
FETD2: A Framework for Enabling Textual
Data Denoising via Robust Contextual

Embeddings

Govind, Céline Alec, Jean-Luc Manguin, and Marc Spaniol(B)

Department of Computer Science, Université de Caen Normandie,
Campus Côte de Nacre, 14032 Caen Cedex, France

{govind,celine.alec,jean-luc.manguin,marc.spaniol}@unicaen.fr

Abstract. Efforts by national libraries, institutions, and (inter-) national
projects have led to an increased effort in preserving textual contents - includ-
ing non-digitally born data - for future generations. These activities have resulted
in novel initiatives in preserving the cultural heritage by digitization. However, a
systematic approach toward Textual Data Denoising (TD2) is still in its infancy
and commonly limited to a primarily dominant language (mostly English). How-
ever, digital preservation requires a universal approach. To this end, we introduce
a “Framework for Enabling Textual Data Denoising via robust contextual embed-
dings” (FETD2). FETD2 improves data quality by training language-specific data
denoising models based on a small number of language-specific training data. Our
approach employs a bi-directional language modeling in order to produce noise-
resilient deep contextualized embeddings. In experiments we show the superiority
compared with the state-of-the-art.

Keywords: Textual Data Denoising · AI · Contextual representations

1 Introduction

1.1 Motivation and Problem

In recent years, natural language processing (NLP) has seen major improvements by the
application of machine learning ranging from “low-level” text (pre-) processing up to
“high-level” semantic enrichment. Each component is an important asset ensuring data
quality along the entire value chain, e.g., when preserving the cultural heritage by digi-
tization of textual documents. Despite all recent achievements in document digitization,
the overall process is still in its infancy. In particular, studies have been primarily con-
ducted on English language text. While the approaches are - in general - conceptually
transferable to other languages, there are several drawbacks to be considered. First,
models of contextual as well as non-contextual word representations have been pre-
dominantly developed for English language text. Second, these models provide dense
representation for the vocabulary tokens but broadly make an assumption that tasks
in NLP do not have to deal with noisy textual data, which is more prevalent in real-
world or digitized documents. Last, but not least, adapting data (pre-) processing for
c© Springer Nature Switzerland AG 2021

G. Berget et al. (Eds.): TPDL 2021, LNCS 12866, pp. 3–16, 2021.
https://doi.org/10.1007/978-3-030-86324-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86324-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-86324-1_1

4 Govind et al.

less commonly used languages requires a generalized approach in order to overcome
performance drain caused by data scarcity.

1.2 Approach and Contribution

In this paper, we present FETD2: “a Framework for Enabling Textual Data Denoising”.
FETD2 employs a noise-resilient deep contextualized embedding model based on bi-
directional language modeling. Further, language adaptability is supported by emulat-
ing language-specific patterns of spelling-errors (referred to as “Confusion Matrix++”)
by systematically injecting them into high-quality contents for training the model.
Finally, in extensive intrinsic and extrinsic evaluations we demonstrate the superiority
of FETD2.

2 Related Work

2.1 Pre-trained Language Representation Models

Pre-trained language representation models aim at encoding the syntactic and semantic
knowledge about tokens by building their continuous representations in a high dimen-
sional space. Popular context-insensitive models such as Word2Vec [18] and GloVe
[20] learn fixed embeddings of words based on their co-occurrence in large corpora.
Although, these models are prone to out-of-vocabulary (OOV) problem caused by
spelling errors/variations as well as fail to build unique representations of homonyms.
To address this, the idea of deep contextualized representation aims at producing sepa-
rate representations of a token when used in different contexts. ELMo [21] uses multiple
stacked Long Short-Term Memory (LSTM) [9] layers to produce a high-level contex-
tual representation of words with respect to their use in a sentence. BERT [6] proposes
the use of masked language modeling with Transformers [26] to process the natural lan-
guage text in a truly bidirectional way. ELMo and BERT work on sub-word level and
thus have the ability to produce representations for misspelled/OOV tokens. Although, it
has been widely reported that the model performance suffers significantly as representa-
tions of these noisy tokens degrade in quality [12,24]. Recently, there have been several
advancements in LMs via transformers such as XLNet [29], ALBERT [13], Character-
BERT [3] and ELECTRA [5]. Even these approaches have not adequately focused on
dealing with noisy data and the resilient language representation needs further explo-
ration.

2.2 Handling Noise in Textual Data

Real world text often contains noise of various nature such as misspellings, optical
character recognition (OCR) errors, typographical errors, etc. Models trained on clean
data are prone to fail already in the presence of little noise, although being relatively
easily decodeable for a human [2,23]. Multiple studies [12,24,28] have reported that
pre-trained language representation models (e.g. BERT, ELMo) suffer in domains such
as social media and noisy data in general. Further, [15] show the effects of OCR noise
on named entity linking resulting in a considerable drop in performance. Persuaded by

FETD2 5

the ubiquity of noisy text, there have been growing interest in building robust word rep-
resentations recently. [7] propose a fastText based model to learn robust embeddings for
misspellings by mapping the representation of misspelled words closer to their respec-
tive original words in the embedding space. On the other hand, [17] have introduced
a context-informed embeddings model based on RNNs. In [1] embedding subspaces
are exploited to learn word representation in scarce and noisy data, whereas [25] use a
masked language model for denoising. Also, [16] introduce the use of noise-contrastive
estimation to improve language modeling and a data augmentation framework Tele-
phonetic to deal with misspellings is introduced by [14]. Adversarial machine learning
has also received growing attention in the NLP domain recently [8,27], such as train-
ing with adversarial examples in order to build more robust machine learning models
[22,24,30]. It has been noted in aforementioned works that having robust word embed-
dings in-turn helps in building robust models for multiple downstream NLP tasks. To
the best of our knowledge, none of the prior approaches tackle data denoising by system-
atically building a deep contextualized bi-directional language model that is implicitly
noise-resilient.

