
1923  
1924  
1925  
1926  
1927  
1928  
1929  
1929  
1930  
1931  
1932  
1933  
1934  
1935  
1936  
1937  
1938  
1939  
1939  
1940  
1941  
1942  
1943  
1944  
1945  
1946  
1947  
1948  
1949  
1949  
1950  
1951  
1952  
1953  
1954  
1955  
1956  
1957  
1958  
1959  
1959  
1960  
1961  
1962  
1963  
1964  
1965  
1966  
1967  
1968  
1969  
1969  
1970  
1971  
1972  
1973  
1974  
1975  
1976  
1977  
1978  
1979  
1979  
1980  
1981  
1982  
1983  
1984  
1985  
1986  
1987  
1988  
1989  
1989  
1990  
1991  
1992  
1993  
1994  
1995  
1996  
1997  
1998  
1998  
1999  
1999  
2000  
2001  
2002  
2003  
2004  
2005  
2006  
2007  
2008  
2009  
2009  
2010  
2011  
2012  
2013  
2014  
2015  
2016  
2017  
2018  
2019  
2020  
2021  
2022  
2023  
2024  
2025  
2026  
2027  
2028  
2029  
2029  
2030  
2031  
2032  
2033  
2034  
2035  
2036  
2037  
2038  
2039  
2039  
2040  
2041  
2042  
2043  
2044  
2045  
2046  
2047  
2048  
2049  
2049  
2050  
2051  
2052  
2053  
2054  
2055  
2056  
2057  
2058  
2059  
2059  
2060  
2061  
2062  
2063  
2064  
2065  
2066  
2067  
2068  
2069  
2069  
2070  
2071  
2072  
2073  
2074  
2075  
2076  
2077  
2078  
2079  
2079  
2080  
2081  
2082  
2083  
2084  
2085  
2086  
2087  
2088  
2089  
2089  
2090  
2091  
2092  
2093  
2094  
2095  
2096  
2097  
2098  
2098  
2099  
2099  
2100  
2101  
2102  
2103  
2104  
2105  
2106  
2107  
2108  
2109  
2109  
2110  
2111  
2112  
2113  
2114  
2115  
2116  
2117  
2118  
2119  
2119  
2120  
2121  
2122  
2123  
2124  
2125  
2126  
2127  
2128  
2129  
2129  
2130  
2131  
2132  
2133  
2134  
2135  
2136  
2137  
2138  
2139  
2139  
2140  
2141  
2142  
2143  
2144  
2145  
2146  
2147  
2148  
2149  
2149  
2150  
2151  
2152  
2153  
2154  
2155  
2156  
2157  
2158  
2159  
2159  
2160  
2161  
2162  
2163  
2164  
2165  
2166  
2167  
2168  
2169  
2169  
2170  
2171  
2172  
2173  
2174  
2175  
2176  
2177  
2178  
2179  
2179  
2180  
2181  
2182  
2

378 Table 3: **Comprehensive comparison on ImageNet**  $256 \times 256$  class-conditioned generation with  
 379 classifier-free guidance.  $\downarrow / \uparrow$  indicate whether lower or higher values are better, respectively. \*  
 380 denotes training with batch size 1024,  $\dagger$  *our reproduction* with architectural improvements, and  $\ddagger$   
 381 use of guidance scheduling. Metrics are evaluated with 250 sampling steps using the SDE sampler.  
 382 TFLOPs are measured with the DeepSpeed library (refer to Appendix D for details.)

| Method                                   | Epochs | #Params. | Training<br>TFLOPs $\downarrow$<br>( $\times 10^6$ ) | Inference<br>TFLOPs $\downarrow$ | FDD $\downarrow$ | FID $\downarrow$ | Pre. $\uparrow$ | Rec. $\uparrow$ |
|------------------------------------------|--------|----------|------------------------------------------------------|----------------------------------|------------------|------------------|-----------------|-----------------|
| ADM (Dhariwal & Nichol, 2021)            | 400    | 673M     | —                                                    | —                                | —                | 3.94             | 0.82            | 0.52            |
| CDM (Ho et al., 2022)                    | 2160   | —        | —                                                    | —                                | —                | 4.88             | —               | —               |
| LDM-4 (Rombach et al., 2022)             | 200    | 400M     | —                                                    | —                                | —                | 3.60             | 0.87            | 0.48            |
| U-ViT-H* (Bao et al., 2023)              | 240    | 501M     | —                                                    | —                                | —                | 2.29             | 0.82            | 0.57            |
| DiT-XL (Peebles & Xie, 2023)             | 1400   | 675M     | 427.7                                                | 0.475                            | 79.5             | 2.27             | 0.83            | 0.57            |
| FiTv2-XL (Wang et al., 2024)             | 400    | 671M     | —                                                    | —                                | 80.5             | 2.26             | 0.81            | 0.59            |
| MDTv2-XL (Gao et al., 2023)              | 1080   | 742M     | 258.3                                                | 0.521                            | 77.3             | 1.86             | 0.81            | 0.60            |
| MDTv2-XL $\dagger$ (Gao et al., 2023)    | 1080   | 742M     | 258.3                                                | 0.521                            | 75.2             | 1.58             | 0.79            | 0.65            |
| MaskDiT (Zheng et al., 2024)             | 1600   | 730M     | 268.0                                                | 0.513                            | 82.4             | 2.28             | 0.80            | 0.61            |
| Tread (Krause et al., 2025)              | 740    | 675M     | 146.0                                                | 0.475                            | —                | 2.09             | 0.81            | 0.62            |
| SiT-XL (Ma et al., 2024)                 | 1400   | 675M     | 427.7                                                | 0.475                            | 78.5             | 2.06             | 0.82            | 0.59            |
| SiT-XL $\dagger$                         | 400    | 675M     | 122.2                                                | 0.474                            | 79.5             | 2.04             | 0.82            | 0.60            |
| + SPRINT                                 | 200    | 677M     | <b>43.7</b>                                          | 0.477                            | 79.0             | 2.01             | 0.82            | 0.60            |
| + SPRINT                                 | 400    | 677M     | 65.1                                                 | 0.477                            | 75.4             | 1.96             | 0.80            | 0.61            |
| + SPRINT <sub>PDG</sub>                  | 400    | 677M     | 65.1                                                 | 0.274                            | 58.4             | 1.62             | 0.80            | 0.63            |
| + SPRINT $\ddagger$ <sub>PDG</sub>       | 400    | 677M     | 65.1                                                 | <b>0.263</b>                     | <b>54.9</b>      | <b>1.55</b>      | 0.80            | 0.64            |
| SiT-XL <sub>REPA</sub> (Yu et al., 2024) | 800    | 675M     | 248.6                                                | 0.475                            | 72.5             | 1.80             | 0.81            | 0.61            |
| SiT-XL $\dagger$ <sub>REPA</sub>         | 200    | 675M     | 62.1                                                 | 0.474                            | 78.8             | 1.93             | 0.81            | 0.60            |
| + SPRINT                                 | 200    | 677M     | <b>44.3</b>                                          | 0.477                            | 75.6             | 1.87             | 0.81            | 0.61            |
| + SPRINT <sub>PDG</sub>                  | 200    | 677M     | <b>44.3</b>                                          | 0.274                            | 57.1             | 1.61             | 0.80            | 0.64            |
| + SPRINT <sub>PDG</sub>                  | 400    | 677M     | 66.7                                                 | 0.274                            | 54.7             | 1.59             | 0.80            | 0.64            |
| + SPRINT $\ddagger$ <sub>PDG</sub>       | 400    | 677M     | 66.7                                                 | <b>0.263</b>                     | <b>49.6</b>      | <b>1.49</b>      | 0.81            | 0.64            |

404 **Generalization to other diffusion architectures.** To demonstrate that our method is a general  
 405 training strategy and not limited to a specific DiT architecture, we apply SPRINT to two other  
 406 prominent models: REPA (Yu et al., 2024) and U-ViT (Bao et al., 2023). We integrate our dense-sparse  
 407 fusion mechanism into their respective backbones and report the results after 400K training iterations  
 408 in Tab. 2. The results show that SPRINT provides significant improvements in all cases. When  
 409 applied to REPA, SPRINT improves the FDD by +45.1 and FID by +1.32 (w/o CFG). Similarly, for  
 410 U-ViT, we observe a +63.4 improvement in FDD and a +2.9 improvement in FID. These experiments  
 411 confirm that SPRINT is a broadly applicable and effective method for accelerating the training.

412 **Visual analysis.** In Fig. 5, we show that SPRINT not only accelerates convergence quantitatively  
 413 but also enhances the visual progression. At just 100K iterations, SPRINT produces coherent global  
 414 structures (e.g., the shape of a car) along with fine details, whereas REPA lags behind. Furthermore,  
 415 in Fig. 6, we analyze the PCA of features from  $f_\theta$  and  $g_\theta$ , demonstrating that SPRINT learns more  
 416 noise-invariant and semantically vivid representations than the SiT model across diffusion timesteps.

#### 4.3 COMPARISON WITH STATE-OF-THE-ART MODELS

417 Tab. 3 compares SPRINT against recent state-of-the-art diffusion transformers. Our improved SiT  
 418 closely matches the original SiT performance after 400 epochs (78.5 vs. 79.5 FDD). In contrast, SiT  
 419 trained with SPRINT achieves comparable performance 79.0 FDD in only 200 epochs. At 400 epochs,  
 420 SPRINT outperforms the improved SiT baseline by **4.4 FDD** (from 79.5 to 75.4) and **0.08 FID** while  
 421 using just **53%** of the training FLOPs. This shows that SPRINT both accelerates convergence and  
 422 substantially reduces training cost. At inference, Path-Drop Guidance (PDG) further boosts efficiency:  
 423 with only **57%** of the inference cost, SPRINT improves performance by **21.1 FDD** (from 79.5 to  
 424 58.4) over the improved SiT.

425 Similar trends hold when combined with REPA. SPRINT reduces FDD from 78.8 to 75.6 using only  
 426 71% of the training FLOPs. With PDG sampling at 400 epochs, it surpasses the official REPA model  
 427 trained for 800 epochs by **17.8 FDD** and **0.21 FID**, while using only **27%** of the training FLOPs.  
 428 Overall, SPRINT consistently improves generation quality while drastically lowering both training  
 429 and inference cost, outperforming strong baselines and alignment-augmented models. **Moreover,**  
 430 **incorporating the recent guidance schedule (Kynkänniemi et al., 2024)** further boosts performance.

