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Abstract

Given a collection of monotone submodular functions, the goal of Two-Stage
Submodular Maximization (2SSM) [Balkanski et al., 2016] is to restrict the ground
set so an objective selected u.a.r. from the collection attains a high maximal
value, on average, when optimized over the restricted ground set. We introduce
the Online Two-Stage Submodular Maximization (O2SSM) problem, in which the
submodular objectives are revealed in an online fashion. We study this problem for
weighted threshold potential functions, a large and important subclass of monotone
submodular functions that includes influence maximization, data summarization,
and facility location, to name a few. We design an algorithm that achieves sublinear
(1− 1/e)2-regret under general matroid constraints and (1− 1/e)(1− e−kkk/k!)-
regret in the case of uniform matroids of rank k; the latter also yields a state-of-the-
art bound for the (offline) 2SSM problem. We empirically validate the performance
of our online algorithm with experiments on real datasets.

1 Introduction

Motivated by applications such as dictionary learning [Maas et al., 2011], data sumarization [Lin
and Bilmes, 2012], and recommender systems [Yue and Guestrin, 2011, El-Arini et al., 2009,
Mirzasoleiman et al., 2016], Balkanski et al. [2016] introduced the following Two-stage Submodular
Maximization problem (2SSM). Given a ground set V of n ∈ N elements, in the first stage, an
algorithm selects a set S ⊆ V of size |S| = ℓ ∈ N. In the second stage, a reward function
f : 2V → R+ is sampled u.a.r. from a collection F of monotone submodular functions; the function
f is then optimized over subsets of S with size k < ℓ. The goal of 2SSM is to select the restricted
ground set S so that the expected second-stage reward is maximized; formally:

Maximize: F (S) ≡ E
[

max
S′⊆S:|S′|≤k

f(S)

]
, (1a)

subject to: S ⊆ V, |S| ≤ ℓ, (1b)

where the expectation is over the random function f ∈ F . Balkanski et al. [2016] proposed an
approximation algorithm for 2SSM. Subsequently, Stan et al. [2017] provided a generalization when
the second stage optimization is over an arbitrary matroid (rather than a cardinality) constraint.

The 2SSM problem is of significant interest when the second-stage optimization needs to happen in
near real-time. For example, if the original ground set V is quite large, restricting the ground truth
set prior to the revelation of the objective can yield significant computational dividends. Though
applications are numerous (see Appendix A), a canonical example is a recommender system [Stan
et al., 2017, Liu et al., 2022a]. In this scenario, V is catalog of items to be recommended to a user
cohort. Each user is described by a mononote submodular utility function f : 2V → R+, sampled
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Reference 2SSM O2SSM Setting Objective Function ConstraintsOffline Approx. Ratio Online α-Regret
Balkanski et al. [2016] 1− 1/e− 1/k1/2−ϵ − e−Ω(k2ϵ) – Offline Submodular Cardinality
Balkanski et al. [2016] 1/2(1− 1/e) – Offline Coverage Cardinality

Stan et al. [2017] 1/2(1− 1/e2) – Offline Submodular Matroid
Yang et al. [2021] 1/(p + 1)(1− e−(p+1)) – Offline Submodular p-Exchange System

Mitrovic et al. [2018] 1/7 – Streaming Submodular Matroid
Mitrovic et al. [2018] 1/4(1− 1/e2) – Distributed Submodular Matroid

This paper (1− 1/e)(1− e−kkk/k!) α = (1− 1/e)(1− e−kkk/k!) Online+Offline WTP Cardinality
This paper (1− 1/e)2 α = (1− 1/e)2 Online+Offline WTP Matroid

Table 1: Summary of known results for different settings of the Two-Stage Submodular Maximization
(2SSM) problem and its online version (O2SSM). Our work is the first to consider (and provide
guarantees for) O2SSM. Our online algorithm can be converted to a new offline algorithm for 2SSM
under WTP objectives (see Appendix J). For cardinality constraints, the guarantees of both our (offline)
algorithm and the one by Balkanski et al. [2016] converge to 1 − 1/e ≈ 0.63 as k → ∞, but our
algorithm has a strictly better guarantee for finite k ∈ N. For general matroids, our guarantee for
2SSM ((1−1/e)2 ≈ 0.40) is slightly worse than the one by Stan et al. [2017] (1/2(1−1/e2) ≈ 0.43).

from a known distribution, that captures the value of a recommended set of items to the user. To
speed-up recommendations and/or item delivery, the recommender a priori restricts recommendations
to occur within a set S ⊂ V of size |S| = ℓ items, where k < ℓ < n. When users arrive, their utility is
revealed, and the recommender suggests k items by solving the corresponding cardinality-constrained
optimization problem. Restricting recommendations to S speeds up this computation; moreover,
items in S can be, e.g., prefetched (non-realtime) to a cache, thereby also accelerating their delivery.

This offline version of 2SSM, studied by Balkanski et al. [2016] and Stan et al. [2017], assumes prior
knowledge of the candidate objectives set F (and the distribution over it). When set F is unknown,
it is natural to consider an online version, in which functions f ∈ F are revealed sequentially,
and the restricted ground set is adapted online. This Online Two-Stage Submodular Optimization
(O2SSM) problem poses significant challenges: even though functions f ∈ F are submodular, the
first-stage objective F in (1a) is not. Hence, O2SSM cannot be solved with existing online submodular
maximization techniques [Niazadeh et al., 2021, Matsuoka et al., 2021, Si Salem et al., 2024]. To
make matters worse, even when the set F is known, computing the objective F is itself NP-hard.
As a result, any online algorithm solving O2SSM cannot even assume oracle access to the first-stage
objective F (·), even after a sequence of second-stage objectives f has been revealed.

Our main contribution is to overcome these challenges: we construct a no-regret online algorithm
for O2SSM when objectives belong to a specific subclass of submodular functions, namely, Weighted
Threshold Potential (WTP) functions [Karimi et al., 2017, Stobbe and Krause, 2010]. This subclass
strictly generalizes weighted coverage functions and appears in applications such as recommender
systems, team formation, and influence maximization. When F is a subset of this class, we can
construct a polynomial-time online algorithm that attains sublinear regret with respect to an offline
approximation algorithm for 2SSM (with hindsight). We consider both general matroid and cardinality
constraints for the second stage. In the latter case, our online algorithm yields also an improved
approximation guarantee for the offline problem, when the objective is a WTP function (see Table 1).

From a technical standpoint, we resolve the challenge of making online decisions without oracle
access to the first-stage objective F (·). We do so by introducing a fractional relaxation of the objective
and a corresponding rounding scheme. For Weighted Threshold Potential (WTP) objectives, we prove
that this relaxation is concave and that its supergradients are efficiently computable. This enables us
to use Online Convex Optimization (OCO) methods [Hazan, 2016], such as Follow the Regularized
Leader (FTRL) and Online Gradient Ascent (OGA), to compute fractional restricted ground sets with
sublinear regret. We then seek a rounding scheme that converts fractional solutions to integral ones
while preserving their expected reward up to a constant factor. We prove that Randomized Pipage
Rounding [Chekuri et al., 2009] has this property through a contention-resolution–based analysis that
exploits submodular dominance, as exhibited the distribution induced by this rounding.

2 Related work

Two-stage Submodular Maximization. Balkanski et al. [2016] introduced the Two-stage Submodu-
lar Maximization problem (2SSM) under cardinality constraints and proposed an (1−1/e−Ω(1/

√
k))-
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approximation algorithm. Their algorithm also optimizes a continuous relaxation and applies a basic
randomized rounding scheme twice: first, to select the restricted ground set, and then to generate
second-stage solutions. Our work departs from [Balkanski et al., 2016] in three ways: (a) we introduce
the online variant of the problem, where the objectives arrive sequantially, (b) we generalize the
second stage to general matroids and (c) improve both rounding stages: we use randomized pipage
rounding [Chekuri et al., 2009] in the first stage (which incurs no loss) and state-of-the-art con-
tention resolution schemes in the second stage [Dughmi, 2020]; this yields improved approximation
guarantees when applied to the offline setting (see Table 1 and Appendix J).

Balkanski et al. [2016] also propose a local search algorithm for coverage functions under cardinality
constraints that achieves an (1/2(1− 1/e))-approximation. Building on this, Stan et al. [2017] design
an (1/2(1− 1/e2))-approximation algorithm that works for arbitrary monotone submodular functions
under general matroid constraints. The latter is the state of the art in the offline setting, though a
gap persists between its guarantee and the hardness threshold of (1− 1/e). Several works have since
extended this algorithm to settings with weakly submodular functions [Chang et al., 2023], bounded
curvature submodular functions [Li et al., 2023], or knapsack constraints in the first stage [Liu et al.,
2022b]. Stan et al. [2017] leave the online version of the problem, which we address in this paper,
as an open question. Our algorithm achieves a (1 − 1/e)2 ≈ 0.40 approximation under general
matroid constraints and WTP functions, which is close to the state-of-the-art (1/2(1− 1/e2)) ≈ 0.43
approximation for the offline problem. Notably, our online algorithm is competitive with the best-
known approximation algorithm in hindsight, without accessing the objective sequence in advance.