3 Noise-Resilient Contextual Representations

3.1 Bi-Directional Language Models for Contextual Representation

The task of language modeling aims at assigning probability values to future tokens
given a history of previous tokens. To this end, a forward language model can be utilized
to compute the probability of observing a sequence of tokens as formalized in Eq. 1
and similarly a backward language model in the backward direction as can be seen in
Eq. 2. Given a sequence of tokens t1, t2, . . . , tN , a bi-directional language model tries to
jointly maximize the log-likelihood in the forward as well as in the backward direction
as formalized in Eq. 3.

p(t1, t2, . . . , tN) =

N∏

i=1

p(ti|t1, t2, . . . , ti−1) (1)

p(t1, t2, . . . , tN) =
N∏

i=1

p(ti|ti+1, ti+2, . . . , tN) (2)

N∑

i=1

(
log

(
p(ti|t1, t2, . . . , ti−1;

−→
θ)

)
+ log

(
p(ti|ti+1, ti+2, . . . , tN ;

←−
θ)

))
(3)

3.2 Noise-Resilient Bi-Directional Language Modeling

In order to make language modeling and the underlying token representation robust
towards noise, we propose a novel language modeling objective where the tokens’ his-
tory is perturbed via realistic noise patterns. To achieve this, we introduce a noise func-
tion Γ , which imparts noise in the sequence of history tokens in a controlled manner
as seen in Eq. 4 (cf. Sect. 4.1 for details on the noise generation algorithm). Given a
sequence of tokens T = (t1, t2, . . . , tj), the noise function Γ produces a noisy sequence

6 Govind et al.

˜T = (˜t1, ˜t2, . . . , ˜tj) with ratio of noisy tokens controlled by the parameter η. To this
end, the new forward and backward language models assign probability to future tokens
based on noisy histories (cf. Eqs. 5 and 6). Now, the bi-directional language model tries
to optimize the joint log-likelihood in the forward and backward direction given the
noise in history tokens. The intuition behind preserving the noisy tokens as a history is
that the model will have to learn the representation of noisy tokens close to their original
versions in order to improve the correct prediction of future tokens.

T̃ = Γ (T, η) (4)

p(t1, t2, . . . , tN) =
N∏

i=1

p(ti|t̃1, t̃2, . . . , t̃i−1) (5)

p(t1, t2, . . . , tN) =
N∏

i=1

p(ti|t̃i+1, t̃i+2, . . . , t̃N) (6)

N∑

i=1

(
log

(
p(ti|t̃1, t̃2, . . . , t̃i−1;

−→
θ)

)
+ log

(
p(ti|t̃i+1, t̃i+2, . . . , t̃N ;

←−
θ)

))
(7)

Note that this language modeling objective is not simply building a LM on noisy
data. Here, the model has to predict correct future token given the noise in previous
tokens. In this way, the model does not intend to generate the noisy text but to recover
from the noise in tokens as it aims to always predict the next correct token. In contrast,
if a LM is trained on noisy text in a brute fashion then it will aim to generate the
noisy text where the goal of predicting noisy future tokens will inadvertently penalize
the learning of quality representations. To this end, the noise-resilient LM objective
implicitly encodes the task of being robust towards noise in tokens and map them closer
to their original version in embedding space (empirically evaluated in experiments, cf.
Sect. 5).

3.3 Character-Aware Word Representation

Traditionally, a fixed vocabulary of tokens has been often employed for the language
modeling without any sub-word level knowledge to build token representations. This
might lead to vocabulary explosion because of noise and thus, a character-aware pro-
cessing is required. Large-scale transformer-based language models such as BERT have
popularized the Byte-Pair Encoding (BPE) tokenization of words into smaller sub-word
units. On the other hand, models like ELMo use convolutional neural network based
kernels in order to extract character level features of a token. Sub-word units based
tokenization itself can be sensitive to the noise in tokens [3,19], which adds further
complexity in building a robust LM. In the scope of this paper, we consider a simple yet
effective setup to process words as a whole on char-level. We employ an “ELMo-like”
character level processing on individual words aiming at capturing sub-word features.

3.4 Language Model Architecture

Concerning the underlying architecture, we employ a bi-directional language model
architecture adopted and modified from the ELMo architecture proposed by

FETD2 7

Peters et al. [21]. The ELMo model extends the ideas from [10] and [11] by introducing
a residual connection between the LSTM layers and building bi-directional language
model. In broad specification, the model has two bi-directional LSTM layers with 4096
units and the residual connection. A character level input processing module is utilized
with 2048 character n-grams convolutional filters and 2 highway layers. It processes
tokens in the input sequence on character level and aims to extract the low-level syn-
tactical features for each of the tokens independently. We modify the model in order to
adjust it to the requirements of our noise-resilient language modeling objective. To this
end, we integrate a noise generation module at the char-level processing layer (Layer 0
in ELMo terminology) to impart desired level of noise in history tokens during the pre-
training process. We discuss the noise generation mechanism in the subsequent section.

