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Abstract

Among explainability techniques, SHAP stands out as one of the most popular,
but often overlooks the causal structure of the problem. In response, do-SHAP
employs interventional queries, but its reliance on estimands hinders its practical
application. To address this problem, we propose the use of estimand-agnostic
approaches, which allow for the estimation of any identifiable query from a single
model, making do-SHAP feasible on complex graphs. We also develop a novel
algorithm to significantly accelerate its computation at a negligible cost, as well as
a method to explain inaccessible Data Generating Processes. We demonstrate the
estimation and computational performance of our approach, and validate it on two
real-world datasets, highlighting its potential in obtaining reliable explanations.

1 Introduction
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Figure 1: Salary causal graph:
Age (A), Education (E), Se-
niority (S) and Salary (Y).

The widespread adoption of Machine Learning (ML) systems has
raised concerns about their limitations: models can replicate hu-
man biases [1], base their outcomes on spurious correlations [2], or
be vulnerable to malicious adversarial attacks [3]. Since most of
these systems are black-boxes, there is an ever-increasing need for
explainability techniques to make sense of the model. This is espe-
cially relevant w.r.t. fairness, the right to explanation [4], debugging,
auditing, and fostering user trust in the system.

In response to this pressing need, the field of explainability has
steadily gained traction, resulting in several approaches [5] to explain
model predictions. Among them, the Shapley value (SV, or SHAP)
[6] is one of the most popular, being the unique attribution strategy
fulfilling a set of axioms aligned with human intuition (see appendix A). SVs are derived from a value
function ν measuring the effect of a subset (coalition) S of features X on the model’s prediction; each
ν results in a different kind of SV, the most common being marginal and conditional SHAP [7].

However, both of these options ignore the causal structure underlying the data; for instance, fig. 1
represents the salary Y of an employee of age A with a certain education level E and seniority level
S. Let f be a ML model f(X) ≈ E [Y | X], learning Y given inputs X = {A,E, S}. Consider
ν({E}). In marginal SHAP, ν assigns values {E = e} and marginalizes the complementary set
(a, s) ∼ P(A,S) regardless of how the coalition’s values causally affect them (E → S). Conditional
SHAP does consider these effects, but conditionally, (a, s) ∼ P(A,S | E = e), producing anti-
causal effects to A (i.e., we cannot change age by granting them a degree). Thus, we cannot ignore
the problem’s causal structure. Please refer to appendix G for an extended discussion on this example.

Several works [8, 9, 10, 11] discussed the limitations of non-causal SHAP and proposed limited
approaches with a causal interpretation. Jung et al. [12] proposed do-SHAP, defining ν as a causal,
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interventional query estimated with Causal Inference: first transforming the query into a probabilistic
formula (the estimand) only containing terms from the observational distribution P (X), training ML
models on these terms to estimate them and bringing it back into the formula for the final estimation.
The main drawback of estimand-based (EB) estimation is that do-SVs require computing up to 2|X|

causal queries, one for each coalition S ⊆ X, with different estimands and ML models to estimate
their terms. As a result, the process becomes too manual and impractical for complex graphs. In fact,
do-SHAP’s authors stated they “are not aware of any general causal effect estimators suitable for
estimating the expression".

Here lies our first contribution: by employing the estimand-agnostic (EA) approach [13], based on
Structural Causal Models (SCMs), any causal effect required by do-SHAP can be estimated from a
single model following a general procedure instead of query-specific estimands, thereby enabling the
computation of do-SVs in a general, practical way (sections 3.2 and 4.1). Secondly, we propose the
Frontier-Reducibility Algorithm (FRA), which substantially reduces the number of coalitions that
need to be evaluated. Although FRA retains the exponential complexity of exact do-SHAP, it delivers
significant speed-ups at virtually no additional cost (section 4.2). Thirdly, we devise a do-SHAP
explainability strategy, not only for accessible ML systems, but also for natural, inaccessible Data
Generating Processes (section 4.3). We validate the estimation capabilities of the EA approach on
do-SVs, demonstrate the speedup of FRA, and showcase these techniques on two real-world datasets
to illustrate the power of do-SHAP explanations (section 5 and appendix F). Finally, we address the
limitations of our approach in section 6 and finish with our conclusions in section 7.

2 Related work

Among many explainability techniques (see the survey in [5]), we are particularly interested in
feature attributions, particularly Shapley values [14]. There is a vast literature on SHAP, discussing
the choice of the value function ν and estimation strategies for the SV (e.g., permutation sampling,
adaptive sampling or model-specific strategies); refer to [7] for an extensive survey on the topic. Our
main focus is in SHAP approaches that leverage the underlying causal structure of the data, operating
from Pearl’s Structural Causal Models perspective [15]. Asymmetric Shapley values [8] employ a
topological order of the graph to restrict which permutations are considered in the computation of
conditional-SHAP, thereby granting more attribution to ancestors of other features. Causal Shapley
values [9] properly considers the impact of causal interventions on Shapley attributions, but assumes
a partial causal ordering of the graph in order to avoid dealing with latent confounders. do-SHAP [12]
does require a full causal graph, but provides a full method to compute attribution on all variables, as
long as an estimand can be found for every causal query. Finally, in a different direction, Shapley
flow [16] studies causal attributions on the causal graph’s edges instead of its nodes/variables.

In order to avoid do-SHAP’s limitations, we propose EA methods [13], which train a SCM modelling
the data distribution to estimate causal queries from it. This approach is explored in the Neural
Causal Models framework [17]. In this line, recent contributions employ Deep Learning for SCM
modeling: CausalGAN [18] uses Generative Adversarial Networks [19] to model images in an
SCM containing descriptive factors of the image; Parafita & Vitrià [20] propose the Distributional
Causal Node as a way to model mixed-type distributions (i.e., with discrete and continuous random
variables) and expand their framework with Deep Causal Graphs [13]; Pawlowski et al. [21] propose
Normalizing Flows (NFs) [22] and Variational AutoEncoders [23] for SCMs with medical image
nodes; and Diffusion-based Causal Models [24] use Diffusion Models [25] to train their SCMs on
high-dimensional data. A promising alternative models SCMs not node by node as all previous works,
but the graph as a whole with a single function of its noise signals, thereby avoiding error propagation
when sampling. Two of these approaches are VACA [26], which uses Graph Neural Networks [27],
and Causal Normalizing Flows [28], with a single NF for the whole graph.

3 Preliminaries

This section establishes the concepts and notations needed throughout this work. We start with Struc-
tural Causal Models (SCMs), a transparent and concise framework to define the causal assumptions
of a data distribution, followed by a discussion on how (identifiable) causal queries can be estimated
through SCMs, even in the presence of latent confounders. We then define the general Shapley value,
from which we can derive do-SHAP.
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Notation Sets are represented by boldface letters (X) and their elements by simple letters (X ∈ X),
unless clearly distinguishable. Let the power set of X be denoted by P(X) := {∅ ⊆ S ⊆ X},
[K] := {1, . . . ,K} an index set, Π(S) the set of permutations of elements of S and <π the order
entailed by π (e.g., 3 <π 2 in π = (3, 1, 2)). Given a graph G = (V,E) and a subset of vertices
X ⊆ V, An(X) denotes the set of ancestors of X (including X) and De(X) the set of descendants
(including X). For a certain node X ∈ V, let PaX denote the set of parents of X (not including
X). Random variables (r.v.s) are denoted in uppercase (X) with realizations in lowercase (x). Let
x ∼ P(X) denote the generation of a new sample x from the distribution P(X).

3.1 Structural Causal Models

Let M = (V,W,P,F) be a Structural Causal Model (SCM), consisting of a set of measured
r.v.s V = (V1, . . . , VK), a set of latent r.v.sW , their priors P(W) =

∏
W∈W P(W ) (all mutually

independent), and a set of functions F := {fk}k∈[K] for each measured variable. The set of latent
variables consists of W := E ∪ U , with E := (E1, . . . , EK) the exogenous noise signals, Ek
corresponding to Vk, and U a set of confounders U{k,l} affecting distinct V-nodes Vk and Vl.1 Finally,
each fk ∈ F is a deterministic function Vk = fk(Pak,U{k,·}, Ek) that returns Vk’s realizations
given its measured parents Pak ⊆ V \ {Vk}, confounders U{k,·} := {U{k,l} ∈ U | l ∈ [K]} and the
corresponding Ek. Let Pa′k := Pak ∪ U{k,·}.

Let GM = (V,E) be the directed graph associated toM, with vertices, nodes or variables V :=
V ∪ W and edges E := {X → Vk | ∀Vk ∈ V, X ∈ Pa′k ∪ {Ek}}.2 If GM is a Directed Acyclic
Graph (DAG), there is a topological order3 for V . In that case, we can define M’s probability
distribution PM(V) from the SCM ’s sampling procedure: it starts by sampling any latent variable
EX ∈ E , U ∈ U from their priors εX ∼ P(EX), u ∼ P(U); then, following the topological order
k = 1..K, it samples every Vk ∈ V by applying vk = fk(pak, u{k,·}, εk).

We define an intervention do(X = x), also denoted x̂, on a variable X ∈ V as the replacement of fx
with the assignment X ← x. X takes this value independently of its parents, but any descendants
may be affected by this change. Note that this transforms the SCMM into an intervened model
Mx, graph Gx := GMx

(without any edges pointing to X), and distribution Px(V) := PMx
(V).

We can also define interventions on sets of variables do(X = x) by the replacement of each of the
corresponding functions {fX | X ∈ X}. The terms Px(Y ) = P (Y | do(X = x)) = P (Y | x̂) are
used interchangeably, for clarity or economy of notation depending on the case.

3.2 Identifiability and the estimand-agnostic approach

Given r.v.s V and an i. i. d. dataset D = (v(i))i∈[N ] ∼ P(V) sampled from an unknown Data
Generating Process (DGP) with a strictly positive probability measure P(V), assume that P(V)
follows an unknown SCM M, but whose graph GM is known. For example, in fig. 1, V =
(A,E, S, Y ) and U = ∅. Let us estimate the causal query Q := EY [Y | ê] by transforming it
into an observational formula through the rules of do-calculus [15] (see appendix C). At the end
of this process, we obtain the final formula, the estimand: in the example, Q = EY [Y | ê] =
EA [EY [Y | e,A]]. If such a formula exists, the query is said to be (non-parametrically) identifiable
in GM. Fortunately, there are algorithms to automatically determine identifiability and obtain the
corresponding estimand [29, 30], implemented in R [31] and Python [32].

The EB approach employs ML models to approximate each of the probabilistic terms in an estimand;
in the example, we can train a model for f(E,A) ≈ EY [Y | E,A] and then estimate the formula
with Monte Carlo for the final estimation. However, this approach does not scale, since, for each and
every query, we need to 1) derive the corresponding estimand for that query; 2) train ML models
to estimate each term in the formula; and 3) put it all together to arrive at an answer for the query.
Even with algorithms to automatically extract the estimand, it is not trivial to compute these formulas,
especially if we need to answer exponentially many queries, as will be the case for do-SHAP.

1The case when U is empty, i.e., no latent confounders, is known as the causal sufficiency assumption.
2When drawing GM, we usually omit W : E is implicit, and any confounders U{k,l} are denoted by Vk ↔ Vl.
3We say V = (V1, . . . , VK) is in a topological order of the DAG G if ∀k, l ∈ [K], Vk ∈ An(Vl) ⇒ k ≤ l.

Let <G represent the particular order defined by G: X <G Y .
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However, if we had access to the original SCMM, we could simply take N i. i. d. samples from
the intervened distribution, (y(i))i∈[N ] ∼ Pe(Y ), using Me’s sampling procedure. Regrettably,
we rarely have access to the underlying DGP. Instead, let us consider a family of proxy SCMs
MΘ = (V,W,P ′,FΘ) following the same graph GMΘ = GM and whose FΘ depends on a set of
parameters Θ (e.g., an untrained neural network with parameter space Θ). Irrespective of our choice
of prior P ′ and functions FΘ, if both are expressive enough, we can trainMΘ to find a value θ so that
it models the data distribution exactly, PMθ

(V) = P(V) (in an infinite data setting). Then, by the
application of the sampling procedure on the intervened learned model, we could estimate the query
through the proxy SCM procedure, without ever using the estimand. If the query was identifiable in
G, the result is guaranteed to be the same as if we had used the original SCMM.

It is trivial to see why4: since our identifiable query Q’s value is derived from the observational
formula of the estimand, it depends exclusively on observational terms resulting from the joint
distribution PM (V), which we assume is correctly represented by our trained proxyMθ. Therefore,
as long as we derive its value from the distribution entailed by the proxy, we will necessarily arrive at
the same result as withM; otherwise, PMθ

(V) ̸= PM(V). In other words, even though its latent
priors and functional assignments may be different, we can still compute the causal query through the
proxy SCM because there is an estimand for Q in GM. Hence, this results in an alternative approach
for causal query estimation, the EA approach [13]: define a trainable SCMM′ with the underlying
SCM’s graph G, train it to learn the observational distribution PM(V), and compute any identifiable
queries from that single model using the SCM’s procedures, not the specific estimand for each query.
This will become essential for the computation of do-Shapley values.

3.3 The Shapley value

Consider a set of K players X and a value function ν : P(X)→ R. Let ∆ν(S) := ν(S)− ν(∅) be
the corresponding coalitional (cooperative) game. We define the Shapley value [33] ϕ∆ν

(X) for a
player X ∈ X, denoted by ϕν(X) or simply ϕX unless when leading to ambiguity, as:

ϕX :=
∑

S⊆X\{X}

1

K

(
K − 1

|S|

)−1

(ν(S ∪ {X})− ν(S)) (1)

=
1

K!

