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Abstract
AI models make mistakes when recognizing
images—whether in-domain, out-of-domain, or
adversarial. Predicting these errors is critical
for improving system reliability, reducing costly
mistakes, and enabling proactive corrections
in real-world applications such as healthcare,
finance, and autonomous systems. However,
understanding what mistakes AI models make,
why they occur, and how to predict them
remains an open challenge. Here, we conduct
comprehensive empirical evaluations using
a “mentor” model—a deep neural network
designed to predict another “mentee” model’s
errors. Our findings show that the mentor
excels at learning from a mentee’s mistakes
on adversarial images with small perturbations
and generalizes effectively to predict in-domain
and out-of-domain errors of the mentee.
Additionally, transformer-based mentor models
excel at predicting errors across various mentee
architectures. Subsequently, we draw insights
from these observations and develop an “oracle”
mentor model, dubbed SuperMentor, that can
outperform baseline mentors in predicting errors
across different error types from the ImageNet-1K
dataset. Our framework paves the way for future
research on anticipating and correcting AI model
behaviors, ultimately increasing trust in AI
systems. Our data and code are available at here.

1. Introduction
AI models are prone to making errors in image recognition
tasks, whether dealing with in-domain, out-of-domain
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(OOD), or adversarial examples. In-domain errors
occur when models misclassify familiar data within the
training domain, while OOD errors arise when faced with
unseen or out-of-domain data. Adversarial errors are
particularly concerning, as they result from carefully crafted
perturbations designed to mislead the model.

Accurately predicting these errors is critical to enhancing
the robustness and reliability of AI, especially in high-stakes
real-world applications such as healthcare (Habehh & Gohel,
2021), finance (Mashrur et al., 2020), and autonomous
driving (Huang et al., 2022). Proactively identifying
potential errors enables more efficient corrections, reducing
costly mistakes and safeguarding against catastrophic
failures. By predicting when models are likely to err, we can
implement strategies that either mitigate or entirely avoid
the risks associated with those errors, ultimately leading to
more trustworthy AI deployments.

Understanding the specific types of errors AI
systems make, the reasons why they make these
errors, and most importantly, how to predict these
errors remains an unresolved challenge. Existing
literature on error monitoring systems for AI models
encompasses various approaches, including uncertainty
estimation (Nado et al., 2021; Lakshminarayanan et al.,
2017), anomaly detection (Bogdoll et al., 2022), outlier
detection (Boukerche et al., 2020), and out-of-domain
detection (Yang et al., 2024). While these methods are
crucial for assessing model reliability, they mainly focus
on determining whether a given data point falls outside
the scope of the model’s training. Thus, these approaches
misalign with our primary objective of predicting whether
AI models will make mistakes, as models can err on familiar
data while behaving correctly on out-of-scope samples.

Subsequent research in out-of-domain detection
has demonstrated that a model’s accuracy is often
correlated with how far the data deviates from in-domain
samples (Hendrycks & Dietterich, 2019; Shankar et al.,
2021; Li et al., 2017). These methods typically rely on
predefined metrics, such as model parameter distances (Yu
et al., 2022), model disagreements (Jiang et al., 2022;
Madani et al., 2004) and confidence scores (Guillory et al.,
2021), which limits their ability to generalize predictions
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Figure 1. AI models make mistakes and an “oracle” mentor model predicts when they will happen. A “mentee” neural network
(black) was trained for multi-class image recognition, but it can still misclassify in-domain, out-of-domain, and adversarial images. For
instance, it might mislabel an in-domain dog image as a cat. The mentor model (blue), inputting the same images as the mentee, predicts
whether the mentee will make a mistake. For example, if the mentee incorrectly labels an adversarial dog image, the mentor’s ground truth
label is “wrong”; conversely, if the mentee correctly labels an out-of-domain dog image, the mentor’s label is “correct”. The mentee’s
parameters are frozen (snowflake), while the mentor’s are trainable (fire). During inference (orange), the mentor predicts whether the
mentee will make an error on test images that have never been seen by both the mentee and the mentor.

across various data types, including errors arising from
in-domain data or adversarial attacks (Szegedy et al., 2014).
In parallel, earlier efforts in trustworthiness prediction
mostly depend on shallow neural networks (Corbière
et al., 2019; Qiu & Miikkulainen, 2022; Jiang et al., 2018)
or carefully-designed loss functions (Luo et al., 2021).
However, they do not investigate how different error types
influence trustworthiness prediction.

Another line of research improves the robustness of the
AI models with adversarial training approaches (Ilyas
et al., 2019; Gowal et al., 2020; Balunović & Vechev,
2020); however, these approaches primarily focus on
improving the model’s overall performance rather than
predicting when errors may occur in the models. Moreover,
unlike selective prediction (Geifman & El-Yaniv, 2017),
rejection learning (Cortes et al., 2016), and learning
to defer (Madras et al., 2018), which jointly train the
selection/rejection function with the mentee, our method
trains the mentor and mentee independently. This separation
is especially beneficial when mentee training is time- and
resource-intensive or when its training data is inaccessible.

Different from all these works, we delve into the underlying
principles of errors generated by AI models in the task of
image classification with another AI model. Specifically, we
designate the AI model that predicts errors as the mentor
and the AI model being evaluated for performance as the
mentee. The mentor strives to predict whether the mentee
makes a mistake for any given data. See Fig. 1 for the
illustration of the problem setup. Training the mentor
on the error patterns made by the mentee can potentially
reveal the strengths and weaknesses of the mentee’s learned
representations across various visual contexts.

Our main contributions are highlighted below:

1. We conduct an in-depth analysis of how training mentors

on each of three distinct error types specified by the
mentees—In-Domain (ID) Errors, Out-of-Domain (OOD)
Errors, and Adversarial Attack (AA) Errors—affect the
performance of error predictions over three increasingly
complex image datasets CIFAR-10 (Krizhevsky et al.,
2009), CIFAR-100 (Krizhevsky et al., 2009) and
ImageNet-1K (Deng et al., 2009). Our results reveal that
training mentors with adversarial attack errors from the
mentee has the most significant impact on improving the
mentor’s error prediction accuracy.

2. We investigate how various mentor model architectures
affect error prediction performance. Our experiments
demonstrate that transformer-based mentor models
outperform other architectures in predicting errors.

3. We explore how varying levels of distortion in OOD and
adversarial images affect the accuracy of error predictions.
The findings indicate that training mentors on images with
small perturbations can improve error prediction accuracy.
In addition, we show that a mentor trained to learn error
patterns from one mentee can successfully generalize its
error predictions to another mentee.

4. Based on our findings from points 1 to 3, we present the
SuperMentor model, which predicts errors across diverse
mentee architectures and error types. Experimental results
show that SuperMentor outperforms baseline mentors,
demonstrating its superior error-predictive capabilities.

2. Related work
Error monitoring systems for AI models. With the
growing deployment of AI models across diverse fields,
ensuring their reliability and understanding their limitations
has become increasingly crucial. This has led to
numerous research in safe AI such as uncertainty
estimation (Nado et al., 2021; Lakshminarayanan et al.,
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Figure 2. Overview of a mentor model. Given a fixed mentee
model (snowflake), the mentor model takes an input image and
uses a pre-trained backbone on ImageNet-1K (Deng et al., 2009)
to extract features. The feature maps are then processed in two
streams via multi-layer perceptrons (MLP)s. The output logits zR
from one stream are compared with the mentee’s output logits zE
using a distillation loss Ld. The other stream performs a binary
prediction of whether the mentee makes a mistake or not. The
prediction is supervised by a logistic regression loss Lr . The
parameters of MLPs in the two streams are not shared.