Streaming Two-Stage Submodular Maximization. Mitrovic et al. [2018] study the two-stage
submodular maximization problem in the streaming setting, where the algorithm makes a single
sequential pass over the ground set and must irrevocably decide whether to include or discard
each element, while using limited memory. They design algorithms that achieve constant-factor
approximations under matroid constraints. In contrast, we consider an online setting in which the
objective functions, not the elements, are revealed sequentially. Note that, in the streaming setting,
the algorithm has access to all functions while making its decisions, while the online setting requires
making decisions without knowledge of the objectives.

(One-stage) Online Submodular Maximization. Several online algorithms have been proposed for
maximizing submodular functions under various matroid constraints [Streeter et al., 2009, Harvey
et al., 2020, Niazadeh et al., 2021, Matsuoka et al., 2021, Si Salem et al., 2024]. There has also been
recent work on the online maximization of continuous DR-submodular functions [Chen et al., 2018,
Zhang et al., 2019, 2022]. Our work builds on the recent results of Si Salem et al. [2024], who reduce
Online Submodular Maximization (OSM) to Online Convex Optimization (OCO) for the class of WTP
functions. WTP functions, introduced by Stobbe and Krause [2010], form a broad and important sub-
class of monotone submodular functions, with applications including influence maximization [Kempe
et al., 2003], facility location [Krause and Golovin, 2014], caching networks [Ioannidis and Yeh,
2016, Li et al., 2021], similarity caching [Si Salem et al., 2022], recommender systems [Krause and
Golovin, 2014], and weighted coverage functions [Karimi et al., 2017]; we review some of these in
Appendix A. Our main point of departure from Si Salem et al. [2024] and, more broadly, OSM, is
that the objective in O2SSM is not submodular; in fact, we cannot even assume that we have polytime
oracle access to it. Overcoming this obstacle is one of our main contributions.

3 Technical Preliminary

Submodular Functions and Matroids. Given a ground set V = [n] ≡ {1, . . . , n}, a set function
f : 2V → R+ is submodular if f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) for all A ⊆ B ⊆ V and
v ∈ V \ B, and monotone if f(A) ≤ f(B) for all A ⊆ B ⊆ 2V . A matroid is a pairM = (V, I),
where I ⊆ 2V , for which the following holds: (i) if B ∈ I and A ⊆ B, then A ∈ I, (ii) if A,B ∈ I
and |A| < |B|, then there exists a v ∈ B \ A s.t. A ∪ {v} ∈ I. The elements of I are called
independent sets. The cardinality of the largest independent set is called the rank of the matroidM.

The characteristic vector x ∈ {0, 1}n of a set S ⊆ [n] is the vector whose i-th coordinate xi is 1
if and only if i ∈ S. The matroid polytope P(M) is the convex hull of the characteristic vectors
ofM’s independent sets. For the remainder of the paper, we will identify sets S ⊆ V = [n] with
their characteristic vectors x ∈ {0, 1}n. Hence, we treat matroidsM as subsets of {0, 1}n, while
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P(M) ⊆ [0, 1]n. Similarly, with a slight abuse of notation, we refer to functions f : 2V → R+ via
their equivalent representations as functions of binary vectors f : {0, 1}n → R+.

Two-Stage Submodular Maximization. In the two-stage submodular maximization setting of Balka-
nski et al. [2016], we are given a collection F = {ft}Tt=1 of monotone and submodular objective
functions over the ground set V = [n]. The goal is to select a smaller ground set that yields a high
objective value in expectation, when the function to be maximized is selected u.a.r. from F .

Formally, let Xℓ ⊆ {0, 1}n be the uniform matroid of rank ℓ over the ground set V = [n], i.e.,

Xℓ =
{
x ∈ {0, 1}n :

∑n
i=1 xi ≤ ℓ

}
.

For x ∈ Xℓ and matroidM, let YM(x) ⊆ {0, 1}n be all independent sets inM that are subsets of
x, i.e.:

YM(x) = {y ∈ {0, 1}n : y ∈M, y ≤ x} .

Given ft ∈ F , we define:

Ft(x) = max
y∈YM(x)

ft(y), for x ∈ Xℓ, (2)

to be the objective attained by maximizing ft over the restriction ofM to subsets of x. Then, the
Two-Stage Submodular Maximization (2SSM) problem can be stated as:

Maximize : F (x) =
∑T

t=1 Ft(x), (3a)
subj. to: x ∈ Xℓ. (3b)

In the recommender system example from the introduction,M = Xk, i.e., the uniform matroid of rank
k ≤ ℓ, and F is a set of user utility functions ft, capturing the value of a recommended set to user t.
Notice that 2SSM generalizes (one-stage) submodular maximization subject to a cardinality constraint,
if we set ℓ = k, and is therefore NP-hard to approximate within a factor better than 1− 1/e [Feige,
1998]. Moreover, even computing Ft(x) for a given x is NP-hard, so a polynomial-time algorithm for
2SSM cannot assume oracle access to F (·).5 Finally, the function F (·) is not submodular [Balkanski
et al., 2016], and approximation algorithms cannot readily rely on this property. Nevertheless, as
discussed in Sec. 2, there exist polytime approximation algorithms for 2SSM.

Online Convex Optimization (OCO). In Online Convex Optimization (OCO), an algorithm makes
sequential decisions in order to maximize concave reward functions that are revealed in an online
fashion. Formally, at each time step t = 1, . . . , T , a decision maker selects an xt from a compact
and convex set K, and then observes a concave reward function gt : K → R. Decision xt is made via
a (possibly randomized) online algorithm PX (·), which takes as input the history of reward functions
and decisions before time t; that is,

xt = PX ({(gτ ,xτ )}t−1
τ=1).

The goal of the decision maker is to minimize the regret, defined as:

RT = max
x∈K

T∑
t=1

gt(x)−
T∑

t=1

gt(xt).

Intuitively, sublinear regret (a.k.a. no-regret) implies that the cummulative reward of the online
algorithm is comparable to the one attained by the optimal algorithm in hindsight. Standard algorithms,
such as Follow-the-Regularized-Leader (FTRL) [Shalev-Shwartz, 2012] and Online Gradient Ascent
(OGA) [Zinkevich, 2003] achieve sublinear regret under mild assumptions:
Theorem 3.1. [Hazan, 2016] Let {gt}Tt=1 be a sequence of concave functions, each L-Lipschitz
(with respect to the ℓ2 norm) over a convex and compact domain K with ℓ2-diameter D. Then, FTRL
and OGA achieve a regret bound of O

(
DL
√
T
)

.

We provide a detailed description of FTRL and OGA in Appendix H.
5It is worth noting that 2SSM remains NP-hard even if one has oracle access to F (·).
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α- Regret. In many online combinatorial optimization problems (e.g., [Streeter et al., 2009, Harvey
et al., 2020, Gergatsouli and Tzamos, 2022, Christou et al., 2023]), especially those whose offline
counterparts are NP-hard, the performance of an online algorithm PXℓ

(·) is evaluated relative to the
best α-approximate solution in hindsight. This is measured through α-Regret [Kakade et al., 2007]:

Rα,T = αmax
x∈Xℓ

T∑
t=1

Ft(x)−
T∑

t=1

Ft(xt). (4)

The goal is then to design online algorithms that attain sublinear (e.g., O(
√
T )) expected α-Regret,6

having thus a cumulative reward competitive with that of an α-approximate offline algorithm. This
relaxation is necessary in our setting (O2SSM), as achieving sublinear regret for α = 1 would imply a
polynomial-time solution to the (NP-hard) offline problem.

Weighted Threshold Potentials. A Weighted Threshold Potential (WTP) function [Stobbe and Krause,
2010, Si Salem et al., 2024] is a submodular function of the form:

f(y) =
∑
j∈C

cj min {bj ,y ·wj} , for y ∈ {0, 1}n, (5)

where C is an arbitrary index set, cj > 0, bj ∈ R≥0 ∪ {∞} and wj ∈ R≥0. For an extensive review
of WTPs, we refer to Appendix B of Si Salem et al. [2024]. Given a WTP function f , its concave
relaxation f̃ is the concave function we obtain by relaxing the domain of f to be [0, 1]n, i.e.,

f̃(y) =
∑
j∈C

cj min {bj ,y ·wj} , for y ∈ [0, 1]n. (6)

We will use FG,M to denote the class of WTP functions as defined in Eq. (5), that have at most G terms
(|C| ≤ G) and whose parameters are upper bounded by M (cj ≤M, bj ≤M, ||w||∞ ≤M, ∀j ∈ C).

4 Online Two-stage Submodular Maximization (O2SSM)

In this section, we define the Online Two-stage Submodular Maximization (O2SSM) problem. Using
our running example of a recommender system, we assume that the set F is not known a priori, and
the user utilities are revealed sequentially. In turn, the recommender system maintains and adapts
its cache of ℓ ∈ N items as utilities are revealed, via an online algorithm that has access only to the
history of utilities and caching decisions.

The O2SSM Problem. Formally, at each time step t ∈ N, a decision maker selects a set xt ∈ Xℓ

of size at most ℓ ∈ N to serve as a (restricted) ground set. After committing to xt, a monotone
submodular function ft : {0, 1}n → R+ is revealed, and the decision maker accrues reward:

Ft(xt) = max
yt∈YM(xt)

ft(yt), (7)

whereM is a matroid (e.g.,M = Xk, for k < ℓ).