∑
π∈Π(X)

(ν(X≤πX)− ν(X<πX)), (2)

where X<πX := {X ′ ∈ X | X ′ <π X}, and equivalently for X≤πX and ≤π. Both equations are
equivalent given that the sum over weighted subsets S results from the average over all permutations
of the set of players X. Note that SVs fulfill efficiency:

∑
X∈X ϕX = ν(X)− ν(∅) = ∆ν(X) (i.e.,

SHAP attributions add up to the contributions of the whole set X).

3.4 Shapley value estimation

Even though eq. (2) requires 2 ·K! computations of ν, we can consider each permutation π ∈ Π([K])
as a sample from the uniform distribution over the set of permutations, π ∼ U(Π([K])), resulting in
ϕX = Eπ∼U(Π([K])) [ν(X≤πX)− ν(X<πX)], which can be approximated by Monte Carlo, sampling
N i.i.d. permutations and averaging their results [34]. Quasi-random and adaptive sampling strategies
can also be employed for faster convergence; please refer to [6] for more details.

On the other hand, both methods result in a significant number of subset collisions, making it
worthwhile to cache the ν(S) values to avoid unnecessary computations. We derive the expected
number of coalitions sampled afterN permutations in appendix B, which let us define a computational
budget (i.e., how many permutations to sample) based on desired coalition coverage.

4 Method

In the following, we present our contributions: we propose EA techniques to make do-SHAP practical
on complex graphs; we present the Frontier-Reducibility Algorithm (FRA), an efficient procedure to

4Please refer to [17], Corollary 2, for a formal proof. In their terms, our SCMs are G-constrained, L1-
consistent Neural Causal Models that can effectively estimate interventional queries (such as do-SHAP’s ν(S)
coalition values) as long as they are identifiable by using the mutilation process (see appendix H.4).
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significantly reduce the number of coalitions to evaluate during do-SHAP (regardless of using EB or
EA methods); finally, we present a theorem allowing for do-Shapley explanations on inaccessible
DGPs. Please refer to appendix H for a detailed example illustrating the application of our approach
from start to finish.

Please note that throughout this work, we do not claim polynomial-time tractability of do-SHAP. Any
discussion of computational efficiency refers solely to FRA in isolation, and should not be interpreted
as implying polynomial-time performance for do-SHAP.

4.1 The do-Shapley value

Consider an SCMM = (V,W,P,F), a target r.v. Y ∈ V , a subset of K variables X ⊆ V \ {Y }
and a certain sample x ∼ P(X) we wish to explain. Given a coalition S ∈ P(X) with realizations s (a
subset of x), let us define the value function νx(S):

νx(S) := E [Y | do(S = s)] (3)

Then, the do-Shapley value (do-SV) [12] over variables X with realizations x ∼ P(X) on a variable
X ∈ X is ϕX := ϕνx(X). For economy of notation, we will simply write ν := νx.
Assumption 4.1. Let us assume an unknown SCMM but with known DAG GM5. Further assume
its do-SVs are identifiable in GM (i.e., ν(S) is identifiable6 ∀S ⊆ X) and that the resulting P(V) is
strictly positive. Note that GM may include latent confounders as long as its do-SVs are identifiable.

Jung et al. [12] employed the EB approach, using an estimand for each term ν(S). This makes do-
SHAP impractical, requiring different ML models for the estimand’s terms and an ad-hoc computation
following the formula. In response, we propose to use the EA approach: 1) train a single SCM to
learn P(V); 2) for each query ν(S), determine if it is identifiable (as we do in the EB approach); and
3) use general SCM-based procedures, not the estimand, to estimate the query. An illustrative example
of this SCM strategy is provided in appendix H; for further details, please refer to [18, 21, 13, 28]).

4.2 Efficient estimation of the do-Shapley value

In this section, we derive a novel algorithm to accelerate do-SHAP. We leave all proofs and the more
efficient version of the algorithm to appendix D.
Proposition 4.2. For any non-ancestor X of Y , ϕX = 0.

Consequently, we can restrict G to Y ’s ancestors, since every other do-SV will necessarily be 0.
Assumption 4.3. Given an SCM M = (V,W,P,F) and a target r.v. Y ∈ V , we assume M
to be the projected SCM M[An(Y )] (see theorem C.8) and simply denote it M. From now on,
V = X ∪ {Y } with X := An(Y ) \ {Y } = (V0, . . . , VK−1) in a topological order. Let Y := VK .

Let us introduce the concept of frontiers, with which we will reduce coalitions.
Definition 4.4. Given any node X ∈ X, a subset S ⊆ X is a frontier between X and Y if X ̸∈ S and
all directed paths p = (X, . . . , Y ) from X to Y are blocked by S, i.e., ∃Z ∈ S s.t. Z ∈ p. We denote
the set of frontiers between X and Y in G as FrG(X,Y ).
Proposition 4.5. Given X ∈ X and Y , and a subset S ∈ FrG(X,Y ), then ν(S ∪ {X}) = ν(S).
Remark 4.6. For any parent X ∈ PaY , no subset S ⊆ X \ {X} is a frontier between X and Y .

Finally, using these properties, let us reduce any given coalition S into its irreducible subset S’ ⊆ S,
i.e., ν(S) = ν(S’) and ∀X ∈ S’, S’ \ {X} ̸∈ FrG(X,Y ). While an alternative definition exists (see
theorem D.10), the following form motivates an algorithm to efficiently reduce coalitions.

5This is a standard assumption in the SCM community. If the graph is not known, Causal Discovery
algorithms [35] can derive a potential graph, later refined with domain expertise and/or randomized experiments.

6Running the identifiability algorithms (section 3.2) on all 2|X| terms a priori is unnecessary. Instead, when
using the approximation method discussed in section 3.4, we can test identifiability for each new sampled query,
caching results for repeated coalitions. If any coalition is found to be non-identifiable during this process, an
error state should halt do-SHAP immediately; otherwise, if no non-identifiable coalition is found, our do-SV
estimation will be valid. Moreover, certain graph structures (e.g., no latent confounders) make do-SVs trivially
identifiable; a general graphical criterion for do-SV identifiability is left for future work.
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Algorithm 1 Frontier-Reducibility Algorithm (FRA) – set version

Require: S ⊆ X, coalition.
Require: Fr, a map: tuple[int]→ bool.
Require: G, causal graph.

1: procedure FRA(S, Fr;G)
2: Sort(S, <G)
3: P← ∅
4: Z← ∅
5: k ← |S|
6: while k > 0 do
7: X ← S[k]
8: if X ̸∈ PaG(Y ) then
9: P’← P ∩DeG(X)

10: T← (P’ \ Z) ∪ {X}
11: if T ̸∈ Fr then
12: C← {X}

13: while C ̸= ∅ and Y ̸∈ C do
14: P’← P’ ∪ C
15: C←

⋃
C∈C ChG(C) \ P’

16: end while
17: Fr[T]← (C = ∅)
18: end if
19: if Fr[T] then
20: Z← Z ∪ {X}
21: end if
22: end if
23: P← P ∪ {X}
24: k ← k − 1
25: end while
26: return S \ Z
27: end procedure

Theorem 4.7. Given a topological order <G in G and S ⊆ X, let Z := {X ∈ S | S>GX ∈
FrG(X,Y )}, with S>GX := {Z ∈ S | Z >G X}. Then ν(S) = ν(S \ Z), and S \ Z is irreducible.

Thanks to this theorem, we can derive the irreducible subset of any coalition. Then, we evaluate its
ν-value with our SCM and store it in a cache. If, during the do-SHAP calculation, we encounter
another subset S′ with the same irreducible subset as the previous S, we can employ the cached
ν-value of that irreducible subset, thereby reducing the number of coalitions to evaluate.

From theorem 4.7, we derive the Frontier-Reducibility Algorithm (FRA) in algorithm 1, which
determines the irreducible subset of any coalition S efficiently. We start by sorting the coalition in the
order defined by G (line 2) and then iterate through the nodes descendingly (lines 5–6, 24). Given a
step k and the corresponding node X (line 7), P contains the nodes following X in S (line 23). If X
is a parent of Y , it trivially has no frontiers, so it cannot be removed (line 8). Otherwise, if P blocks
all paths from X to Y (lines 12–17), it is a frontier for X , which means X must be included in Z
(line 20), the set of superfluous nodes.

Let us exemplify with fig. 2, where we try to reduce S := {A,C,E, F}. For instance, on k = 1,
X = A, and P = {C,E, F}. A is not a parent of Y , so we need to determine if P ∈ FrG(A, Y ). For
that, we move through every path from X to Y , and if no path reaches Y without being interrupted
by a node in P, then P is a frontier between X and Y , and X can be removed by adding it to Z. Note
that we use the Fr map to cache these computations (lines 9–11, 17) using a reduced version of P,
since P ∈ FrG(A, Y ) iif (P ∩ DeG(X)) \ Z ∈ FrG(A, Y ). Fr stores whether the key T can be
reduced by its first (sorted) element X . Please refer to appendix D.2.2 for an in-depth explanation of
FRA and for algorithm 3, an alternative, more efficient version using integer-encoded coalitions.

To finish this subsection, let us draw parallels to Luther et al. ’s work [36], in which, for conditional-
SHAP, pairs ν(S∪{X}) = ν(S) were identified to be skipped, since they resulted in a null differential
in SHAP’s formula. We move further by: 1) extending the method to do-SHAP, which requires the
use of do-calculus to derive these properties; and 2) by describing and efficiently computing the
irreducible subset S’ such that ν(S) = ν(S’), instead of only removing a single node.

This results in a greater speed-up. As an example, consider the chain graph A→ B → Y . For ϕA,
the pairs are ν(A) ̸= ν(∅) and ν(A,B) = ν(B), while for ϕB , ν(B) ̸= ν(∅) and ν(A,B) ̸= ν(A).
FRA would only need to compute the irreducible sets ∅, {A}, and {B}, since ν(A,B) = ν(B),
while Luther’s method needs to evaluate every single coalition eventually, even if ν(A,B) = ν(B)
could be skipped while computing ϕA. Now, let us demonstrate this behavior in general:
Proposition 4.8. Under assumption 4.3, ∀S ⊆ X ,∃Z ∈ X s.t. at least one of the following is true:

• Z ̸∈ S and S ̸∈ FrG(Z, Y ).

• Z ∈ S and S \ {Z} ̸∈ FrG(Z, Y ).
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Figure 2: FRA execution example. a) Causal Graph with nodes in alphabetical order representing the
selected topological order. b) FRA execution steps, with k representing the loop step (lines 5–6, 24),
X the current node (line 7), P the potential frontier for X , and Z storing the nodes to be removed
from S. The result of this execution is the coalition reduction {A,C,E, F} → {C,F}.

Consequently, for any pair ν(S ∪ {X}) = ν(S) identified by Luther, we know that ∃Z ∈ X s.t.
somewhere else in the (exact) do-SV computation, S will reappear and cannot be skipped: either
Z ̸∈ S, ν(S ∪ {Z}) ̸= ν(S) or Z ∈ S, ν(S) ̸= ν(S \ {Z}) (non-parametrically). By the same
argument, the same can be said about ν(S ∪ {X}). Therefore, Luther cannot omit these new pairs
and will eventually evaluate all ν(S), even if some were omitted in previous pairs.

Now consider FRA. If we encountered a pair ν(S∪ {X}) = ν(S), both must necessarily result in the
same irreducible subset, thereby can be skipped without evaluating them. However, even if we later
encounter them in a non-skippable pair, their irreducible subsets can be evaluated once and cached
for subsequent reappearances. In other words, with Luther’s strategy, all 2K coalitions will need
to be evaluated eventually, regardless if they were omitted previously in another pair. In contrast,
by determining the irreducible subsets and storing their values in a cache, less evaluations will be
necessary. Naturally, in the case of SHAP’s approximate method, we may not re-encounter every
coalition in an unskippable pair, but even in that case, our method need not compute the skippable
pair either. Therefore, FRA can only improve upon Luther’s speed-up.

4.3 do-Shapley explanations

So far, we have been talking about do-SHAP values w.r.t. a variable Y ∈ V in a certain SCMM, but
there are two use cases to consider in practice: either we want to explain a ML model that models Y
given some inputs X’ ⊆ V \ {Y } or we want to explain the original variable Y directly.

If we want to explain a ML model f(X’) := E [Y | X’], Y is replaced by Y ′ := f(X’) (with no EY ,
since f is deterministic); we then work on the projected SCMM[An(Y ′)] with PaY ′ = X’. Note
that this subgraph may contain variables other than those in X’, since any X ∈ X \ X’ would be an
ancestor to an X ′ ∈ X’, and therefore an ancestor of Y . With this SCM, we can apply EA procedures
to estimate do-SHAP. We exemplify this case in the experiment in section 5.1.

If, instead, we wanted to explain Y directly, we simply employ do-SHAP on a proxy SCM, but note
that for a particular (x, y) ∼ P(X, Y ),

∑
X∈X ϕνx(X) = E [Y | x̂]−E [Y ] ̸= y−E [Y ] (unless Y is

a constant distribution). There is a gap between the contribution of X (∆νx(X)) and the actual value
of Y , because our particular ν, an interventional query, is essentially a population estimate, and as
such aggregates for the whole distribution. In order to explain a particular outcome, we need some
kind of counterfactual value function ν; this is a promising avenue of research, but is left for future
work, since it is beyond the scope of this paper. As an alternative approach, the following theorem
proves that, under additional assumptions, we can explain this gap through EY ’s do-SV contribution.