2017), anomaly detection (Bogdoll et al., 2022), outlier
detection (Boukerche et al., 2020) and out-of-domain
detection (Yang et al., 2024). Unlike these areas, which
mainly aim to predict whether the input data falls outside the
training domain, our focus is on monitoring and predicting
errors in AI models by determining whether the model’s
output is correct, irrespective of whether the data comes
from the training domain. To detect whether the input
data is out of scope, the prior approaches mainly rely
on softmax outputs (Granese et al., 2021; Hendrycks &
Gimpel, 2017; DANG et al.), activations from network
layers (Wang et al., 2020; Cheng et al., 2019; Ferreira
et al., 2023), shallow neural networks (Corbière et al.,
2019; Qiu & Miikkulainen, 2022; Jiang et al., 2018), and
carefully-designed loss functions (Luo et al., 2021) in
applications such as object detection (Kang et al., 2018) and
trajectory prediction (Shao et al., 2023; 2024). However,
these methods often rely on manually defined metrics
to estimate the likelihood of a mentee making mistakes,
or they fail to examine how different error types affect
error prediction. In contrast, our strategy employs a
separate deep neural network to automatically learn and
approximate the mentee’s decision boundaries for specific
error types, providing an end-to-end trainable framework
for error prediction. Moreover, our research direction differs
from selective prediction (Geifman & El-Yaniv, 2017),
rejection learning (Cortes et al., 2016), and learning to
defer (Madras et al., 2018) by avoiding joint training with
the mentee and requiring no knowledge of the mentee’s
training data. Besides, although rejecting a mentee’s
unreliable predictions and predicting the correctness of a
mentee’s outputs are often positively correlated, they remain
distinct tasks.

Out-of-domain detection. Our research on predicting
mentee errors is closely related to out-of-domain detection

in error monitoring systems, though it differs in several
key aspects. As highlighted by (Guérin et al., 2023), error
prediction is distinct from OOD detection (Liu et al., 2020a;
Sun et al., 2021; Lee et al., 2018; Sun et al., 2022) in their
objectives. While OOD detection aims to detect whether the
given data comes from the same domain as the training set,
the aim of error prediction is to learn whether the mentee
will make a mistake on the given data. In other words,
out-of-domain data may not necessarily cause the model to
err, and model errors can also occur on in-domain data.

Recent studies (Hendrycks & Dietterich, 2019; Shankar
et al., 2021; Li et al., 2017) have shown that a model’s
accuracy on a given dataset is often correlated with
how far the data deviates from in-domain samples.
However, these studies typically rely on pre-defined
metrics, such as model parameter distances (Yu et al.,
2022), model disagreements (Jiang et al., 2022; Madani
et al., 2004), confidence scores (Guillory et al., 2021),
domain-invariant representations (Chuang et al., 2020), and
domain augmentation (Deng et al., 2021a), limiting their
ability to generalize error prediction beyond in-domain
data. In contrast, our mentor is capable of predicting both
OOD and in-domain errors for a mentee. Additionally, our
mentor is an AI model trained end-to-end without relying
on manually defined criteria.

Adversarial attack and defense. In addition to OOD
error, (Szegedy et al., 2014) discovered that deep neural
networks can be fooled using input perturbations of
extremely low magnitude. Building upon this finding,
a substantial number of adversarial attacks have been
proposed, including white-box attacks (Goodfellow et al.,
2015; Mądry et al., 2017; Carlini & Wagner, 2017; Schwinn
et al., 2023; Gao et al., 2020), black-box attacks (Uesato
et al., 2018; Rahmati et al., 2020; Brendel et al., 2021;
Chen et al., 2020), and backdoor attacks (Liu et al., 2020b;
Xie et al., 2019; Kolouri et al., 2020). To defend against
these adversarial attacks, various defence mechanisms (Qin
et al., 2020; Deng et al., 2021b; Liu et al., 2019) have
been developed to withstand or detect adversarial inputs.
Furthermore, although the primary objective of adversarial
attacks is to deceive AI models, there are instances where
adversarial perturbations are exploited to enhance the
model performance — a technique known as adversarial
training (Ilyas et al., 2019; Gowal et al., 2020; Balunović &
Vechev, 2020). Unlike adversarial training, which involves
using adversarial samples to train the mentee, our approach
focuses on teaching mentors to learn the mentee’s error
patterns revealed by these adversarial attack samples.

3. Experimental setups
We denote the mentor and mentee networks as fR(·) and
fE(·) respectively. We also define X as the domain-specific
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set containing all the test images for a mentee, and Y as
their ground-truth object class labels. Therefore, a mentor is
expected to make perfect predictions about the correctness
of the mentee’s responses (1 for “correct” and 0 for “wrong”)
given any image x from X :

∀x ∈ X , fR(x) =

{
1 if fE(x) = y,

0 otherwise.
(1)

where y ∈ Y is the ground-truth object class label of the
corresponding image x.

3.1. Mentors

Model architecture: We propose mentor models, as
illustrated in Fig. 2. Given an input image, the backbone of
a mentor model extracts features from the input image. We
adopt either of the two backbones for the feature extractors
of mentors: a 2D Convolutional Neural Network (2D-CNN)
ResNet50 (He et al., 2016) and a transformer-based
ViT (Dosovitskiy et al., 2020). The extracted feature
maps are further processed in two streams implemented
as multi-layer perceptrons (MLP)s. The parameters of the
MLPs in the two streams are not shared.

The first stream generates logits zR by predicting the
probability distribution of a mentee over all the object
classes when the mentee classifies the given image. The
mentee network is kept fixed while training the mentor. Let
us define the mentee’s output logit as zE . We introduce
the distillation loss proposed by (Hinton et al., 2015):
Ld = T 2 ·KL(σ( zET )||σ( zRT )) to align zR with zE , where
KL(·||·) represents Kullback-Leibler divergence. σ(·) is
the softmax function. T = 1.0 is the temperature, which
controls the smoothness of the soft probability distribution.

In the second stream, the mentor is prompted to predict
whether the mentee will make a mistake on the given
image or not. We denote the predicted binary label as
cR, where 1 indicates that the mentee does not make a
mistake and vice versa for 0. This prediction is supervised
by Lr = − [cE log(zp) + (1− cE) log(1− zp)], where
cE is the ground truth correctness label of a mentee and
zp represents the mentor’s predicted probability that the
mentee’s prediction is correct. The overall loss is L =
αLr + (1− α)Ld, where α =

(
n
N

)q
controls the dynamic

weighting between Ld and Lr over training epochs. Here, n
denotes the current training epoch, N is the total number of
training epochs, and q governs the rate at which α evolves
throughout training.

Training and implementation details: All mentors are
trained on NVIDIA RTX A6000 GPUs, utilizing the
AdamW optimizer (Loshchilov & Hutter, 2019) with a
cosine annealing scheduler (Loshchilov & Hutter, 2022).
The initial learning rate is set to 1 × 10−4 for ResNet50

mentors and 3 × 10−5 for ViT mentors. All mentors
load the weights of the feature extractor pre-trained on the
ImageNet-1K dataset for 1000-way image classification
tasks (Deng et al., 2009) and further fine-tune on the error
prediction task. During training, images are resized and
center-cropped to 224× 224 pixels. All mentors are trained
for 30 epochs with a batch size of 32 on the CIFAR-10 and
CIFAR-100 and 384 on the ImageNet-1K. The value of q in
the loss function is chosen for mentors to approach optimal
performance. Specifically, q is set to 1.0 for the mentors on
CIFAR-10, 2.0 for those on CIFAR-100, 3.0 for ResNet50
mentors on ImageNet-1K (Deng et al., 2009), and 0.1 for
ViT mentors on ImageNet-1K.

3.2. Mentees and their datasets

We employ two architectures as the mentees’ backbones:
ResNet50 (He et al., 2016), which is a 2D-Convolutional
neural network (2D-CNN), and ViT (Dosovitskiy et al.,
2020), which is a transformer based on self-attention
mechanisms.