4 Noisy Data Generation

4.1 Noise Generation Model

Different noise occurs in texts, e.g. misspellings or erroneous OCR. We focus on noise
induced by the OCR process (but is also applicable to other kind of orthographic noise).
In order to synthetically generate OCR-inspired noisy text, we introduce a noise gener-
ation model in Algorithm 1 based on four parameters: input token sequence T , desired
noise ratio η, the number of transformations per token K, and our transformation matrix
called Confusion Matrix++ (the core of our noise generation model). In our experiments,
we keep K = 1 constant whereas varying η over several values between 0 and 0.99.

Algorithm 1. Noise Generation Model (Γ)
Input: Token sequence T ; Noise ratio η; Confusion Matrix++ M; # transformations per token K
Output: Noisy tokens sequence T̃
1: seq len ← len(T)
2: noise indices ← random sample(T, �seq len ∗ η�)
3: for each index i, token t in T do
4: if noise indices contains i then
5: // get character unigrams and bigrams
6: chars unigrams ← unigrams(t)
7: chars bigrams ← bigrams(t)
8: ngrams = chars unigrams + chars bigrams
9: // filter non-existing noise transformation

10: initialize transforms
11: for each ngram ng in ngrams do
12: if M contains ng then
13: insert ng into transforms

14: // sample K transformations randomly
15: transforms ← random sample(transforms, K)
16: n token ← apply transforms(t, transforms, M)

17: insert n token into T̃
18: else
19: insert token into T̃

4.2 Confusion Matrix++

In order to overcome data-scarcity we introduce the Confusion Matrix++. It differs
from a standard confusion matrix as it goes beyond unigram transformations and aims
at generating synthetically OCR inspired noise. To this end, we construct it from man-
ually corrected ground truth pairs by obtaining the probability values of different pos-
sible erroneous character n-gram transformations (i.e. substitution, deletion, insertion)
as well as no error. We consider unigrams and bigrams (which are extremely sparse)

8 Govind et al.

by extracting the statistics from the ICDAR2017 Competition on Post-OCR Text Cor-
rection [4] ground truth data in English and French (cf. Table 1 for examples). The
Confusion Matrix++ is then used to inject the OCR inspired noise in any presumably
clean text.

Table 1. Noisy text generated corresponding to clean sentences for English and French

Language Noise (η) Text

English 0
Europe had been hit by the virus shortly before the Americas , although
recently some countries are beginning to announce more positive steps .

English 0.25
Europe had been hit b? the virus shorly before the Americas , altbough
recently some countries ate beginning to announce more positive stes .

French 0
Antoine Meillet devait diriger la thèse de Jean Paulhan sur

la sémantique de le proverbe et c’ est lui qui découvrit Gustave Guillaume .

French 0.25
Antoine Meillet devail diriger la thêse de Jean Paulhan sur

la semantique de le proverbe et cf est lui qut découvrit Gustave Cuillaume .

5 Experimental Evaluation
5.1 Experimental Datasets

Language-Specific Datasets
In order to demonstrate the language adaptability of the FETD2 framework, we perform
extensive experiments on English and French by employing Wikipedia dumps1 (Febru-
ary 2020 for English and March 2019 for French). We train the models on around 5
million sentences from the English dataset by randomly sampling 2M paragraphs and
2.5M paragraphs for French in order to keep the same ratio. As a result, we obtain
121M tokens for English and 130M tokens for French. We put aside 10% data for
model testing while keeping a separate validation set. The intrinsic evaluation is per-
formed on 534K sentences for English and on 540K sentences for French. Further, we
construct the vocabulary by discarding single occurring tokens. As a result, the English
and French dataset vocabulary contain 735K and 759K tokens.

Document Classification Datasets
We perform an extrinsic evaluation on the task of document classification. For that
purpose, we use the 20 Newsgroups2 dataset for English, which contains of 18K doc-
uments categorized in 20 classes. We perform a random split of 80:10:10 (training,
validation, test) by keeping the same percentage of articles from individual categories
in each split. For French, we crawled the L’Express3 newspaper and created a dataset of
2,207 news articles annotated with five different categories maintaining the same split
ratio as before.

1 Wikipedia Dumps https://dumps.wikimedia.org/.
2 20 Newsgroups dataset http://qwone.com/∼jason/20Newsgroups/.
3 L’Express https://www.lexpress.fr/.

https://dumps.wikimedia.org/
https://dumps.wikimedia.org/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
https://www.lexpress.fr/
https://www.lexpress.fr/