Theorem 4.9. do-Shapley Value for the Noise.
Assume that U{Y,·} = ∅ and that fY ∈ F follows an additive noise model, i.e., Y = f(PaY ) + EY ,
for a certain f . Consider the do-Shapley game with players X∪{EY }; then, ϕEY

= y−E [Y | paY ],
while ϕX for X ∈ X can be computed w.r.t. X only. Furthermore,

∑
X∈X ϕX + ϕEX

= y − E [Y ].

7



Consequently, assuming an unconfounded Y with additive noise, we can explain inaccessible DGPs
with attribution to the noise and no computational overhead. In practice, we define a ML model
f ′(paY ) ≈ E [Y | paY ] and explain it instead, computing the do-SV for EY as ϕEY

:= y− f ′(paY ).

5 Experiments

This section contains the empirical validation of our approach. We begin with a synthetic DGP,
from which we can derive ground truth do-SVs, to measure estimation error on several EA methods.
Secondly, we demonstrate the speedup resulting from the FRA-cache with an ablation test. Finally,
we showcase do-SHAP explanations on two real world datasets, left to appendix F due to space
restrictions. Please refer to the Supplementary Material for the code of these experiments.

5.1 Estimation performance

Z

Y

X

C

B

A

Figure 3: Semi-Markovian graph.
The Markovian graph results from
considering U{X,B} as measured.

The goal of this experiment is to evaluate if a proxy SCM can
correctly estimate (identifiable) do-SVs without access to the
true underlying DGP. Let us design first a syntheticM0 with
variables V , following the graph in fig. 3. We train a ML model
f(paX) ≈ E [Y | paY ], and create an SCMM using the same
structural equations as M0 for X := V \ {Y } but with Y
replaced by Y ′ := f(PaY ). This represents our SCM of study.
We can consider two cases, both identifiable, by assuming
U{X,B} is observed (Markovian) or latent (semi-Markovian).

We replicate the experiment 30 times with different seeds.
Let D be a dataset generated from M with N = 1000
i. i. d. samples. With access to M, we can estimate each
query ν(S) with M i. i. d. samples from the intervened SCM,
passing them through f and averaging the outputs; we will use the corresponding do-SVs
Φ := (ϕ

(i)
X )i∈[N ],X∈X as ground truth. We also train several proxy SCMs (with Y ′ replacing Y ) to

learn P(V) and then estimate the do-Shapley values Φ̃ = (ϕ̃
(i)
X )i∈[N ],X∈X, finally computing their

SHAP estimation loss L2(Φ, Φ̃) :=
1

N |X|
∑N
i=1

∑|X|
k=1(ϕ

(i)
Xk
− ϕ̃(i)Xk

)2. We will also compare against a
marginal-SHAP estimator (which should result in different values). We compute the average test log-
likelihood (loglk) for each model as a way to measure distribution adjustment. Finally, for all X ∈ X,
we compute their Feature Importance (FI), defined as FIX := 1

N

∑
i∈[N ] |ϕ

(i)
X |/

∑
X′∈X |ϕ

(i)
X′ |.

We will test do-SHAP with several SCM architectures7; for further implementation details and a
justification of our choices please refer to section E.1.1. These methods are: 1) a linear SCM
with Normal distributions for each variable, used as a baseline; 2) the Distributional Causal Node
[20] (DCN), with every node modeled after a pre-defined distribution; and 3) Deep Causal Graph
[13] (DCG) powered with Normalizing Flows. Additionally, in order to test the graph-as-a-whole
approach (see section 2), we opt for Causal Normalizing Flows (CNF) [28].

See fig. 4 for the Markovian case. As expected, better distributional adjustment to P(V) (loglk)
correlates with better estimates of do-SVs. Linear-SCM cannot properly model P(V), and so its do-
SHAP performance suffers; DCN comes close to the best models, probably because of the synthetic
nature of the data; DCGs and CNFs exhibit similar performance except for more variance on DCGs,
possibly due to CNFs modeling all variables at once. Finally, marginal-SHAP significantly differs
from the do-SHAP ground truth, showing that, evidently, do-SHAP and marginal-SHAP measure
different attributions. FI comparisons w.r.t. ground truth values are also aligned with the previous
results. We leave the semi-Markovian experiment for section E.1.2, with equivalent conclusions, even
in presence of a latent confounder; DCGs display the best estimation performance. In the following,
we will employ DCGs even if CNFs seem to be more stable variance-wise, because DCGs admit
latent confounders and were orders of magnitude faster in our experiments.

7None of these methods are external baselines, as do-SHAP has not yet been tested with EA approaches
and remains underexplored overall (see [37] for an example), largely due to the ad hoc nature of EB methods.
Additionally, EB strategies are excluded from our experiments because they require manual adaptation for each
coalition, whereas EA is generalizable and automatable, rendering a direct comparison inappropriate.
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importance ( 1

K ). See section E.1 for a bigger figure.
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Figure 5: FRA experiments. (a) Ratio of computed coalitions after FRA. (b) FRA execution time
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(cache) and with an FRA cache (FRA). Error bars at 2-sigma over 30 replications.

5.2 Frontier-Reducibility Algorithm

We now test the computational impact of FRA. Let us consider GK,p, the class of graphs G with K+1
nodes, defined in topological order, X := (V0, . . . , VK−1), Y := VK , where p ∈ (0, 1) represents the
probability of any possible edge Vi → Vj , 0 ≤ i < j ≤ K appearing in G, and such that G fulfills
two conditions: 1) An(Y ) = X ∪ {Y } and 2) PaY ⊊ X. 8 We sample uniformly from GK,p using
rejection sampling to ensure both conditions. Figure 5 shows the results of our experiments, with
error bars for the mean of each metric at 2-sigma over 30 random graphs per configuration.

Let K ∈ {5, . . . , 20} and p ∈ {0.1, . . . , 0.9}. Figure 5 (a) shows the average ratio of coalitions (out
of |P(X)| = 2K ) that need to be passed through ν after reduction by FRA. Note that for higher values
of K, each p-curve approaches p, i.e., in the case of p = 0.1, a reduction in ν-computations of 90%.
Figure 5 (b) shows the average execution time of FRA per coalition. Despite the exponentially-larger
number of directed paths in the graph, the computation of FRA appears to grow linearly with K, due
to the fact that it scales with the size of the coalition S to be evaluated and the depth of the graph,
both at most K. For K ≤ 20, the error bars do not exceed 3µs per FRA call.

Finally, we evaluate FRA with an ablation test in fig. 5 (c). We design synthetic DGPs for random
G ∈ GK,p with ∀X ∈ V, fX(paX , εX) := mean(paX) + εX , εX ∼ N (0, 1). We choose a linear
SCM for its fast execution; real-world SCMs, with far more complex architectures, will require even
longer to execute, so FRA will have an even stronger impact. We evaluate do-SHAP with a linear
DCG and using the approximate method with N permutations such that at least half the total number
of coalitions are expected to have been processed afterN permutations;9 this value forN is computed
using eq. (6) in appendix B. We restrict this experiment to K ≥ 8 so that N ≥ 30 and set p = 0.25.
We can now compare the mean execution time when evaluating every coalition S (baseline), when
employing a cache to avoid repetitions in ν-computations, and when employing an FRA-cache (fra)
to reduce and cache coalitions. As a result, we can see a consistent pattern: FRA is an order of
magnitude faster than the baseline and twice faster than the cache.

8Note that when PaY = X, FRA has no effect (see theorem 4.6); since this case is of no interest for this
experiment, such cases are discarded. We discuss this limitation to the speed-up power of FRA in section 6.

9This particular choice for N results in an exponential time-growth w.r.t. K, but this is not necessarily the
case in the usual setting, where we choose N based on estimation variance or computational limitations.
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Note that it is not prohibitive to run our method for higher values of K; we repeat the experiment
for K = 100 without replications to explain a sample with 1000 permutations. The DCG training
time amounts to 16s and the do-SHAP executions for no-cache, cache, and FRA-cache lasted for
26m01s, 25m20s and 21m14s, respectively. The average error of estimation is 2.71e−4. There is
still an exponential trend in computation-time (we make no claim of reducing the exponential nature
of SHAP) but: 1) it is possible to compute do-SVs on high K with an automatized, single-model
approach, in contrast with EB approaches that would require manual specification of procedures based
on estimands, rendering them infeasible in practice; and 2) we achieve a considerable improvement
time-wise (4m w.r.t. cache) at a negligible cost in running FRA (8s in total).

Please refer to section E.2 for the full experimental setup and further tests on FRA. There we show
that FRA’s execution time is negligible w.r.t. the computation of ν(S), even on linear SCMs. This
difference can only increase with more complex SCM architectures; therefore, for virtually no cost,
FRA skips computing ν(S) up to a significant factor, resulting in a marked speedup for do-SHAP.

6 Limitations

We devote this section to discussing the limitations of this work.

Firstly, we assume to know the causal graph G; while Causal Discovery algorithms and/or domain
experts can help to define it, our techniques are sensitive to graph misspecification. Regrettably, there
are no doubly-robust guarantees for EA techniques yet, which is a definite disadvantage w.r.t. EB
alternatives. Nevertheless, the ad-hoc nature of EB methods makes them impractical for do-SHAP,
with or without doubly-robust guarantees, while our approach can adapt to complex graphs. In any
case, this issue falls out of scope for this paper, which is focused on facilitating and accelerating do-SV
estimation. An additional limitation for some EA methods is error propagation: how misalignment in
modeling P (V) can propagate to do-SV estimations. However, some works in the literature address
this issue by modeling all variables in a single-pass F , avoiding compounding errors [26, 28].

Secondly, our approach requires modeling the data distribution by training an appropriate SCM,
which can take some (offline) time. However, once the SCM is trained, any new sample can be
explained (online) from that same model. SCMs can typically be trained in the order of minutes
(half an hour for the most complex graphs/distributions in this work, figs. 10 and 12 in the appendix),
and after that offline training, SHAP execution (online) becomes the most pressing factor time-wise.
The FRA algorithm helps in significantly accelerating this step, as demonstrated in section 5.2, but
this speed-up only results when not all variables are parents of Y ; otherwise, no coalition would
be reducible. Fortunately, real-world DGPs rarely have all (proper) Y -ancestors as parents, and in
ML systems, defining all X as model inputs (PaY ′ ) is hardly advisable, since they may contain non-
ancestors of Y (leading to spurious correlations or anti-causal effects [38]) or inputs A ⊆ X \ PaY
that are blocked by PaY , (Y ⊥⊥ A | PaY ), in which case their inclusion could lead to overfitting and
adversarial vulnerability. Consequently, feature selection strategies should aim at discarding these
cases, which paves the way for FRA speed-ups.

7 Conclusion

In this work, we have introduced a practical method to estimate do-SVs on arbitrarily complex
graphs by using the estimand-agnostic approach, with which we can estimate any identifiable query
using general procedures agnostic to the query’s estimand. This flexibility is essential to make
these techniques accessible to practitioners, who may not necessarily be experts in Causal Inference.
We have tested our approach on multiple SCM architectures, illustrating the relationship between
distribution modeling and do-SHAP estimation performance. We have proposed the novel Frontier-
Reducibility Algorithm, which speeds up do-SHAP significantly at virtually no cost. Finally, we
have tested the capabilities of our method and applied it on two real-world datasets (see appendix F),
showcasing do-SHAP’s explanatory power, either for ML models or inaccessible DGPs.

Further work could propose new SCM architectures to better model the data distribution, overcoming
some of the identified limitations, along with more efficient estimators, ideally with doubly-robust
guarantees. A general graphical criterion for do-SV identifiability is also a worthwhile new direction.
Finally, do-SVs are based on interventional queries, but these are inherently population measures;
counterfactual value functions ν could result in a promising new kind of causal, local explanations.
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A Shapley value axioms

The SV ϕ = {ϕX}X∈X is the unique attribution measure fulfilling a number of desirable properties:

• Efficiency:
∑
X∈X ϕX = ν(X) − ν(∅) = ∆(X); the sum of SVs adds up to the total

contribution of X.

• Missingness: if ∀S ⊆ X \ {X}, ν(S ∪ {X}) = ν(S), then ϕX = 0; players with no
contribution to any coalition have Shapley value 0.

• Symmetry: if ∀S ⊆ X \ {X,Y }, ν(S ∪ {X}) = ν(S ∪ {Y }), then ϕX = ϕY ; players with
identical contribution to any coalition have identical Shapley values.

• Linearity: if ∀S ⊆ X, ν(S) := ν1(S) + ν2(S), then ∀X ∈ X, ϕν(X) = ϕν1(X) + ϕν2(X),
and if ∀S ⊆ X, ν(S) := a · ν′(S), then ∀X ∈ X, ϕν(X) = a · ϕν′(X); ϕ is linear w.r.t. the
coalition game ν.

B Cache impact on the approximation algorithm

Consider the approximation method (see section 3.4), where we sample permutations of K elements
uniformly with replacement, π ∼ U(Π([K])), so as to approximate the Shapley value with a Monte
Carlo estimator. In this section, we want to evaluate how much we can accelerate the computation of
new permutations as we fill a cache with the values of previously computed coalitions. When we use
a cache, once we compute a coalition for the first time, we save its result in it (assuming no cache
limit) and further computations of this coalition will incur in negligible computation time (simply
a cache access), therefore speeding up the computation of new permutations. We want to measure
exactly how much we can speed up the process.