432  
433  
434  
435  
436  
437  
438  
439  
Table 4: Effect of token-drop  
strategies on FID.

| Strategy          | FID $\downarrow$ |
|-------------------|------------------|
| Random            | 30.1             |
| Structured (Ours) | <b>27.5</b>      |

440  
441  
Table 7: Effect of dense residuals  
and drop ratio  $r$  on FID.

| Method  | Dense residual | $r$        | FID $\downarrow$ |
|---------|----------------|------------|------------------|
| SiT-B/2 | $\times$       | 0          | 55.6             |
|         | $\checkmark$   | 0          | 54.1             |
|         | $\checkmark$   | 25%        | 43.2             |
|         | $\checkmark$   | 50%        | 32.3             |
|         | $\checkmark$   | <b>75%</b> | <b>27.5</b>      |
|         | $\checkmark$   | 87.5%      | 50.2             |

442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
4.4 ANALYSIS452  
453  
454  
We mostly use SiT-B/2 configuration at 400K training iterations (detailed in Tab. 9) in following analysis unless stated otherwise.455  
456  
457  
458  
459  
460  
461  
**Sparse–dense residual fusion** (Tab. 5). To evaluate the **importance of each path in** sparse–dense residual fusion, we perform an ablation by disabling each of the two parallel paths during training. Removing the dense shallow path causes a sharp performance drop, with FID rising from 27.5 to 85.1, underscoring its role in accurate velocity prediction. Conversely, removing the sparse deep path reduces the model to a standard dense DiT with only four layers, which also degrades performance due to limited capacity. These results confirm that the parallel sparse–dense design is critical for maintaining high performance under token dropping.462  
463  
464  
**Token sampling strategy** (Tab. 4). We compare our structured group-wise sampling strategy with standard uniform random sampling. At the same 75% drop ratio, structured sampling improves FID from 30.1 to 27.5, demonstrating that preserving local coverage is crucial for effective sparse training.465  
466  
467  
468  
469  
**Effect of  $g_\theta$  depth** (Tab. 6). We study the trade-off between performance and computation as a function of middle block depth. The default configuration yields the best FID (27.3) with the lowest cost (7.47G). Shifting layers from the middle block to the encoder and decoder (e.g., 3-6-3 or 5-2-5) increases cost without benefit, and FID degrades to 29.1 and 49.2, respectively. Thus, the default configuration strikes the best balance between efficiency and performance.470  
471  
472  
473  
474  
475  
476  
**Effect of  $f_\theta$  and  $h_\theta$  depth** (Tab. 8). We find that allocating at least two blocks to both  $f_\theta$  (dense shallow path) and  $h_\theta$  (sparse deep path) is critical for high performance. Reducing either to a single block already degrades results (FID 61.5 and 44.4). Moreover, entirely removing either block collapses performance (FID  $> 79$ ): **this supports our encoder (dense)–middle (sparse)–decoder (dense) design. The encoder must first operate on dense tokens to transform noisy inputs into noise-invariant features, after which the middle blocks can safely work on sparse tokens, and the decoder is applied after residual fusion. This is necessary for accurate prediction under high drop-ratio training.**477  
478  
479  
480  
481  
**Drop ratio  $r$**  (Tab. 7). As the drop ratio increases from 0 to 75%, model performance steadily improves, with FID decreasing from 54.1 to 27.5. This trend indicates that higher sparsity in SPRINT promotes complementary interactions between the encoder and middle blocks, leading to more robust and efficient representations. However, at an extreme drop ratio of 87.5%, FID rises to 50.2, suggesting that excessive sparsity limits the model’s representational capacity.482  
483  
484  
485  
**Path-drop guidance** (Fig. 7). We compare FDD across guidance scales  $w$  for CFG (SiT-XL/2), CFG (SPRINT), and PDG (SPRINT). PDG consistently outperforms both CFG baselines, achieving a lower (better) peak FDD. Moreover, it delivers these gains at nearly half the inference cost, since the unconditional estimate bypasses the middle blocks. These results show that PDG provides a superior trade-off, generating higher-quality samples while substantially reducing computational cost.

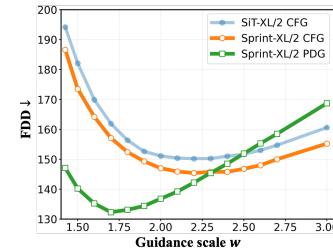
Table 5: Effect of dense–sparse residuals on FID.

| Dense        | Sparse       | FID $\downarrow$ |
|--------------|--------------|------------------|
| $\times$     | $\checkmark$ | 85.1             |
| $\checkmark$ | $\times$     | 81.4             |
| $\checkmark$ | $\checkmark$ | <b>27.5</b>      |

Table 6: Effect of  $f_\theta, g_\theta, h_\theta$  on compute and performance.

| $f_\theta$ | $g_\theta$ | $h_\theta$ | FLOPs /iter $\downarrow$ | FID $\downarrow$ |
|------------|------------|------------|--------------------------|------------------|
| 2          | 8          | 2          | <b>7.47G</b>             | <b>27.5</b>      |
| 3          | 6          | 3          | 9.33G                    | 29.1             |
| 5          | 2          | 5          | 13.1G                    | 49.2             |

Figure 7: Effect of guidance scale on SiT and our SPRINT.



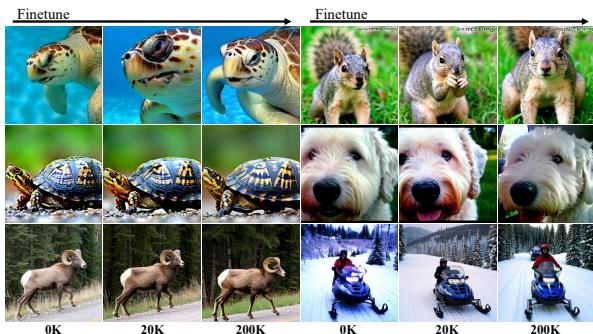


Figure 8: **Visual progression over fine-tuning steps.** Before fine-tuning (0K), SPRINT already produces class-aligned samples but exhibits slight artifacts in fine details (e.g., the turtle’s eye, the ram’s leg). After a short 20K-step fine-tuning, SPRINT largely recovers these details and overall visual quality.

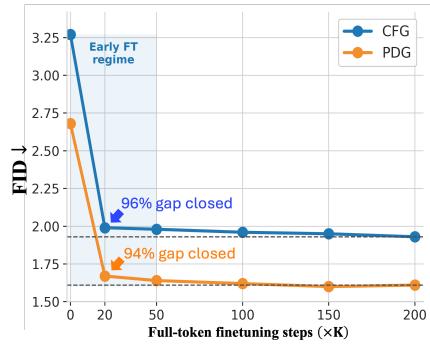


Figure 9: **FID over fine-tuning steps** for CFG and PDG sampling. Just 20K fine-tuning steps recover over 94% of the 200K performance, indicating that a relatively short fine-tuning stage is sufficient to close the train–inference gap.

**Training at higher resolution** (Appendix F.1, Fig. 33). We also evaluate our model against baselines at 512<sup>2</sup> resolution with XL config. Results are provided in Tab. 10 and show that SPRINT achieves 1.96 FID compared to 2.63 of SiT baseline with only 50% of training compute (184.8 vs. 366.6).

**Lower sampling steps** (Appendix F.2). SPRINT remains competitive at few-step inference, consistently surpassing SiT-XL/2 in Tab. 11. At 10 steps, it reduces FID from 7.37 to 6.29 and FDD from 205.2 to 174.5, highlighting the representational strength of our method.

#### 4.5 BENEFITS OF FINE-TUNING

Here, we analyze the train–inference gap of SPRINT after the pre-training stage and the effect of the subsequent fine-tuning. Specifically, we perform qualitative and quantitative ablations over the number of fine-tuning steps after 2M pre-training iterations, reported in Fig. 8 and Fig. 9, respectively.

In Fig. 8, we observe that, before fine-tuning, SPRINT already produces class-aligned samples with globally coherent structure, but tends to miss some high-frequency details (e.g., the turtle’s eye in second row, the ram’s leg in third row), which is expected given that most tokens are dropped during pre-training. The role of the fine-tuning stage is therefore to recover these local details. Notably, after only 20K fine-tuning steps, SPRINT largely restores these details and improves overall visual quality. This observation is consistent with the quantitative trends in Fig. 9. For both CFG and PDG sampling, FID improvements beyond 50K fine-tuning iterations are marginal and eventually plateau. In particular, after just 20K steps, SPRINT recovers over 94% of the FID improvement achieved at 200K fine-tuning steps. This indicates that the majority of the train–inference gap closes very early—within 20K–50K iterations, corresponding to only 2.5% of the pre-training steps. This further confirms that SPRINT learns the necessary representations for high-quality generation during sparse pre-training, and that these representations transfer effectively to the full-token regime.

Overall, these results show that SPRINT is not overly sensitive to the precise length of the fine-tuning stage: a relatively short full-token fine-tuning is sufficient to recover the high-frequency details missing from sparse pre-training.

## 5 CONCLUSION

We introduced **SPRINT**, a simple and architecture-agnostic training framework for DiTs that combines dense–shallow and sparse–deep features through residual fusion. By exploiting the complementary strengths of shallow and deep layers, it enables aggressive token dropping (up to 75%) while preserving representation quality, and a two-stage schedule with masked pre-training and short full-token fine-tuning closes the train–inference gap. Experiments on ImageNet-1K show that SPRINT reduces training cost by up to 9.8× while matching or surpassing the quality of strong baselines. SPRINT also enables **Path-Drop Guidance**, a simple replacement for CFG that halves inference cost while improving sample quality. Thus, SPRINT is a simple, effective, and general approach for efficient DiT training, applicable across architectures, resolutions, and alignment methods.

540 REPRODUCIBILITY  
541

542 We have made every effort to ensure the reproducibility of our results. Detailed hyper-parameters,  
543 training schedules, and architectural configurations are provided in the Appendix, including model  
544 definitions, pre-training and fine-tuning iterations, number of sampling steps at inference, and compute  
545 resources. Our framework follows the well-established setups of DiT (Peebles & Xie, 2023) and  
546 SiT (Ma et al., 2024), which are widely adopted in diffusion research. Although our training code  
547 cannot be released at submission time, the use of these standardized setups, along with the provided  
548 experimental details, should allow independent reproduction of our results.

549  
550 REFERENCES  
551

552 Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth  
553 words: A vit backbone for diffusion models. In *Conference on Computer Vision and Pattern*  
554 *Recognition, CVPR*, 2023.

555 Daniel Bolya and Judy Hoffman. Token merging for fast stable diffusion. In *Conference on Computer*  
556 *Vision and Pattern Recognition, CVPR*, 2023.

557 Shuning Chang, Pichao Wang, Ming Lin, Fan Wang, David Junhao Zhang, Rong Jin, and Mike Zheng  
558 Shou. Making vision transformers efficient from a token sparsification view. In *Conference on*  
559 *Computer Vision and Pattern Recognition, CVPR*, 2023.

560 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In *Advances*  
561 *in Neural Information Processing Systems, NeurIPS*, 2021.