The set xt = PXℓ
({(fτ ,xτ )}t−1

τ=1) is selected without knowledge of the function ft, by an online
algorithm that has only access to past history.

O2SSM poses two significant challenges: first, the reward functions Ft(·) are not submodular, and the
problem does not reduce to standard Online Submodular Maximization. Second, to make matters
worse, evaluating functions Ft(·) for a given xt is NP-hard. As a result, the online algorithm PXℓ

(·)
cannot assume oracle access to reward function Ft, even after ft has been revealed. Nevertheless, if
functions ft belong to the WTP class, we can indeed construct a polynomial time online algorithm
that attains sublinear α-regret, as we show in the next section.

5 Our Algorithm

In this section, we present RAOCO (Algorithm 1), an algorithm that achieves sublinear (1 − 1/e)2-
Regret for WTP functions under arbitrary matroid constraints on the second stage. When the second-
stage matroid is a uniform matroid of rank k (i.e., cardinality constraints), RAOCO achieves an
improved guarantee, namely sublinear (1− 1/e)(1− e−kkk/k!)-Regret.

6Where the expectation is w.r.t. any random choices of the online algorithm PXℓ .
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Algorithm 1 Rounding-Augmented OCO (RAOCO)

1: Uses:
2: (1) FTRL or OGA OCO policy PX̃ℓ

(see Appendix H)

3: (2) Randomized Pipage Rounding Ξ : X̃ℓ → Xℓ (see Appendix I)
4: for t = 1 to T do
5: x̃t ← PX̃ℓ

(
F̃1, . . . , F̃t−1

)
▷ Compute fractional solution

6: xt ← Ξ(x̃t) ▷ Round to obtain the integral solution
7: Play action xt ▷ Accrue reward Ft(xt) (implicitly)
8: Construct relaxation F̃t from ft ▷ Function ft has been revealed
9: end for

5.1 Description of the Algorithm

At a high level, RAOCO uses an OCO policy (such as FTRL or OGA), which outputs a fractional
restricted ground set x̃t ∈ X̃ℓ. It then rounds the fractional ground set x̃t to an integral ground set
xt ∈ Xℓ using Randomized Pipage Rounding [Chekuri et al., 2009]. Importantly, we prove that the
rounding procedure preserves, in expectation, the quality of the fractional solution produced by the
OCO policy. We now describe each step of the algorithm in more detail.

Fractional Relaxation. We begin by introducing a fractional relaxation of the reward function. Let

X̃ℓ = {x̃ ∈ [0, 1]n :
∑n

i=1 x̃i ≤ ℓ}

denote the convex hull of the feasible restricted ground sets Xℓ. Given x̃ ∈ X̃ℓ and a matroidM, we
also define the corresponding relaxed set of second-stage feasible solutions as

ỸM(x̃) = {ỹ ∈ [0, 1]n : ỹ ∈ P(M), ỹ ≤ x̃} ,

where P(M) denotes the matroid polytope associated withM.

Let f be a WTP function, as defined in Eq. (5), and let f̃ be its concave relaxation, as defined in Eq. (6).
We then define the concave relaxation F̃ of the reward function/first-stage objective F as

F̃ (x̃) = max
ỹ∈ỸM(x̃)

f̃(ỹ), for x̃ ∈ X̃ℓ. (8)

As discussed below, we prove that F̃ is indeed concave and Lipschitz over X̃ℓ, and that both F̃ and
its supergradients can be computed in polynomial time. These properties are in stark contrast to the
original reward function maxy∈Y(x) f(y), whose evaluation is NP-hard.

Algorithm. Our algorithm, RAOCO, is summarized in Algorithm 1. It operates using two main
subroutines: (a) an OCO policy PX̃ℓ

that maintains fractional restricted ground sets over X̃ℓ, and (b) a

rounding scheme Ξ : X̃ℓ → Xℓ that maps fractional solutions to integral ones.

At each time step t > 1, the algorithm computes a fractional solution x̃t using the OCO policy, based
on the history of concave relaxations of reward functions revealed so far; then, it rounds the fractional
solution to an integral ground set via the randomized rounding scheme. Formally,

x̃t = PX̃ℓ

({(
F̃τ , x̃τ

)}t−1

τ=1

)
, and xt = Ξ(x̃t), (9)

where PX̃ℓ
is instantiated either as FTRL or OGA (see Appendix H), and that the rounding scheme

Ξ : X̃ℓ → Xℓ is Randomized Pipage Rounding [Chekuri et al., 2009] (see Appendix I).

Note that, after selecting the restricted ground set xt, the algorithm observes the WTP function ft and
constructs the fractional relaxation F̃t of its corresponding reward function Ft; the history of these
(concave) functions is then passed to OCO policy PX̃ℓ

to produce x̃t+1. Moreover, as Ξ is randomized,
so is RAOCO; our characterization of the expected regret will be w.r.t. this randomness.
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5.2 Main Result

Our main contribution is the following theoretical guarantee of RAOCO:
Theorem 5.1. Fix a matroidM⊆ [n] and ℓ, k ∈ N. For any sequence of WTP functions {fτ}Tτ=1 ⊆
FG,M , Algorithm 1 runs in polynomial time in n,G and logM and exhibits sublinear cM(1− 1/e)-
Regret, i.e.,

E[RcM(1−1/e),T ] = O
(
ℓGM2

√
nT
)
,

where cM = (1− e−kkk/k!) ifM is a uniform matroid of rank k and cM = (1− 1/e) otherwise.

The proof of Theorem 5.1 relies on two key ingredients: First, we show that the sequence of fractional
restricted ground sets computed by the OCO policy has sublinear regret in the fractional relaxation
of the problem (Lemma 5.2). Second, we show that applying Randomized Pipage Rounding to a
fractional restricted ground set yields an integral ground set that, in expectation, admits second-
stage solutions with approximately the same value as those in the original fractional ground set.
Consequently, the reward obtained from the rounded ground set is approximately the same as that of
the original fractional ground set (Lemma 5.4).

We now describe each of these components in more detail and use them in order to prove Theorem 5.1.

Regret of the fractional OCO policy. Recall that the concave relaxation F̃ , defined in Eq. (8),
is a function that maps fractional ground sets to the solution of an optimization problem, whose
constraints are dictated by the given fractional ground set. Despite the intricate relation between a
fractional ground set and its reward, we prove in Appendix D that F̃ is concave and Lipschitz over
X̃ℓ when the second-stage objective f is a WTP function with bounded coefficients. These two key
properties allow us to employ the standard regret analysis of OCO policies (Theorem 3.1) to show that
the sequence of fractional ground sets that the algorithm computes will have no-regret. We state this
formally in Lemma 5.2, whose proof is in Appendix D:
Lemma 5.2. Let {ft}Tt=1 ⊆ FG,M be a sequence of WTP functions, let {Ft}Tt=1 be the corresponding
reward functions as defined in Eq. (7) and {F̃t}Tt=1 be the corresponding concave relaxations of the
reward functions as defined in Eq. (8). Suppose that {x̃t}Tt=1 is the sequence of fractional restricted
ground sets computed by the OCO policy of Algorithm 1. Then,

max
x∈Xℓ

T∑
t=1

Ft(x)−
T∑

t=1

F̃t(x̃t) = O
(
ℓGM2

√
n
√
T
)
.

Furthermore, we show that the supergradients of the fractional reward function F̃ can be computed
in polynomial time by solving a linear program. This implies that standard OCO policies like FTRL
or OGA, which use the supergradient of the reward function to calculate the next response, have
polynomial time implementations. In particular, the following lemma holds:

Lemma 5.3. Let f ∈ FG,M be a WTP function and let F̃ be the corresponding fractional reward
function, as defined in Eq. (8). For any fractional restricted ground set x̃ ∈ X̃ℓ, both the time to
compute F̃ and the time to compute a supergradient of F̃ at x̃ are polynomial in n,G and logM .

The proof of Lemma 5.3 is in Appendix E.

Randomized Rounding Bound. Our next goal is to show that the value of the reward function is
preserved, in expectation, when passing from a fractional ground set to an integral one via Randomized
Pipage Rounding. Specifically, we aim to prove that optimizing over the rounded ground set yields
second-stage solutions whose value closely approximates those obtainable in the fractional domain.

To this end, we design a two-stage randomized rounding procedure, used only in our analysis, that
is coupled with the rounding performed by RAOCO. Given any fractional second-stage solution, this
procedure first produces an intermediate integral solution within the rounded ground set, which
potentially violates the matroid constraints, and then applies a contention resolution scheme (CRS) to
obtain a feasible solution (for more details on CRSs, see Appendix B). A key technical challenge is
that standard CRS guarantees typically rely on the input vector being sampled independently across
coordinates, an assumption that does not hold in our setting. However, when the ground set is obtained
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via Randomized Pipage Rounding, we prove that the resulting distribution exhibits a submodular
dominance property that allows us to apply a CRS with provable approximation guarantees. In
particular, the CRS ensures that, in expectation, the quality of the resulting feasible solution remains
close to that of the original fractional solution.