Let us define some notation. Given π ∈ Π([K]), let us denote by C(π) the set of K + 1 coalitions
S ∈ P([K]) defined by taking the first s elements of π, s = 0..K (e.g., for π = (3, 1, 2), C(π) =
{∅, (3), (3, 1), (3, 1, 2)}). Then, for an arbitrary S ∈ P([K]) and a permutation π ∼ U(Π([K])):

P (S ∈ C(π)) = |S|!(K − |S|)!
K!

=

(
K

|S|

)−1

(4)

since S must appear at the beginning of π in an arbitrary order, so there is |S|! possibilities, with
the remaining (K − |S|) elements in an arbitrary order, so (K − |S|)!, out of the total K! possible
permutations. Since we are taking N i. i. d. permutations (π(n))n∈[N ], it follows that

P (∀n ∈ [N ], S ̸∈ C(π(n))) =

(
1−

(
K

|S|

)−1
)N

, (5)

which is the probability of an arbitrary coalition S not belonging to any of the N previously sampled
permutations, and therefore, it still needs to be computed when it appears in a future permutation.
In particular, note that we do not need to know the elements of S, only its cardinality |S|, which
we will denote by s := |S|. Given the set of K + 1 coalitions C(π(N)) in permutation π(N), we
can now compute the expected ratio of its coalitions not found in any of the previous permutations
(therefore not cached); in other words, the expected ratio of computations we need to perform at the
N -th permutation, N > 1, is:

1

K + 1

∑
S∈C(π(N))

P (∀n ∈ [N − 1],S ̸∈ C(π(n))) =
1

K + 1

K∑
s=0

(
1−

(
K

s

)−1
)N−1

. (6)

For N = 1, the ratio is trivially 1. Morover, for s = 0 (S = ∅) and s = K (S = [K]), the term
(1−

(
K
s

)−1
) becomes 0 (it is impossible not to have seen them in a previous permutation, since they

are in every permutation), so we omit these cases in the following sums.
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Figure 6: Cache evolution plots. a) Ratio of coalitions in π(n) already cached. b) Ratio of total
coalitions already cached after n permutations. Both x-axis represent the number of permutations n
divided by 2K , so as to compare between different values of K.

Finally, the expected ratio of cached coalitions (out of the total number of coalitions 2K ) after N ≥ 1
permutations is:

1

2K

N∑
n=1

∑
S∈C(π(n))

P (∀n′ ∈ [n− 1], S ̸∈ C(π(n′))) =
K + 1

2K
+

1

2K

N∑
n=2

K−1∑
s=1

(
1−

(
K

s

)−1
)n−1

=
K + 1

2K
+

1

2K

K−1∑
s=1

(
K

s

)(
1−

(
K

s

)−1
)(

1−

(
1−

(
K

s

)−1
)N−1)

=
K + 1

2K
+

1

2K

K−1∑
s=1

((
K

s

)
− 1

)
− 1

2K

K−1∑
s=1

(
K

s

)(
1−

(
K

s

)−1
)N

= 1− 1

2K

K∑
s=0

(
K

s

)(
1−

(
K

s

)−1
)N

, (7)

where we first split the sum over n for n = 1 and n > 1, and then swap the sums and apply, for
x := 1−

(
K
s

)−1
, the equality

∑N
n=1 x

n = x 1−xN

1−x for x ∈ (0, 1) (which is the case when s ̸= 0,K),
and noting that 1

1−x =
(
K
s

)
. We then split the sum in two terms, with the first half adding up to 1

with K+1
2K

. The rest of the transformation is trivial.

We now plot eqs. (6) and (7) in fig. 6 (a) and (b), respectively, for several values of K (represented
by color opacity). The x-axis in both cases is n

2K
, so as to show how each curve progresses as

n→ 2K , where we will have encountered (K + 1)2K coalitions. We can see that the likelihood of
encountering previously-computed coalitions is very high early in the process, which means that the
computations required per permutation speed up significantly in the early stages. However, if we
wanted to cover the totality of possible coalitions with the permutation method, this would require
many more coalitions given the high likelihood of collision; this is relevant particularly for section 5.2,
where we set N to be high enough so that at least half the total number of coalitions are expected to
have been processed after N permutations.

These plots are merely illustrative; we encourage researchers to make use of the derived equations to
adjust for the appropriate number of permutations in terms of computation time budget.

C Causal Inference concepts

We include here some additional notation and concepts for Causal Inference, necessary for the proofs
in appendix D.
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Notation

Given r.v.s X ̸= Y and a disjoint set of r.v.s Z (possibly empty), we denote that X is independent of
Y conditioned on Z in a distribution P by (X ⊥⊥ Y | Z)P . Given disjoint sets of r.v.s X,Y,Z, we
say that X is independent of Y given Z in a distribution P , denoted by (X ⊥⊥ Y | Z)P , if and only if
∀X ∈ X, ∀Y ∈ Y, (X ⊥⊥ Y | Z)P . P can be omitted unless it leads to ambiguity.

Given X,Y ⊆ V, let GXY denote the graph G modified such that all edges pointing towards nodes in
X are removed (overline) and all edges starting from nodes in Y are removed (underline). We may
incur in abuse of notation (e.g., GXY := GX∪{Y }) unless it leads to ambiguity.

C.1 d-separability and do-calculus

In the following, we will define the concept of d-separability, its connection to independence, and the
three rules of do-calculus. Please refer to [15] for more details.
Definition C.1. d-separability.
Given a DAG G = (V,E), a path p is d-separated (blocked) by a set Z ⊆ V (possibly empty) if and
only if either is true:

1. p contains a chain A→ B → C or a fork A← B → C such that B is in Z.

2. p contains a collider A→ B ← C such that no descendant of B (including B) is in Z.

Given disjoint sets X,Y,Z ⊆ V, we say that Z d-separates X from Y in G if Z d-separates every path
p from a node X ∈ X to a node Y ∈ Y. We denote this by (X ⊥⊥ Y | Z)G .
Definition C.2. Markov Compatibility.
We say that a distribution P(V) on a set of variables V = (V1, · · · , VK) is (Markov) compatible with
a DAG G with V as vertices in G if P (V) =

∏
k∈[K] P(Vk | PaG(Vk)).

Theorem C.3. Independence and d-separability.
Given an SCMM = (V,W,P,F) compatible with a DAG GM and disjoint sets X,Y,Z ⊆ V , if
(X ⊥⊥ Y | Z)GM then (X ⊥⊥ Y | Z)P . Conversely, if (X ̸⊥⊥ Y | Z)GM , there exists at least one
distribution P ′ compatible with GM (in fact, almost all) such that (X ̸⊥⊥ Y | Z)P′ .
Remark C.4. The second statement comes from the fact that precise parameter choices θ of distri-
butions PΘ might result in independence in an otherwise unblocked path in G. Fortunately, such
specific tuning of Θ rarely occurs in practice.
Remark C.5. If we need to determine independence relationships (X ⊥⊥ Y | Z)P (Z possibly empty),
we simply verify that all paths connecting X and Y are blocked by Z, using d-separability.

Next, we introduce the three rules of do-calculus, with which we can transform causal queries step by
step, until we reach the desired estimand.
Theorem C.6. Rules of do-calculus.
Given an SCMM = (V,W,P,F) compatible with a DAG GM, for any disjoint sets X,Y,Z,W,⊆ V
(X and W possibly empty):

1. Insertion/deletion of observations (R1):
Px(Y | Z,W) = Px(Y | W) if (Y ⊥⊥ Z | X,W)GX

.

2. Exchange of interventions/observations (R2):
Px,z(Y | W) = Px(Y | z,W) if (Y ⊥⊥ Z | X,W)GXZ

.

3. Insertion/deletion of interventions (R3):
Px,z(Y | W) = Px(Y | W) if (Y ⊥⊥ Z | X,W)GX Z(W)

,
where Z(W) := Z \AnGX

(W), the set of nodes in Z that are not ancestors of W (including
W) in the graph GX.

C.2 Projected Structural Causal Models

Definition C.7. Divergent Path.
A divergent path between X and Y consists of two directed paths, from W to X and from W ′ to Y ,
such that W =W ′ or W ↔W ′.
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Definition C.8. Projected SCM.
Given an SCMM = (V,W,P,F) compatible with a DAG GM and a subset V ′ ⊆ V , we define the
projected causal DAG G[V ′] defined on vertices V ′ andW ′ := E ′ ∪W ′, with E ′ := {EX ∈ E | X ∈
V ′} and U ′ as defined next, such that:

• ∀Vk, Vl ∈ V ′, there is a directed edge Vk → Vl if there exists a directed path from Vk to Vl
in GM where every internal node in the path is not in V ′.

• ∀Vk, Vl ∈ V ′, there is a bidirected edge Vk ↔ Vl (connected by a latent confounder
U{k,l} ∈ U ′) if there exists a divergent path in G between them such that every internal node
is not in V ′.

We define the projected SCM M[V ′] by restricting its graph to GM[V ′], with distribution
PM[V′](V ′) = PM(V ′).

Remark C.9. The projected SCM respects all conditional independence relationships and the rules of
do-calculus in the original graph. [39].

D Proofs

In this section, we will prove the results in the main paper and discuss the Frontier-Reducibility
Algorithm.

D.1 Non-ancestors

Lemma D.1. Given a DAG G = (V,E) and disjoint subsets of vertices X,Y ⊆ V (possibly empty), if
there is a path p in GXY, then p is a path in G.

Proof. GXY’s edges are a subset of G’s edges, since GXY only removes edges either ending in X or
starting from Y. Adding those edges back in G cannot remove any edge from the path; hence, p is a
path in G.

Proposition D.2. Non-Ancestors do not Contribute.
LetM be an SCMM = (V,W,P,F), Y the target r.v., X a subset X ⊆ V \{Y } and x a realization
x ∼ P(X). For any X ∈ X, if X is not an ancestor of Y , then ϕνx(X) = 0.

Proof. We will prove that ∀X ̸∈ AnG(Y ), ∀S ⊆ X \ {X}, ν(S∪{X}) = E [Y | ŝ, x̂] = E [Y | ŝ] =
ν(S). If that is the case, then

ϕX =
∑

S⊆X\{X}

1

K

(
K − 1

|S|

)−1

(ν(S ∪ {X})− ν(S)) = 0.

Note that E [Y | ŝ, x̂] = E [Y | ŝ] if Ps,x(Y ) = Ps(Y ), which is implied by R3 if (Y ⊥⊥ X | S)GSX
.

Let us prove this independence by contradiction: assume there is a path p connecting X and Y
unblocked conditioned on S in GSX . The path cannot start with X ← · · · since all edges pointing
towards X are removed in GSX , so p = X → · · · ? Y . Since the path is unblocked, if there
were any left arrows (←) in the path, the resulting collider · · · → B ← · · · must necessarily fulfill
DeGSX

(B) ∈ S to unblock the path. There are two cases: 1) if B ∈ S, then there is an edge B ← · · ·
for a node B ∈ S, which cannot be true in GSX ; 2) if B ∈ AnGSX

(S) \ S, then there is a directed
path from B to a node in S, which again cannot happen in GSX because we have removed all edges
pointing towards S. Therefore, the path must necessarily not contain any left arrows, which means that
p is a directed path from X to Y in GSX , which must also be a directed path in G due to theorem D.1;
therefore X ∈ AnG(Y ), contradicting the initial assumption. No unblocked path can exist, which
proves (Y ⊥⊥ X | S)GSX

and the theorem in turn.
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D.2 Frontier-Reducibility Algorithm

We begin by defining the concept of frontier and proving several properties related to it, necessary
for the definition of the Frontier-Reducibility Algorithm (FRA), introduced next. We finish with
an alternative formulation of the FRA algorithm with integers for faster execution time and lesser
memory usage.

D.2.1 Frontiers and properties

In the following, consider an SCMM = (V,W,P,F) with associated DAG G = (V,E), where
V = (V0, . . . , VK) is sorted in an arbitrary topological order of the graph. Let X := {V0, . . . , VK−1},
Y := VK , and assume that X ⊆ An(Y ). Note that there may be latent confounders (U ̸= ∅).

Definition D.3. Given any node X ∈ X, a subset S ⊆ X is a frontier between X and Y if X ̸∈ S and
all directed paths p = (X, . . . , Y ) from X to Y are blocked by S, i.e., ∃Z ∈ S s.t. Z ∈ p. We denote
the set of frontiers between X and Y in G as FrG(X,Y ).

Proposition D.4. Given nodes X ∈ X and Y , and a subset S ∈ FrG(X,Y ), frontier from X to Y ,
then ν(S ∪ {X}) = ν(S).

Proof. We will apply R3 by proving that (Y ⊥⊥ X | S)GSX
, in which case

ν(S ∪ {X}) = E [Y | ŝ, x̂] = E [Y | ŝ] = ν(S).

Note that in GSX , all paths fromX to Y are front-door paths. Consider any such p = X → · · · ? Y .
If the path is fully directed, since S is a frontier, ∃Z ∈ S s.t. Z is in the path, thereby blocking it. If it
is not directed, there exists a collider · · · → Z ← · · · , which also blocks the path: Z ̸∈ An(S), since
S has no ancestors other than itself in GSX and Z ̸∈ S because · · · → Z is in p. Therefore, any path p
between X and Y must be blocked by S in GSX , which proves R3.

Remark D.5. For any parent X ∈ PaY , no subset S ⊆ X \ {X} is a frontier between X and Y .

Proposition D.6. Given nodes X ∈ X and Y , and a frontier S ∈ FrG(X,Y ),

1. ∀S′ ⊆ X \ {X},S′ ⊇ S, then S′ ∈ FrG(X,Y ).

2. S ∩De(X) ∈ FrG(X,Y ).

Proof.