FETD2 9

5.2 Model Configurations

Assessing the sensitivity of FETD2, we train three different models. They differ in the
strategy of importing noise and the amount of noise while performing the training.
Moreover, demonstrating the applicability across different languages, we train these
models for English and French. To this end, we use two models with noise ratio of
η = 0.10 and η = 0.50 in all of the training sentences, denoted by FETD2(0.1) and
FETD2(0.5). Further, we introduce an additional model, namely FETD2(0.1H), which
is trained with noise ratio of η = 0.10, but only in a random selection of half of the
training sentences while keeping the remaining half clean. For the sake of providing
an extensive comparative analysis of our models, we also train an original ELMo based
model, simply denoted by ELMo. All of the models are trained for 10 epochs and imple-
mented in TensorFlow4 by extending the open source bi-directional LM library bilm-tf5

by AllenAI. FETD2 pre-trained models and evaluation data are publicly available here6.
In addition to evaluating the models performance on clean texts, we perform exper-

iments at various level of synthetic noise (ranging from minor to extreme), specifically
at 0.01, 0.05, 0.10, 0.40, 0.55, 0.70, 0.85, and 0.99. Smaller intervals near the initial
boundary value have been chosen in order to analyze the sensitivity on minor perturba-
tions already. At the same time, we analyze the models’ sensitivity towards higher level
of noise stretching to the extent when almost all the tokens contain noise in some form.

5.3 Noise Sensitivity Study

Embeddings Divergence
We assess the divergence of embedding vectors with respect to the noise imparted
in tokens of the input sequence by using cosine similarity (cf. Eq. 8) and Euclidean dis-
tance (cf. 9). We report the results in Tables 2 and 3. The scores are aggregated by utiliz-
ing micro-averaging as well as macro-averaging. The test sets contain around 500,000
sentences for each language. The original and noisy versions of individual sentence
are passed through the concerned model in order to obtain the contextual embeddings

Table 2. Results on model noise sensitivity evaluation at Layer 2 for English

Models ELMo FETD2(0.1H) FETD2(0.1) FETD2(0.5)

Test
Noise (η)

Micro-Avg Macro-Avg Micro-Avg Macro-Avg Micro-Avg Macro-Avg Micro-Avg Macro-Avg

CosSim Euclidean CosSim Euclidean CosSim Euclidean CosSim Euclidean CosSim Euclidean CosSim Euclidean CosSim Euclidean CosSim Euclidean

0.01 0.967 7.189 0.948 9.304 0.992 3.017 0.985 4.326 0.994 2.689 0.987 3.914 0.997 1.795 0.992 2.692

0.05 0.948 10.089 0.934 11.223 0.988 4.314 0.982 5.190 0.991 3.831 0.985 4.699 0.995 2.571 0.991 3.228

0.10 0.911 14.219 0.901 14.870 0.980 6.216 0.975 6.885 0.984 5.519 0.979 6.208 0.991 3.731 0.988 4.265

0.25 0.800 23.018 0.798 22.863 0.957 10.388 0.952 10.726 0.965 9.236 0.961 9.632 0.981 6.314 0.978 6.640

0.40 0.681 29.763 0.688 29.135 0.932 13.680 0.927 13.886 0.945 12.195 0.941 12.471 0.971 8.381 0.968 8.628

0.55 0.558 35.526 0.569 34.782 0.905 16.512 0.899 16.826 0.924 14.745 0.918 15.114 0.960 10.163 0.955 10.499

0.70 0.441 40.464 0.463 39.302 0.879 18.941 0.873 19.135 0.903 16.948 0.897 17.208 0.949 11.691 0.945 11.966

0.85 0.332 45.023 0.363 43.461 0.850 21.197 0.846 21.263 0.880 19.002 0.875 19.145 0.938 13.096 0.934 13.294

0.99 0.251 48.566 0.292 46.497 0.825 23.011 0.824 22.832 0.860 20.655 0.858 20.577 0.928 14.211 0.925 14.268

4 TensorFlow https://www.tensorflow.org/.
5 AllenAI bilm-tf https://github.com/allenai/bilm-tf.
6 FETD2 data https://spaniol.users.greyc.fr/research/FETD%5e2/.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/allenai/bilm-tf
https://github.com/allenai/bilm-tf
https://spaniol.users.greyc.fr/research/FETD%5e2/

10 Govind et al.

Table 3. Results on model noise sensitivity evaluation at Layer 2 for French

Models ELMo FETD2(0.1H) FETD2(0.1) FETD2(0.5)

Test
Noise (η)

Micro-Avg Macro-Avg Micro-Avg Macro-Avg Micro-Avg Macro-Avg Micro-Avg Macro-Avg

CosSim Euclidean CosSim Euclidean CosSim Euclidean CosSim Euclidean CosSim Euclidean CosSim Euclidean CosSim Euclidean CosSim Euclidean

0.01 0.969 7.409 0.950 9.688 0.993 3.151 0.985 4.614 0.994 2.766 0.987 4.096 0.997 1.915 0.992 2.940

0.05 0.948 10.740 0.935 11.916 0.988 4.676 0.982 5.638 0.991 4.097 0.985 4.993 0.995 2.818 0.991 3.554

0.10 0.911 15.121 0.902 15.730 0.980 6.772 0.974 7.480 0.984 5.939 0.979 6.610 0.991 4.068 0.988 4.648

0.25 0.799 24.343 0.799 24.024 0.955 11.301 0.951 11.623 0.965 9.945 0.961 10.266 0.981 6.875 0.978 7.205

0.40 0.681 31.334 0.690 30.502 0.930 14.828 0.926 14.994 0.944 13.084 0.941 13.265 0.970 9.087 0.968 9.327

0.55 0.559 37.297 0.574 36.288 0.902 17.865 0.897 18.126 0.923 15.794 0.918 16.057 0.959 10.994 0.955 11.303