We stress that we use this CRS construction purely to characterize the performance of the (first-stage)
randomized rounding, and not in the online algorithm itself: the only rounding procedure in RAOCO is
Randomized Pipage Rounding (see Algorithm 1). We leverage the CRS construction to show that
the expected reward from the rounded ground set is within a constant factor of the reward from the
fractional solution. This is formalized in Lemma 5.4 and proved in Appendix C.

Lemma 5.4. Let x̃ ∈ X̃ℓ be a fractional ground set and x = Ξ(x̃) be an integral ground set obtained
by rounding x̃ using Randomized Pipage Rounding. Let also f be any WTP function, and F, F̃ be the
associated reward function and its concave relaxation (Eq. (7) and (8)) respectively. Then,

EΞ [F (Ξ(x̃))] ≥ cM ·
(
1− 1

e

)
· F̃ (x̃),

where cM = 1 − e−kkk/k! if the matroid M of the second stage is uniform with rank k, and
cM = (1− 1/e) otherwise.

Finally, using Lemmas 5.2, 5.3 and 5.4, our main theorem, Theorem 5.1, can be proved as follows.

Proof of Theorem 5.1. Regret Guarantee. Let {Ft}Tt=1 be a sequence of reward functions and
F̃1, . . . , F̃T be their concave relaxations (see Eq. (7) and (8) respectively). The expected regret of the
Algorithm 1 is

E[RcM(1−1/e),T ] = cM(1− 1/e) · max
x∈Xℓ

T∑
t=1

Ft(x)−
T∑

t=1

EΞ[Ft(Ξ(x̃t))]

Lem. 5.4
≤ cM(1− 1/e)

(
max
x∈Xℓ

T∑
t=1

Ft(x)−
T∑

t=1

F̃t(x̃t)

)
Lem. 5.2
= O(ℓGM2

√
n
√
T ).

Computational Complexity. Each round of RAOCO consists of two steps: (1) computing a fractional
solution through an OCO policy (either FTRL or OGA, see Appendix H for details), and (2) rounding
this solution to an integral ground set. In order to run the OCO policy, RAOCO first computes a super-
gradient of the concave relaxation function F̃t−1 at the previous solution x̃t−1. This supergradient
can be computed in polynomial time in n,G and logM (Lemma 5.3) by solving a linear program
(see Appendix E). Next, depending on the instantiated OCO policy, the algorithm either performs a
projection onto X̃ℓ (for OGA) which can be done in O(n log n) time [Duchi et al., 2008], or solves a
strongly convex optimization problem (for FTRL), which can be done in polynomial time in n and
logM using standard first-order or interior point methods [Bubeck, 2015]. Finally, the fractional
point obtained from the OCO policy is rounded via Randomized Pipage Rounding [Chekuri et al.,
2009]. The rounding iteratively selects two fractional coordinates and redistributes their combined
mass in a randomized way (for more details see Appendix I). Each such iteration runs in time O(n)
and the algorithm will perform at most O(n) iterations until all coordinates are integral. Overall, the
per-round complexity of RAOCO is polynomial in n,G and logM .

6 Experiments

In this section, we evaluate the performance of our algorithm on both real and synthetic datasets.
Additional details on each dataset, how it maps to instances of O2SSM, our choices of k, ℓ, and T , as
well as detailed descriptions of competitor algorithms, can be found in Appendix F.7

Datasets and Problem Instances. We conduct experiments on seven datasets; five real:
Wikipedia, Images, MovieRec, Influence, and HotpotQA, and two synthetic: TeamFormation

7Our code is available online at https://github.com/jasonNikolaou/online-two-stage-sub-max.
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Dataset n ℓ k T m |C| Description

Wikipedia 407 20 5 88 22 27.2 Wikipedia articles representatives
Images 150 20 5 40 10 20.9 Image collection summarization
MovieRec 1000 10 4 400 100 2.5 Movie recommendations
TeamFormation 100 10 4 50 50 1.0 Roster selection
Influence 34 8 3 100 100 34.0 Influence maximization
Coverage 100 20 1 500 20 1.95 Weighted Coverage
HotpotQA 111,140 150 4 500 97,852 1 QA Corpus summarization

Table 2: Dataset summary: n is the number of elements; ℓ is the restricted ground set size; k is the
second-stage cardinality; T is the number of time steps; m is the number of objective functions; |C|
is the average number of Threshold Potentials per function.

and Coverage. The Wikipedia, Images, and MovieRec datasets are drawn from prior work [Balka-
nski et al., 2016, Stan et al., 2017]. The Coverage dataset is constructed adversarially to highlight
the differences between one-stage and two-stage submodular optimization (see Appendix F).

Table 2 summarizes the key properties of each dataset.

Algorithms. We experiment with different variants of RAOCO (Algorithm 1). The variants dif-
fer in the OCO policy used in the fractional domain; thus, we have RAOCO-OGA, RAOCO-FTRL-L2,
RAOCO-FTRL-H, where we use Online Gradient Ascent (OGA), Follow the Regularized Leader (FTRL)
with L2 regularization and entropy regularization respectively.

Competitor Algorithms. We compare our method with the following online competitors: (1) Random,
which selects a set of ℓ elements uniformly at random at each timestep. (2) One-stage-OGA (1S-OGA),
which runs RAOCO-OGA as if the second stage cardinality constraint was k = ℓ, i.e., (one-stage) online
WTP maximization. We also provide as benchmarks the offline algorithms proposed by prior work,
i.e., Continuous-Optimization (OFLN-CO) [Balkanski et al., 2016] and Replacement-Greedy
(OFLN-RGR) [Stan et al., 2017]. Finally, we report the value of the optimal (integral) solution in
hindsight (OPT).

Metrics. For the online algorithms, we measure the cumulative average reward Ct =
1
t

∑t
τ=1 Ft(xt).

For each dataset, we report the average Ct and its standard deviation over five runs.

Results. Figure 1 shows the average Ct over time t, for each algorithm and each dataset except
HotpotQA; the latter, along with additional results with varying k and ℓ, can be found in Appendix G.
In all cases, two-stage variants of RAOCO (RAOCO-OGA, RAOCO-FTRL-L2, RAOCO-FTRL-H) outper-
form or match the one-stage baseline (1S-OGA). The performance gap is particularly pronounced on
the Influence, Images, and Coverage datasets. In Coverage, our algorithms achieve almost dou-
ble the average reward of 1S-OGA (see Appendix F). Note that OFLN-CO does not apply to Coverage
since it requires k > 1, while k = 1 in that case.

7 Conclusion

We introduce the O2SSM problem and proposed RAOCO, a polynomial-time algorithm that achieves
sublinear α-regret for WTP functions under general matroid constraints. Our method leverages online
convex optimization over a concave relaxation of the reward and combines it with randomized pipage
rounding to obtain integral solutions with strong theoretical guarantees and practical performance.

Limitations and Future Directions. Our analysis is restricted to WTP objectives and assumes full-
information feedback. Extending our framework to general monotone submodular functions and
partial-revelation/bandit feedback remains an interesting open direction.
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Figure 1: Cumulative average reward Ct of RAOCO variants and baselines for each dataset. We report
the average value of Ct over 5 runs. The shaded regions correspond to one standard deviation above
and below the average. Note that OFLN-RGR coincides with OPT in all datasets.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract of our paper we claim that we develop an online algorithm for
the O2SSM problem, with WTP second-stage objectives, that achieves sublinear (1− 1/e)2-
regret under matroid constraints and (1 − 1/e)(1 − e−kkk/k!)-regret under cardinality
constraints. This is exactly the main result of the paper that is stated in Theorem 5.1. We
also state that this result implies an offline approximation algorithm that improves upon
the state-of-the-art for the case of cardinality constraints. We give a proof of this fact and
analyze it further in Appendix J.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our paper are discussed in a dedicated paragraph at the end
of the main body (Section 7). Specifically, our algorithm is designed for Weighted Threshold
Potential (WTP) functions, a subclass of monotone submodular functions. This limitation is
stated in the Abstract, Introduction, and Related Work, and is formalized in Theorem 5.1
and all of the relevant lemmas that build up to the main result.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theoretical results in the paper are formally stated with precise assumptions
and rigorously proved. In particular, Theorem 5.1 provides the main regret bound and is
supported by a complete and constructive proof (see Sections 5.2 and Appendices C, D,E).
The analysis relies on well-defined assumptions such as boundedness of WTP function
parameters and builds up through carefully stated lemmas (e.g., Lemmas 5.2, 5.3, 5.4), each
of which includes detailed and correct proofs. Each formal lemma, theorem, etc. also starts
with a formal statement of its assumptions.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We give a detailed description of all datasets, construction of problem instances,
algorithms and their implementations, hyperparameters, and metrics. See Experiments
Section 6 and Appendix F. Also, our code base is anonymized and available online (see
answer to Q.5).

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to our code in an anonymous repository8 The reposi-
tory includes a detailed README with setup instructions, descriptions of each component,
and commands for reproducing all experiments and baselines reported in the paper. All
datasets used are either publicly available or produced by the given code.