1. Since S ∈ FrG(X,Y ), any directed path p between X and Y is blocked by S; being S′ a
superset of S, it must also block all such paths.

2. Any non-descendant of X cannot appear in a directed path from X to Y , which means that
it is superfluous in the frontier set. As such, S ∩De(X) ∈ FrG(X,Y ).

Corollary D.7. Given X ∈ X and S ⊆ X \ {X}, let S>GX := {Z ∈ S | Z >G X}.

S ∈ FrG(X,Y )⇔ S>GX ∈ FrG(X,Y )⇔ S ∩DeG(X) ∈ FrG(X,Y ). (8)

Proof. If S ∈ FrG(X,Y ), S ∩ De(X) ∈ FrG(X,Y ), and S>GX ⊇ S ∩ De(X), since any Z ∈
S ∩De(X) fulfills Z >G X , which proves that S>GX ∈ FrG(X,Y ). On the other hand, if S>GX ∈
FrG(X,Y ), S ∈ FrG(X,Y ), since S ⊇ S>GX . The remaining iff is trivial given theorem D.6.

Definition D.8. A set S ⊆ X is Frontier-Reducible (FR) in G if ∃X ∈ S s.t. S \ {X} ∈ FrG(X,Y ).

In particular, if S is FR by X ∈ S, ν(S) = ν(S \ {X}).
Theorem D.9. Consider any FR S ⊆ X, and let us define Z := {X ∈ S | S \ {X} ∈ FrG(X,Y )} =
{X ∈ S | S>GX ∈ FrG(X,Y )}. Then ν(S) = ν(S \ Z) and S \ Z is not FR.
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Proof. Consider Z = {Xi1 , . . . , Xin} in the order <G . Note that ∀j ∈ [n], S \ {Xi1 , . . . , Xij} =
S>GXij

, which is a frontier between Xij and Y by construction.

Let us prove that ∀j ∈ [n], ν(S) = ν(S>GXij
) by induction. For j = 1, ν(S) = ν(S \ {Xi1}) since

S>GXi1
∈ FrG(Xi1 , Y ). For an arbitrary j, and assuming it true for j − 1, ν(S) = ν(S>GXij−1

) =

ν(S>GXij
), since S>GXij−1

\ {Xij} = S>GXij
∈ FrG(Xij , Y ). Therefore, for j = n, ν(S) =

ν(S \ {Xi1 , . . . , Xin}) = ν(S \ Z).

Additionally, S \ Z is not FR since, if ∃X ∈ S \ Z s.t. S \ Z \ {X} ∈ FrG(X,Y ), then S \ {X} ⊇
S \ Z \ {X} is also a frontier between X and Y , which implies that X ∈ Z.

For a clearer characterization of the irreducible set, consider the following proposition.

Proposition D.10. Given a FR S ⊆ X and its corresponding irreducible subset S’ := S \ Z, with
Z := {X ∈ S | S>GX ∈ FrG(X,Y )}, then S’ = S ∩AnGS

(Y ).

Proof. We will show that S \Z = S∩AnGS
(Y ), or equivalently, that ∀X ∈ S, S>GX ̸∈ FrG(X,Y )

iff X ∈ AnGS
(Y ). Consider X ∈ S. If S>GX ̸∈ FrG(X,Y ), then S \ {X} ̸∈ FrG(X,Y ) by

theorem D.7, so there is a directed path from X to Y not blocked by S \ {X}. Consequently, X is an
ancestor of Y in the graph where we remove any incoming edges to S; in other words, X ∈ AnGS

(Y ).
Conversely, if X ∈ AnGS

(Y ), there is a directed path from X to Y not blocked by S \ {X}, therefore
S \ {X} ̸∈ FrG(X,Y ) and S>GX ̸∈ FrG(X,Y ), again by theorem D.7.

Finally, let us prove the property that explains why the identification of irreducible subsets results in
less ν-evaluations than Luther et al. ’s [36] approach:

Proposition D.11. Under assumption 4.3, ∀S ⊆ X , ∃Z ∈ X s.t. at least one of the following is true:

1. Z ̸∈ S and S ̸∈ FrG(Z, Y ).

2. Z ∈ S and S \ {Z} ̸∈ FrG(Z, Y ).

Proof. We will reason by cases:

• If S = X, given that X = AnG(Y ) \ {Y }, there must be a parent Z of Y in S. A parent
Z ∈ S of Y can never have a frontier with Y , hence S \ {Z} ̸∈ FrG(Z, Y ).

• If S = ∅, ∀Z ∈ X,∅ ̸∈ FrG(Z, Y ) (otherwise, Z would not be an ancestor of Y ,
contradicting the assumption).

• Let S ̸= ∅, S ̸= X :

– If S is irreducible, ∀Z ∈ S, S\{Z} ̸∈ Fr(Z, Y ); otherwise, S would not be irreducible.
– If S is not irreducible, let S’ ⊊ S be its irreducible set (as determined by theorem D.9

and proposition D.10). We know that S’ ̸= ∅; otherwise, ∀Z ∈ S,∅ ∈ Fr(Z, Y ),
meaning that Z is not an ancestor of Y , contradicting the assumption. Now, ∀Z ∈
S’, S \ {Z} ̸∈ FrG(Z, Y ); otherwise, by theorem D.9, Z would not belong to S’s
irreducible set, which is S’.

Under all possible cases, the result is proven.

D.2.2 Algorithm soundness

Theorem D.9 identifies which elements can be removed from the computation of ν(S) for any set
S. As a result, if we compute and cache ν(S \ Z), any other set with the same Frontier-Irreducible
set can skip the ν computation and return the cached value instead. Additionally, we do not need to
test identifiability for FR sets, only for the corresponding Frontier-Irreducible sets. We now need to
define an efficient method to compute S \Z, the Frontier-Reducibility Algorithm (FRA), described in
algorithm 2; let us first demonstrate its soundness.
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Algorithm 2 Frontier-Reducibility Algorithm (FRA) – set version (with comments).

Require: S ⊆ X, coalition.
Require: Fr, a map: tuple[int]→ bool.
Require: G, causal graph.

1: procedure FRA(S, Fr;G)
2: Sort(S, <G) ▷ Sort S topologically
3: P← ∅ ▷ Posterior nodes, S>GXik

4: Z← ∅ ▷ Superfluous variables
5: k ← |S| ▷ Iterator index, moving backwards
6: while k > 0 do
7: X ← S[k] ▷ X = Xik
8: if X ̸∈ PaG(Y ) then ▷ Parents have no frontiers
9: P’← P ∩DeG(X) ▷ Auxiliary variable for the loop

10: T← (P’ \ Z) ∪ {X} ▷ Cache key for Fr: (node, frontier)
11: if T ̸∈ Fr then ▷ Non-cached key, determine if P’ ∈ FrG(X,Y )
12: C← {X} ▷ Iterate from X to its descendants
13: while C ̸= ∅ and Y ̸∈ C do ▷ While more nodes before Y
14: P’← P’ ∪ C ▷ Add currently explored nodes to P’
15: C←

⋃
C∈C ChG(C) \ P’ ▷ Filter frontier or previously-explored nodes

16: end while
17: Fr[T]← C = ∅ ▷ P ∈ FrG(X,Y )⇔ we have not reached Y
18: end if
19: if Fr[T] then
20: Z← Z ∪ {X} ▷ Add to superflous nodes
21: end if
22: end if
23: P← P ∪ {X} ▷ Update S>GX

24: k ← k − 1 ▷ Continue the global iteration
25: end while
26: return S \ Z ▷ Remove superfluous nodes
27: end procedure

Given S = (Xi1 , . . . , Xin) in <G order, at step k = n..1, X := Xik and P := {Xin , . . . , Xik+1
} =

S>GXik
. At this stage, we test if P ∈ FrG(X,Y ), or equivalently, if (P∩DeG(X))\Z ∈ FrG(X,Y ),

in which case we will include it in Z. At the end of the process, Z = {X ∈ S | S>GX ∈ FrG(X,Y )},
which, by theorem D.9, means that ν(S) = ν(S \ Z), and S \ Z is not FR.

We include some optimizations to this algorithm. Firstly, we precompute PaG(Y ), (DeG(X))X∈X
and (ChG(X))X∈X so that we do not need to traverse the graph every time they are needed. Secondly,
we employ the Fr cache, containing whether a certain coalition (a set of integers) is Frontier-
Reducible by its first (sorted) element, which is populated as FRA processes more sets S. On
the other hand, when storing the results for P ∈ FrG(X,Y ) in the Fr cache, we store instead
T := ((P ∩ DeG(X)) \ Z) ∪ {X}, which is equivalent; this is so that we can better employ the
Fr cache, collapsing different P ∪ {X} sets into reduced keys. However, when testing the frontier
in lines 12–17, it will be faster with the larger number of nodes in P’ := P ∩DeG(X) (including
previously removed nodes in Z), since they could cut paths earlier. As a result, for any given set
S ⊆ X, algorithm 2 requires |S| global iterations (one per element of S), some of them skipped
because X ∈ PaG(Y ), some already cached in Fr. Finally, this cache can be reused between
explanations of do-SHAP for the same graph; only the ν cache must be reset every time. This speeds
up further explanations with virtually zero cost from the FRA.

The next step is how to determine if the set P’ ⊆ X \ {X} is a frontier between X and Y . Naively,
we could check if all directed paths between X and Y are blocked by (intersect with) P’; we could
precompute all paths and store them for faster access, but the number of paths grows exponentially
(in the worst case scenario, i.e., a complete graph, there are 2K − 1 directed paths), which would
in turn require an exponential number of iterations per frontier check. Instead, we devise a more
efficient method, described in lines 12–17.
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We now prove the validity of this procedure. Let us define C0 := {X}. C0 will never be empty
nor contain Y , so we always enter the loop. At each while-step l > 0, P’l :=

⋃
l′<l Cl′ ∪ P’ and

Cl :=
⋃
C∈Cl−1

ChG(C) \ P’l. All directed paths from X to Y are sequences of parent-child pairs,
just as any node C ∈ Cl is a child of a certain node C ′ ∈ Cl−1. Additionally, since every node in X
is an ancestor of Y , by exploring these parent-child sequences we will necessarily result in a directed
path from X to Y . Therefore, every directed path is covered by a sequence of nodes Cl ∈ Cl unless
they are discarded by P’l, in which case either P’ blocked the node in the path, or it was a node
already visited in a different path before, which would continue with a subpath C → · · · → Y that is
currently being explored or has already been discarded.

Note that since P’l removes any already-visited nodes from Cl, and we always move one level
deeper in the graph, Cl’s nodes are all necessarily at depth l from X . Given that the graph G is finite
and acyclic, C will eventually be empty or contain Y (since it is the last node in any path), which
guarantees that the loop ends. Let Cn denote the last step. Note that if Cn ̸= ∅, then Y ∈ Cn, which
means that there was a sequence of nodes, each a child of the previous one, that were never filtered
by P’; in other words, there exists a directed path from X to Y that is not blocked by P’. Therefore
P’ ̸∈ FrG(X,Y ). On the other hand, if Cn = ∅, then every sequence of nodes (every path) was
eventually blocked by P’. Therefore, P’ ∈ FrG(X,Y ).

In terms of execution time, since every step results in nodes one depth-level deeper, the number of
iterations of this procedure cannot be higher than the maximum depth of the graph, which, in the
worst case scenario (e.g., a chain graph) is K − d, d being the depth of X , making it much more
efficient than the naive strategy.

D.2.3 Integer formulation

We can further optimize FRA by transforming set operations into integer and binary operations,
resulting in algorithm 3. Let us demonstrate that both algorithms are equivalent. Given X =
(V0, . . . , VK−1),K := |X|, there is a bijection ϕ : P(X) → {0, . . . , 2K − 1} such that ϕ(S) =∑

Vk∈S 2
k. Note that ϕ(S) is a K-length binary array with 1s in each position k (starting from the

end) such that Vk ∈ S. Consequently, let us define, for any s ∈ {1, · · · , 2K −1}, ψ(s) := ⌊log2 s⌋10;
then ψ(s) = max {k | Vk ∈ ϕ−1(s)}; if we subtract 2ψ(s) from s, we can apply ψ again to retrieve

the second-largest element, and so on until s = 0 (S = ∅). The sequence of elements ψ(s) returns
the original set S = ϕ−1(s).

Thanks to this bijection, we can "ϕ-encode" any node or coalition as a unique integer, and we can
perform all our operations directly on integers with arithmetic and binary operations, which are less
expensive, timing- and memory-wise, than with operations over sequences of integers. Note that,
∀S, S’ ⊆ X:

1. ϕ(S ∩ S’) = ϕ(S) & ϕ(S’), with & the bitwise AND operator.

2. ϕ(S ∪ S’) = ϕ(S) | ϕ(S’), with | the bitwise OR operator.

3. ϕ(S \ S’) = ϕ(S) & ¬ϕ(S’), with ¬ the bitwise NOT operator.

4. S ∩ S’ = ∅⇒ ϕ(S ∪ S’) = ϕ(S) + ϕ(S’).
5. S ⊇ S’⇒ ϕ(S \ S’) = ϕ(S)− ϕ(S’).

Let us compare between the set and integer versions of the algorithm. Firstly, we precompute and
ϕ-encode PaY, De and Ch, since they will be used repeatedly throughout the algorithm. Note that
we do not need to sort S beforehand, instead passing it in its s := ϕ(S) representation.11 We can
obtain the elements x in descending order, already encoded, by computing x := 2⌊log2 s⌋ (line 5) and
subtracting it from s (line 28). We can check if an encoded x is a parent of Y with the & operator
(line 6). We can restrict P, encoded by an integer p, to P’ := P ∩DeG(X), encoded by an integer p′,
by using the & operator on the precomputed encoded set De[x] := ϕ(DeG(X)) (line 7). We can set

10In practice, for larger values of K (e.g., K = 100), we must use bit operations to detect the largest 1-bit in
s, instead of using the logarithm; these are faster and not subject to numerical error. However, we denote this
operation as ⌊log2 s⌋ throughout the text and the algorithm for clarity and simplicity.