0.70 0.443 42.404 0.469 40.953 0.875 20.462 0.871 20.581 0.901 18.121 0.897 18.257 0.948 12.625 0.945 12.855

0.85 0.336 47.052 0.370 45.202 0.846 22.884 0.843 22.866 0.878 20.298 0.875 20.306 0.937 14.123 0.934 14.272

0.99 0.256 50.619 0.302 48.250 0.820 24.850 0.820 24.548 0.858 22.060 0.857 21.812 0.927 15.320 0.925 15.307

of tokens before and after adding noise in the sentence. Micro-averaging computes
an average over similarity values for individual token versions (i.e. clean and noisy).
Macro-averaging first averages the similarity scores for tokens within a sentence and
subsequently averaging over all the sentences. We perform macro-averaging in order to
capture the influence of sentence lengths stemming from different languages.

CosSim(
−−−→
embt,

−−−→
embt̃) =

−−−→
embt · −−−→

embt̃

||−−−→
embt|| · ||−−−→

embt̃||
(8)

Euclidean(
−−−→
embt,

−−−→
embt̃) =

√√√√
n∑

i=1

(embi
t − embi

t̃
)2 (9)

Cosine Similarity: Table 2 and 3 highlight similarity of embedding vectors where a
higher value quantifies the lesser divergence and demonstrates a higher robustness
towards noise. In Table 2 values vary heavily for the baseline ELMo model. It is worth
noting, that even with as little as 1% (i.e. η = 0.01) of noise, the baseline model embed-
dings diverge quickly. In contrast, FETD2 models perform fairly robust as there is com-
paratively low variance in similarity values. Among the FETD2 models η = 0.5 shows
the highest resiliency. Thus, FETD2 models recover from noise at diverse scale by map-
ping the contextual embeddings of noisy tokens closer to their original versions, while
keeping contextual embeddings of clean tokens fairly unaffected.
Euclidean Distance: Table 2 and 3 show the divergence of contextual embeddings where
the higher the distance value is, the lower the robustness of the concerned model is. As
before, we observe a similar pattern of performance degeneration while FETD2 remain
stable mostly on noisy input. In addition, findings are consistent across languages.

Perplexity
We assess Perplexity (PP) by quantifying “how well a language model predicts the next
token if the history tokens contains noise”. Equation 10 defines the modified robust per-
plexity (RPP) measure for token sequence T of length N . We perform the perplexity
evaluation at different levels of noise for ELMo and FETD2 models (cf. Table 4). ELMo
performs best without noise in the token history and decreases rapidly with increasing
noise-levels. Perplexity values for the English ELMo model differ by over 4,000 as well

FETD2 11

Table 4. Evolution of perplexity values with respect to noise in test set sequences

Test Noise (η) ELMo FETD2(0.1H) FETD2(0.1) FETD2(0.5)

E
ng

lis
h

0.00 65.217 66.846 66.186 69.941

0.01 75.383 68.445 67.347 70.606

0.05 81.933 69.387 68.063 70.974

0.10 96.598 71.241 69.426 71.685

0.25 161.221 77.223 73.833 73.892

0.40 285.483 84.330 79.001 76.326

0.55 416.297 89.250 82.522 77.914

0.70 1303.862 105.626 93.967 82.686

0.85 2177.934 113.727 99.462 84.795

0.99 4174.887 125.227 107.231 87.519

Test Noise (η) ELMo FETD2(0.1H) FETD2(0.1) FETD2(0.5)

Fr
en

ch

0.00 42.073 43.272 43.636 45.189

0.01 48.544 44.257 44.374 45.606

0.05 53.526 44.945 44.907 45.886

0.10 64.027 46.205 45.863 46.380

0.25 112.207 50.330 48.982 47.929

0.40 207.603 55.276 52.629 49.625

0.55 312.278 58.780 55.179 50.748

0.70 1043.002 70.460 63.416 54.076

0.85 1769.731 76.375 67.492 55.566

0.99 3473.314 85.047 73.293 57.546

as over 3,000 for French. Even at low noise levels such as 10% the perplexity of ELMo
increases rapidly. In contrast, FETD2 models remain considerably stable with increas-
ing noise while achieving comparable performance on the clean test set. In addition, we
observe that models trained with lower η perform better at lower noise level whereas
the models with higher η remain more consistent towards higher noise level.

RPP (T) = N

√√√√
N∏

i=1

1

p(ti|t̃1, t̃2, . . . , t̃i−1)
(10)

5.4 Document Classification

Classification Model
We employ a plain document classification model to study the effect of noise on the
classification performance. The intuition is to observe and demonstrate the robustness
of the contextual embeddings produced by different bi-directional language models on
a higher level NLP task. To this end, we represent a document by averaging the embed-
ding vectors of the tokens it contains. Each of the tokens in a document is represented
by concatenating the token context-insensitive embedding from Layer 0 along with the
contextualized representations from Layer 1 and 2 of LSTMs. We first run the con-
cerned bi-directional language model on individual sentences of the document. Then,
we average over the embeddings of tokens in individual sentences. This way, we first
compute the sentence representations and then average over the representation vectors
of sentences to produce the document representation. By means of macro-averaging the
influence of sentence lengths in the overall representation of the document is incorpo-
rated.