562 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
563 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An  
564 image is worth 16x16 words: Transformers for image recognition at scale. In *arXiv preprint*  
565 *arXiv:2010.11929*, 2020.

566 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam  
567 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for  
568 high-resolution image synthesis. In *International Conference on Machine Learning, ICML*, 2024a.

569 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam  
570 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,  
571 and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In  
572 *ICML*, 2024b. URL <https://openreview.net/forum?id=FPnUhsQJ5B>.

573 Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Mdtv2: Masked diffusion  
574 transformer is a strong image synthesizer. *arXiv preprint arXiv:2303.14389*, 2023.

575 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans  
576 trained by a two time-scale update rule converge to a local nash equilibrium. In *Advances in Neural*  
577 *Information Processing Systems, NeurIPS*, 2017.

578 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *arXiv preprint*  
579 *arXiv:2207.12598*, 2022.

580 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances in*  
581 *Neural Information Processing Systems, NeurIPS*, 2020.

582 Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.  
583 Cascaded diffusion models for high fidelity image generation. *Journal of Machine Learning*  
584 *Research*, 2022.

585 Benjamin Hoover, Hendrik Strobelt, and Sebastian Gehrmann. exbert: A visual analysis tool to  
586 explore learned representations in transformers models. In *arXiv preprint arXiv:1910.05276*, 2019.

587 Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation  
588 hypothesis. In *International Conference on Machine Learning, ICML*, 2024.

594 Tero Karras, Miika Aittala, Tuomas Kynkänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.  
 595 Guiding a diffusion model with a bad version of itself. In *Advances in Neural Information*  
 596 *Processing Systems, NeurIPS*, 2024a.

597 Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing  
 598 and improving the training dynamics of diffusion models. In *Conference on Computer Vision and*  
 599 *Pattern Recognition, CVPR*, 2024b.

600 Felix Krause, Timy Phan, Ming Gui, Stefan Andreas Baumann, Vincent Tao Hu, and Björn Ommer.  
 601 Tread: Token routing for efficient architecture-agnostic diffusion training, 2025.

602 Tuomas Kynkänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved  
 603 precision and recall metric for assessing generative models. In *Advances in Neural Information*  
 604 *Processing Systems, NeurIPS*, 2019.

605 Tuomas Kynkänniemi, Miika Aittala, Tero Karras, Samuli Laine, Timo Aila, and Jaakko Lehtinen.  
 606 Applying guidance in a limited interval improves sample and distribution quality in diffusion  
 607 models. In *arXiv preprint arXiv:2404.07724*, 2024.

608 Black Forest Labs. Flux: A generative model by black forest labs. <https://github.com/black-forest-labs/flux>, 2024a. Accessed: 2025-05-14.

609 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024b.

610 Jaa-Yeon Lee, Byunghee Cha, Jeongsol Kim, and Jong Chul Ye. Aligning text to image in diffusion  
 611 models is easier than you think, 2025. URL <https://arxiv.org/abs/2503.08250>.

612 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching  
 613 for generative modeling. In *International Conference on Learning Representations, ICLR*, 2023.

614 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and  
 615 transfer data with rectified flow. In *International Conference on Learning Representations, ICLR*,  
 616 2023.

617 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and  
 618 Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant  
 619 transformers. In *European Conference on Computer Vision, ECCV*, 2024.

620 OpenAI. Video generation models as world simulators: Introducing sora. <https://openai.com/index/video-generation-models-as-world-simulators/>, 2024. Accessed: 2025-05-14.

621 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,  
 622 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning  
 623 robust visual features without supervision. In *arXiv preprint arXiv:2304.07193*, 2023.

624 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Conference on*  
 625 *Computer Vision and Pattern Recognition, CVPR*, 2023.

626 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe  
 627 Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image  
 628 synthesis. In *The Twelfth International Conference on Learning Representations*, 2024. URL  
 629 <https://openreview.net/forum?id=di52zR8xgf>.

630 Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamiccvit:  
 631 Efficient vision transformers with dynamic token sparsification. In *Advances in Neural Information*  
 632 *Processing Systems, NeurIPS*, 2021.

633 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-  
 634 resolution image synthesis with latent diffusion models. In *Conference on Computer Vision and*  
 635 *Pattern Recognition, CVPR*, 2022.

636 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.  
 637 Improved techniques for training gans. In *Advances in Neural Information Processing Systems*,  
 638 *NeurIPS*, 2016.

648 Vikash Sehwag, Xianghao Kong, Jingtao Li, Michael Spranger, and Lingjuan Lyu. Stretching each  
 649 dollar: Diffusion training from scratch on a micro-budget. In *Conference on Computer Vision and*  
 650 *Pattern Recognition, CVPR*, 2025.

651

652 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *arXiv*  
 653 *preprint arXiv:2010.02502*, 2020.

654 George Stein, Jesse Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Ross, Valentin Villecroze,  
 655 Zhaoyan Liu, Anthony L Caterini, Eric Taylor, and Gabriel Loaiza-Ganem. Exposing flaws of  
 656 generative model evaluation metrics and their unfair treatment of diffusion models. In *Advances in*  
 657 *Neural Information Processing Systems*, 2023.

658

659 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée  
 660 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and  
 661 efficient foundation language models. In *arXiv preprint arXiv:2302.13971*, 2023a.

662 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay  
 663 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation  
 664 and fine-tuned chat models. In *arXiv preprint arXiv:2307.09288*, 2023b.

665 Elena Voita, Rico Sennrich, and Ivan Titov. The bottom-up evolution of representations in the  
 666 transformer: A study with machine translation and language modeling objectives. In *Empirical*  
 667 *Methods in Natural Language Processing, EMNLP*, 2019.

668

669 Runqian Wang and Kaiming He. Diffuse and disperse: Image generation with representation  
 670 regularization, 2025. URL <https://arxiv.org/abs/2506.09027>.

671 ZiDong Wang, Zeyu Lu, Di Huang, Cai Zhou, Wanli Ouyang, et al. Fitv2: Scalable and improved  
 672 flexible vision transformer for diffusion model. In *arXiv preprint arXiv:2410.13925*, 2024.

673

674 Ziqiao Wang, Wangbo Zhao, Yuhao Zhou, Zekai Li, Zhiyuan Liang, Mingjia Shi, Xuanlei Zhao,  
 675 Pengfei Zhou, Kaipeng Zhang, Zhangyang Wang, Kai Wang, and Yang You. Repa works until it  
 676 doesn't: Early-stopped, holistic alignment supercharges diffusion training, 2025. URL <https://arxiv.org/abs/2505.16792>.

677

678 Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and  
 679 Saining Xie. Representation alignment for generation: Training diffusion transformers is easier  
 680 than you think. In *arXiv preprint arXiv:2410.06940*, 2024.

681

682 Yuzhe Zhang, Jiawei Zhang, Hao Li, Zhouxia Wang, Luwei Hou, Dongqing Zou, and Liheng Bian.  
 683 Diffusion-based blind text image super-resolution. In *Conference on Computer Vision and Pattern*  
 684 *Recognition, CVPR*, 2024.

685 Hongkai Zheng, Weili Nie, Arash Vahdat, and Anima Anandkumar. Fast training of diffusion models  
 686 with masked transformers. In *Transactions on Machine Learning Research, TMLR*, 2024.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 

## A ANALYSIS DETAILS

704 **Training behavior (Fig. 3).** We provide the implementation details used to measure the training  
 705 behavior shown in Fig. 3. We adopt the SiT-B/2 configuration from the SiT paper (Ma et al.,  
 706 2024), which consists of 2 encoder blocks, 8 middle blocks, and 2 decoder blocks. In Fig. 3a,  
 707 we plot the  $\ell_2$  gradient norm of the encoder  $f_\theta$  with respect to the flow-matching loss  $\mathcal{L}$ , i.e.,  
 708  $\|\nabla_{f_\theta} \mathcal{L}\|$ , across pretraining iterations. This analysis highlights the improved gradient flow within  
 709 the encoder blocks. **Compared to the SiT baseline, SPRINT exhibits consistently stronger gradient**  
 710 **propagation to the encoder as sparsity increases, leading to more effective parameter updates and**  
 711 **faster convergence—reflected in both higher CKNNA scores and lower FID values.**

712 In Fig. 3b, we report the Centered Kernel Nearest-Neighbor Alignment (CKNNA) (Huh et al., 2024)  
 713 score, a relaxed variant of Centered Kernel Alignment (CKA). CKNNA is commonly used to assess  
 714 the semantic alignment (Yu et al., 2024) between diffusion models and large-scale self-supervised  
 715 visual encoders such as DINOv2. Intuitively, given a noisy input  $\mathbf{x}_t$ , CKNNA quantifies how well  
 716 the intermediate features of a diffusion model capture noise-invariant semantics by comparing them  
 717 with DINOv2 features extracted from the corresponding clean image  $\mathbf{x}_0$ . Higher CKNNA scores  
 718 indicate more semantically meaningful and noise-robust representations that align more closely with  
 719 the features of the visual encoder. We follow the definition and implementation provided in the  
 720 original work (Huh et al., 2024). Specifically, we compute the CKNNA score between the output  
 721 of the encoder  $f_\theta$  on noisy inputs  $\mathbf{x}_t$  and the output of DINOv2 on clean inputs  $\mathbf{x}_0$ . We randomly  
 722 sample 10K images from the ImageNet-1K validation set and report results with  $k = 10$ .

723 Finally, in Fig. 3c, we report FID values computed with 10K generated images. **Consistent with**  
 724 **previous findings (Yu et al., 2024), we observe a strong negative correlation between the CKNNA**  
 725 **values of intermediate diffusion features and FID scores. This suggests that higher alignment between**  
 726 **diffusion features and high-quality visual representations leads to better generation quality.**

727 **Roles of dense-shallow and sparse-deep features (Fig. 4).** In Fig. 4, we analyze the contribution  
 728 of each path in SPRINT. To generate samples using only a single path, we replace the feature  
 729 representation of one path with that of the other. In other words, we duplicate the features from one  
 730 path and concatenate the original and duplicated features before feeding them into the decoder.

732 **PCA visualization of diffusion features (Fig. 6).** In Fig. 6, we perform a principal component  
 733 analysis (PCA) of the intermediate features to better understand what the model has learned. PCA  
 734 identifies the principal axes that capture the greatest variance in the feature space and is widely  
 735 used to analyze representations learned by neural networks (Oquab et al., 2023). We compute  
 736 PCA across patch embeddings and visualize the first three principal components as RGB channels.  
 737 Specifically, we examine the outputs of the encoder  $f_\theta$  and the middle blocks  $g_\theta$  at different timesteps  
 738 to observe how the feature representations evolve throughout the diffusion process. Additional PCA  
 739 visualizations are provided in Fig. 34.