6. Experimental setting/details
8https://github.com/jasonNikolaou/online-two-stage-sub-max
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a comprehensive description of the experimental setup in Ap-
pendix F, including dataset details, objective construction, and evaluation protocols. Table 3
reports the learning rates selected for each algorithm/dataset pair, and we explain the
hyperparameter tuning process used to choose them.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the metric of interest Ct (cumulative average reward), we report its average
value over 5 runs (sampled over input and pipage rounding randomness), along with the
standard deviation (shown via the shaded area). See Figures 1, 2 and 3 and section “Metrics”
in Appendix F.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail the computational setup in the "Setup" paragraph of Appendix F,
including hardware specifications (Apple M2 CPU, 16GB RAM) and software environment.
Each experiment runs efficiently on a personal laptop: every problem instance could be
computed until the time horizon T in less than one minute. No large-scale compute or
specialized hardware was required. Finally, please note that all our algorithms are polynomial
time; we report complexity guarantees in Section 5.2.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
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Justification: Our paper does not release any pretrained models, generative tools, or scraped
datasets that pose a risk of misuse. The work is theoretical and algorithmic in nature, focused
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Answer: [NA]
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subjects.
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
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A Applications

In this section, we provide several applications of online two-stage submodular maximization
(O2SSM), focusing particularly on cases where the second-stage objectives can be modeled via
weighted-threshold potential (WTP) functions. Before we present these applications, we first discuss a
few abstract objectives that can be cast in WTP form. We then use these objectives to define specific
O2SSM applications/instances.

A.1 Examples of WTP functions

Si Salem et al. [2024] give several instances of submodular maximization whose objective can be
expressed as WTP functions. These include influence maximization [Kempe et al., 2003], facility
location [Krause and Golovin, 2014, Frieze, 1974], cache networks [Ioannidis and Yeh, 2016, Li
et al., 2021], similarity caching [Si Salem et al., 2022], demand forecasting [Ito and Fujimaki, 2016],
and team formation [Li et al., 2018]. The objectives of most of these examples are in fact specific
cases of weighted coverage, facility location, or quadratic submodular functions. On account of this,
we review these three types of objectives in this section, and show that they indeed belong to the WTP
class. We refer the interested reader to Si Salem et al. [2024], Karimi et al. [2017], and Stobbe and
Krause [2010] for further discussion on WTP functions and applications.

In our description below, we maintain our convention of describing set functions as functions of
characteristic (i.e., binary) vectors, i.e., of the form f : {0, 1}n → R+.

Weighted Coverage Functions [Karimi et al., 2017]. For V = [n], let {Sℓ}ℓ∈C be a collection
of subsets of V , and cℓ ∈ R≥0 be a weight associated to each subset Sℓ. A weighted set coverage
function f : {0, 1}n → R+ receives as input a y ∈ {0, 1}n representing a subset of V , and receives
value cℓ if Sℓ is “covered” by an element in y; formally,

f(y) =
∑
ℓ∈C

cℓ min

{
1,
∑
i∈Sℓ

yi

}
=
∑
ℓ∈C

cℓ min {1,y ·wℓ} , (10)

where wℓ ∈ {0, 1}n is the characteristic vector of Sℓ. This is clearly a WTP function of the form (5).

Facility Location [Krause and Golovin, 2014, Frieze, 1974, Karimi et al., 2017]. In the classic
facility location problem, we are given a complete weighted bipartite graph G(V ∪ V ′, E), where
V = [n], E = V × V ′, with non-negative weights wv,v′ ≥ 0, v ∈ V ,v ∈ V ′. We are also given a
distibution {pv′}v′∈V ′ , where pv′ ≥ 0, for all v′ ∈ V ′, and

∑
v′∈V ′ pv′ = 1. The decision maker

selects a subset S ⊂ V and each v′ ∈ V responds by selecting the v ∈ S with the highest weight
wv,v′ . The goal is to maximize the average weight of these selected edges, i.e. to maximize

f(S′) =
∑
v′∈V

pv′ max
v∈S

wv,v′ , (11)

given some matroid constraints on S. Set V can be considered a set of facilities and V ′ a set of
customers or tasks to be served, while wv,v′ is the utility accrued if facility v serves tasks v′. The
goal is then to maximize the utility in expectation over a random task sampled from distribution
p ∈ [0, 1]|V

′|), assuming the task is mapped to the best facility in S. Karimi et al. [2017] show
that this objective is a weighted coverage function, of the form (10), because, for y ∈ {0, 1}n the
characteristic vector of S, we have

max
v∈S

wv,v′ =

n−1∑
i=1

(
wπi,v′ − wπi+1,v′

)
min

{
1,
∑i

j=1 yπj

}
+ wπn,v′ min

{
1,
∑n

j=1 yπj

}
(12)

where π : V → V is a permutation such that: wπ1,v′ ≥ wπ2,v′ ≥ . . . ≥ wπn,v′ . Hence, Eq. (11) can
be written in WTP form in the same way as Eq. (10).

Quadratic Submodular Functions [Li et al., 2018, Ito and Fujimaki, 2016]. Consider quadratic
monotone submodular functions f : {0, 1}n → R≥0 of the form

f(x) = h⊺x+
1

2
x⊺Hx, (13)
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where, w.l.o.g., H is symmetric and has zeros in the diagonal. Note that f is monotone and
submodular if and only if : (a) H ≤ 0, and (b) h+Hx ≥ 0, for all x in the feasible domain. We
can write the quadratic term as

x⊺Hx =

n∑
i=1

n∑
j=1

xixjHi,j

=

n∑
i=1

n∑
j=1

(xi + xj −min{1, xi + xj})Hi,j

= 2x⊺H1+ 2

n−1∑
i=1

n∑
j=i+1

(−Hi,j)min{1, xi + xj},

where we used the equality 1 − (1 − x)(1 − y) = x + y − xy = min{1, x + y},∀x, y ∈ {0, 1}.
Therefore, we can write f as

f(x) = min {∞, (h+H1) · x}+
n−1∑
i=1

n∑
j=i+1

(−Hi,j)min{1, xi + xj},

which is a WTP function.

A.2 O2SSM Instances and Applications.

Recommender Systems. The real-time delivery requirements of modern recommender systems
necessitate that they operate in multiple stages [Liu et al., 2022a, Hron et al., 2021, Zheng et al., 2024,
Covington et al., 2016]. In particular, upon a user request, a catalog of items to be recommended
passes through multiple stages, each thinning the set of recommendation candidates passed on to the
next stage. The catalog of items passed to the very first stage is typically restricted heuristically, e.g.,
through item recency, relation to the recommendation surface, etc. It is exactly the catalog design that
passes through the very first stage of the recommendation pipeline that Stan et al. [2017] proposed to
optimize via two-stage submodular maximization, presuming knowledge of the distribution of user
preferences. As discussed in the introduction, the online version of the problem (O2SSM) enables the
adaptation of the catalog in an online fashion, without the prior requirement of the distribution of
user demand.

The motivation for considering submodular (i.e., diminishing-returns) functions to model user
preferences w.r.t. recommendations is natural, and several works model recommender system utilities
via submodular functions [Tschiatschek et al., 2017, Nassif et al., 2018, El-Arini et al., 2009, Yue
and Guestrin, 2011, Mehrotra and Vishnoi, 2023, Evnine et al., 2024]. Several such models involve
WTP functions. For example, El-Arini et al. [2009], Tschiatschek et al. [2017] and Yue and Guestrin
[2011] model user utilities via weighted coverage functions of the form (10): items recommended
“cover” topics or categories ℓ ∈ C, and weights cℓ capture the a user to like that category. In
similarity-based recommendations [Haveliwala et al., 2002, Agrawal et al., 1993, Gionis et al., 1999],
which often model early-stage rankers [Yan et al., 2022, Yang et al., 2020], queries and items are
jointly embedded in the same latent space, and the reward of a recommendated set is the similarity
of nearest/most similar item to the user query. This can naturally be modeled via a facility location
objective (11), where v′ correspond to user/queries, wv,v′ is the similarity between their embeddings,
and p′v corresponds to a distribution or weights over queries.

Team Formation. In high-reliability settings, such as large-scale software companies or municipal
emergency services, organizations must routinely form standby teams capable of reacting to unpre-
dictable, high-stakes events. For instance, a software company may have thousands of engineers, and
each day must select a small subset of individuals to be “on-call” in case of operational incidents (e.g.,
outages, high-severity tickets, etc.). Similarly, emergency response agencies must designate a pool
of responders (e.g., firefighters, paramedics, utility crews) to cover incoming incidents throughout
the day. Each event or incident, when it occurs, brings specific requirements: geographic proximity
or timezone alignment, technical expertise, domain training, or familiarity with particular systems,
neighborhoods, or equipment. In both examples, the organization must commit in advance to a
restricted set of available personnel (i.e., a roster) xt ∈ Xℓ, from which a second-stage selection is
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made once an incident materializes, i.e., yt ∈ YM(xt). Since the distribution over incident types is
unknown and evolves over time, this naturally constitutes an instance of the O2SSM problem.