Subsequently, the document representations are fed into the perceptron-based clas-
sification model, which basically consists of a single hidden layer of size 512 with
ReLU activation function. The hidden layer is connected to the softmax output layer.
The number of units in softmax are equal to the class labels in datasets. The English
dataset has 20 output class labels whereas the French dataset has 5 classes. Further, we
do not fine-tune the pre-trained contextual embedding models as part of our document
classification model training process. The model is trained using the Adam optimizer

12 Govind et al.

Table 5. English documents classification results with model noise sensitivity

Models ELMo FETD2(0.1H) FETD2(0.1) FETD2(0.5)

Test Noise (η) Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

0 0.769 0.765 0.766 0.777 0.772 0.773 0.767 0.765 0.763 0.772 0.770 0.769

0.01 0.738 0.734 0.735 0.758 0.752 0.753 0.760 0.756 0.755 0.758 0.754 0.753

0.05 0.743 0.736 0.737 0.766 0.760 0.761 0.759 0.756 0.754 0.761 0.756 0.756

0.10 0.729 0.721 0.722 0.756 0.749 0.750 0.757 0.752 0.752 0.751 0.746 0.746

0.25 0.680 0.654 0.652 0.744 0.735 0.736 0.745 0.737 0.736 0.754 0.750 0.748

0.40 0.621 0.562 0.555 0.716 0.703 0.704 0.723 0.715 0.714 0.753 0.747 0.747

0.55 0.577 0.465 0.442 0.684 0.665 0.664 0.702 0.686 0.686 0.723 0.716 0.714

0.70 0.491 0.342 0.312 0.661 0.628 0.627 0.684 0.656 0.655 0.718 0.706 0.705

0.85 0.299 0.220 0.192 0.623 0.575 0.571 0.667 0.613 0.615 0.705 0.689 0.687

0.99 0.221 0.150 0.116 0.575 0.521 0.515 0.618 0.570 0.568 0.700 0.680 0.678

Table 6. French documents classification results with model noise sensitivity

Models ELMo FETD2(0.1H) FETD2(0.1) FETD2(0.5)

Test Noise (η) Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

0 0.906 0.841 0.855 0.926 0.843 0.868 0.897 0.839 0.858 0.884 0.785 0.817

0.01 0.909 0.844 0.858 0.938 0.860 0.884 0.900 0.843 0.861 0.907 0.793 0.833

0.05 0.910 0.843 0.855 0.935 0.858 0.882 0.893 0.833 0.851 0.885 0.778 0.811

0.10 0.903 0.840 0.854 0.911 0.853 0.872 0.894 0.837 0.855 0.882 0.782 0.814

0.25 0.870 0.826 0.827 0.904 0.842 0.864 0.921 0.858 0.872 0.885 0.786 0.818

0.40 0.795 0.736 0.718 0.914 0.852 0.874 0.904 0.833 0.852 0.889 0.789 0.821

0.55 0.703 0.643 0.542 0.912 0.855 0.875 0.910 0.828 0.851 0.883 0.787 0.818

0.70 0.659 0.517 0.375 0.913 0.846 0.875 0.890 0.820 0.837 0.887 0.788 0.820

0.85 0.289 0.495 0.316 0.881 0.820 0.842 0.889 0.821 0.838 0.883 0.784 0.816

0.99 0.261 0.352 0.223 0.905 0.816 0.852 0.874 0.793 0.809 0.884 0.789 0.819

with a learning rate of 0.0001 and betas of (0.99, 0.999) for 50 epochs. We use a step
learning rate scheduler with step size of 1 and decay coefficient gamma of 0.95. As we
do not train the pre-trained contextual embeddings model as part of classification model
training, the document representations are pre-computed.

Classification Results
We report the results on the document classification task in Table 5 and 6. Precision,
recall, and F1 measures are macro-averaged in order to give equal weight to each of
the output class labels and avoid a biasing towards more populated classes. Findings
are in-line with the observations from the intrinsic evaluation. From experiments in
English we notice that all of the models have almost similar performance on the clean
text (i.e. η = 0) with FETD2(0.1H) being slightly better than others. The performance
of the baseline ELMo classification model is fragile in nature and, thus, the F1 score
drops from 0.766 for clean text to 0.116 at η = 0.99 noise level. However, the F1 score
of the FETD2(0.5) model performance remains quite robust as it only drops by less
than 10%. Similar to the perplexity, the FETD2 models trained with lower noise level
perform better on test sets with low(er) noise-level, while models trained with higher
η are more robust towards high noise without compromising too much performance

FETD2 13

for low(er) noise levels. In experiments on the French dataset a clear dominance of the
FETD2 models can be observed. Scores are overall higher for French than for English.
This can be attributed to the fact that there are fewer classes in the French dataset, which
makes the problem less complex. In addition, the FETD2(0.1H) model performs best,
although performance differences with other FETD2 models are less compared to the
English dataset.

In summary, extensive experiments on intrinsic evaluation (language-specific data
denoising) along with extrinsic evaluation (document classification in different lan-
guages) confirm our hypothesis that noise robustness can be added to the bi-directional
contextual embedding models without compromising their performance on clean data.