741 

## B SPRINT WITH DIFFERENT DIFFUSION TRANSFORMERS

743 We provide details of the different diffusion transformers used in the main paper and describe how  
 744 SPRINT is implemented on top of them.

746 **SiT (Ma et al., 2024).** We closely follow the architecture of SiT. The SiT model is structurally  
 747 analogous to a Vision Transformer (ViT) (Dosovitskiy et al., 2020), consisting of a sequence of  
 748 identical transformer blocks that process a patchified 1D token sequence. SiT adapts this for the  
 749 diffusion task by incorporating timestep and class conditioning, which is injected into each block  
 750 via AdaIN-zero layers. Because the architecture is a simple, homogeneous stack of blocks, it is  
 751 straightforward to decouple it into our encoder, middle, and decoder blocks when applying SPRINT.

752 **REPA (Yu et al., 2024).** Representation Alignment (REPA) regularizes a DiT by aligning hidden  
 753 states with clean image features from a pre-trained DINOv2 model. The architecture largely follows  
 754 SiT, with the key modification being a projection layer inserted at the 8th transformer block to perform  
 755 the alignment. To integrate SPRINT with REPA, we place this projection layer at the corresponding

756  
757 **Table 9: Hyperparameters used for SPRINT.**  
758  
759

|                            | SiT-B+SPRINT<br>(Fig. 3, Tab. 5-8) | SiT-XL+SPRINT<br>(Tab. 1, 3) | SiT-XL <sub>REPA</sub> +SPRINT<br>(Tab. 2, 3) | SiT-XL+SPRINT<br>(Tab. 10) | U-ViT-XL+SPRINT<br>(Tab. 2) |
|----------------------------|------------------------------------|------------------------------|-----------------------------------------------|----------------------------|-----------------------------|
| <b>Architecture</b>        |                                    |                              |                                               |                            |                             |
| Target latent res.         | $32 \times 32$                     | $32 \times 32$               | $32 \times 32$                                | $64 \times 64$             | $32 \times 32$              |
| Patch size                 | 2                                  | 2                            | 2                                             | 2                          | 2                           |
| Total Num. Layers          | 12                                 | 28                           | 28                                            | 28                         | 28                          |
| Num. $f_\theta$ Layers     | 2                                  | 2                            | 2                                             | 2                          | 2                           |
| Num. $g_\theta$ Layers     | 8                                  | 24                           | 24                                            | 24                         | 24                          |
| Num. $h_\theta$ Layers     | 2                                  | 2                            | 2                                             | 2                          | 2                           |
| Hidden dims                | 384                                | 1152                         | 1152                                          | 1152                       | 1152                        |
| Num. heads                 | 6                                  | 16                           | 16                                            | 16                         | 16                          |
| <b>Pretraining config.</b> |                                    |                              |                                               |                            |                             |
| Optimizer                  | AdamW                              | AdamW                        | AdamW                                         | AdamW                      | AdamW                       |
| Learning rate              | 0.0001                             | 0.0001                       | 0.0001                                        | 0.0001                     | 0.0001                      |
| Batch size                 | 256                                | 256                          | 256                                           | 256                        | 256                         |
| Visual Encoder             | –                                  | –                            | DINOv2-B ( $\lambda = 0.5$ )                  | –                          | –                           |
| Drop ratio $r$             | 75%                                | 75%                          | 75%                                           | 75%                        | 75%                         |
| <b>Finetuning config.</b>  |                                    |                              |                                               |                            |                             |
| Training iterations        | –                                  | 100K                         | 100K                                          | 200K                       | 100K                        |
| Warmup iterations          | –                                  | 5K                           | 5K                                            | 5K                         | 5K                          |
| Optimizer                  | –                                  | AdamW                        | AdamW                                         | AdamW                      | AdamW                       |
| Learning rate              | –                                  | 0.0002                       | 0.0002                                        | 0.00015                    | 0.0002                      |
| Batch size                 | –                                  | 512/1024                     | 512/1024                                      | 1024                       | 512                         |
| Drop ratio $r$             | –                                  | 0%                           | 0%                                            | 0%                         | 0%                          |
| <b>Evaluation config.</b>  |                                    |                              |                                               |                            |                             |
| Sampler                    | ODE                                | ODE/SDE                      | ODE/SDE                                       | SDE                        | ODE                         |
| Sampling steps             | 50                                 | 50/250                       | 50/250                                        | 250                        | 50                          |

778  
779 location within our sparse middle block,  $g_\theta$ . A key consideration is that the hidden states in  $g_\theta$   
780 operate on a sparse token set of length  $N'$ , while the target DINOv2 features have a full sequence  
781 length of  $N$ . To resolve this, we simply apply the same token-dropping mask to the DINOv2 feature  
782 sequence, ensuring a one-to-one correspondence for the alignment loss. Since DINOv2 also uses a  
783 standard transformer architecture with positional encodings, aligning the corresponding tokens is  
784 straightforward.

785  
786 **U-ViT (Bao et al., 2023).** U-ViT extends the Vision Transformer with a U-Net (Ho et al., 2020)-  
787 style architecture. Similar to U-Net, it stacks transformer blocks with long skip-connections between  
788 encoder and decoder stages, directly passing features from encoder to decoder. To apply SPRINT, we  
789 first conceptually decompose the U-ViT into our standard  $f_\theta$ ,  $g_\theta$ , and  $h_\theta$  sections while preserving  
790 all original skip-connections. We then introduce our dense residual path between  $f_\theta$  and  $h_\theta$  and  
791 apply token dropping to the middle section,  $g_\theta$ . The U-Net skip-connections remain compatible  
792 with this design. The long-range skips between the encoder and decoder are unaffected. The shorter  
793 skip-connections within the sparse middle section naturally operate on the reduced set of tokens. This  
794 allows SPRINT to be integrated cleanly without disrupting the U-ViT’s core component.

## 795 C IMPLEMENTATION DETAILS AND HYPERPARAMETERS

### 796 C.1 TRAINING DETAILS

797  
798 We follow the model configuration of the original SiT implementation (Ma et al., 2024), with the only  
799 modification being a single linear projection layer for sparse–dense residual fusion. This adds only a  
800 marginal number of parameters, approximately 0.3% of the original model size. We use pre-computed  
801 latent vectors from raw images via Stable Diffusion (Rombach et al., 2022) and Flux (Labs, 2024b)  
802 VAEs, and, following common practice, do not apply any data augmentation. For pretraining, we train  
803 SPRINT with a batch size of 256, a learning rate of 1e-4, a fixed drop ratio of 75%, and an EMA decay  
804 rate of 0.9999. After pre-training, we switch the middle blocks to operate on the full token set for a  
805 short fine-tuning stage for 100K iterations. We increase the batch size and the learning rate, following  
806 standard practice (Zheng et al., 2024; Krause et al., 2025). We found that applying a linear learning  
807 rate warm-up from 2e-6 to 2e-4 over the first 5K iterations stabilizes the training. During the warm-up  
808 stage, we use an EMA decay rate of 0.999, which is restored to 0.9999 afterward. For both training  
809 phases, we introduce a path-drop learning strategy to maximize the effectiveness of our path-drop

---

810 **Algorithm 1** SPRINT Pre-training

---

811 **Require:** Input  $\mathbf{x}_0$ , Drop ratio  $r$ , Path-drop prob  $p$ , encoder  $f_\theta$ , middle blocks  $g_\theta$ , decoder  $h_\theta$ ,  
 812 condition  $\mathbf{c}$

813 1: **while** not converged **do**

814 2:   Sample  $t \sim [0, 1]$  and  $\epsilon \sim \mathcal{N}(0, I)$

815 3:    $\mathbf{x}_t \leftarrow (1 - t) \mathbf{x}_0 + t \epsilon$   $\triangleright \mathbf{x}_t \in \mathbb{R}^{B \times N \times C}$

816 4:    $\mathbf{f}_t \leftarrow f_\theta(\mathbf{x}_t, \mathbf{c})$   $\triangleright \mathbf{f}_t \in \mathbb{R}^{B \times N \times C}$

817 5:    $\mathbf{f}_t^{drop} \leftarrow \text{Drop}(\mathbf{f}_t, r)$   $\triangleright \mathbf{f}_t^{drop} \in \mathbb{R}^{B \times (1-r)N \times C}$

818 6:    $\mathbf{g}_t^{drop} \leftarrow g_\theta(\mathbf{f}_t^{drop}, \mathbf{c})$   $\triangleright \mathbf{g}_t^{drop} \in \mathbb{R}^{B \times (1-r)N \times C}$

819 7:    $\mathbf{g}_t^{pad} \leftarrow \text{PadWithMask}(\mathbf{g}_t^{drop})$   $\triangleright \mathbf{g}_t^{pad} \in \mathbb{R}^{B \times N \times C}$

820 8:    $\mathbf{g}_t^{pad} \leftarrow [\text{MASK}]$  with probability  $p$   $\triangleright$  Path-drop learning

821 9:    $\mathbf{h}_t \leftarrow \text{Fusion}(\mathbf{f}_t, \mathbf{g}_t^{pad})$   $\triangleright$  Sparse–dense residual fusion

822 10:    $\hat{\mathbf{v}}_t \leftarrow h_\theta(\mathbf{h}_t, \mathbf{c})$   $\triangleright \hat{\mathbf{v}}_t \in \mathbb{R}^{B \times N \times C}$

823 11:    $\mathcal{L}_{vel} \leftarrow \|\hat{\mathbf{v}}_t - \mathbf{v}_t\|^2$

824 12:   Update  $\theta$  using  $\nabla_\theta \mathcal{L}_{vel}$

825 13: **end while**

826 14: **return**  $f_\theta, g_\theta, h_\theta$

---



---

828 **Algorithm 2** SPRINT Fine-tuning

---

829 **Require:** Input  $\mathbf{x}_0$ , Path-drop prob  $p$ , encoder  $f_\theta$ , middle blocks  $g_\theta$ , decoder  $h_\theta$ , condition  $\mathbf{c}$

830 1: **while** not converged **do**

831 2:   Sample  $t \sim [0, 1]$  and  $\epsilon \sim \mathcal{N}(0, I)$

832 3:    $\mathbf{x}_t \leftarrow (1 - t) \mathbf{x}_0 + t \epsilon$   $\triangleright \mathbf{x}_t \in \mathbb{R}^{B \times N \times C}$

833 4:    $\mathbf{f}_t \leftarrow f_\theta(\mathbf{x}_t, \mathbf{c})$   $\triangleright \mathbf{f}_t \in \mathbb{R}^{B \times N \times C}$

834 5:    $\mathbf{g}_t \leftarrow g_\theta(\mathbf{f}_t, \mathbf{c})$   $\triangleright \mathbf{g}_t \in \mathbb{R}^{B \times N \times C}$

835 6:    $\mathbf{g}_t \leftarrow [\text{MASK}]$  with probability  $p$   $\triangleright$  Path-drop learning

836 7:    $\mathbf{h}_t \leftarrow \text{Fusion}(\mathbf{f}_t, \mathbf{g}_t)$   $\triangleright$  Sparse–dense residual fusion

837 8:    $\hat{\mathbf{v}}_t \leftarrow h_\theta(\mathbf{h}_t, \mathbf{c})$   $\triangleright \hat{\mathbf{v}}_t \in \mathbb{R}^{B \times N \times C}$

838 9:    $\mathcal{L}_{vel} \leftarrow \|\hat{\mathbf{v}}_t - \mathbf{v}_t\|^2$

839 10:   Update  $\theta$  using  $\nabla_\theta \mathcal{L}_{vel}$

840 11: **end while**

841 12: **return**  $f_\theta, g_\theta, h_\theta$

---

843  
 844  
 845 guidance, in addition to the standard class-condition dropping. Specifically, following the practice in  
 846 CFG training, we randomly drop the features of the sparse–deep path with a probability of 10% and  
 847 replace the dropped features with mask tokens. This random dropping is performed independently of  
 848 the condition dropping in CFG. To accelerate training, we adopt mixed-precision (bf16) training and  
 849 apply gradient norm clipping at 1.0 during both pretraining and finetuning. Detailed hyperparameters  
 850 are summarized in Table 9. All experiments are conducted on 8 NVIDIA A100 80GB GPUs.