To train and test our mentees, we include three image
datasets of varying sizes and follow their standard data
splits: CIFAR-10 (C10, (Krizhevsky et al., 2009)) with
10 object classes, CIFAR-100 with 100 object classes
(C100, (Krizhevsky et al., 2009)) and ImageNet-1K with
1000 object classes (IN, (Deng et al., 2009)). The multi-class
recognition accuracy on the standard test sets of C10,
C100 and IN datasets are 96.98%, 84.54%, 76.13% for
the ResNet50 mentee and 97.45%, 86.51%, 81.07% for the
ViT mentee respectively. The parameters of the mentees are
frozen in all the experiments conducted on mentors.

3.3. Datasets for training and testing mentors

The mentor’s objective is to predict whether the mentee
will misclassify a given image, regardless of its source.
The mentor is trained on correctly and wrongly classified
images by a mentee. Next, we introduce how these
images are curated and collected. A mentee may encounter
various types of errors when dealing with real-world data.
To explore which error types most effectively reveal the
mentee’s learning patterns, we categorize errors into three
types: (1) errors from in-domain images, (2) errors from
out-of-domain images, and (3) errors from adversarial
images generated by adversarial attacks. Next, we introduce
these three error types in detail.

In-Domain (ID) Errors occur on data that come from the
same domain as the mentee’s training dataset. Specifically,
errors on images from the standard validation set of IN or the
test sets of C10 and C100 are considered ID errors. Along
with the correctly classified images from these standard
test sets, we create three datasets for a mentor: IN-ID,
C10-ID, and C100-ID, following the naming convention of
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(a) (b) (c)
Figure 3. Mentors trained on adversarial images of a mentee outperform mentors trained on OOD and ID images of the same
mentee. Average accuracy of a mentor trained on one type of error of a mentee for (a) C10, (b) C100 and (c) IN datasets is presented.
Three types of errors made by a mentee are categorized based on in-domain (ID, blue), out-of-domain (OOD, orange), and images
generated by adversarial attacks (AA, green). In each subplot, the labels on the x-axis are interpreted as [mentee]-[mentor], where “V”
and “R” represent ViT and ResNet50 architectures for a mentee or a mentor respectively. Error bars indicate the standard deviation. The
dotted black line indicates the chance level. See Sec. 3.3 and Sec. 3.4 for error types and the evaluation metric. The four sets of bars in
each subfigure correspond to the confusion matrices shown in subfigures (a), (b), (c), and (d) of Appendix, Fig. S4- S6.

[Dataset]-[Error Type].

Out-of-domain (OOD) Errors refer to errors that arise
when the mentee encounters data outside the training
domain. To obtain OOD samples of a dataset, we adopt four
types of image corruptions from (Hendrycks & Dietterich,
2019): speckle noise (SpN) (noise category), Gaussian
blur (GaB) (blur category), spatter (Spat) (weather
category), and saturate (Sat) (digital category). The noise
levels can vary and we select level 1 for image corruptions as
specified in (Hendrycks & Dietterich, 2019) by default. As
noise levels increase, distortions on OOD images become
more pronounced, causing the mentee to make more errors.

Following the naming conventions of [Dataset]-[Error
Type]-[Error Source], we collect correctly and wrongly
classified OOD samples based on C10 images of a mentee
and curate four datasets for a mentor: C10-OOD-SpN,
C10-OOD-GaB, C10-OOD-Spat and C10-OOD-Sat.
Without the loss of generality, we can also curate four
datasets each for a mentor based on C100 and IN images of
a mentee.

Adversarial Attack (AA) Errors. Errors from adversarial
images are specifically generated by adversarial attack
methods to mislead or confuse the mentee. Given our
assumption that the mentor has full access to the student
model’s parameters, we focus exclusively on white-box
adversarial attacks as they typically produce more subtle
yet effective perturbations compared to their black-box
counterparts. To generate adversarial images, we employ
four untargeted adversarial attack methods: PGD (Mądry
et al., 2017) creates adversarial examples by repeatedly
taking steps along the loss gradient; CW (Carlini & Wagner,
2017) attempts to minimize the L2 norm of the perturbation
while ensuring misclassification. Jitter (Schwinn et al.,
2023) adds Gaussian noise to the output logits to encourage
a diverse set of target classes for the attack. PIFGSM (Gao

et al., 2020) crafts patch-wise noise instead of pixel-wise
noise. We set c = 1.0 in the CW attack, and perturbation
bound ϵ = 1

255 for other attacks by default. See their papers
for these hyper-parameter definitions. Intuitively, the attacks
are stronger with higher hyper-parameter values; hence, the
mentees make more mistakes.

Note that adversarial attacks are not always successful, and
mentees can still correctly classify some adversarial images.
We collect both the correctly and incorrectly classified
adversarial images by a mentee based on C10 images,
curating four datasets for the mentor: C10-AA-PGD,
C10-AA-CW, C10-AA-Jitter, C10-AA-PIFGSM.
Similarly, we can also curate four datasets each for a mentor
based on C100 and IN images of a mentee.

Training and test splits for mentors. Given the three
types of errors described above, we partition the data for
mentors into training and testing sets using a 70/30 split. For
example, 70% of the original C10 evaluation images, along
with their corresponding error-modified versions based
on mentee performance, are used for training, while the
remaining 30% are reserved for testing. This ensures that
mentor models are trained and evaluated on samples derived
from the same set of original images, without any overlap in
the original image content, but with distinct domain shifts.
The same strategy is consistently applied to the C100 and
IN datasets. To mitigate the effects of long-tailed class
distributions, each training batch includes an equal number
of correctly and incorrectly classified samples.

3.4. Baselines and evaluation metric

Baselines. We include seven baseline methods for
error prediction of a mentee. 1) Self Error Rate
(SER) predicts the correctness of the mentee’s outputs
by randomly assigning “correct” or “wrong” based on
the mentee’s in-domain accuracy; 2) Maximum Class
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Probability (MCP) (Hendrycks & Gimpel, 2017) classify
the mentee’s predictions as correct if its MCP exceeds a
predefined threshold. 3) Class Probability Entropy (CPE)
evaluates a mentee’s prediction as correct if its entropy
of the probability distribution over all classes is below a
predefined threshold. 4) Distance To Centroid (DTC)
considers a prediction correct if its feature embedding
is within a predefined distance from the class centroid.
5) ConfidNet (Corbière et al., 2019) predicts failure by
learning True Class Probability (TCP) on the training
samples. 6) TrustScore (Jiang et al., 2018) employs Trust
Score to quantify the agreement between the classifier and
a modified nearest-neighbor classifier.7) Steep Slope Loss
(SSL) (Luo et al., 2021) develops a neural network for
predicting trustworthiness by utilizing a steep slope loss
function. See Appendix, Sec. A for more details.

Evaluation metric. To assess the performance of mentors,
we report their error prediction accuracy on the test set
corresponding to each specified error source. For instance,
a mentor trained on the C10-ID training set is evaluated on
the C10-OOD-SpN test set. The error prediction accuracy
is calculated by averaging the mentor’s accuracies on the
samples that the mentee correctly classified and those that
the mentee incorrectly classified. However, since a mentee
can make mistakes across various real-world scenarios, a
mentor must accurately predict errors across all error types.
Therefore, we compute the average accuracy, named as
Accuracy (%) of a mentor across all test sets, including
one ID error, four OOD errors, and four AA errors. See
Appendix, Sec. B for an example calculation of the average
accuracy of a mentor.

4. Results
4.1. Training on specific errors of mentees impacts the

performance of mentors

A mentee’s mistakes can reveal their learning biases,
behaviors, or traits. Here, we investigate which types
of errors offer the most insight into understanding a
mentee’s decision boundaries during image recognition
tasks. We train mentors with identical architectures on
datasets containing specific error types made by the mentee
across C10 (Fig. 3(a)), C100 (Fig. 3(b)), and IN (Fig. 3(c)).
For instance, if a mentor trained on C10-OOD achieves
higher accuracy in error prediction compared to one trained
on C10-ID, this suggests that in-domain errors provide less
diagnostic information about the mentee’s decision-making
process than out-of-domain errors. Both mentors and
mentees may have the same or different backbones, such as
ResNet50 (R) or ViT (V).