5.5 Success and Error Analysis
Figure 1 depicts the effect of noise on the contextual embeddings of tokens at differ-
ent layers in an example English sequence by comparing the cosine similarity between
embeddings of token pairs from clean and noisy versions of an English sentence with
50% noise. The heatmap color-encodes the scores (yellow ∧= lowest and blue ∧= high-
est). At the context-insensitive Layer 0, it can be seen that the effects of noisy tokens
are isolated. Further, Fig. 1a and 1d show that Layer 0 embeddings of noisy tokens
diverge for both models but the effect is more visible in ELMo than FETD2. On Layer
1, noisy tokens degrade their own embeddings and neighboring tokens in case of ELMo
(cf. Fig. 1b). In contrast, a dark blue colored diagonal in Fig. 1e for FETD2(0.1) can
be observed, while some of the light colored diagonal boxes from layer 0 have already
become darker. This means that FETD2(0.1) recovers from noise in contrast to ELMo,
which becomes even more evident at Layer 2 (cf. Fig. 1f and 1c).

(a) ELMo Layer 0 (b) ELMo Layer 1 (c) ELMo Layer 2

(d) FETD2(0.1) Layer 0 (e) FETD2(0.1) Layer 1 (f) FETD2(0.1) Layer 2

Fig. 1. Cosine similarity of token pairs between a clean and noisy (50%) sentence

14 Govind et al.

6 Conclusion and Outlook

We presented FETD2, mitigating noisy input data (e.g., from digitization) by utilizing
robust contextual embeddings. FETD2 tackles two aspects of digital preservation at the
same time: improving the data quality of digitally and non-digitally born data as well as
by providing a language-adaptable framework. While deep neural networks, suffer from
performance drop for languages with less ample resources, our Confusion Matrix++
overcomes sparsity issues. In our extensive experiments on English and French datasets,
we prove the superiority of FETD2 compared with the state-of-the-art implementations.

In future, we intend to apply FETD2 as part of a content semantification pipeline
for digitized documents by employing it on OCRed data of historical texts with a
subsequent step of named entity recognition and disambiguation utilized for semantic
retrieval afterwards. In addition, we consider further adaptations of our noise-resilient
bi-directional deep contextualized embeddings framework in the context of other lan-
guage modeling objectives such as masked or autoregressive language modeling.

Acknowledgements. This work was supported by the RIN RECHERCHE Normandie Digitale
research project ASTURIAS contract no. 18E01661. We thank our colleagues for the inspiring
discussions.

References

1. Astudillo, R., Amir, S., Ling, W., Silva, M., Trancoso, I.: Learning word Representations
from scarce and noisy data with embedding subspaces. In: Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1074–1084. Asso-
ciation for Computational Linguistics, Beijing, China, July 2015. https://www.aclweb.org/
anthology/P15-1104

2. Belinkov, Y., Bisk, Y.: Synthetic and natural noise both break neural machine translation. In:
International Conference on Learning Representations (2018)

3. Boukkouri, H.E., Ferret, O., Lavergne, T., Noji, H., Zweigenbaum, P., Tsujii, J.: Charac-
terBERT: Reconciling ELMo and BERT for Word-Level Open-Vocabulary Representations
From Characters (2020)

4. Chiron, G., Doucet, A., Coustaty, M., Moreux, J.: ICDAR2017 competition on post-OCR text
correction. In: 2017 14th IAPR International Conference on Document Analysis and Recog-
nition (ICDAR). vol. 01, pp. 1423–1428, November 2017. https://doi.org/10.1109/ICDAR.
2017.232

5. Clark, K., Luong, M.T., Le, Q.V., Manning, C.D.: ELECTRA: pre-training text encoders
as discriminators rather than generators. In: ICLR (2020). https://openreview.net/pdf?
id=r1xMH1BtvB

6. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional trans-
formers for language understanding. CoRR abs/1810.04805 (2018)

7. Edizel, B., Piktus, A., Bojanowski, P., Ferreira, R., Grave, E., Silvestri, F.: Misspelling
oblivious word embeddings. In: Proceedings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies (NAACL-HLT 2019), Minneapolis, MN, USA, June 2–7 2019, Vol. 1 (Long and Short
Papers), pp. 3226–3234 (2019). https://aclweb.org/anthology/papers/N/N19/N19-1326/

https://www.aclweb.org/anthology/P15-1104
https://www.aclweb.org/anthology/P15-1104
https://doi.org/10.1109/ICDAR.2017.232
https://doi.org/10.1109/ICDAR.2017.232
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://aclweb.org/anthology/papers/N/N19/N19-1326/

FETD2 15

8. Eger, S., et al.: Text processing like humans do: visually attacking and shielding NLP sys-
tems. In: Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, vol. 1 (Long and
Short Papers), pp. 1634–1647. Association for Computational Linguistics, Minneapolis, Min-
nesota, June 2019. https://www.aclweb.org/anthology/N19-1165

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997), http://dx.doi.org/10.1162/neco.1997.9.8.1735

10. Józefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., Wu, Y.: Exploring the limits of lan-
guage modeling. CoRR abs/1602.02410 (2016). http://arxiv.org/abs/1602.02410

11. Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language models. In:
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI 2016), pp.
2741–2749. AAAI Press (2016)