Team performance requirements are often modeled in the literature using a weighted coverage
function [Nikolakaki et al., 2021, Vombatkere and Terzi, 2023] (see Eq. (10)). In these settings, the
utility of a selected team is determined by how well it satisfies task-specific needs, captured by an
appropriate bipartite graph. Several works [Lappas et al., 2009, Boon and Sierksma, 2003, Li et al.,
2018] model pairwise synergies among team members via quadratic submodular functions (Eq. (13)),
where the matrix H encodes compatibility or redundancy among team members. Both cases fall
within the WTP class.

Influence Maximization. In social networks and marketing platforms, influence maximization
aims to identify a small set of individuals whose activation leads to the largest spread of information,
behaviors, or product adoption. A common strategy is to “seed” selected users, e.g. by offering free
access, promotional incentives, or early content, so that influence propagates through their social
ties. However, running influence maximization over a large-scale network is often computationally
prohibitive, particularly when campaigns or objectives evolve over time. A natural approach is to first
select a restricted set of influential or cooperative users and later select a campaign-specific subset to
activate. Formally, this matches the O2SSM structure: at each round t, a platform selects a restricted
candidate pool xt ∈ Xℓ, from which a seed set yt ∈ YM(xt) of k users is selected, after observing
the influence objective ft (e.g., a new product or message). Since these objectives arrive sequentially
and may reflect different target audiences or goals, the platform must adaptively update xt based on
the influence functions materialized in past rounds, in order to improve the quality of future seed
selections.

Classical models of influence propagation, such as the Independent Cascade and Linear Threshold
models [Kempe et al., 2003], yield monotone submodular objectives that measure the expected
number of activated nodes. In practice, many works study scalable approximations of these models
using weighted coverage functions [Borgs et al., 2014, Tang et al., 2014] (see Eq. (10)), where the
coverage corresponds to reaching key individuals, groups, or communities within the network. These
objectives fall within the WTP class.

B Contention Resolution Schemes

B.1 Background

The framework of Contention Resolution Schemes was formalized by Chekuri et al. [2011] and has
since found many applications. Given some feasibility constraints (usually matroid constraints) over
some groundset V , a Contention Resolution Scheme (CRS) is an algorithm that accepts a random set
R ⊆ V , that is not necessarily feasible, and trims it down to a feasible set π(R) ⊆ R. The goal of
this “rounding” is to ensure that each element is kept with a high enough probability.Most prior work
on CRSs has predominantly focused on product distributions, i.e. on random sets R that include each
element e ∈ V , independently, with some probability xe.

In our setting, we aim to use CRS-based roundings to round second-stage solutions (see Appendix C).
However, the inclusion of an element in the random set R depends on whether it was included in the
rounded groundset by the randomized rounding applied to the first-stage. Since this rounding process
(namely Randomized Pipage Rounding) introduces dependencies between elements, the inclusion
of elements in R is no longer independent, and standard CRSs for product distributions cannot be
directly applied.

Recently, Dughmi [2020, 2022] initiated the study of CRSs under non-product distributions. We build
on this line of work and prove that the distribution over sets R induced by our two-stage rounding
process satisfies a property known as submodular dominance (Definition B.3), which enables the use
of CRSs even in the absence of independence (Corollary B.8).

Notation. For the rest of the section, we fix V = [n] ≡ {1, . . . , n} to be a ground set of n elements.
LetM be a matroid over V and w ∈ Rn

+ be a non-negative vector. We define the weighted rank
function rankw,M : {0, 1}n → R+, which maps every subset U ⊆ V to the weight of the maximum-
weight independent set ofM that is a subset of U . Formally, under our notational convention equating
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sets with their characteristic vectors,

rankw,M(x) = max
y∈YM(x)

w⊤y.

When the matroidM is clear from the context, we will omit it from the subscript and use the notation
rankw. We use ∆({0, 1}n) to denote all possible probability distributions over {0, 1}n. For any
fractional vector x ∈ [0, 1]n, we define the distribution Ind(x) ∈ ∆({0, 1}n) which produces
a random set z ∼ Ind(x) by including every i ∈ [n], independently, with probability xi. For a
distributionD ∈ ∆({0, 1}n), we use µD ∈ [0, 1]n to denote it’s expected value, i.e. µD = Ex∼D[x].

We now give a formal definition of a Contention Resolution Scheme.

Definition B.1 (Contention Resolution Scheme (CRS)). LetM = (V, I) be a matroid over V . A
contention resolution scheme (CRS) ϕ is a randomized function from {0, 1}n to I, with the property
that for all x ∈ {0, 1}n : ϕ(x) ≤ x and ϕ(x) ∈ I.

Of course, the above definition by itself is trivially satisfied. For instance, one could define ϕ to
always return the empty set, which is always feasible but clearly not useful. Intuitively, in CRS-based
roundings, we want to retain each element of the input set with a sufficiently high probability. This
intuition is captured by the notion of selectability, which quantifies the minimum probability with
which each element is preserved (conditioned on it being present in the input set).

Definition B.2 (γ-selectable CRS). LetM = ([n], I) be a matroid over [n] and D ∈ ∆({0, 1}n) be
a distribution over subsets of [n]. A contention resolution scheme (CRS) ϕ is called γ-selectable for
D, if for any x ∼ D and every i ∈ [n] it holds that Prx∼D,ϕ[ϕ(x)i = 1|xi = 1] ≥ γ.

To extend the applicability of CRSs beyond product distributions, we need a structural property of
distributions that enables approximation guarantees even in the presence of dependencies. One such
property is submodular dominance [Dughmi, 2020, Qiu and Singla, 2022], which intuitively ensures
that a distribution is “at least as good” as its independent counterpart when evaluated against any
submodular function. We give the formal definition below.

Definition B.3 (Submodular dominance). A distributionD ∈ ∆({0, 1}n) has the property of submod-
ular dominance if for every submodular function f it holds that Ex∼D[f(x)] ≥ Ex∼Ind(µD)[f(x)].

We now proceed by stating the properties of some state-of-the-art contention resolution schemes for
product distributions, i.e. Ind(x) for some x ∈ P(M). We also state a necessary and sufficient
condition for the existence of a γ-selectable CRS for a distribution D.

Lemma B.4 (Chekuri et al. [2011]). For any matroid M and any x ∈ P(M), there exists a
contention resolution scheme ϕ that is (1− 1/e)-selectable for the distribution Ind(x).

The above result holds for any matroid and is known to be asymptotically optimal for general matroids
under product distributions [Chekuri et al., 2011]. For specific matroids, however, stronger guarantees
are possible. In particular, the following lemma gives a tighter selectability bound for uniform
matroids of rank k.

Lemma B.5 (Kashaev and Santiago [2023]). LetM′ be the uniform matroid of rank k. There exists
a contention resolution scheme ϕ′ that is (1 − e−kkk/k!)-selectable for the matroidM′ and the
distribution Ind(x) for any x ∈ P(M′).

Both the aforementioned results (Lemmas B.4 and B.5) admit constructive proofs, i.e. the respective
contention resolution schemes are implementable in polynomial time and they are described in
Chekuri et al. [2011] and Dughmi [2020] respectively. However, our algorithm does not rely on these
constructions, as they are only needed in Appendix C for analysis purposes.

We now step away from product distributions and state a recent result of Dughmi [2020] that gives a
necessary and sufficient condition for the existence of a γ-selectable CRS for a distribution D.

Lemma B.6 (Dughmi [2020]). LetM be a matroid over [n] and D ∈ ∆({0, 1}n) be a distribution
over subsets of [n]. For any γ ∈ [0, 1], the following are equivalent.
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a) There exists a contention resolution scheme ϕ that is γ-selectable for D.

b) For every weight vector w ∈ Rn
+, it holds that

E
x∼D

[rankw(x)] ≥ γ · E
x∼D

∑
i∈[n]

wixi

 .

Using the previous lemma, one can prove that the property of submodular dominance (Definition B.3)
is also sufficient for the existence of a γ-selectable CRS. The latter has been stated informally by
Dughmi [2020]. We state it formally in the next lemma and give a small proof for completeness.
Lemma B.7 (Dughmi [2020]). LetM be a matroid over [n] and D ∈ ∆(2[n]) be a distribution over
subsets of [n]. Suppose that D has the property of submodular dominance (Def. (B.3)). Then, for any
γ ∈ [0, 1], if there exists a γ-selectable CRS for Ind(µD), then there also exists a γ-selectable CRS
for D.

Proof of Lemma B.7. Fix any weight vector w ∈ Rn
+. Notice that

E
x∼Ind(µD)

∑
i∈[n]

wixi

 =
∑
i∈[n]

wi E
x∼Ind(µD)

[xi] =
∑
i∈[n]

wi E
x∼D

[xi] = E
x∼D

∑
i∈[n]

wixi

 ,

because Ex∼D[xi] = Ex∼Ind(µD)[xi] = (µD)i, for all i ∈ [n].

If the distribution Ind(µD) has a γ-selectable CRS, then by Lemma B.6(b), we get that

E
x∼Ind(µD)

[rankw(x)] ≥ γ · E
x∼Ind(µD)

∑
i∈[n]

wixi

 = γ · E
x∼D

∑
i∈[n]

wixi

 .