851  
 852 C.2 EVALUATION DETAILS  
 853

854  
 855 **Metrics.** We evaluate generation performance using several standard metrics: FDD (Stein et al.,  
 856 2023) (Fréchet Distance on DINOv2), FID (Heusel et al., 2017) (Fréchet Inception Distance),  
 857 IS (Salimans et al., 2016) (Inception Score), and Precision/Recall (Kynkänniemi et al., 2019).  
 858 Unless otherwise specified, we follow the evaluation protocol of (Dhariwal & Nichol, 2021) and  
 859 report results using 50K generated samples.

860 FID is the most widely used metric, measuring the feature distance between the distributions of real  
 861 and generated images. It relies on the Inception-V3 network and assumes both feature distributions  
 862 follow multivariate Gaussian distributions. IS also uses the Inception-V3 network but instead evaluates  
 863 the quality and diversity of generated images by computing the KL-divergence between the marginal  
 label distribution and the conditional label distribution predicted from logits.

---

864 **Algorithm 3** SPRINT Inference

---

865 **Require:** encoder  $f_\theta$ , middle blocks  $g_\theta$ , decoder  $h_\theta$ , condition  $\mathbf{c}$ , guidance scale  $w$ , sampling steps  
 866  $N$ , sampler  $\mathcal{S}$   
 867 1:  $\mathbf{x}_1 \sim \mathcal{N}(0, \mathcal{I})$   
 868 2: **for**  $i = N$  **to** 1 **do**  
 869 3:      $t \leftarrow \frac{i}{N}$   
 870 4:     **if** Path-drop guidance **then**  
 871 5:          $v(\mathbf{x}_t, \emptyset) \leftarrow h_\theta(\text{Fusion}(M, f_\theta(\mathbf{x}_t, \mathbf{c})), \mathbf{c})$  ▷ Path-drop guidance  
 872 6:     **else**  
 873 7:          $v(\mathbf{x}_t, \emptyset) \leftarrow h_\theta(\text{Fusion}(g_\theta(f_\theta(\mathbf{x}_t, \mathbf{c}), \mathbf{c}), f_\theta(\mathbf{x}_t, \emptyset)), \emptyset)$  ▷ Classifier-free guidance  
 874 8:     **end if**  
 875 9:          $\tilde{v}(\mathbf{x}_t, \mathbf{c}) \leftarrow v(\mathbf{x}_t, \emptyset) + w \cdot (v(\mathbf{x}_t, \mathbf{c}) - v(\mathbf{x}_t, \emptyset))$   
 876 10:          $\mathbf{x}_{t-\frac{1}{N}} \leftarrow \mathcal{S}(\mathbf{x}_t, \tilde{v}(\mathbf{x}_t, \mathbf{c}))$   
 877 11: **end for**  
 878 12: **return**  $\mathbf{x}_0$

---

880 FDD adopts the same formulation as FID but replaces Inception features with DINOv2 features,  
 881 which provide stronger semantic alignment and robustness to noise. Notably, FDD has been shown to  
 882 be more reliable for diffusion models (Stein et al., 2023; Karras et al., 2024b).

884 Finally, Precision measures the fraction of generated images that are realistic, while Recall measures  
 885 the fraction of the training data manifold covered by generated samples.

886 **Guidance scale.** We use the following formulation for guidance sampling (Ho & Salimans, 2022):

$$888 \tilde{v}(\mathbf{x}_t, \mathbf{c}) = v(\mathbf{x}_t, \emptyset) + w \cdot (v(\mathbf{x}_t, \mathbf{c}) - v(\mathbf{x}_t, \emptyset)), \quad (5)$$

889 where  $w$  denotes the guidance scale. In standard Classifier-Free Guidance (CFG), the unconditional  
 890 velocity  $v(\mathbf{x}_t, \emptyset)$  is computed using the full model path with a null condition. In contrast, our  
 891 Path-Drop Guidance (PDG) replaces the unconditional branch with a weaker network, as defined in  
 892 Eq. 4.

893 For the results in Tables 1 and 2, we consistently use a CFG scale of 1.4 with the ODE sampler across  
 894 all methods.

896 For Table 3, we adopt the SDE sampler (Ma et al., 2024) to compare baselines. Under this setting,  
 897 we use a CFG scale of 1.35 to achieve the best FID and 2.0 to achieve the best FDD. For our PDG  
 898 sampling, the optimal scales are 1.35 for FID and 1.9 for FDD.

899 For our model in Table 10, we use the scale of 1.35 and 1.8 for FID and FDD, respectively, for both  
 900 CFG and PDG.

902 **D COMPUTATION ANALYSIS**

904 We use the SiT-XL/2 configuration for evaluating computational analysis below.

906 **FLOPs.** To estimate the total training FLOPs, we measure the forward-pass FLOPs over 100  
 907 iterations with a batch size of 256, average the results, and multiply by the total number of training  
 908 iterations. For inference FLOPs, we sum the forward-pass FLOPs across all sampling timesteps using  
 909 a batch size of 32 and report the average over both timesteps and batch size. This procedure provides  
 910 a consistent and reproducible measure of computational cost across methods. Note that we report  
 911 floating-point operations (FLOPs), not multiply–accumulate operations (MACs), where one MAC  
 912 corresponds to approximately two FLOPs.

914 **Training speed.** Here, we compare the actual run-time performance of each method on Stable  
 915 Diffusion VAE latents. For all token-dropping methods, we use a fixed drop rate of 75%. At  
 916 the ImageNet resolution of 256<sup>2</sup>, SPRINT achieves a pretraining speed of **5.2** iters/sec, which  
 917 is more than **2× faster** than the SiT baseline (2.5 iters/sec) and clearly outperforms other token-  
 918 dropping baselines, including MaskDiT (4.57 iters/sec), MicroDiT (3.9 iters/sec), and Tread (4.7

918  
 919 **Table 10: Comprehensive performance comparison on ImageNet**  $512 \times 512$  class-conditioned  
 920 generation with classifier-free guidance.  $\downarrow / \uparrow$  indicate whether lower or higher values are better,  
 921 respectively. All metrics are evaluated with 250 sampling steps using the SDE sampler. Training and  
 922 inference TFLOPs are measured with the DeepSpeed library.

| 923 <b>Method</b>                 | 924 <b>Epochs</b> | 925 <b>#Params.</b> | 926 <b>Training</b><br>927 <b>TFLOPs</b> $\downarrow$<br>( $\times 10^6$ ) | 928 <b>Inference</b><br>929 <b>TFLOPs</b> $\downarrow$ | 930 <b>FDD</b> $\downarrow$ | 931 <b>FID</b> $\downarrow$ | 932 <b>Pre.</b> $\uparrow$ | 933 <b>Rec.</b> $\uparrow$ |
|-----------------------------------|-------------------|---------------------|----------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------|-----------------------------|----------------------------|----------------------------|
| 925 ADM (Dhariwal & Nichol, 2021) | 926 400           | 927 –               | 928 –                                                                      | 929 –                                                  | 930 –                       | 931 2.85                    | 932 0.84                   | 933 0.53                   |
| 925 Simple diffusion (U-Net)      | 926 800           | 927 –               | 928 –                                                                      | 929 –                                                  | 930 –                       | 931 4.28                    | 932 –                      | 933 –                      |
| 925 Simple diffusion (U-ViT-L)    | 926 800           | 927 –               | 928 –                                                                      | 929 –                                                  | 930 –                       | 931 4.53                    | 932 –                      | 933 –                      |
| 925 MaskDiT (Zheng et al., 2024)  | 926 800           | 927 730M            | 928 327.2                                                                  | 929 1.029                                              | 930 –                       | 931 2.50                    | 932 0.83                   | 933 0.56                   |
| 925 DiT-XL (Peebles & Xie, 2023)  | 926 600           | 927 675M            | 928 366.6                                                                  | 929 0.952                                              | 930 –                       | 931 3.04                    | 932 0.84                   | 933 0.54                   |
| 925 SiT-XL (Ma et al., 2024)      | 926 600           | 927 675M            | 928 366.6                                                                  | 929 0.952                                              | 930 –                       | 931 2.62                    | 932 0.84                   | 933 0.57                   |
| 930 <b>SiT-XL</b>                 |                   |                     |                                                                            |                                                        |                             |                             |                            |                            |
| 931 <b>+ SPRINT</b>               |                   |                     |                                                                            |                                                        |                             |                             |                            |                            |
| 931 <b>+ SPRINT<sub>PDG</sub></b> |                   |                     |                                                                            |                                                        |                             |                             |                            |                            |
| 932                               |                   |                     |                                                                            |                                                        |                             |                             |                            |                            |

934 iters/sec). At the higher ImageNet resolution of  $512^2$ , SPRINT maintains its advantage, achieving **2.01**  
 935 iters/sec—over  **$2.5\times$  faster** than the SiT baseline (0.79 iters/sec)—and again surpassing MaskDiT  
 936 (1.77 iters/sec), MicroDiT (1.54 iters/sec), and Tread (1.79 iters/sec). This acceleration results in  
 937 substantial reductions in wall-clock training time and GPU consumption, making large-scale diffusion  
 938 model training significantly more practical and resource-efficient.