As shown in Fig. 3, over C10, C100, and IN images, the
high average accuracies for mentors trained on adversarial
attack (AA) errors indicates that these AA errors offer

deeper insights into the mentee’s decision process compared
to out-of-domain (OOD) and in-domain (ID) errors. To
validate this, we first conducted an ANOVA test on the three
groups of results (ID, OOD, and AA) for each of the three
datasets (C10, C100, and IN). In all cases, the p-values are
below 0.05, indicating a statistically significant difference
in error prediction performance among mentors trained
on different error types. Next, we performed two-tailed
t-tests to compare AA-trained mentors against ID-trained
and OOD-trained mentors across four [mentee]-[mentor]
configurations: R–R, V–R, R–V, and V–V. All pairwise
p-values are below 0.05, confirming that AA-trained
mentors significantly outperform those trained on ID or
OOD error types. In addition, it is worth noting that, in some
cases, mentors trained on OOD errors slightly outperformed
those trained on ID errors, although both still performed
worse than those trained on AA errors. Interestingly, our
experiments reveal that training mentors exclusively on AA
errors performs marginally worse than joint training on
all three error types (see Appendix, Sec. C). This result
underscores a significant overlap of mentee error patterns
among ID, OOD, and AA data.

Loss landscape analysis. A loss landscape of a mentee
reflects how a mentee’s loss function behaves across
different parameter configurations. Mentors’ performance
offers insights into the structure of a mentee’s loss landscape.
Consistent with (Ilyas et al., 2019), the high accuracy of
mentors trained on AA errors suggests that adversarial
images lie closer to the mentee’s decision boundary,
enabling more accurate prediction of the mentee’s mistakes
and a deeper understanding of the loss landscape. Similarly,
OOD data aids mentors in learning boundaries by shifting
ID samples closer to the boundary. However, it does
not explore the boundary as thoroughly as adversarial
images. ID data, with fewer samples near the boundary,
provides more limited exploration compared to adversarial
images. To support our claims, we include quantitative
loss landscape analyses in Appendix, Sec. D. The results
show that mentors trained on AA errors exhibit a wider loss
landscape compared to those trained on ID or OOD errors.

4.2. Mentor architectures matter in error predictions

To computationally model the decision boundary of a
mentee using a mentor, the mentor requires more complex
architectures with a larger number of parameters than the
mentee. Indeed, from Fig. 3, over all the datasets, we
observed that utilizing ViT (V) as the mentor backbone
consistently achieves higher accuracy across all error
types of ViT-based and ResNet-based mentees compared
to the mentor based on ResNet50 (R). One example of
this performance disparity is observed in the context of
the adversarial attack error type on C10. The mentors
leveraging a ViT backbone achieves 73.1% accuracy in
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Figure 4. A mentor’s accuracy is heavily influenced by the
levels of image distortions introduced by out-of-domain
perturbations and adversarial attacks. ViT mentor’s accuracy is
a function of varying image distortion levels from PIFGSM (Gao
et al., 2020) and Speckle Noise (SpN) (Hendrycks & Dietterich,
2019) to the C10, C100 and IN images of a ResNet50-based
mentee. The black dashed line indicates the chance level.

Figure 5. Mentors can generalize their error predictions across
different mentee architectures. Mentors trained on mentee A’s
predictions (x-axis) are evaluated against the predictions from
mentee B (y-axis). Each marker is a generalization experiment
of a mentor trained on different error types (marker shapes) in
different image datasets (colours) of a mentee. The black dash line
indicates the diagonal.

predicting the correctness of ResNet50 mentee’s outputs,
which is significantly higher than the 61.9% accuracy of the
ResNet-based mentor (compare R-R versus R-V).

Loss landscape analysis. The performance difference
between mentors’ architectures is due to ViT’s superior
ability to identify features from error patterns. Its
self-attention mechanism captures complex relationships
among data samples, providing a deeper understanding
of the mentee’s loss landscape, particularly in modelling
irregular, rugged landscapes with sharp peaks and valleys.
To validate this point, we include loss landscape analyses in
Appendix, Sec. D. Results show that ViT mentors possess
a notably broader loss landscape than ResNet50 mentors.

4.3. Training on images with smaller perturbations
helps error predictions

Although adversarial images have been demonstrated to aid
in error prediction (Sec. 4.1), it remains unclear whether
adversarial images with varying degrees of image distortion
exhibit the same effect. A straightforward method to
regulate the level of image distortion caused by adversarial
attacks is to set the perturbation bound ϵ. We employ
four corruption levels by setting ϵ = 1

255 , 2
255 , 4

255 ,
and 8

255 . We use the adversarial attack PIFGSM as
an example since the error patterns from PIFGSM are
most effective for the mentor’s prediction (see Appendix,
Fig. S4- S6). As shown in Fig. 4, the mentor’s accuracy
significantly decreases as the distortion level increases. In
particular, for the C10-AA-PIFGSM, the accuracy at level
1 is 74.3%, which is notably higher than 49.7% at level
4. Our findings suggest that adversarial attacks employing

smaller perturbations yield more benefits for mentor error
prediction. This phenomenon can be attributed to the fact
that adversarial images with minimal perturbations maintain
closer proximity to the decision boundary of a mentee.

Building on the findings above, we investigate whether the
mentor’s performance is influenced by how far OOD images
are from the ID data. Specifically, we aim to determine
whether the degree of deviation from the training domain
impacts the mentor in a similar way to our observations
on adversarial images. To explore this, we analyze images
corrupted with Speckle Noise (SpN) and adjust the standard
deviation σ of SpN to 0.01, 0.06, 0.15, and 0.6, representing
four distinct levels of distortion. The outcomes are depicted
in Fig. 4. We observe that the mentor’s accuracy improves
as the distortion introduced by SpN decreases. For example,
the mentor achieves an accuracy of 66.2% on level 1 of
C10-OOD-SpN, while the accuracy drops significantly to
47.9% on level 4 of C100-OOD-SpN. This suggests that
OOD error types with smaller perturbations enhance the
mentor’s performance. However, unlike adversarial attacks,
caution is necessary because the mentor’s accuracy can
plateau with extremely small distortion levels, as shown by
the minimal difference in accuracy between levels 1 and 2
of SpN in Fig. 4.

4.4. Mentors generalize across mentees

In Sec. 4.1, mentors have demonstrated their ability to learn
the error patterns of mentees. This observation raises an
important question: can the error patterns learned from
one mentee (mentee A) be generalized to another mentee
(mentee B) when the two mentees employ different model
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(a) (b) (c)
Figure 6. Mentor analysis comprising: (a) performance comparison with baselines, (b) ablation of loss components, and (c)
EigenCAM (Gildenblat & contributors, 2021; Muhammad & Yeasin, 2020) visualizations. (a) compares the average accuracy of
baselines and our SuperMentor on various error sources and severity levels from the IN dataset. The ResNet50 is used as the mentee,
with mentors predicting its correctness. Results are reported as average accuracy with variance over 3 runs; best results are in bold. Full
baseline results across hyperparameter settings are in Appendix, Tab. S1. Comparison with a ViT mentee is provided in Appendix,
Tab. S2. (b) presents an ablation study where Ld is the distillation loss (see Sec. 3.1) and La is the alignment loss between mentor and
mentee predictions. The ResNet50-based mentors are evaluated on ViT mentees, with each cell showing mean accuracy and standard
deviation over 3 runs. Grey cells indicate our mentors’ performance. (c) shows EigenCAM visualizations of the SuperMentor and ViT
mentee on sample images from the brambling and baseball classes across IN-ID, IN-OOD-Spat, and IN-AA-PIFGSM datasets. For
each sample, rows display the input image (Input), mentee’s attention map (Mentee), and mentor’s attention map (Mentor), using the
first LayerNorm in the final transformer block as the visualization layer. Column headers indicate Ground Truth Label and Mentee’s
Prediction.

architectures? To explore this, we evaluate all 324 mentors
on the alternate mentee. Specifically, mentors trained on the
errors of the ResNet50 mentee are tested on the predictions
of the ViT mentee, and vice versa. The outcomes of these
evaluations are illustrated in Fig. 5. Surprisingly, most
points lie near the dashed diagonal line, implying that the
mentors’ performance does not significantly deteriorate
when evaluated on the predictions of different mentee
architectures. This finding indicates that ResNet50 and
ViT mentees tend to produce similar error patterns when
trained on the same dataset.