12. Kumar, A., Makhija, P., Gupta, A.: noisy text data: achilles’ heel of BERT. In: Proceedings of
the Sixth Workshop on Noisy User-generated Text (W-NUT 2020), pp. 16–21. Association
for Computational Linguistics, November 2020. https://doi.org/10.18653/v1/2020.wnut-1.3,
https://www.aclweb.org/anthology/2020.wnut-1.3

13. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a lite BERT
for self-supervised learning of language representations. In: International Conference on
Learning Representations (2020). https://openreview.net/forum?id=H1eA7AEtvS

14. Larson, C., Lahlou, T., Mingels, D., Kulis, Z., Mueller, E.: Telephonetic: making neural
language models robust to ASR and semantic noise. ArXiv abs/1906.05678 (2019)

15. Linhares Pontes, E., Hamdi, A., Sidere, N., Doucet, A.: Impact of OCR quality on named
entity linking. In: Proceedings of 21st International Conference on Asia-Pacific Digital
Libraries (ICADL 2019) (2019)

16. Liza, F.F., Grzes, M.: Improving language modelling with noise-contrastive estimation. In:
AAAI (2018)

17. Malykh, V., Logacheva, V., Khakhulin, T.: Robust word vectors: context-informed embed-
dings for noisy texts. In: Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Work-
shop on Noisy User-generated Text, pp. 54–63. Association for Computational Linguistics,
Brussels, Belgium, November 2018. https://www.aclweb.org/anthology/W18-6108

18. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of
words and phrases and their compositionality. In: Advances in Neural Information Processing
Systems, pp. 3111–3119 (2013)

19. Nayak, A., Timmapathini, H., Ponnalagu, K., Venkoparao, V.G.: Domain adaptation chal-
lenges of BERT in tokenization and sub-word representations of out-of-vocabulary words.
In: Rogers, A., Sedoc, J., Rumshisky, A. (eds.) Proceedings of the 1st Workshop on Insights
from Negative Results in NLP, Insights 2020, pp. 1–5. ACL (2020)

20. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In:
Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

21. Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L.: Deep
contextualized word representations. In: Proceedings of NAACL (2018)

22. Ren, S., Deng, Y., He, K., Che, W.: Generating natural language adversarial examples
through probability weighted word saliency. In: Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pp. 1085–1097. Association for Computa-
tional Linguistics, Florence, Italy, July 2019. https://www.aclweb.org/anthology/P19-1103

23. Subramaniam, L., Roy, S., Faruquie, T., Negi, S.: A survey of types of text noise and tech-
niques to handle noisy text. In: ACM International Conference Proceeding Serie, pp. 115–
122, January 2009. https://doi.org/10.1145/1568296.1568315

24. Sun, L., et al.: Adv-BERT: BERT is not robust on misspellings! Generating nature adversarial
samples on BERT. arXiv preprint arXiv:2003.04985 (2020)

https://www.aclweb.org/anthology/N19-1165
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1602.02410
https://doi.org/10.18653/v1/2020.wnut-1.3
https://www.aclweb.org/anthology/2020.wnut-1.3
https://openreview.net/forum?id=H1eA7AEtvS
https://www.aclweb.org/anthology/W18-6108
https://www.aclweb.org/anthology/P19-1103
https://doi.org/10.1145/1568296.1568315
http://arxiv.org/abs/2003.04985

16 Govind et al.

25. Sun, Y., Jiang, H.: Contextual text denoising with masked language model. In: Proceedings of
the 5th Workshop on Noisy User-generated Text (W-NUT 2019), pp. 286–290. Association
for Computational Linguistics, Hong Kong, China, November 2019

26. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing
Systems 30, pp. 5998–6008. Curran Associates, Inc., Red Hook (2017)

27. Wang, W., Tang, B., Wang, R., Wang, L., Ye, A.: A survey on adversarial attacks and defenses
in text. arXiv preprint arXiv:1902.07285 (2019)

28. Xiong, W., et al.: TweetQA: a social media focused question answering dataset. In: Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics (2019)

29. Yang, Z., Dai, Z., Yang, Y., Carbonell, J.G., Salakhutdinov, R., Le, Q.V.: XLNet: generalized
autoregressive pretraining for language understanding. CoRR abs/1906.08237 (2019). http://
arxiv.org/abs/1906.08237

30. Zhang, W.E., Sheng, Q.Z., Alhazmi, A.A.F.: Generating textual adversarial examples for
deep learning models: a survey. arXiv preprint arXiv:1901.06796 (2019)

http://arxiv.org/abs/1902.07285
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1901.06796

	FETD2: A Framework for Enabling Textual Data Denoising via Robust Contextual Embeddings
	1 Introduction
	1.1 Motivation and Problem
	1.2 Approach and Contribution

	2 Related Work
	2.1 Pre-trained Language Representation Models
	2.2 Handling Noise in Textual Data

	3 Noise-Resilient Contextual Representations
	3.1 Bi-Directional Language Models for Contextual Representation
	3.2 Noise-Resilient Bi-Directional Language Modeling
	3.3 Character-Aware Word Representation
	3.4 Language Model Architecture

	4 Noisy Data Generation
	4.1 Noise Generation Model
	4.2 Confusion Matrix++

	5 Experimental Evaluation
	5.1 Experimental Datasets
	5.2 Model Configurations
	5.3 Noise Sensitivity Study
	5.4 Document Classification
	5.5 Success and Error Analysis

	6 Conclusion and Outlook
	References