939  
 940 **VRAM memory consumption.** In addition to reducing computational cost, SPRINT significantly  
 941 lowers GPU memory requirements during training. For example, when training with a batch size  
 942 of 32 and image resolution  $256^2$  on a single GPU, SPRINT requires only 19.6 GB of memory,  
 943 compared to 29.6 GB for the baseline SiT-XL/2 model. At resolution  $512^2$ , our SPRINT requires  
 944 37.9 GB, whereas the baseline SiT-XL/2 model requires 77.7 GB. This represents a **33.8% reduction**  
 945 in memory usage at  $256^2$  and a **51.2% reduction** at  $512^2$ . Such efficiency enables training with  
 946 larger batch sizes or higher resolutions on the same hardware, making our method more accessible  
 947 for researchers with limited GPU resources. Importantly, this reduction comes without sacrificing  
 948 performance, underscoring the practicality of SPRINT in resource-constrained environments.

## 949 E BASELINES

### 950 E.1 BASELINE DETAILS ON TABLE 1

951 For a fair system-level comparison in Tab. 1, we apply the *same pretraining and finetuning strategies*,  
 952 along with identical transformer block configurations, **a fixed drop ratio of 75%**, and **consistent**  
 953 **evaluation hyperparameters**, across all baselines.

954  
 955 **Progressive training.** We adopt the same network architecture for progressive training. The model  
 956 is first pretrained on  $128 \times 128$  images and then finetuned on  $256 \times 256$  images, with positional  
 957 embeddings resized using bilinear interpolation during the resolution transition. This approach is  
 958 slightly more efficient than SPRINT in terms of computational cost per iteration, achieving 25.8  
 959 vs. 31.5 GFLOPs ( $\times 10^9$ ) at 1M training iterations. However, despite the efficiency advantage,  
 960 progressive training lags behind SPRINT in performance and even fails to match the baseline SiT  
 961 results, underscoring its limited effectiveness.

962  
 963 **MicroDiT (Sehwag et al., 2025).** MicroDiT introduces deferred masking, where token dropping is  
 964 applied only after several additional patch-mixing blocks. These modules allow local patch tokens  
 965 to fuse information, enriching their semantic content. Following the original protocol, we modify  
 966 the SiT-XL/2 model by inserting patch-mixing modules composed of six transformer blocks. As  
 967 shown in Tab. 1, this modification substantially increases computational cost and the number of  
 968 parameters. Nevertheless, despite the additional overhead, MicroDiT underperforms relative to  
 969 SPRINT, highlighting that the deferred masking strategy and additional compute does not translate  
 970 into superior efficiency or accuracy.

972  
973  
974  
975  
976  
977  
978  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
Table 11: **Performance of SiT-XL/2 and SPRINT across NFEs.** Results are reported at 1M training iterations using the ODE sampler with 50K generated samples.

| Method               | NFE | FDD ↓        | FID ↓        | IS ↑         | Pre. ↑      | Rec. ↑      |
|----------------------|-----|--------------|--------------|--------------|-------------|-------------|
| SiT-XL/2             | 200 | 132.3        | 2.18         | 249.9        | 0.81        | 0.59        |
| + SPRINT (Ours)      | 200 | <b>120.4</b> | <b>2.08</b>  | <b>272.2</b> | 0.81        | <b>0.60</b> |
| <b>Gain</b> $\Delta$ |     | <b>+11.9</b> | <b>+0.1</b>  | <b>+22.3</b> |             |             |
| SiT-XL/2             | 150 | 133.1        | 2.19         | 249.6        | 0.81        | 0.59        |
| + SPRINT (Ours)      | 150 | <b>121.1</b> | <b>2.09</b>  | <b>271.5</b> | 0.81        | 0.59        |
| <b>Gain</b> $\Delta$ |     | <b>+12.0</b> | <b>+0.1</b>  | <b>+21.9</b> |             |             |
| SiT-XL/2             | 100 | 134.7        | 2.22         | 248.4        | 0.81        | 0.58        |
| + SPRINT (Ours)      | 100 | <b>122.2</b> | <b>2.10</b>  | <b>271.0</b> | 0.81        | <b>0.59</b> |
| <b>Gain</b> $\Delta$ |     | <b>+12.4</b> | <b>+0.12</b> | <b>+22.6</b> |             |             |
| SiT-XL/2             | 50  | 140.6        | 2.34         | 244.0        | 0.80        | 0.58        |
| + SPRINT (Ours)      | 50  | <b>126.5</b> | <b>2.19</b>  | <b>267.7</b> | <b>0.81</b> | <b>0.59</b> |
| <b>Gain</b> $\Delta$ |     | <b>+14.1</b> | <b>+0.15</b> | <b>+23.7</b> |             |             |
| SiT-XL/2             | 25  | 156.1        | 2.91         | 234.4        | 0.80        | 0.57        |
| + SPRINT (Ours)      | 25  | <b>138.2</b> | <b>2.59</b>  | <b>256.3</b> | 0.80        | <b>0.58</b> |
| <b>Gain</b> $\Delta$ |     | <b>+17.9</b> | <b>+0.32</b> | <b>+21.9</b> |             |             |
| SiT-XL/2             | 10  | 222.4        | 7.37         | 187.3        | 0.74        | 0.54        |
| + SPRINT (Ours)      | 10  | <b>191.7</b> | <b>6.29</b>  | <b>211.3</b> | 0.74        | 0.54        |
| <b>Gain</b> $\Delta$ |     | <b>+30.7</b> | <b>+1.08</b> | <b>+24.0</b> |             |             |

**Tread (Krause et al., 2025).** Tread introduces a token-routing strategy in which randomly dropped tokens at early layers are routed directly to deeper layers. While this resembles SPRINT in that tokens bypass the middle layers, the two approaches differ fundamentally. In Tread, only the dropped tokens are bypassed, forcing the middle block to encode local noise information in order to estimate velocity. In contrast, SPRINT employs a full dense residual path that delivers complete local noise information to the decoder, freeing the middle block to focus on modeling global contextual information. This design choice makes SPRINT *highly effective under aggressive dropping ratios* (75%), whereas Tread fails under the same setting. We follow the implementation details provided in the original Tread paper.

## E.2 MORE DISCUSSION ON OTHER BASELINES

**MaskDiT (Zheng et al., 2024).** MaskDiT introduces an additional reconstruction task for masked tokens alongside the diffusion objective, encouraging the model to recover missing information and thereby improve contextual understanding. While this approach provides some efficiency gains, it requires an extra decoder module, increasing the model size from 675M to 730M and adding computational overhead. Moreover, its effectiveness is limited to moderate dropping ratios (e.g., 50%). As shown in Tab. 3, these limitations restrict its overall efficiency compared to our framework. Specifically, MaskDiT requires 1600 training epochs to reach 65.4 FDD and 2.28 FID, whereas SPRINT surpasses this in just 200 epochs with 61.8 FDD and 2.01 FID. This underscores the superior effectiveness and efficiency of SPRINT over MaskDiT.

**MDT (Gao et al., 2023).** The Masked Diffusion Transformer (MDT) also aims to improve the contextual understanding of diffusion models through token dropping. They designed masked diffusion transformer with encoder-decoder split of the diffusion transformer, where the encoder processes masked tokens and forwards them to the decoder along with remaining tokens through additional side-interpolator model. It adds additional long shorcut connections between encoder blocks along with long full token input to all decoder blocks. The added complexity in the training and architectural changes is aimed for better generative performance. Similar to MaskDiT, this work also operates only with moderate token dropping ratios (e.g., [30%, 50%]). MDT does not work well with high token dropping ratio such as 75%.

1026  
1027

## F ADDITIONAL QUANTITATIVE RESULTS

1028  
1029

### F.1 IMAGENET 512x512 EXPERIMENT

1030  
1031  
1032

In the main text, we have already demonstrate that SPRINT outperforms many existing training methods and state-of-the-art models at  $256^2$  class conditional image generation. In this experiment, we train our models to generation images at  $512^2$  resolution.

1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041

Tab. 10 compares our method with strong baselines on ImageNet-1K class-conditional generation at  $512^2$ . We pre-train SPRINT for 1.8M iterations and finetune for 200K iterations (refer to Table 9). SPRINT achieves better generation quality while using substantially fewer training TFLOPs ( $\times 10^6$ ): only 184.8 at 400 epochs, versus 366.6 for SiT-XL at 600 epochs. This demonstrates much faster convergence, reaching better FID (2.23 vs. 2.62) with nearly  $2 \times$  lower training cost. At inference, Path-Drop Guidance provides further benefits, nearly halving inference TFLOPs (0.471 vs. 0.952) while improving both FID and FDD. Overall, SPRINT consistently demonstrates significant efficiency compared to the baselines at  $512^2$ , by combining lower training and inference costs. Refer to Fig. 33 for qualitative results.