11It is more efficient to pass s directly to the procedure, since we can pre-encode all indices {0, . . . ,K − 1}
before generating permutations of them; then, we just need to pass the sum of the chosen coalition.
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Algorithm 3 Frontier-Reducibility Algorithm (FRA) – integer version.

Require: s := ϕ(S), S ⊆ X.
Require: Fr, a map int→ bool.
Require: PaY := ϕ(PaG(Y )).
Require: De[2k] := ϕ(DeG(Vk)), ∀Vk ∈ X.
Require: Ch[2k] := ϕ(ChG(Vk)), ∀Vk ∈ X.

1: procedure FRA(s, Fr; PaY, De, Ch)
2: p← 0 ▷ Posterior nodes, S>GXik

3: z ← 0 ▷ Superfluous variables
4: while s > 0 do ▷ Iterating through S topologically-backwards
5: x← 2⌊log2 s⌋ ▷ X = Xik
6: if x & PaY = 0 then ▷ Parents have no frontiers
7: p′ ← p & De[x] ▷ Auxiliary variable for the loop
8: t← (p′ & ¬z) + x ▷ Cache key for Fr: (node, frontier)
9: if t ̸∈ Fr then ▷ Non-cached key, determine if P’ ∈ FrG(X,Y )

10: c← x ▷ Iterate from X to its descendants
11: while c ̸= 0 and y & c = 0 do ▷ While more nodes before Y
12: p′ ← p′ | c ▷ Add currently explored nodes to P’
13: c′ ← c ▷ C←

⋃
C∈C ChG(C) by iterating

14: while c′ > 0 do
15: x′ ← 2⌊log2 c

′⌋ ▷ Get an element X ′ ∈ C’
16: c← c | Ch[x′] ▷ Add ChG(X ′) to C
17: c′ ← c′ − x′ ▷ Remove X ′ from C’ to continue the iteration
18: end while
19: c← c & ¬p′ ▷ Filter frontier or previously-explored nodes
20: end while
21: Fr[t]← c = 0 ▷ P’ ∈ FrG(X,Y )⇔ we have not reached Y
22: end if
23: if Fr[t] then
24: z ← z + x ▷ Add to superflous nodes
25: end if
26: end if
27: p← p+ x ▷ Update S>GX

28: s← s− x ▷ Remove X from S to continue the global iteration
29: end while
30: return p− z ▷ Remove superfluous nodes
31: end procedure

the cache-key T := (P’ \Z)∪ {X} by its code (p′ & ¬z) + x (line 8). Finally, in order to determine
if P’ is a frontier between X and Y , we iterate over the elements in Ck by employing the same
strategy as before (lines 10–21).

All of these changes result in an equivalent algorithm, more time-efficient (as demonstrated in
section E.2) and memory-efficient (since we operate and cache integers rather than tuples of integers).

D.3 do-Shapley value for the noise

Theorem D.12. do-Shapley Value for the Noise.
Given a target r.v. Y ∈ V , consider the projected SCMM[An(Y )], with X := An(Y ) \ {Y } and
realizations (x, y) ∼ P(X, Y ). Let (ϕX := ϕνx(X))X∈X be the do-Shapley values associated with
K players X.

Let us assume that there is no latent confounder connected to Y , and that fY ∈ F follows an
additive noise model, i.e., Y = fY (PaY , EY ) = f(PaY ) + EY for an unknown function f . Let
ϕ′ be the do-Shapley values w.r.t. players X′ := X ∪ {EY }; then, for any X ∈ X, ϕ′X = ϕX and
ϕ′EY

= y − E [Y | paY ]. Furthermore,
∑
X∈X ϕ

′
X + ϕ′EY

= y − E [Y ].
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Proof. Let us define some notation for convenience:

• ∀S ⊆ X, let Sc := X \ S.

• Note that PaY ⊆ S ∪ Sc; let us denote the selected values paY as the output of a function
PaY (s, sc) for ease of exposition.

• Let ν′(S) := ESc |̂s [f(PaY (s, Sc))] for convenience of notation.

We want to compute do-Shapley values ϕ′ for the (K + 1)-game (including EY ) with realizations
(εY , x, y) ∼ P(EY ,X, Y ) (with εY latent, unknown) based on the values ϕ for the K-game (only
including X) with the same realizations (x, y) ∼ P(X, Y ). Let us first determine the value of the
following two quantities for any S ⊆ X (EY ̸∈ S):

ν(S ∪ {EY }) = E [Y | ŝ, ε̂Y ] = ESc |̂s,ε̂Y [Y | ŝ, Sc, ε̂Y ]
= ESc |̂s [f(PaY (s, Sc))] + εY = ν′(S) + εY . (9)

We can perform the first step by marginalizing over Sc in Ps,εY . Then, (Sc ⊥⊥ EY | S)GS,EY
because

any path p connecting EY must necessarily have a collider in Y , since De(Y ) = Y , therefore
blocking the path. By R3, Pŝ,ε̂Y (S

c) = Pŝ(Sc) so we can remove it from the expectation over Sc.
On the other hand, we know that Y = f(PaY ) + EY and by the linearity of expectations, we can
remove εY from the expectation. Finally, for later clarity, we can denote the first term by ν′(S).

Next, let us solve the analogous term for S:

ν(S) = E [Y | ŝ] = ESc,EY |̂s [Y | ŝ, Sc, EY ]
= ESc |̂s [f(PaY (s, Sc))] + E [EY ] = ν′(S) + E [EY ] . (10)

We proceed similarly, beginning with a marginalization over Sc and EY this time. In order to separate
EY from the first term, note that (Sc ⊥⊥ EY )GS

and (S ⊥⊥ EY )GS
for the same reason as before:

any path connecting EY must necessarily pass through Y , which acts as an unconditioned collider,
thereby blocking it. Hence, P (Sc, EY | ŝ) = P (Sc | ŝ)P (EY | ŝ) = P (Sc | ŝ)P (EY ), with the
former step by the rules of independence and the latter by R3. We can then split the expectation, this
time with E [EY ] as the second term and using the same notation ν′(S) again.

With these two computations, we can see that:

ν(S ∪ {EY })− ν(S) = εY − E [EY ] , (11)

and substituting it into the SHAP formula (with K + 1 players):

ϕ′EY
=
∑
S⊆X

1

K + 1

(
K

|S|

)−1

(εY − E [EY ])

=

K∑
s=0

(
K

s

)
1

K + 1

(
K

s

)−1

(εY − E [EY ])

= εY − E [EY ] . (12)

We transform the first to second step by realizing that we do not need to know what the coalitions S
are, only their cardinality, so we can transform

∑
S⊆X into

∑K
s=0 by multiplying by

(
K
s

)
, the number

of combinations of s elements. This term and its inverse cancel out, and K + 1 constant terms
summed together cancels with 1

K+1 , resulting in εY − E [EY ].

Now, note that εY = y − f(paY ) and:

E [Y | paY ] = E [f(paY ) + EY ] = f(paY ) + E [EY ] , (13)

so f(paY ) = E [Y | paY ]− E [EY ]. Then,

ϕ′EY
= εY − E [EY ] = y − f(paY )− E [EY ] = y − E [Y | paY ] . (14)
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This proves the value for ϕ′EY
. Let us now compute ϕ′X for any X ∈ X. Let S ⊆ (X∪ {EY }) \ {X}.

If EY ∈ S, we can apply eq. (9) and ν(S) = ν′(S \ {EY }) + εY . Otherwise, eq. (10) gives us
ν(S) = ν′(S) + E [EY ]. Now, ϕ′X ’s computation can use both results:

ϕ′X =
∑

S⊆X\{X}

1

K + 1

(
K

|S|+ 1

)−1

(ν(S ∪ {EY , X})− ν(S ∪ {EY }))

+
∑

S⊆X\{X}

1

K + 1

(
K

|S|

)−1

(ν(S ∪ {X})− ν(S))

=
∑

S⊆X\{X}

1

K + 1

((
K

|S|+ 1

)−1

(ν(S ∪ {X})− ν(S)) +
(
K

|S|

)−1

(ν(S ∪ {X})− ν(S))

)

=
∑

S⊆X\{X}

1

K + 1

((
K

|S|+ 1

)−1

+

(
K

|S|

)−1
)
(ν(S ∪ {X})− ν(S))

=
∑

S⊆X\{X}

1

K

(
K − 1

|S|

)−1

(ν(S ∪ {X})− ν(S)) = ϕX (15)

We first split the SHAP formula in two: those sets that include EY and those that do not; note that
the combination terms are altered to reflect the size of the base set applied to ν (|S|+ 1 in the first
case since the base set is S ∪ {EY }). For the first to second step, we can bring together the two sums,
and transform the first difference,

ν(S ∪ {EY , X})− ν(S ∪ {EY }) = ν′(S ∪ {X})− ν′(S) = ν(S ∪ {X})− ν(S), (16)

by applying eq. (9) and eq. (10) and cancelling the εY and E [EY ] terms, respectively. We now sum
the two inverse combination terms; let s := |S|, with s ≤ K − 1 since S ⊆ X \ {X}:(

K

s+ 1

)−1

+

(
K

s

)−1

=
(s+ 1)!(K − s− 1)! + s!(K − s)!

K!

=
(s+ 1) · s!(K − s− 1)! + (K − s) · s!(K − s− 1)!

K · (K − 1)!

=
(s+ 1 +K − s)s!(K − s− 1)!

K · (K − 1)!

=
K + 1

K
· s!(K − s− 1)!

(K − 1)!
=
K + 1

K

(
K − 1

s

)−1

(17)

Substituting this result back into eq. (15), we can cancel out K + 1. We arrive at the last formula,
which is exactly the value for do-SHAP in the K-player game without EY .

Finally, in order to prove the last step, let us first prove that E [Y | x̂] = E [Y | paY ]:

E [Y | x̂] = E
[
Y | p̂aY , p̂acY

]
= E [Y | p̂aY ] = E [Y | paY ] . (18)

We first split X = PaY ∪ PacY . Next, we apply R3 with (Y ⊥⊥ PacY | PaY )GX
since Gx can only

contain edges leading from PaY to Y and from confounders U{Y,·} to Y ; therefore, no path can
exist from PacY to Y . Then, we apply R2 with (Y ⊥⊥ PaY )GPaY

: since Y has no descendants
and we remove any incoming edges to Y in GPaY except for the ones starting from confounders in
U{Y,·} = ∅ (by assumption), Y must be independent of PaY in GPaY , proving the expression.

Now we can prove the remaining fact:∑
X∈X

ϕ′X + ϕ′EY
= (E [Y | x̂]− E [Y ]) + (y − E [Y | paY ]) = y − E [Y ] (19)
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E Experiments

These experiments are executed on personal computers (particularly, a Macbook with an M3 Pro
chip) and do not require an infrastructure of workers for their execution. No experiment lasted longer
than 6 hours to execute in total throughout their multiple replications.

E.1 Synthetic dataset

We include here further details about the Synthetic experiment in section 5.1, bigger figures for the
Markovian case (for better visibility) and a discussion on the semi-Markovian case. Please refer to
the supplementary code for the actual implementation of these experiments.

E.1.1 Implementation details

We chose several SCM architectures for the experiment; here we justify these choices. Regarding
the classic approach of modeling an SCM with each of its functions fk ∈ F separately, some of the
approaches mentioned in section 2 focus on how to model complex multivariate r.v.s (e.g., images),
but the remaining univariate r.v.s are modelled by specifying which probability distribution family
they belong to. Since our DGP consists exclusively of univariate continuous r.v.s, these proposals are
equivalent. Instead, we will employ Deep Causal Graph (DCG) [13], a general framework for all sorts
of implementations of SCMs. In particular, with DCGs, we can train three different kinds of SCM: 1)
a linear SCM with Normal distributions for each variable, used as a baseline; 2) the Distributional
Causal Node [20] architecture, where every node is modeled after a probability distribution family
with a feed-forward network for the computation of its parameters (DCN); and 3) DCGs powered
with its most flexible implementation for continuous nodes, based on Normalizing Flows. Finally, in
order to test the alternative approach of modeling SCMs not node-wise, but the graph as a whole,
we could use Variational Causal Autoencoder (VACA) [26] or Causal Normalizing Flows (CNF)
[28]. However, as stated by the authors of CNF based on their experiments, “VACA shows poor
performance, and is considerably slower due to the complexity of GNNs". For this reason, we opt for
CNFs as a representative of this alternative approach for SCM modeling.