In addition, we evaluate the mentors’ generalization ability
on natural adversarial samples introduced in (Hendrycks
et al., 2021b), where each image is misclassified by multiple
mentees simultaneously. See details in Appendix, Sec. F.
Results show that, beyond natural adversarial examples, the
mentors also exhibit robust generalization on non-natural
adversarial examples.

4.5. Analysis on our SuperMentor reveals key insights

By drawing insights from observations in the subsections
above, we propose an “oracle” mentor model, dubbed
SuperMentor. We introduce the technical novelties of our
SuperMentor below. First, as demonstrated in Sec. 4.1
and Sec. 4.3, mentors trained on adversarial images with
small perturbations of a mentee outperform those trained
on OOD and ID images; thus, our SuperMentor adopts the
training data from the PIFGSM error source of mentees with
ϵ = 1

255 . Second, since ViT has been proven to be a more
effective architecture for mentors than ResNet50 (Sec. 4.2),
SuperMentor adopts ViT as the backbone architecture.

We demonstrate the effectiveness of SuperMentor by

comparing it with the baselines introduced in Sec. 3.4.
To conduct comprehensive evaluations, we extend image
perturbations from different error sources to multiple
severity levels. Specifically, we use corruption levels 1, 3,
and 5 for SpN, GaB, Spat, and Sat error sources as specified
in (Hendrycks & Dietterich, 2019); set ϵ to 1

255 , 4
255 , and

8
255 for PIFGSM, Jitter, and PGD error sources; and vary the
learning rate as 0.01, 0.1, and 1.0 for the CW error source.

As shown in Fig. 6(a), our SuperMentor can achieve
higher average accuracies across all severity levels and
error types than baselines. Notably, as indicated in
Appendix, Tab. S1, in the AA scenarios, SuperMentor
has significantly higher accuracy than the baselines. For
example, SuperMentor achieves an error prediction accuracy
of 73.1% on IN-AA-PGD of the ResNet50 mentee, whereas
the best baseline only reaches 64.7%. Baseline methods
like SER, MCP, CPE, and DTC rely on fixed thresholds or
predetermined values of manually defined criteria such as
confidence or entropy, making them less adaptable to AA
scenarios. In contrast, SuperMentor leverages deep neural
networks to capture the complexity of error prediction.
Additionally, methods like ConfidNet, TrustScore, and SSL
are trained on ID error types. As shown in Fig. 6(a), these
baselines are inferior to SuperMentor, which is trained
exclusively on AA data. This suggests that the source of
error data used to train the mentor plays a more critical
role than the choice of loss functions or the sophisticated
training strategies in these baselines. Moreover, we provide
the visualization of SuperMentor’s embeddings based on the
correctness of a mentee’s prediction across three error types
(Appendix, Sec. G). Two distinct clusters are observed
between samples wrongly or correctly classified by the
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mentee. This suggests that our SuperMentor is capable
of accurately predicting the errors of a mentee regardless of
the error sources.

Next, we examine the effect of the distillation loss Ld

(Fig. 2) on the mentors’ performance. The results are
presented in Fig. 6(b). It is clear that excluding Ld results
in a decrease in mentors’ accuracy across all datasets.
For example, in the C10 dataset, the average accuracy of
mentors decreases from 64.9% to 59.3%. This suggests
that Ld encourages mentors to learn the fine-grained
decision boundaries among different object classes of a
mentee. Alternatively, instead of utilizing the mentee’s
logits, mentors can incorporate a cross-entropy loss to align
the mentor’s predicted object class labels with those of the
mentee, denoted as La. From Fig. 6(b), we observe that
replacing Ld with La leads to a drop in accuracy. This is due
to the fact that the mentee’s logits contain more information
than its class labels.

Finally, we provide EigenCAM (Gildenblat & contributors,
2021; Muhammad & Yeasin, 2020) visualization in Fig. 6(c)
to illustrate the following two points: 1) The vulnerabilities
of the mentee do not overlap with those of the mentors. As
illustrated in Fig. 6(c), the mentor does not merely replicate
the mentee’s learning patterns, as their activation maps for
identical input images can differ significantly. For example,
in the brambling images shown in Fig. 6(c), the activation
maps of the mentor and mentee diverge greatly when the
input image is ID or subjected to AA using PIFGSM method.
In the IN-AA-PIFGSM image, the mentee demonstrates
vulnerability under adversarial attacks, whereas our
SuperMentor does not exhibit such vulnerabilities on this
AA image, consistently focusing on the brambling object.
This indicates the vulnerabilities of mentors and mentees
are distinct due to their non-overlapping objectives. 2) Our
AI mentor can serve as a valuable diagnostic tool for AI
mentees. As supported by the baseball images in Fig. 6(c),
although the mentee correctly classifies the ID image, its
activation map does not concentrate on the baseball but
instead highlights background cues (spurious features).
When the input image is subjected to IN-AA-PIFGSM
attacks, the mentee fails to make accurate predictions. In
contrast, our SuperMentor effectively focuses on the stitches
of the baseball regardless of whether the image is corrupted
or adversarially attacked. This suggests that the mentor can
identify vulnerabilities in the mentee, even though they both
share the ViT architecture.

5. Discussion and Conclusion
In our work, we tackle the challenge of predicting errors
of AI models through extensive empirical evaluations
using an end-to-end trainable “mentor” model. This
mentor is designed to assess the correctness of a

mentee’s predictions across three distinct error types:
in-domain errors, out-of-domain errors, and adversarial
attack errors. Our results show that the mentor excels
at learning from a mentee’s errors on adversarial images
with minimal perturbations and, surprisingly, generalizes
well to both in-domain and out-of-domain predictions
of the same mentee. Additionally, we highlight the
effectiveness of transformer-based mentor architectures
compared to 2D-CNN-based ones, demonstrating their
superior generalization capabilities across mentees with
diverse backbones. Lastly, we introduce the SuperMentor,
which outperforms all existing mentor baselines.

Despite the promising results, our framework may raise
concerns regarding the vulnerabilities of AI mentors.
Indeed, vulnerability is a well-known challenge for all deep
neural networks (DNNs), yet this has not hindered their
transformative applications in the real world. For example,
DNNs are used to detect diabetic retinopathy (Jumper
et al., 2021; Alyoubi et al., 2020), outperforming traditional
diagnostic methods. Similarly, our work uses one AI to
diagnose the other AI, which is a valid and impactful use
case. To demonstrate its real-world utility, we extended
our experiments to a medical image classification task
for colorectal cancer diagnosis (Appendix, Sec. H). Our
mentor achieves high error prediction accuracy compared
to all competitive baselines, showcasing its practical uses in
high-stake applications. More importantly, beyond the OOD
domains evaluated in Sec. 4.5, results in Appendix, Sec. I
show that our SuperMentor remains robust to mentee error
patterns across an extra set of five unseen OOD domains.
Moreover, the vulnerabilities of the mentor AI do not
overlap with those of the mentees since mentors operate
independently of the mentee’s architecture or training
details, reducing the risk of shared weaknesses (see Sec.4.5).