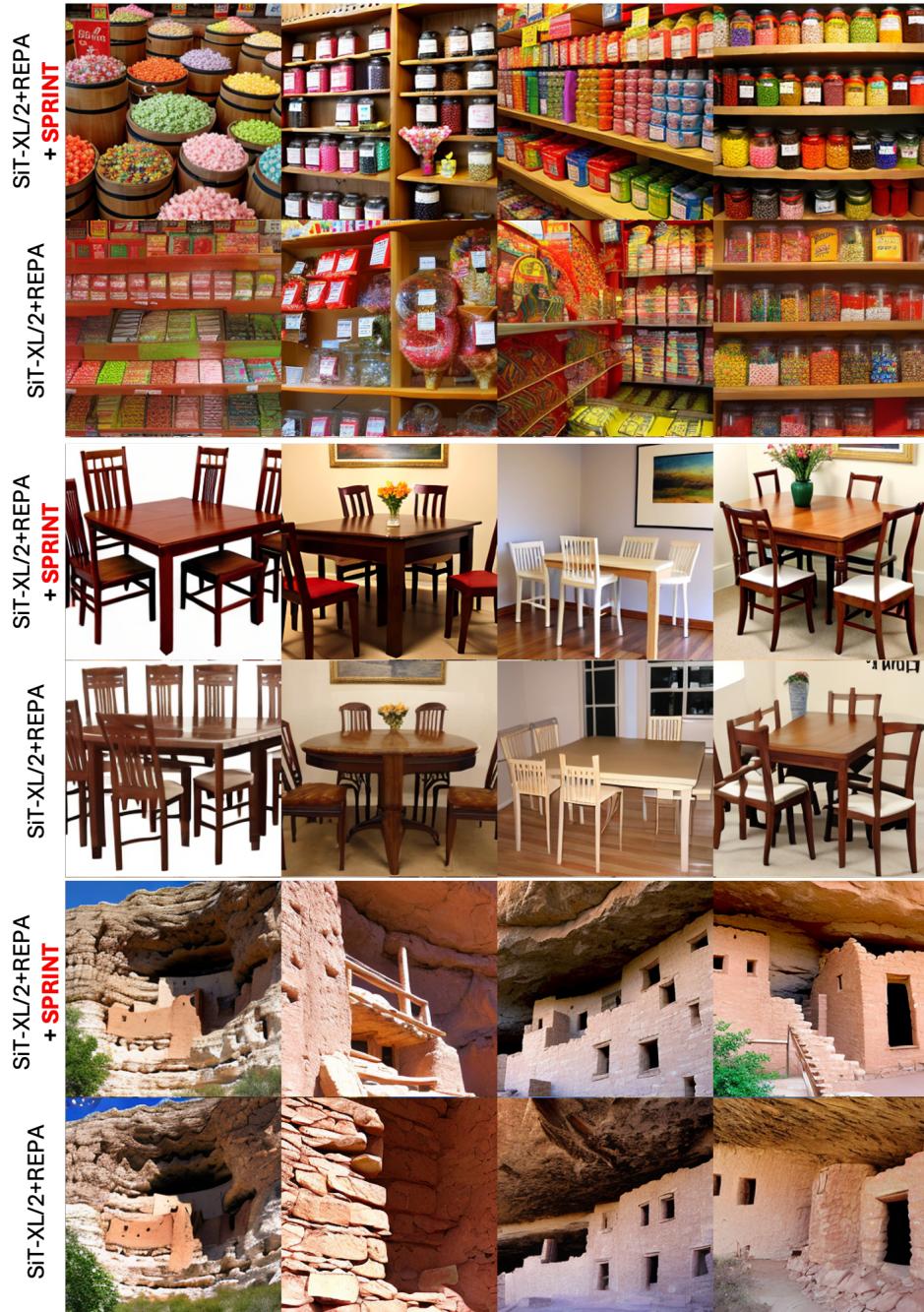
1042  
1043

### F.2 PERFORMANCE WITH FEW-STEP GENERATION

1044  
1045  
1046  
1047  
1048  
1049  
1050  
1051  
1052

Tab. 11 compares SiT-XL/2 and SiT-XL/2 + SPRINT across lower inference steps (NFEs), an essential setting for achieving efficient and practical image generation. In real-world scenarios, reducing the number of function evaluations (NFEs) directly translates to faster sampling and lower inference cost, often at the expense of generation quality. While both models perform similarly at large NFEs (200), SPRINT consistently outperforms the baseline as the number of steps decreases. At 50 steps, SPRINT improves FID from 2.34 to 2.19 and IS from 244.0 to 267.7, and at only 10 steps it achieves a much larger gain, reducing FID from 7.37 to 6.29 and improving IS from 187.3 to 211.3. These results highlight that SPRINT is more competitive under low-step inference. This demonstrates the *strong representational power* of fused dense–shallow and sparse–deep features.

1053  
1054  
1055  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079

1080 G ADDITIONAL QUALITATIVE RESULTS  
10811082 G.1 VISUAL COMPARISON ON IMAGENET 256 × 256  
1083

1126 Figure 10: **SPRINT improves visual quality over baseline with only 57% of inference FLOPs**  
1127 **(additional examples).** We present samples from two SiT-XL/2 + REPA models after 1M iterations,  
1128 where SPRINT is applied to one of the models. For our approach, we further incorporate the proposed  
1129 Path-Drop Guidance (PDG), yielding higher visual quality compared to the REPA.

1130  
1131  
1132  
1133

1134  
1135 G.2 UNSELECTED GENERATED RESULTS BY SPRINT ON IMAGENET  $256 \times 256$ 1136  
1137  
1138  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1150  
1151  
1152 Figure 11: Unselected generation results of SiT-XL/2 + SPRINT<sub>CFG</sub>. We use classifier-free  
1153 guidance with  $w = 4.0$ . Class label = “park bench” (706)1154  
1155  
1156  
1157  
1158  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1170  
1171  
1172  
1173 Figure 12: Unselected generation results of SiT-XL/2 + SPRINT<sub>PDG</sub>. We use our path-drop  
1174 guidance with  $w = 4.0$ . Class label = “park bench” (706)1176  
1177  
1178  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187

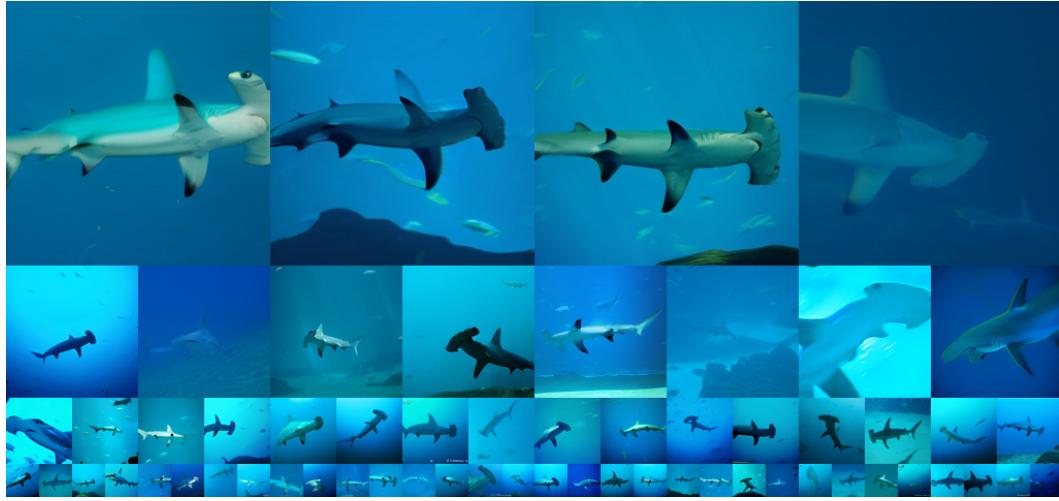


Figure 13: **Unselected generation results of SiT-XL/2 + SPRINT<sub>CFG</sub>.** We use classifier-free guidance with  $w = 4.0$ . Class label = “hammerhead, hammerhead shark” (4)



Figure 14: **Unselected generation results of SiT-XL/2 + SPRINT<sub>PDG</sub>.** We use our path-drop guidance with  $w = 4.0$ . Class label = “hammerhead, hammerhead shark” (4)

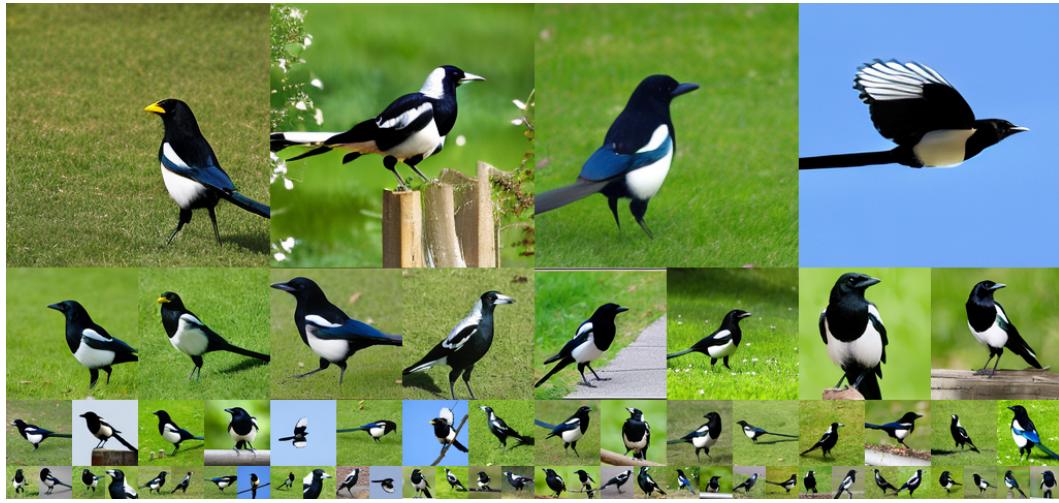


Figure 15: **Unselected generation results of SiT-XL/2 + SPRINT<sub>CFG</sub>.** We use classifier-free guidance with  $w = 4.0$ . Class label = “magpie” (18)



Figure 16: **Unselected generation results of SiT-XL/2 + SPRINT<sub>PDG</sub>.** We use our path-drop guidance with  $w = 4.0$ . Class label = “magpie” (18)

1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1290  
1291  
1292  
1293  
1294  
1295



Figure 17: **Unselected generation results of SiT-XL/2 + SPRINT<sub>CFG</sub>.** We use classifier-free guidance with  $w = 4.0$ . Class label = “bullfrog, *Rana catesbeiana*” (30)



Figure 18: **Unselected generation results of SiT-XL/2 + SPRINT<sub>PDG</sub>.** We use our path-drop guidance with  $w = 4.0$ . Class label = “bullfrog, *Rana catesbeiana*” (30)



Figure 19: **Unselected generation results of SiT-XL/2 + SPRINT<sub>CFG</sub>.** We use classifier-free guidance with  $w = 4.0$ . Class label = “tusker” (101)



Figure 20: **Unselected generation results of SiT-XL/2 + SPRINT<sub>PDG</sub>.** We use our path-drop guidance with  $w = 4.0$ . Class label = “tusker” (101)

1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1399  
1400  
1401  
1402  
1403



Figure 21: **Unselected generation results of SiT-XL/2 + SPRINT<sub>CFG</sub>.** We use classifier-free guidance with  $w = 4.0$ . Class label = “beagle” (162)



Figure 22: **Unselected generation results of SiT-XL/2 + SPRINT<sub>PDG</sub>.** We use our path-drop guidance with  $w = 4.0$ . Class label = “beagle” (162)



Figure 23: **Unselected generation results of SiT-XL/2 + SPRINT<sub>CFG</sub>.** We use classifier-free guidance with  $w = 4.0$ . Class label = “coffeepot” (505)



Figure 24: **Unselected generation results of SiT-XL/2 + SPRINT<sub>PDG</sub>.** We use our path-drop guidance with  $w = 4.0$ . Class label = “coffeepot” (505)

1498  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1510  
1511



Figure 25: **Unselected generation results of SiT-XL/2 + SPRINT<sub>CFG</sub>.** We use classifier-free guidance with  $w = 4.0$ . Class label = “computer keyboard, keypad” (508)



Figure 26: **Unselected generation results of SiT-XL/2 + SPRINT<sub>PDG</sub>.** We use our path-drop guidance with  $w = 4.0$ . Class label = “computer keyboard, keypad” (508)



1582 **Figure 27: Unselected generation results of SiT-XL2 + SPRINT<sub>CFG</sub>.** We use classifier-free  
1583 guidance with  $w = 4.0$ . Class label = “convertible” (511)



1604 **Figure 28: Unselected generation results of SiT-XL2 + SPRINT<sub>PDG</sub>.** We use our path-drop  
1605 guidance with  $w = 4.0$ . Class label = “convertible” (511)