Since the weighted rank function is submodular for any non-negative vector w [Schrijver, 2003], we

can use the submodular dominance property of D to get
E

x∼D
[rankw(x)] ≥ E

x∼Ind(µD)
[rankw(x)].

Combining the latter inequalities gives us that

E
x∼D

[rankw(x)] ≥ γ · E
x∼D

∑
i∈[n]

wixi

 ,

which by Lemma B.6 implies that there exists a γ-selectable CRS for D.

Finally, by combining Lemmas B.7, B.4 and B.5 we get the following corollary, which we will use in
our analysis (Appendix C).

Corollary B.8. LetM = ([n], I) be a matroid and D ∈ ∆(2[n]) be a distribution over subsets of [n]
for which the following hold: (1) µD ∈ P(M), (2) for every submodular function f , Ex∼D[f(x)] ≥
Ex∼Ind(µD)[f(x)]. Then, there exists a cM-selectable CRS for D, where cM = 1− e−kkk/k! ifM
is a uniform matroid of rank k and cM = 1− 1/e otherwise.

B.2 CRS-Based Roundings of WTP Functions

We now state some useful lemmas for CRS-based rounding processes that are used to convert
fractional solutions into integral ones; we use this to provide a bound on the expectation of a WTP
function w.r.t. its concave relaxation.

First, we state a lemma by Chekuri et al. [2011], which proves that applying a γ-selectable CRS
to a random set x ∼ D produces a feasible solution whose expected value, under any monotone
submodular function f , is at least a γ fraction of the value of f under the independent distribution
with the same marginals as D.
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Lemma B.9 (Chekuri et al. [2011]). Let f be a monotone and non-negative submodular function
over 2[n] and ϕ be a γ-selectable CRS for a distribution D. Then,

E
x∼D,ϕ

[f(ϕ(x))] ≥ γ · E
x∼Ind(µD)

[f(x)].

The following result, due to Si Salem et al. [2024], shows that under a mild negative correlation
condition, the expected value of a WTP function under a distribution D is well-approximated by its
concave relaxation (as defined in Eq. (6)), evaluated at its expected vector µD.

Lemma B.10 (Si Salem et al. [2024]). Let f be a WTP function and f̃ be its concave relaxation as
defined in Eq. (6). Let also D ∈ ∆(2[n]) be a distribution over subsets of [n], such that for any subset
S ⊆ [n], Ex∼D

[∏
i∈S xi

]
≤
∏

i∈S Ex∼D[xi]. Then,

E
x∼D

[f(x)] ≥
(
1− 1

e

)
f̃(µD).

Finally, we combine Lemma B.9 and Lemma B.10 to derive the following approximation guarantee
for the expected value of a WTP function after applying a γ-selectable CRS.

Lemma B.11. Let f be a WTP function and f̃ be its concave relaxation as defined in Eq. (6). Let also
ϕ be a γ-selectable CRS for a distribution D ∈ ∆(2[n]). Then,

E
x∼D,ϕ

[f(ϕ(x))] ≥ γ ·
(
1− 1

e

)
f̃(µD).

Proof of Lemma B.11. Notice that the distribution Ind(µD) satisfies the properties of Lemma B.10,
since for every subset S ⊆ [n] we have that Ex∼Ind(µD)

[∏
i∈S xi

]
=
∏

i∈S Ex∼Ind(µD)[xi]. There-
fore, from Lemma B.10 we get

E
x∼Ind(µD)

[f(x)] ≥
(
1− 1

e

)
f̃(µD).

The proof is completed by combining the latter inequality with Lemma B.9:

E
x∼D,ϕ

[f(ϕ(x))] ≥ γ · E
x∼Ind(µD)

[f(x)] ≥ γ ·
(
1− 1

e

)
f̃(µD).

C Proof of Lemma 5.4

In this section, we prove Lemma 5.4, which shows that the expected reward of the rounded ground
set, obtained by applying Randomized Pipage Rounding to a fractional ground set, approximately
preserves the value of the initial fractional ground set. Specifically, we aim to show that for any WTP
function f and any fractional ground set x̃ ∈ X̃ℓ, the expected reward of the rounded ground set
x = Ξ(x̃) satisfies

EΞ[F (Ξ(x̃))] ≥ cM(1− 1/e) · F̃ (x̃),

where F (x) = maxy∈YM(x) f(y) is the reward of the rounded ground set (Eq. (7)) and F̃ (x̃) =

maxỹ∈ỸM(x̃) f̃(ỹ) is the concave relaxation of the reward function (Eq. (8)). The constant cM
depends on the structure of the second-stage matroid.

As a reminder, for a ground set x ∈ Xℓ, the set of feasible second stage solutions, is the restriction of
the matroidM to the set x, i.e. YM(x) = {y ∈ {0, 1}n : y ∈M, y ≤ x}. In the same manner, for
a fractional ground set x̃ ∈ X̃ℓ, the corresponding fractional relaxation of the second-stage feasible
solutions is ỸM(x̃) = {ỹ ∈ [0, 1]n : ỹ ∈ P(M), ỹ ≤ x̃}.

High-level description. On a high-level, we need to show that the value attained by maximizing a
WTP function over the fractional ground set remains approximately the same when we transition to the
rounded ground set. To establish this, we design a two-stage randomized rounding procedure, used
purely for analysis, which transforms any fractional second-stage solution into a feasible integral
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one that has, in expectation, approximately the same value. This construction is coupled with the
Randomized Pipage Rounding used by RAOCO to select the integral ground set. The rounding is
performed in two steps: First, a fractional second-stage solution is mapped to an intermediate integral
vector that lies within the selected ground set but may violate the matroid constraints. Then, we
apply a contention resolution scheme (CRS) to trim the intermediate vector to a feasible solution
(for more details on CRSs see Appendix B). A key challenge is that standard CRSs typically need
each element of the input vector to have been included in it independently of other elements. This
assumption does not hold in our case since the intermediate vector depends on the outcome of the
Randomized Pipage Rounding which introduces dependencies across elements. However, we show
that the intermediate vector exhibits the property of submodular dominance (Def. (B.3)) which allows
us to use state-of-the art CRS guarantees (Corollary B.8). We now formalize this construction and
use it to prove Lemma 5.4.

Rounding Description. Fix any x̃ ∈ X̃ℓ and x ∈ Xℓ. Let also ỹ ∈ ỸM(x̃) be a second stage
solution that is consistent with x̃. To map ỹ ∈ YM(x̃) to a solution y ∈ YM(x), we first round ỹ
to an intermediate solution ŷ, through a randomized rounding Q. The intermediate solution ŷ is
always feasible for the new groundset x, i.e. ŷ ≤ x, but it might violate the matroid constraints.
For this reason, we pass it through a contention resolution scheme ϕ to trim it down to a solution
y = ϕ(ŷ) ≤ ŷ ≤ x that also respects the matroid constraints. On a high level, the rounding
procedure we described can be seen in the following diagram.

ỹ ∈ ỸM(x̃)
Q−−→

uses
x̃,x

ŷ
ϕ−→ y ∈ YM(x)

Formally, the rounding Q accepts x̃, x and ỹ ∈ ỸM(x̃) and produces ŷ = Q(ỹ, x̃,x). For i ∈ [n],
let ai be

ai =

{
ỹi

x̃i
, if x̃i ̸= 0,

0, otherwise.

The rounding Q is defined follows: first, it samples n independent Bernoulli random variables,
c1, . . . , cn, with ci ∼ Ber(ai). Then, it sets the i-th coordinate of the resulting vector ŷ to be

ŷi =

{
1, if xi = 1 and ci = 1,

0, otherwise.

In other words, ŷ = x ∧ c. By construction, ŷ only uses elements that are in the groundset x, i.e.
ŷ ≤ x. However, it does not necessarily satisfy the matroid constraints. For this reason, we pass
ŷ through a contention resolution scheme ϕ for the matroidM, to obtain y = ϕ(ŷ). We do not
instantiate the scheme ϕ yet, but we remark that using any contention resolution scheme for the
matroidM, will result in a set y that is a feasible second-stage solution for the rounded ground set,
i.e. y ∈ YM(x). We state this formally in the following lemma.

Lemma C.1. Fix any x̃ ∈ X̃ℓ, any x ∈ Xℓ and any ỹ ∈ ỸM(x̃). Let ŷ = Q(ỹ, x̃,x) and y = ϕ(ŷ),
where ϕ is a contention resolution scheme for the matroidM. Then, y ∈ YM(x).

Proof of Lemma C.1. Recall that YM(x) contains all the independent sets ofM that are also subsets
of x. By definition of the rounding Q, if xi = 0 for some coordinate i ∈ [n], then ŷi = 0. This means
that ŷ is a subset of x, i.e. ŷ ≤ x. By the definition of contention resolution schemes (Def. B.1), we
know that y = ϕ(ŷ) ≤ ŷ ≤ x and y = ϕ(ŷ) ∈ I, where I is the family of independent sets of the
matroidM. Therefore, y ∈ YM(x).