Our work paves the way for several promising research
directions in safe and trustworthy AI. First, while our current
research focuses on image classification, there is potential to
extend this approach to other vision and language tasks, such
as object detection and machine translation. Second, future
research could explore mutual learning between mentors and
mentees, where mentors not only learn from the mentee’s
error patterns but also provide valuable feedback to help
refine the mentee. Third, we can establish more rigorous
evaluation criteria for mentors, broadening their predictive
capabilities. For example, beyond predicting whether a
mentee is likely to make errors, mentors could also forecast
the specific types of errors a mentee may encounter. Fourth,
drawing parallels with AI mentors for AI mentees, we can
explore the possibility of using AI mentors to investigate
recognition errors in humans and primates. Such studies
could provide insights into error pattern alignment between
biological and artificial intelligent systems.
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A. Details of baselines
For performance comparison, we adopt seven baselines, as introduced in Sec. 3.4. Their details are outlined below.

Self Error Rate (SER): We predict the correctness of the mentee’s outputs by referencing its accuracy on in-domain
samples. For instance, if the mentee’s in-domain accuracy is 70%, we use a random binary generator that produces 1
(“correct”) with 70% probability and 0 (“wrong”) with 30% probability, applying this to all testing scenarios.

Maximum Class Probability (MCP) (Hendrycks & Gimpel, 2017): As mentioned in Sec. 3.1, the mentee’s output logit is
denoted as zE . The maximum class probability of the mentee’s output is defined as MCP (zE) = maxσ(zE)) where σ(·)
is the softmax function. The MCP indicates how confident the mentee is in its most probable prediction. We set a threshold
γ to distinguish between the mentee’s confident and unconfident predictions. Specifically, if MCP (zE) > γ, the mentee’s
prediction will be considered a correct prediction due to its high confidence; otherwise, it will be regarded as an incorrect
prediction. We employ three predefined thresholds for γ: 0.5, 0.7, and 0.9.

Class Probability Entropy (CPE): The class probability entropy of the mentee’s output is defined as CPE(zE) =
H(σ(zE)), where σ(·) denotes the softmax function and H(·) represents the entropy measure quantifying the uncertainty
in the probability distribution. A high entropy value signifies a high level of uncertainty in the mentee’s predictions. The
entropy reaches its maximum value, MaxCPE(zE), when the mentee’s class probabilities in σ(zE) are equal. We define
the uncertainty threshold as α · MaxCPE(zE), where α ∈ [0, 1]. If CPE(zE) < α · MaxCPE(zE), the mentee’s
prediction is considered correct, indicating sufficient certainty in its prediction. Otherwise, the prediction is regarded as
incorrect. We set three predefined values for α: 0.01, 0.1 and 0.3.

Distance to centroid (DTC): The embedding generated by the mentee before the final binary classification layer represents
the mentee’s feature interpretation of each sample. To determine the feature centroid for each class, we first average the
features of all testing samples within that class based on the mentee’s predictions. Next, we calculate the L2 distance
between each sample’s feature and its corresponding class centroid, denoted as ds. We establish a distance threshold d;
if ds < d, the mentee’s prediction is considered correct since the sample is close to the class centroid. Otherwise, the
prediction is deemed incorrect. We have set three predefined values for d: 10, 20, and 30.

ConfidNet (Corbière et al., 2019): A shallow failure prediction neural network that learns True Class Probability (TCP)
from the training set instead of relying on Maximum Class Probability (MCP).

TrustScore (Jiang et al., 2018): It introduces a new score called trust score by measuring the agreement between the
classifier and a modified nearest-neighbor classifier on the testing samples for error prediction.

Steep Slope Loss (SSL) (Luo et al., 2021): Training an AI model for trustworthiness prediction by leveraging a
carefully-designed steep slope loss function.

B. Example of calculating a mentor’s average accuracy using the proposed evaluation metric
As an example of computing the accuracy of a mentor evaluated using the metric presented in Sec. 3.4, we consider a mentor
trained on C10-AA-PIFGSM and evaluate it on all the following datasets with their accuracies of 10% on C10-ID, 20% on
C10-OOD-SpN, 30% on C10-OOD-GaB, 40% on C10-OOD-Spat, 50% on C10-OOD-Sat, 60% on C10-AA-Jitter, 70% on
C10-AA-PGD, 80% on C10-AA-CW, and 90% on C10-AA-PIFGSM testing samples, the average accuracy of this mentor
is calculated as (10% + 20% + 30% + 40% + 50% + 60% + 70% + 80% + 90%) / 9 = 50%. For simplicity, we refer to
this average accuracy across all nine error sources as Accuracy. A mentor randomly guessing whether a mentee’s image
classification is correct or incorrect for a given image would achieve an accuracy of 50%.

C. Joint training
As mentioned in Sec. 4.1, we add an experiment by training a Vision Transformer (ViT)-based mentor model on the
correctness of a mixture of ID, OOD, and AA data for the ResNet-based mentee model from the C10 dataset. The OOD
data was corrupted with speckle noise (SpN), and the AA data was generated using PIFGSM. Compared to training the
mentor solely on PIFGSM data which achieved an average accuracy of 74.3%, including ID and SpN data improved the
average accuracy slightly to 77.5%. However, this joint training setup involves 21,000 samples—three times more than the
7,000 used for PIFGSM-only training. The marginal improvement observed in joint training may be attributed to the larger
training sample size. This suggests that the quantity of samples is not the key factor in enhancing a mentor’s error prediction
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Figure S1. Loss landscape analysis of mentors trained on three
error types: in-domain (ID, blue), out-of-domain (OOD,
orange), and adversarial attack images (AA, green) from the
C100 dataset. The average accuracies of mentors evaluated across
various error sources under different weight perturbations are
reported. The ResNet50 model serves as the mentee, and the
ViT model is adopted as the mentor architecture.

Figure S2. Loss landscape analysis of mentors with different
backbones. Mentors can be built with two different backbones:
ViT (V, solid line) and ResNet50 (R, dotted line). We
evaluate mentors trained on three error sources: C100-ID (blue),
C100-OOD-GaB (green), and C100-AA-PGD (red). The legend
follows the format [mentor backbone] ([training error source]).
The average accuracies of mentors evaluated across various error
sources under different weight perturbations are reported. The
ResNet50 model serves as the mentee.

performance. Training mentors on samples that accurately capture the error patterns of mentees is crucial.

In addition, we introduce another mentor that is jointly trained on all error sources (ID, OOD, and AA, a total of 9 error
sources) from the C10 dataset, achieving an average evaluation accuracy of 78.4%. In this scenario, all testing samples for
the mentor are in distribution because the mentor has seen samples from every error source during training. Despite this, the
improvement compared to a mentor trained solely on the PIFGSM error source (78.4% vs. 74.3%) is marginal. Consequently,
this finding further indicates: (1) Training mentors exclusively on the AA error source offers a more data-efficient strategy for
real-world applications. (2) Remarkably, a mentor trained solely on AA generalizes well to unseen error sources, achieving
performance comparable to the upper bound obtained by jointly training on all error sources.

D. Loss landscape analysis
We conducted two quantitative loss landscape analyses using the method from (Li et al., 2018) to support the claims in
Sec. 4.1 and Sec. 4.2. In these analyses, we apply small perturbations to the mentor’s weights and observe the resulting
changes in the mentors’ average accuracy.

As shown in Appendix, Fig. S1, we examine mentors trained on three different error types: ID, OOD, and AA from the
C100 dataset. The results indicate that mentors trained on AA errors exhibit a wider loss landscape than those trained on ID
or OOD errors. This suggests that mentors trained with adversarial images capture the generic features for predicting the
mentee’s decision-making. This finding strongly supports our loss landscape analysis discussed in Sec. 4.1.