1606  
1607  
1608  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619



Figure 29: **Unselected generation results of SiT-XL/2 + SPRINT<sub>CFG</sub>.** We use classifier-free guidance with  $w = 4.0$ . Class label = “cornet, horn, trumpet, trump” (513)



Figure 30: **Unselected generation results of SiT-XL/2 + SPRINT<sub>PDG</sub>.** We use our path-drop guidance with  $w = 4.0$ . Class label = “cornet, horn, trumpet, trump” (513)

1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1670  
1671  
1672  
1673

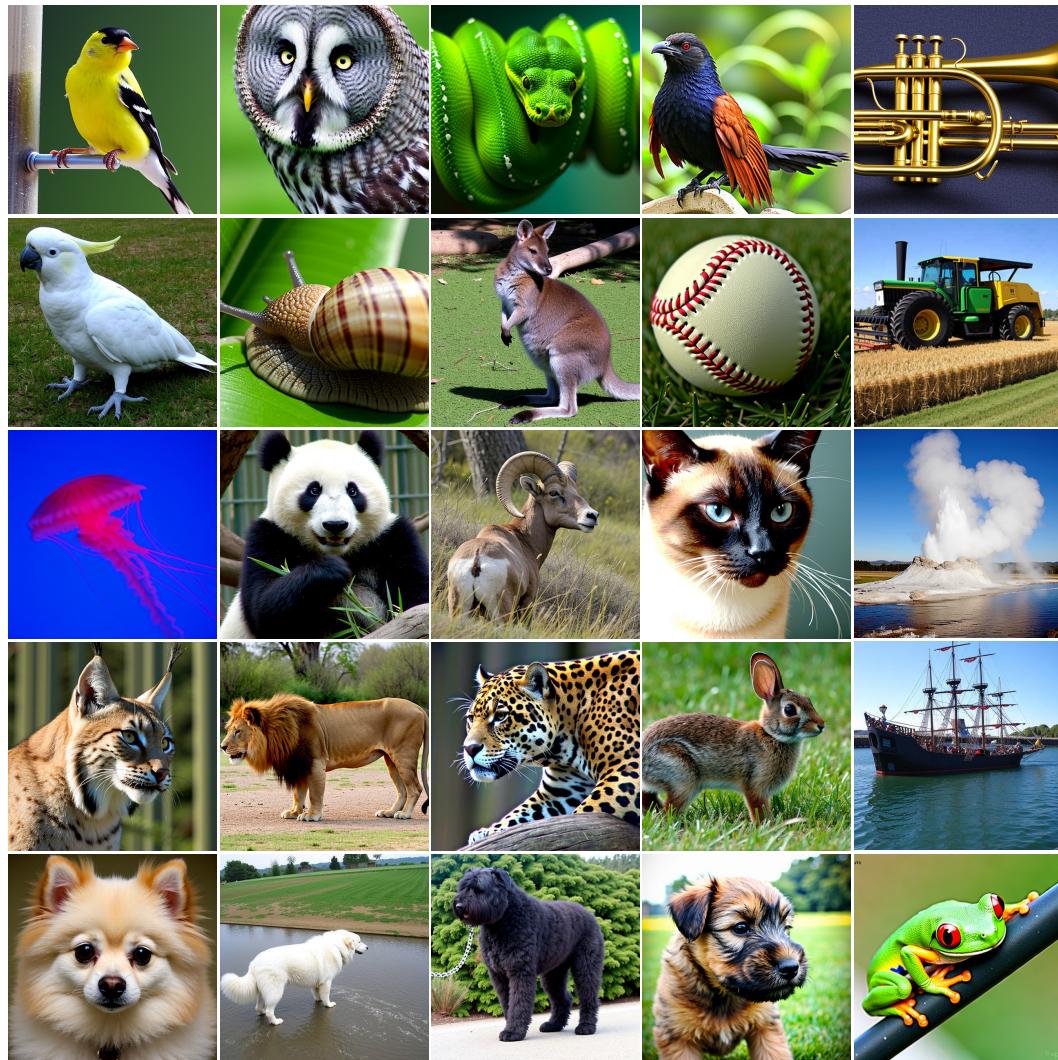


Figure 31: **Unselected generation results of SiT-XL/2 + SPRINT<sub>CFG</sub>.** We use classifier-free guidance with  $w = 4.0$ . Class label = “cowboy hat, ten-gallon hat” (515)



Figure 32: **Unselected generation results of SiT-XL/2 + SPRINT<sub>PDG</sub>.** We use our path-drop guidance with  $w = 4.0$ . Class label = “cowboy hat, ten-gallon hat” (515)

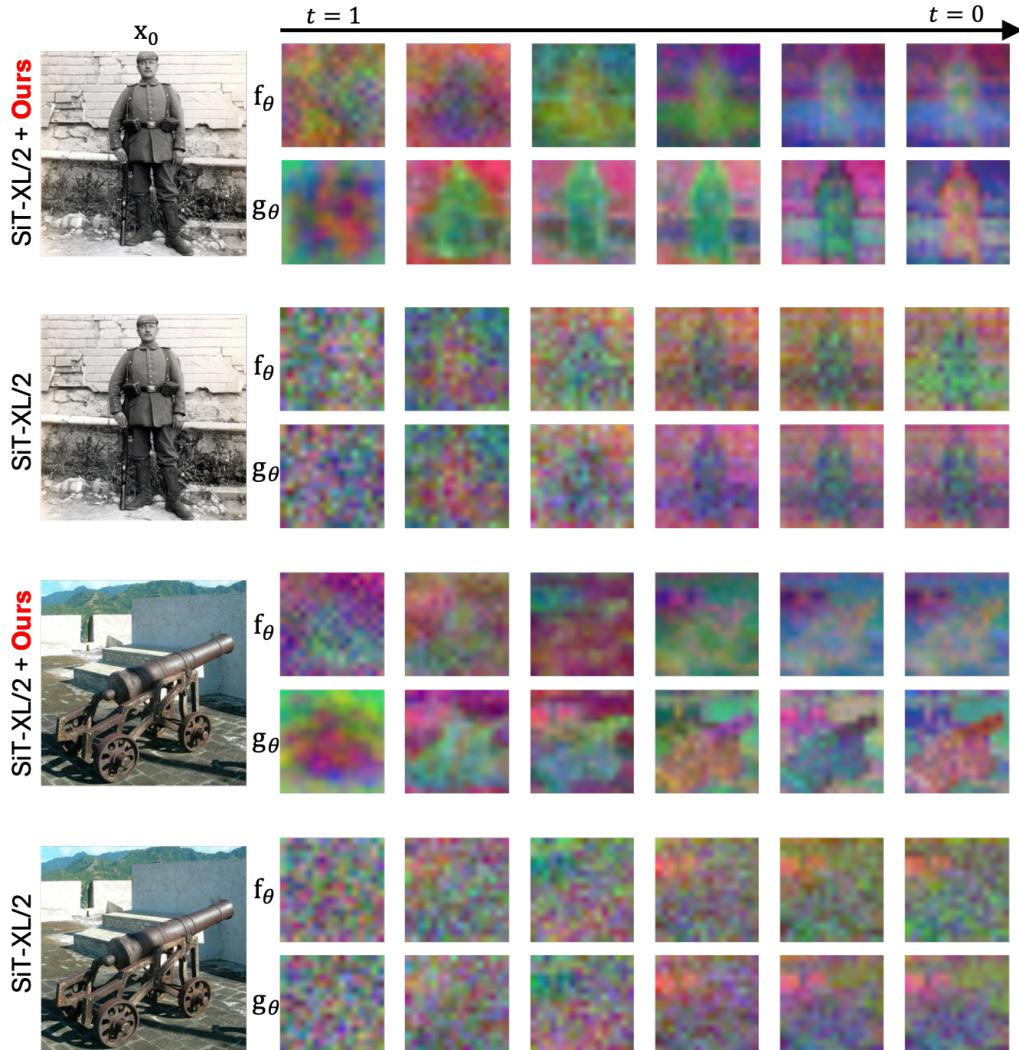
1674  
1675  
1676  
1677  
1678  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1696  
1697  
1698  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727

1728  
1729 G.3 GENERATED RESULTS BY SPRINT ON IMAGENET  $512 \times 512$ 1764 Figure 33: **Generation results of SiT-XL/2 + SPRINT<sub>PDG</sub>.** We use our path-drop guidance with w  
1765 = 3.0.

1766  
1767  
1768  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1780  
1781

1782 G.4 ADDITIONAL FEATURE PCA VISUALIZATION  
1783

1784 In the main text (Figure 6), we analyzed PCA visualizations of features from  $f_\theta$  and  $g_\theta$ , showing that  
1785 SPRINT learns more noise-invariant and semantically vivid representations than the SiT baseline  
1786 across diffusion timesteps. Figure 34 presents additional examples of these dense–shallow and  
1787 sparse–deep features learned by SPRINT, contrasted with those from a standard SiT-XL/2 model  
1788 trained with full tokens.



1823 **Figure 34: SPRINT improves feature semantics (additional examples).** We visualize PCA features  
1824 of  $f_\theta$  and  $g_\theta$  from two SiT-XL/2 models at 400K iterations. The top rows show the model trained  
1825 with SPRINT, while the bottom rows show the baseline. Compared to the baseline, features from  
1826 SPRINT exhibit clearer semantic structure across both images.

1827  
1828  
1829  
1830  
1831  
1832  
1833  
1834  
1835

## 1836 H LIMITATION AND FUTURE WORK

1837  
1838 Our study is limited by the available computational resources, which prevented us from conducting  
1839 experiments on large-scale text-to-image or video diffusion models. Exploring the scalability of  
1840 SPRINT in such settings remains an important direction. In particular, the quadratic complexity  
1841 of transformers becomes increasingly prohibitive as model size and input resolution grow. Since  
1842 SPRINT is specifically designed to reduce redundant computation in deeper layers, we expect it to  
1843 be especially beneficial for large-scale architectures where efficiency bottlenecks are most severe.  
1844 Thus, extending SPRINT to other modalities such as video, 3D, or multi-modal generative models  
1845 is an exciting direction. These domains pose even greater computational and memory challenges,  
1846 particularly in video, where the temporal dimension compounds complexity, making our sparse–dense  
1847 residual fusion especially relevant for future research.

1848 Another promising avenue is the integration of SPRINT with recent advances in efficient attention  
1849 mechanisms and scalable training strategies. Such combinations could amplify the benefits of our  
1850 approach, further reducing training and inference costs while maintaining or improving performance.

1851  
1852  
1853  
1854  
1855  
1856  
1857  
1858  
1859  
1860  
1861  
1862  
1863  
1864  
1865  
1866  
1867  
1868  
1869  
1870  
1871  
1872  
1873  
1874  
1875  
1876  
1877  
1878  
1879  
1880  
1881  
1882  
1883  
1884  
1885  
1886  
1887  
1888  
1889