Regarding the definition of the synthetic DGP, we employ a set of non-linear functions along with
exogenous samples from diverse continuous r.v.s for the generation of new samples. Let χ2(k) be
the Chi-squared distribution with k degrees of freedom, B(α, β) the Beta distribution, N (µ, σ) the
Normal distribution, and Exponential(λ) the Exponential distribution. We sample from each latent
variable first and then apply the functions in F in topological order:



u ∼ χ2(k = 10);

εZ ∼ B(α = 2, β = 5);

εX ∼ N (µ = 0, σ = 0.1);

εA,1 ∼ Exponential(λ = 1);

εA,2 ∼ N (µ = 0, σ = 0.1);

εB ∼ N (µ = 0, σ = 1);

εC ∼ N (µ = 0, σ = 0.5);

εY ∼ N (µ = 0, σ = 0.5);



z ← εZ ;

x← |z(u− 5) + εX |;
a← |

√
x+ εA,1 + εA,2|;

b← 5 sin(a)− u
10 + εB ;

c← log(1 + b2) + εC ;

y ← log z
1−z +

(
x
10

)2
+ c+ εY ;

(20)

Note that we have diverse continuous variables: some non-negative, some restricted to (0, 1), some
with unrestricted support. For the DCN implementation, where we need to assume the r.v.’s probability
distribution family, we will employ Exponential, Beta and Normal distributions respectively. Each
set of parameters ΘX can be computed with a shared feed-forward network using a Graphical
Conditioner [13]. For the DCG implementation with Normalizing Flows, we will use a Normal
Distribution as its base noise (EX ) and the following flow structure (from X to EX ):

• Affine layer, f(x) = σx+ µ, with µ, σ learnable parameters.

• 3 blocks of:

– Rational-Quadratic Spline Flow [40], defined on the interval [−5, 5], with K = 8 bins.
– Affine layer.
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Figure 7: Markovian case. Box-plots computed over 30 realizations of the dataset. (a) Distribution
adjustment score, log-likelihood (bigger is better). (b) SHAP estimation loss, L (lower is better). (c)
Feature Importance (the closer to ground-truth, the better). Dashed horizontal line represents uniform
importance ( 1

K ).

Additionally, depending on the support of the r.v. to be modelled, we prepend another layer to
transform the original domain into R before the application of the first Affine layer. In particular,
for flows defined in (0, 1), we use a Logit transformation f(x) := log x

1−x , and for non-negative
flows, an inverse Softplus layer f(x) := log(ex − 1) (using the identity after a certain threshold for
numerical stability). All parameters not set as hyperparameters are computed by an external trainable
Conditioner that takes the node’s parents as input and outputs their value.

Regarding the Conditioner network’s architecture, it is a standard feed-forward network with ELU
activations [41], 2 hidden layers of dimension 32, and a standardizer layer at the beginning defined
with the training dataset. This is used for the DCN and DCG SCMs. Regarding the CNF architecture,
it uses a Softclip-constrained NSF-based architecture similar to ours, but with 4 stacked Spline layers
(the diameter of the graph) and a MADE Conditioner to learn to model all variables at once. In this
case, the conditioner uses 3 hidden layers with dimension 32 and ELU as its activation.

In terms of training, we use the AdamW optimizer [42] with Early Stopping (after 100 epochs with
no improvement), using learning rate 10−3, weight decay 10−2 and batch size 100. Regarding SHAP
estimation, since we only have 5 variables, we use the exact permutation method, taking 1,000
samples from each SCM for the Monte Carlo estimators of ν(S).

Finally, see fig. 7 for a bigger representation of the plots in the Markovian case.

E.1.2 Semi-Markovian case

We also test our approach on the semi-Markovian case, where the latent confounder U{X,B} is not
observed. As stated in section 5.1, CNF cannot be applied without the causal sufficiency assumption,
so we will proceed with the remaining SCMs.

Figure 8 shows the same three plots as in the Markovian case, with similar results. The linear SCM
cannot properly estimate P(V), which results in worse SHAP loss. DCNs achieve similar results
to DCGs, but DCGs exhibit the best distribution adjustment and estimation performance. Finally,
marginal SHAP results in different estimations than do-SHAP, something that is patently clear in the
FI plot, where Z and C’s contribution are overestimated while A and B are underestimated. Note
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Figure 8: Semi-Markovian case. Box-plots computed over 30 realizations of the dataset. (a)
Distribution adjustment score, log-likelihood (bigger is better). (b) SHAP estimation loss, L (lower
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Figure 9: FRA experiments. (a) shows the errors bars (at 2-sigma over 270 replications) for the
average normalized execution times of FR1 (sets) and FR2 (numerical) per number of nodes (K). (b)
shows the error bars (at 2-sigma over 30 replications) of the ratio between FR1 time and FR2 time,
split by edge probability (p), over the number of nodes K. If above 1, FR2 is faster. (c) shows the
error bars (at 2-sigma over 30 replications) for the mean of quotients between the total time executing
FRA (+permutations) and for estimating all sampled ν(S).

that we obtain the same explanations as in the Markovian case even though we cannot measure the
latent confounder nor know its distribution.

E.2 FRA experiments

We will now describe additional tests for FRA.

Figure 9 shows comparisons between both versions of the FRA algorithm: FR1 (using sets, algo-
rithm 2) and FR2 (using integers, algorithm 3). Note that FR2 is consistently and significantly faster
that FR1, and less memory-intensive, since the Fr cache needs only store numerical encodings of
sets, instead of sets of integers. However, depending on graph topology, particularly with many
edges (p = 0.9), FR1 can be faster than FR2, as shown by fig. 9 (b). In any case, FRA is negligible
time-wise w.r.t. the time needed for the estimation of ν(S), as we will see next.
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Figure 10: Diabetes Causal Graph, with variables Physical Activity (PA), Fruit (FR), Veggies (VG),
Smoker (SM), BMI (BM), High Cholesterol (CH), High Blood Pressure (BP), Heart Disease or Attack
(HD), Stroke (ST), Chol. Check (CC). Boldface letters denote PaY , with Y , Diabetes, the target
variable, not represented for clarity. We can skip modeling any non-ancestors of Y (theorem 4.2):
SM, ST, HD and CC.

In the second experiment, as described in section 5.2, we employed a synthetic DGP consisting of a
linear function. We generate 1,000 i. i. d. samples from this DGP to create training, validation and
test sets with ratios 8:1:1. We train a linear DCG with Normal DCN nodes, which is fitting for this
dataset and deliberately lightweight, so as to show the improvements from the application of FRA
even in the case where the model is particularly fast; FRA can only improve time-gains with more
expressive and expensive models. We use a learning rate of 10−2, weight decay of 10−2, a batch
size of 100, early stopping with patience of 10 epochs and AdamW [42] as the optimizer. For each ν
estimation, we generate 100 samples from the SCM.

For this experiment, we kept track of do-SHAP execution time as well as the time for the computation
of ν(S) specifically; this allows us, by subtraction, to compute the time needed for FRA and generating
the permutations π from where the sets S emerge. If we compare these two quantities, dividing the
ν execution time by the FRA+permutation time, as shown in fig. 9 (c), we see that FRA is orders
of magnitude faster than ν; this means that, at a negligible cost, we can speed up do-SHAP by a
significant ratio, specifically the number of FR coalitions.

F Applications

We now showcase do-SHAP explanations on two real-world datasets as illustrative examples.

F.1 Diabetes dataset

Here we discuss the Diabetes Health Indicators Dataset [43], containing healthcare statistics and
lifestyle survey information along with their diagnosis (or not) of diabetes, for the year 2015. Note
that the dataset is biased, with 14% of individuals having diabetes. We start with a preprocessed
version of the original questionnaire dataset, from which 21 features and the target variable are
extracted. We select 10 out of 21 features to provide a more easily understandable problem for the
reader.

We construct a causal graph (see fig. 10) relating these variables and train an SCM to model them,
with which we finally compute their do-Shapley values. We design the graph using common sense.
Note that any causal analysis depends on its graph being sound, but it can be replicated at any time
once a better graph is found; for this reason, please take this as an illustrative example, since its
conclusions regarding healthcare are not necessarily rigorous. We train a DCG with the same setup
as before, except that every variable other than BMI is binary, so they are modelled with Bernoulli
DCNs.

Our objective here is not to explain a ML model, but the data itself; particularly, how each variable
affects the likelihood of diabetes. However, the effect of the noise is not as clear in a classifier as
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Figure 11: Diabetes Dataset. a) do-SHAP Feature Importance. Dashed vertical line represents
uniform importance ( 1

K ). b) Scatterplot between BMI value and do-SVs. c) do-SHAP beeswarm
plot, relating do-SVs and feature values.

in a regressor, since ϕEX
= y − E [Y | paY ] = y − P (Y | paY ); for an application of theorem 4.9,

please refer to section F.2.

We compute do-SHAP for the first 1,000 test set entries, and measure FI. See fig. 11 a); HighBP,
HighChol and BMI appear to be the most important variables, with Physical Activity, and fruit and
vegetable intake having a less pronounced role. It is also important to consider the dependency
between feature values and do-SHAP values; see the beeswarm plot in fig. 11 c), which shows
clear-cut effects in do-SV sign and magnitude for HighBP and HighChol, with a more nuanced
relationship between BMI (continuous) and do-SVs, which we plot in fig. 11 b); BMI 30 (typically
categorized as obese) seems to be the cutting point after which higher BMI values increase the
chances of diabetes up to 20%, while lower values decrease that likelihood up to 10%.

F.2 Bike Rental dataset

We now study the Bike Rental Dataset [44], describing the number of rentals in a bike sharing service
in Washington D.C., between 2011 to 2012 (both included), measured on an hourly basis, along with
weather data and whether that day was a working day. Again, our objective in this case is to explain
the data itself; particularly, how each variable affects the number of rented bikes.

We design a causal graph, depicted in fig. 12 (a). As stated before, please do not take the conclusions
from this experiment as is, but merely as an illustrative example. We train a DCG with the same
architecture and training parameters as the synthetic experiment, except that hour can be modeled
with a uniform distribution on the integer interval [0, 23]. We train our DCG and compute the
do-Shapley values for the test set entries. However, since we are operating on an inaccessible DGP in
this case, we also want to measure the effect of the noise, employing theorem 4.9.

We measure FI, represented in fig. 12 (b). Hour seems to be the major cause of the target variable,
as is to be expected, followed by noise (given by the inherent variance of the target conditioned on
its parents) and temperature, which also conditions on the likelihood of users renting bikes. Other
variables also do have an impact, with only wind speed and weather (categorical, with three levels)
having a less pronounced effect.

The relationship between feature values and do-SVs is more informative; we use scatter plots in
order to study how each value affects the outcome; see fig. 13. Hour presents positive attribution
during daytime from 8AM to 8PM, with night-time having negative attribution; temperature’s effect
is mainly negative, with certain temperatures being less inviting for cycling (below 15ºC and above
35ºC); in the same way, humidity only affects past 80%, as well as wind speed, past 15 km/h.
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Figure 13: Bike Rental, continuous features’ values against their SHAP values. Errors bars at 2-sigma.

G Comparison between do-SVs and non-causal approaches

In this appendix, we expand on the discussion about why do-SHAP results in more reliable expla-
nations than its non-casual alternatives (marginal-SHAP and conditional-SHAP). We follow on the
example presented in section 1, here replicated in fig. 14 for reader’s convenience.

A S

E

Y

Figure 14: Salary causal graph:
Age (A), Education (E), Seniority
(S) and Salary (Y).

Firstly, let us reason about how each method will behave in this
particular Data Generating Process (DGP). In marginal-SHAP,
consider for example ν({E}), where we would marginalize A
and S regardless of the assigned value to E, thereby ignoring
the impact that education level may have on the seniority level
of the employee (their standing in the company), and producing
out-of-distribution configurations (a, e, s). Alternatively, with
conditional SHAP, we would operate with P (A,S | E = e),
thereby including this dependency between E and S, but also
taking whichever value of A would have generated this specific
value e, which introduces in turn an anti-causal effect (E →
A). Since both approaches ignore the causal structure, they
incorporate non-causal effects that fail to reflect the real DGP, and would therefore lead to unreliable
explanations. In contrast, do-SHAP does take into account this causal effect, by using the intervention
do(E = e), therefore affecting S (E → S) while not affecting A (E ← A); not only that, but A’s
effect is de-confounded by blocking the back-door path E ← A → S → Y . See table 1 for a
depiction of which coalitions S result in the same value as do-SHAP’s ν, for marginal-SHAP and
conditional-SHAP.

∅ {A} {E} {S} {A,E} {A,S} {E,S} {A,E, S}
marginal-SHAP = ̸= ̸= ̸= ̸= ̸= ̸= =

conditional-SHAP = = ̸= ̸= = ̸= ̸= =

Table 1: When does do-SHAP’s ν equal marginal-SHAP’s or conditional-SHAP’s ν?

Secondly, we will illustrate this reasoning with an example SCM corresponding to the same graph;
see eq. (21). Let us consider Bernoulli r.v.s A,E, S, Y with parameters pA, pE , pS , pY , respectively.
These parameters are computed following the aforementioned causal graph, with the following
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Figure 15: Salary example, comparison between marginal-SHAP, conditional-SHAP and do-SHAP
for each input variable (A,E, S) on every factual combination (title).

structural equations, which generate samples (a, e, s, y) through Bernoulli sampling.
pA = 0.25

pE = 0.5a+ 0.25

pS = 0.25a+ 0.5e+ 0.1

pY = 0.5e+ 0.3s+ 0.1

(21)

We evaluate marginal-SHAP, conditional-SHAP, and do-SHAP on this DGP. We run the following
procedure 30 times to obtain error bars. For each replication, we generate 1, 000 background samples
(used for marginalization in the first two methods) and 8 test samples (one for every configuration
(a, e, s)) to explain. We estimate marginal-SVs on these test set samples x by approximating
νmarg(S) := Ex′∼P(X) [P (Y | xS, x′Sc)] with the i.i.d. background samples. Similarly, we estimate
conditional-SVs by approximating νcond(S) = Ex′∼P(X|xS) [P (Y | xS, x′Sc)], averaging over those
x′ background samples that fulfill x′

S = xS. Finally, we compute do-SVs by estimating ν(S) =
Ex′∼P(X|do(S=xS)) [P (Y | xS, x′Sc)], sampling and intervening on the DGP directly with interventions
do(S = xS). Note that for this particular experiment, we do have access to the true structural equation
Y = fY (a, e, s) and we employ it in our estimations instead of training a model to approximate
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it. We split by each test sample (every factual combination (a, e, s)) and plot the corresponding
estimations with boxplots in fig. 15.