The second loss landscape analysis in Appendix, Fig. S2 examines the mentor’s error prediction performance using two
different backbones: ResNet50 and ViT. The figure shows that mentors with ViT architectures have a considerably wider
loss landscape compared to those with ResNet50. This further reinforces our claims in Sec. 4.2 that transformer-based
mentor models outperform their ResNet-based counterparts in error prediction.
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E. More comparisons between SuperMentor and baselines
As noted in the caption of Fig. 6(a), baseline performances across multiple hyperparameter configurations are indicated in
Appendix, Tab. S1. In addition, when ViT serves as the mentee, the SuperMentor’s performance is shown in Appendix,
Tab. S2. It can be seen that our SuperMentor can still achieve the best performance when the mentee has a backbone of ViT.
This emphasizes the importance of the error source used during training.

Table S1. Performance comparison of baselines (multiple hyperparameter configurations) and our SuperMentor on various error
sources from the IN dataset. The ResNet50 model serves as the mentee, with its correctness of predictions evaluated by mentors. Best
results are in bold.

ID SpN GaB Spat Sat PGD CW Jitter PIFGSM Average
SER 50.3 49.9 50.1 50.2 50.2 50.1 50.1 50.1 50.3 50.1

MCP (γ = 0.5) 69.4 73.0 71.7 71.2 72.6 51.7 67.5 52.5 53.6 64.4
MCP (γ = 0.7) 77.5 71.6 70.7 73.9 76.5 50.3 70.0 50.4 53.6 65.1
MCP (γ = 0.9) 78.7 66.2 65.4 70.4 73.7 45.7 67.1 47.8 51.9 61.7
CPE (α = 0.01) 69.3 57.0 56.9 60.3 62.7 43.4 58.5 47.0 48.9 54.9
CPE (α = 0.1) 78.1 67.9 66.9 72.4 75.2 46.9 68.6 49.8 51.7 63.0
CPE (α = 0.3) 63.8 71.9 69.6 69.2 68.9 51.1 65.1 52.4 52.3 62.6
DTC (d = 10) 52.6 52.4 51.9 52.6 52.4 52.3 51.1 50.5 51.3 51.8
DTC (d = 20) 51.6 50.2 50.1 50.7 50.9 51.0 50.0 50.1 52.8 50.8
DTC (d = 30) 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

ConfidNet (Corbière et al., 2019) 67.8 59.0 61.1 61.8 64.1 51.8 61.9 57.5 54.3 59.3
TrustScore (Jiang et al., 2018) 71.2 58.6 60.1 63.4 65.7 58.2 63.3 59.4 60.8 61.6

SSL (Luo et al., 2021) 68.6 66.2 69.2 69.6 68.4 64.7 63.4 63.2 67.9 66.7
SuperMentor (ours) 73.3 69.2 65.6 71.1 69.9 73.1 67.4 70.3 75.4 70.4

Table S2. Performance comparison of baselines (multiple hyperparameter configurations) and our SuperMentor on various error
sources from the IN dataset. The ViT model serves as the mentee, with its correctness of predictions evaluated by mentors. Best results
are in bold.

ID SpN GaB Spat Sat PGD CW Jitter PIFGSM Average
SER 49.8 50.2 49.9 50.1 50.0 49.7 50.1 50.1 49.9 50.0

MCP (γ = 0.5) 70.0 75.0 73.1 73.5 72.2 51.6 58.9 45.2 53.5 63.2
MCP (γ = 0.7) 78.3 75.5 74.4 75.8 77.7 49.3 57.7 38.8 50.6 63.1
MCP (γ = 0.9) 58.3 52.3 56.1 54.2 56.6 46.2 50.8 38.7 46.6 50.5
CPE (α = 0.01) 50.0 50.0 50.0 50.0 50.0 49.9 50.0 49.7 50.0 50.0
CPE (α = 0.1) 51.4 50.4 51.1 51.0 51.4 47.2 49.9 43.7 47.7 49.1
CPE (α = 0.3) 72.0 72.6 72.9 72.1 73.5 47.4 56.7 36.2 47.6 60.4
DTC (d = 10) 68.8 66.2 63.9 64.2 67.5 56.8 55.2 39.4 58.3 59.3
DTC (d = 20) 50.1 50.0 50.0 50.1 50.1 50.1 50.0 50.0 50.1 50.1
DTC (d = 30) 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

ConfidNet (Corbière et al., 2019) 73.4 69.0 67.0 68.6 71.1 58.8 59.8 46.8 60.7 63.2
TrustScore (Jiang et al., 2018) 74.4 67.5 64.8 67.6 70.8 57.9 59.7 48.1 60.5 62.6

SSL (Luo et al., 2021) 66.7 67.2 68.0 66.1 66.9 58.1 56.7 43.4 59.2 60.9
SuperMentor (ours) 70.9 65.5 61.7 67.5 68.8 81.6 64.1 68.5 81.9 70.0

F. Relationship between mentor generalization and natural adversarial samples
As discussed in Sec. 4.4, we aim to examine the relationship between the generalization ability of mentors and natural
adversarial samples. Following the definition in (Hendrycks et al., 2021b), natural adversarial samples are those that
consistently lead to incorrect predictions across a wide range of AI models. In line with this definition, for each error source,
we define N1 as the set of samples misclassified by both ResNet50 and ViT mentees, serving as an analogue to the natural
adversarial samples in (Hendrycks et al., 2021b). The samples misclassified only by the ResNet50 mentee (the ViT mentee
can classify them correctly) are labeled set N2, and those misclassified only by the ViT mentee (the ResNet50 mentee can
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Table S3. Role of natural adversarial samples in SuperMentor’s generalization across mentee architectures in the IN dataset. Each
cell is formatted as: [number of samples correctly predicted by the mentor] / [total number of samples in the set] ([mentor prediction
accuracy for this set]).

Error Source N1 N2 N3

ID 1750/2225 (78.7%) 1055/1352 (78.0%) 429/561 (76.5%)
SpN 2568/2973 (86.4%) 2310/3075 (75.1%) 462/579 (79.8%)
GaB 2710/3078 (88.0%) 1368/1657 (82.6%) 642/757 (84.8%)
Spat 2131/2587 (82.4%) 1300/1627 (79.9%) 464/584 (79.5%)
Sat 2433/2880 (84.5%) 1585/2012 (78.8%) 502/618 (81.2%)

PGD 3785/4689 (80.7%) 377/709 (53.2%) 2360/3286 (71.8%)
CW 2528/3281 (77.0%) 977/1952 (61.4%) 1325/1886 (70.3%)
Jitter 2527/3501 (72.2%) 701/1032 (67.9%) 1714/2685 (63.8%)

classify them correctly) are labeled set N3. The SuperMentor is trained on performance from the ResNet50 mentee and then
generalizes its error prediction ability to the ViT mentee.

The result in Appendix, Tab. S3 indicates that the natural adversarial samples in N1 play a key role in explaining
SuperMentor’s strong generalization across different architectures. However, SuperMentor can also perform well on the
non-natural adversarial samples ( N2 and N3 ). For example, it achieves 76.5% accuracy on the set N3 for ID error types.
This demonstrates that SuperMentor’s robust generalization ability is not limited solely to natural adversarial samples.

G. Visualization
To gain an intuitive understanding of SuperMentor’s binary classification performance in error prediction, as mentioned in
Sec. 4.5, we present the visualization of SuperMentor’s embeddings on three types of error sources of a mentee in Appendix,
Fig. S3. It is evident that SuperMentor can effectively segregate samples correctly classified by the mentee from those that
are misclassified, forming two distinct clusters.

42 18
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Figure S3. 3D visualization of the embeddings extracted from our SuperMentor Model for the classification of: a) C10-ID samples,
b) C10-OOD-GaB samples and c) C10-AA-Jitter samples. We use t-SNE (Van der Maaten & Hinton, 2008) to perform clusterings
on the representations of our SuperMentor model for classifications of different error sources on the C-10 dataset. Red points indicate
samples that the mentee fails to classify correctly, whereas blue points represent samples that the mentee successfully classifies. 50 red
points and 50 blue points are randomly selected from the test sets and presented here. The visualized features are the embeddings in
the second stream of the SuperMentor. Specifically, they are extracted before the final binary classification layer on whether the mentee
makes a mistake.

H. SuperMentor in real-world practice
To reflect the real-world contribution of our work, as mentioned in Sec. 5, we expanded our experiments to the
NCTCRCHE100K (Kather et al., 2019) dataset which is used for medical image classification on colorectal cancer. This
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dataset comprises around 100K images across 9 tissue classes. Predicting AI models’ errors in medical image classification
has significant real-world implications, such as reducing misdiagnoses and increasing the reliability of AI-assisted medical
tools. Appendix, Tab. S4 demonstrates that our SuperMentor accurately predicts the correctness of mentee outputs with
an average accuracy of 81.8%, significantly outperforming other baseline methods. This highlights that our proposed
framework can offer greater value and reliability for AI error prediction compared to existing approaches in medical image
classification.

Given the increasing integration of AI models into our daily lives, ensuring their accuracy is paramount, especially in
high-stakes fields such as medicine and finance. This experiment with medical image datasets underscores the critical role
that SuperMentor plays in enhancing reliability and trustworthiness in these vital areas, showcasing its potential to make a
meaningful impact where precision and dependability are essential.

Table S4. Performance comparison of baselines (multiple hyperparameter configurations) and our SuperMentor on various error
sources from the NCTCRCHE100K (Kather et al., 2019) dataset. The ResNet50 model serves as the mentee, with its correctness of
predictions evaluated by mentors. Best results are in bold.

ID SpN GaB Spat Sat PGD CW Jitter PIFGSM Average
SER 50.6 50.1 50.1 51.1 50.4 50.0 51.4 50.2 49.8 50.4

MCP (γ = 0.5) 53.0 59.1 53.0 53.2 50.6 53.8 53.3 53.2 54.8 53.8
MCP (γ = 0.7) 62.8 70.5 64.6 64.7 50.2 65.2 64.0 63.2 65.2 63.4
MCP (γ = 0.9) 72.5 78.5 72.1 75.0 48.8 77.0 73.8 76.0 75.2 72.1
CPE (α = 0.01) 76.2 75.2 80.5 77.7 44.7 76.0 75.1 76.6 75.1 73.0
CPE (α = 0.1) 75.5 79.5 76.4 76.2 48.2 77.8 76.2 77.6 76.9 73.8
CPE (α = 0.3) 64.9 74.7 66.9 66.4 51.6 69.2 65.8 68.4 67.0 66.1
DTC (d = 10) 78.9 66.2 77.8 80.8 67.1 79.2 78.0 78.3 79.1 76.1
DTC (d = 20) 70.6 47.8 69.9 62.9 52.6 60.4 65.1 63.7 60.0 61.4
DTC (d = 30) 51.8 49.5 52.8 50.3 50.0 50.8 51.6 51.8 50.8 51.0

ConfidNet (Corbière et al., 2019) 85.1 61.3 86.2 74.0 58.4 79.3 82.9 81.8 79.4 76.5
TrustScore (Jiang et al., 2018) 73.3 60.0 73.4 62.2 62.4 71.0 72.8 71.4 71.5 68.6

SSL (Luo et al., 2021) 85.3 58.2 87.8 75.5 55.4 77.6 82.8 79.7 78.0 75.6
SuperMentor (ours) 88.5 64.1 89.2 84.1 56.9 88.2 88.7 88.3 88.3 81.8

I. SuperMentor performance on additional OOD domains on ImageNet dataset
As mentioned in Sec. 5, we included experiments to evaluate the SuperMentor in more diversified OOD domains on ImageNet
datasets, including ImageNet9-MIXED-RAND (IN9-MR) (Xiao et al., 2021), ImageNet9-MIXED-SAME (IN9-MS) (Xiao
et al., 2021), ImageNet9-MIXED-NEXT (IN9-MN) (Xiao et al., 2021), ImageNet-R (IN-R) (Hendrycks et al., 2021a)
and ImageNet-Sketch (IN-S) (Wang et al., 2019). Specifically, the MIXED-RAND, MIXED-SAME, and MIXED-NEXT
datasets are derived from 9 classes in ImageNet and contain varying amounts of background and foreground signals. These
datasets aim to demonstrate that models often classify objects based on background cues (often spurious features), rather
than the objects themselves. Specifically, MIXED-SAME, MIXED-RAND, and MIXED-NEXT represent images with
random backgrounds from the same class, random backgrounds from a random class, and random backgrounds from the
next class, respectively. The ImageNet-R dataset comprises images featuring artistic representations of objects, such as
cartoons, community-generated art, and graffiti renditions. The ImageNet-Sketch dataset consists of sketch-like images that
match the ImageNet validation set in both categories and scale.

To achieve a more thorough evaluation of our SuperMentor (see Sec. 4.5) in OOD domains, we assess its performance
on these additional OOD datasets. It is worth noting that the SuperMentor learns from the mentee’s errors on adversarial
ImageNet images generated by the PIFGSM attack only. In other words, the SuperMentor was NOT trained on any of
these additional ImageNet-related OOD datasets. Yet, the SuperMentor achieves average accuracies of 70.9%, 71.0%,
69.6%, 62.2%, and 62.6% on the IN9-MR, IN9-MS, IN9-MN, IN-R, and IN-S datasets respectively, surpassing the 50%
chance level. Despite that our Supermentor model is a simple ViT, it is still quite remarkable to achieve above-chance error
prediction performance. We hope our work inspires researchers to explore more sophisticated AI mentors, incorporating
advanced architectures or loss functions, to further enhance the ability to predict the correctness of another AI model’s
outputs.
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J. Detailed performance of mentors across various error sources
As mentioned in the caption of Fig. 3, the detailed results of mentors across various error sources for the C10, C100, IN
datasets are shown in Appendix, Fig. S4, Fig. S5 and Fig. S6 respectively.

CIFAR-10 

(a) (b)
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Figure S4. Confusion matrices showing the average performance of mentor models across various error sources for the C10
dataset, presented in the format [mentee]-[mentor]: a) ResNet50-ResNet50, b) ViT-ResNet50, c) ResNet50-ViT, and d) ViT-ViT.
The confusion matrices’ row labels indicate the training error source for the mentor, while the column labels denote the testing error
sources for the mentor. Results in each cell denote the average accuracy with the standard deviation over 3 runs. The pink-highlighted
column displays the row-wise mean and standard deviation over 3 runs.
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Figure S5. Confusion matrices showing the average performance of mentor models across various error sources for the C100
dataset, presented in the format [mentee]-[mentor]: a) ResNet50-ResNet50, b) ViT-ResNet50, c) ResNet50-ViT, and d) ViT-ViT.
The confusion matrices’ row labels indicate the training error source for the mentor, while the column labels denote the testing error
sources for the mentor. Results in each cell denote the average accuracy with the standard deviation over 3 runs. The pink-highlighted
column displays the row-wise mean and standard deviation over 3 runs.
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Figure S6. Confusion matrices showing the average performance of mentor models across various error sources for the
ImageNet-1K dataset, presented in the format [mentee]-[mentor]: a) ResNet50-ResNet50, b) ViT-ResNet50, c) ResNet50-ViT,
and d) ViT-ViT. The confusion matrices’ row labels indicate the training error source for the mentor, while the column labels denote
the testing error sources for the mentor. Results in each cell denote the average accuracy with the standard deviation over 3 runs. The
pink-highlighted column displays the row-wise mean and standard deviation over 3 runs.
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