We use the results of this experiment to exemplify how marginal-SHAP and conditional-SHAP fail to
address the behavior of the underlying DGP, hence providing explanations whose insights are not
reliably applicable to the real world. Meanwhile, do-SHAP does take into account the corresponding
data structure, and overcomes these weaknesses.

On the one hand, marginal-SHAP sets ϕA = 0 for all possible configurations, since A does not
appear in Y ’s structural equation; as such, A cannot have an effect on Y within marginal-SHAP, since
interventions onA have no impact onE or S (even if they do in the real DGP). As for ϕE , it disregards
the effect of E on S while also not de-confounding the back-door effect E ← A→ S → Y , resulting
in significant differences with do-SHAP, particularly on (a = −, e = +) and (a = +, e = −),
given that the correlation between the two is ignored with marginal-SHAP’s intervention. Finally,
ϕS is closer to an intervention with do-SHAP since S does not propagate its intervention on any
other variable before Y ; however, it is unable to control for the back-door effects (S ← E → Y or
S ← A→ E → Y ), which explains the difference with do-SHAP.

On the other hand, conditional-SHAP results in more similar attributions to do-SHAP, but still
significantly different. This similarity can be explained by the fact that half the coalitions result in
the same ν-output as do-SHAP in this particular graph, as made explicit in table 1. However, even if
the conditional may affect descendants of a variable as a do-intervention does, it can also introduce
anti-causal effects and cannot block back-door paths, which explains the differences with do-SHAP.

In summary, both marginal-SHAP and conditional-SHAP misrepresent the underlying DGP, given
that they ignore its underlying causal structure. This is the reason why do-SHAP results in more
reliable explanations than the alternatives.

H do-SHAP estimation example

Z

Y

X

C

B

A

Figure 16: Synthetic semi-
Markovian graph.

This section is devoted to explaining how to apply EA estima-
tion in practice for do-SHAP. This is meant as an illustrative
written explanation; for a code example, please refer to the
experiments code, submitted with the supplementary material.

We will focus on the graph introduced in section 5.1, here
replicated in fig. 16 for reader’s convenience. We will employ
the semi-Markovian version of this example (meaning, there is a
latent confounder U{X,B} between X and B). We will assume
the (measured) data distribution is composed of unconstrained
continuous r.v.s, with an unknown prior distribution for U{X,B},
but with a known causal graph G.

In terms of notation, let Pa′X = PaX ⊔ U{X,·} be the concate-
nation of the parents of a certain node X ∈ X and any latent confounders pointing to it. For example,
in our current graph, Pa′B = (A,U{X,B}).

H.1 do-SHAP identifiability

Before starting, we need to confirm that do-SVs are indeed identifiable in this particular graph;
otherwise, two SCMs trained on the same distribution may output different do-SV estimations,
rendering them useless.

If there was a graphical criterion that fit the structure of our graph G, it could be used at this step; for
instance, if there are no latent confounders in a graph, do-SHAP is trivially identifiable. Since this is
not the case, we need to test it using the ID algorithm [29]. See [31] or [32] for implementations in R
and Python, respectively.

To guarantee do-SHAP identifiability, we need to test it for every coalition S. In other words, ensure
that νx(S) := E [Y | do(S = s)] is identifiable ∀S ⊆ X. Therefore, we run the ID algorithm on
each of the 25 = 32 queries ν(S); if all are identifiable, so are the do-SVs. Note that this test is
independent to the data distribution, as it only requires the corresponding graph structure G.
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Given that this is a small graph, with only 5 X variables, amounting to 32 coalitions, it is feasible to
test for identifiability before starting the process. In the general case, with potentially bigger graphs
and 2|X| coalitions to test, this becomes infeasible or very expensive, and it is therefore recommended
to test for identifiability during do-SV estimation; this lets us skip the identifiability check for any
coalitions not appearing during the sampling process, as well as leveraging the FRA-cache to skip
further identifiability checks on non-irreducible coalitions. In the following, we will indicate where
in the do-SHAP process this check should be performed.

H.2 SCM implementation

Given that G contains a latent confounder, we choose DCGs [13] as the SCM architecture, and for
generality (to adjust to more complex data distributions) employ Normalizing Causal Flows (NCFs)
as the node architecture. Refer to section E.1.1 for a possible implementation of NCFs (without
domain adjustment, given that our variables are unconstrained real-valued r.v.s). These NCFs provide
a general function X = fX(EX ,ΘX(Pa′X)) (with EX the corresponding exogenous noise signal
for node X), which is used to sample new values x ∼ P(X | Pa′X) as well as to compute the
log-likelihood of these values given its parents: logP (x | pa′X). The choice of prior distribution for
the exogenous signal EX and for the latent confounder U{X,B} is irrelevant, as long as the desired
queries to estimate are identifiable (which has been previously tested) and the particular choice of
prior guarantees enough modeling capacity to represent the data distribution P (X). In this particular
case, we choose a N (0, 1) for both priors.

Regarding the function ΘX(Pa′X), it returns the appropriate function parameters θX for each node’s
function fX . These parameters define the shape of the distribution P(X | Pa′X) and as such depend
on the values pa′X of Pa′X . After that, fX only depends on the parameters θX and the exogenous
noise εX ∼ P(EX). This function ΘX(.) could be modeled with a simple Multilayer Perceptron
(MLP), one for each node, but this would inevitably result in overfitting for larger graphs. Instead,
we employ the Graphical Conditioner presented in [13], a single MLP network that takes every node
X and latent confounders U as the input and returns all parameters {θX | X ∈ X} as the output. By
using a particular training and inference strategy, the Graphical Conditioner allows to compute each
of these functions ΘX independently through a single network, thereby reducing training time and
overfitting risk.

H.3 SCM training

DCGs are trained with Maximum Likelihood Estimation, so we will define, for a particular sample
x ∼ P(X), the Negative Log-Likelihood (NLL) loss to minimize as the training objective. Given
the graph structure G of the data distribution to model, we can derive two formulas, one for the
Markovian case (no latent confounders),

L := − logP (x) = −
∑
X∈X

logP (x | paX), (22)

the other for the semi-Markovian case (with latent confounders),

L := − logP (x) = − logEU

[
exp

∑
X∈X

logP (x | pa′X)

]
. (23)

In our example, we need to employ eq. (23), given that U = {U{X,B}} ̸= ∅. This latter expectation
can be estimated by generating M i. i. d. samples from P (U) and averaging the results of the expec-
tation’s contents. The terms logP (x | pa′X) can be estimated by the predefined node architectures
(NCF in our example) using a simple function. Finally, the Monte Carlo average can be computed
using the log-sum-exp trick for numerical stability.

By running an optimization algorithm (e.g., AdamW [42]) on the average of these NLL losses for
random mini-batches of samples, we can learn the data distribution P (X) with our SCM, from which
we can now estimate (identifiable) do-SVs.

H.4 do-SHAP estimation

Let us describe how to estimate do-SVs with our approach.
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Firstly, we need to run the SHAP formula. In this case, with only 5 variables, we could employ the
exact formula directly, using eq. (1). Instead, we exemplify the more general approach, compatible
with larger graphs, with the permutations formula in eq. (2), which we approximate as described in
section 3.4, here re-established for reader’s convenience:

ϕνx(X) = Eπ∼U(Π(X)) [νx(X≤πX)− νx(X<πX)] , (24)

where the expectation over permutations π is estimated by generatingM i.i.d. permutations uniformly,
and the internal νx(.) terms are estimated as described in the following. However, before we run the
νx-estimation procedure, we employ an FRA-cache to compute the Frontier-Irreducible subsets S′ of
X≤πX and X<πX , hence reducing the number of νx-computations required.

Let us now discuss FRA. Consider the permutation π = (A,B,Z,X,C). We need to attempt to
reduce sets X≤πX = {A,B,Z,X} and X<πX = {A,B,Z}. By running the FRA algorithm (see
algorithm 2 for a simpler definition with sets), we can see that both sets can be reduced by removing
A, since B acts as a frontier between A and Y . Hence, we compute both values νx({B,Z,X}) and
νx({B,Z}) and store their results in a cache for later look-up. If, on another permutation π′, we
encounter coalitions with irreducible sets that have been computed before, we can retrieve the results
from the cache directly, thereby reducing the number of required computations.

Now, if we have not tested identifiability at the beginning of the process, we must confirm identi-
fiability of all encountered queries ν(S) before proceeding with their estimation, but only for the
corresponding irreducible sets S’. Whether one of such queries is identifiable or not is stored in a
separate cache to avoid running the ID algorithm again once another coalition results in the same
irreducible set. Finally, if any such query is deemed unidentifiable, the process must halt with an
error, meaning that do-SVs cannot be estimated in this particular graph.

Then, let us describe how to estimate an arbitrary coalition value, νx(S), which is accomplished with
a general sampling procedure. In order to estimate this query, we need to generate M i. i. d. samples
x(i) ∼ P(X | do(S = s)). We start by generating values ε(i) ∼ P(E) and u(i) ∼ P(U) from their
respective prior distributions. Afterwards, we go node by node X ∈ X following any topological
order of the graph, using the corresponding sampling functions x(i) = fX(εX

(i),ΘX(pa′X
(i)
))

unless the variable X is in the intervened coalition S, in which case x(i) becomes the corresponding
value from the to-be-explained sample x. After we have sampled from every variable in the graph,
we have a joint sample x(i) ∼ P(X | do(S = s)). We pass each of these samples through our model
fY (.) to compute the corresponding y(i) values, which will finally be averaged for the final estimation
of νx(S).

As a note, while smaller coalitions are generally more expensive to evaluate than larger ones, since
every node not in S requires to use its sampling mechanism to generate its values, this extra cost is
negligible in comparison to evaluating extra coalitions that reduce to the same irreducible subset.

Finally, we can add further optimizations to this procedure. Consider the tuple νx(π) =
(νx(π:k))k=0..K , with π:k the set of variables up to index k on π (inclusive) (note that π:0 = ∅).
When computing SVs, instead of using the formula directly, we sample permutations π, compute the
corresponding tuples νx(π) and, from there, their diff-tuple ∆νx(π) = (νx(π:k)− νx(π:k−1))k=1..K .
Note that each of these ∆νx(π)k terms is the difference in the SHAP formula for variableX := πk, so
we can update our do-SV estimations (ϕX)X∈X simultaneously, which accelerates this computation
by reducing the number of FRA-cache accesses and employing tensor operations. Along with this,
other estimation approaches, such as antithetic sampling for these permutations, can be used to obtain
better estimator efficiency, further reducing the number of required permutations.

H.5 Final considerations

Putting all of this together amounts to a seemingly complex method to estimate feature attribution:
from finding the assumed Causal Graph G, defining the appropriate SCM architecture, training
such a model, estimating the ν values, running FRA to avoid computations, to finally arriving at
the do-SV estimations. However, given already-implemented SCM architectures with appropriate
training and estimation procedures ready for use, EA do-SHAP is made practical. For this reason,
we advocate for an open-source library bringing together different SCM architectures for easier
switching between approaches, facilitating the general applicability of EA methods, and as a result,
of do-SHAP explanations.
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I Impact statement

This work introduces a tool for estimating do-SVs on any black-box system. As an explainability
tool, it offers positive societal impact by enabling deeper understanding of complex AI systems,
benefiting both scientific progress and business decision-making. Crucially, it addresses ethical
concerns about AI trustworthiness by supporting the right to explanation in human-facing decision
systems, facilitating debugging, and enhancing transparency and accountability. Additionally, by
enabling audits of opaque systems, the tool promotes responsible AI regulation, protecting human
rights against the risks of powerful but opaque AI systems.

One potential negative application of these techniques is in terms of willingly or unwillingly obfus-
cating harmful behavior in black-box models. Given the complexity of these techniques and the
subsequent analysis required to derive conclusions from its outputs, explainability techniques could
be used to provide a superficial layer of supervision and result in misleading conclusions about the
behavior of the system. Great care with respect to the assumptions and outputs of these tools must be
taken in their application.
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that can be found in the rest of the work. None of the contributions contains a limitation
significant enough to warrant mention so early in the paper and without the proper context;
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
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nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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the model (e.g., with an open-source dataset or instructions for how to construct
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benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: every one of these details (within reason) is detailed in the appendix. Addition-
ally, we submit the code in the supplementary material for further details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: we have included error bars at 2-sigma, specifying the number of replications
and the factors of variability.

Guidelines:

• The answer NA means that the paper does not include experiments.

38

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: these experiments were carried out in personal computers. Since this is not
a deterrent for the reproducibility of our results, we mention it briefly at the beginning of
appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: we have read the NeurIPS Code of Ethics carefully and can ensure that the
research carried out for this paper conforms with the ethical code in every aspect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: we have included an Impact Statement in appendix I due to space restrictions.
Nevertheless, this work does not have any direct negative impact on society, which is why
did not feel it necessary to include it in the main paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: we believe that our paper does not pose important risks such as those men-
tioned.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: any public datasets are properly cited in the text. Every asset has a
LICENSE.txt file attached to it. Licenses are respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: this work does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: our paper does not involve studies with subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: no significant usage of LLMs merits mention as requested.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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