Knowing that the resulting vector is always feasible allows us to link the expected value of the
transformed solution with the reward of the rounded groundset x.
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Lemma C.2. Fix any WTP function f and its correspoding reward function F , as defined in Eq. (7).
Then, for any x̃ ∈ X̃ℓ and any ỹ ∈ ỸM(x̃) it holds that

E
x∼Ξ(x̃)

[F (x)] ≥ E
x∼Ξ(x̃)

[
E

y∼ϕ(Q(ỹ,x̃,x))
[f(y)]

]
.

Proof. Fix a vector x0 ∈ Xℓ and let ŷ = Q(ỹ, x̃,x0) and y = ϕ(ŷ). The expected value of the
produced vector, y, is

E
y∼ϕ(Q(ỹ,x̃,x0))

[f(y)] .

By Lemma C.1 we know that y ∈ YM(x0). This means that there must exist a y′ ∈ YM(x0) whose
value is at least the expected value of the produced vector, i.e.

f(y′) ≥ E
y∼ϕ(Q(ỹ,x̃,x0))

[f(y)] .

By the definition of the reward function F (Eq. (7)), we have that

F (x0) ≥ f(y′) ≥ E
y∼ϕ(Q(ỹ,x̃,x0))

[f(y)] .

Notice that the above inequality holds for any x0 ∈ Xℓ. We multiply this inequality by the probability
that x0 is the result of Randomized Pipage Rounding on x̃ and then sum up the corresponding
inequalities for all x0 ∈ Xℓ:∑

x0∈Xℓ

F (x0) · Pr
x∼Ξ(x̃)

[x = x0] ≥
∑

x0∈Xℓ

E
y∼ϕ(Q(ỹ,x̃,x0))

[f(y)] · Pr
x∼Ξ(x̃)

[x = x0]

⇒ E
x∼Ξ(x̃)

[F (x)] ≥ E
x∼Ξ(x̃)

[
E

y∼ϕ(Q(ỹ,x̃,x))
[f(y)]

]
Having the above lemma, we will now turn our focus on analyzing the expected value of f(y) when
x has been produced by Randomized Pipage Rounding. We start by proving some properties for ŷ
and then “instantiate” the contention resolution scheme ϕ.

In order to make the notation simpler, we will use Q(ŷ, x̃,Ξ(x̃)) to denote the distribution Q(ŷ, x̃,x)
where x ∼ Ξ(x̃). We begin by showing that the expected value of ŷ is the initial fractional solution ỹ.

Lemma C.3. For any x̃ ∈ X̃ℓ and any ỹ ∈ ỸM(x̃) it holds that

E
ŷ∼Q(ỹ,x̃,Ξ(x̃))

[ŷ] = ỹ.

Proof of Lemma C.3. Fix an index i ∈ [n]. If x̃i = 0 then ỹi = 0. This because ỹ ∈ ỸM(x̃) which
implies that ỹ ≤ x̃. In this case, we have that yi = 0 = ŷi. In the case where x̃i ̸= 0, the following
is true

Pr
Ξ,Q

[ŷi = 1] = Pr
Ξ,Q

[ci = 1 ∧ xi = 1] = Pr
Q
[ci = 1] ·Pr

Ξ
[xi = 1]

Lem. I.1
=

ỹi

x̃i
· x̃i = ỹi,

where in the second to last inequality we used Lemma I.1 for the marginals of the Randomized Pipage
rounding.

In all cases we have that EΞ,Q[ŷi] = PrΞ,Q[ŷi = 1] = ỹi, which concludes the proof.

We continue by showing that the distribution Q(ỹ, x̃,Ξ(x̃)) exhibits the propery of submodular
dominance (Def. (B.3)).

Lemma C.4. For any x̃ ∈ X̃ℓ and any ỹ ∈ ỸM(x̃), the distribution Q(ỹ, x̃,Ξ(x̃)) has the property
of submodular dominance (Def. B.3), i.e. for every submodular function f it holds that

E
ŷ∼Q(ỹ,x̃,Ξ(x̃))

[f(ŷ)] ≥ E
ŷ∼Ind(ỹ)

[f(ŷ)] .
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Proof of Lemma C.4. Let p ∈ [0, 1]n be a vector whose i-th coordinate is defined as

pi =

{
ỹi

x̃i
, if x̃i ̸= 0

0, otherwise
.

Fix any submodular function f . We define the function g : 2[n] → R as

g(x)
△
= E

z∼Ind(p)
[f(x ∧ z)] .

Intuitively, g maps every set x to its expected value after removing each one of its elements indepen-
dently with probability pi. Notice that this is exactly what the rounding Q does to every rounded
ground set x. In other words, ŷ is simply the result of setting the i-th coordinate of x to zero,
independently, with probability pi. From this observation we get that

E
ŷ∼Q(ỹ,x̃,Ξ(x̃))

[f(ŷ)] = E
x∼Ξ(x̃)

[
E

z∼Ind(p)
[f(x ∧ z)]

]
= E

x∼Ξ(x̃)
[g(x)] .

In a similar manner, we have that

E
ŷ∼Ind(ỹ)

[f(ŷ)] = E
x∼Ind(x̃)

[
E

z∼Ind(p)
[f(x ∧ z)]

]
= E

x∼Ind(x̃)
[g(x)] .

We conclude the proof by showing that the function g is submodular and then applying the submodular
dominance property of the Randomized Pipage Rounding (Lemma I.2).

To prove the submodularity of g, fix a subset z ∈ {0, 1}n and two other subsets x,y ∈ {0, 1}n. By
the submodularity property of f applied to the sets (x ∧ z) and (y ∧ z), we have that

f(x ∧ z) + f(y ∧ z) ≥ f
(
(x ∧ z) ∧ (y ∧ z)

)
+ f

(
(x ∧ z) ∨ (y ∧ z)

)
= f

(
(x ∧ y) ∧ z

)
+ f

(
(x ∨ y) ∧ z

)
.

We write the above inequality for any z0 ∈ {0, 1}n and multiply both sides with Prz∼Ind(p)[z = z0].
By summing up all the aforementioned inequalities we get∑

z0∈{0,1}n

(f(x ∧ z) + f(y ∧ z)) · Pr
z∼Ind(p)

[z = z0]

≥
∑

z0∈{0,1}n

(
f
(
(x ∧ y) ∧ z

)
+ f

(
(x ∨ y) ∧ z

))
· Pr
z∼Ind(p)

[z = z0]

⇒ E
z∼Ind(p)

[f(x ∧ z)] + E
z∼Ind(p)

[f(y ∧ z)]

≥ E
z∼Ind(p)

[f
(
(x ∧ y) ∧ z

)
] + E

z∼Ind(p)
[f
(
(x ∨ y) ∧ z

)
]

⇒ g(x) + g(y) ≥ g(x ∧ y) + g(x ∨ y)

which proves that g is submodular.

We conclude the proof by applying Lemma I.2 to g,

E
ŷ∼Q(ỹ,x̃,Ξ(x̃))

[f(ŷ)] = E
x∼Ξ(x̃)

[g(x)]
Lem. I.2
≥ E

x∼Ind(x̃)
[g(x)] = E

ŷ∼Ind(ỹ)
[f(ŷ)].

Using the above properties for ŷ, we will now show that there exists an “appropriate” CRS ϕ, which
we will use to finally prove Lemma 5.4.

Lemma C.5. For any x̃ ∈ X̃ℓ and any ỹ ∈ ỸM(x̃), there exists a cM-selectable CRS for the
distribution Q(ỹ, x̃,Ξ(x̃)) and the matroid M, where cM = 1 − e−kkk/k! if M is a uniform
matroid with rank k and cM = 1− 1/e otherwise.
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Proof of Lemma C.5. Let cM be the constant mentioned in the statement of the lemma. From
Corollary B.8, we know that in order for a distribution to have a cM-selectable CRS, it suffices that
it’s expectation is in the matroid polytope and that is has the property of submodular dominance. Fix
any pair of x̃ ∈ X̃ℓ and ỹ ∈ ỸM(x̃). For each such pair, Q(ỹ, x̃,Ξ(x̃)) defines a distribution over
subsets of [n] that depends on the randomness of Q and Ξ. From Lemma C.3 we have that

E
ŷ∼Q(ỹ,x̃,Ξ(x̃))

[ ŷ ] = ỹ ∈ P(M),

which is in the matroid polytope since ỹ ∈ ỸM(x̃). Furthermore, from Lemma C.4, we know that the
distribution Q(ỹ, x̃,x) has the property of submodular dominance. As a result, using Corollary B.8,
we get that there exists a cM-selectable CRS for the distribution Q(ỹ, x̃,Ξ(x̃)).

We are now ready to prove Lemma 5.4.

Proof of Lemma 5.4. For any solution ỹ ∈ ỸM(x̃) and any contention resolution scheme ϕ, from
Lemma C.2 we know that

E
x∼Ξ(x̃)

[F (x)] ≥ E
x∼Ξ(x̃)

[
E

y∼ϕ(Q(ỹ,x̃,x))
[f(y)]

∣∣ ] = E
ŷ∼Q(ỹ,x̃,Ξ(x̃))

[f(ϕ(ŷ))] .

By selecting ϕ to be the cM-selectable contention resolution scheme guaranteed by Lemma C.5 and
applying Lemma B.11, we get the following

E
ŷ∼Q(ỹ,x̃,Ξ(x̃))

[f(ϕ(ŷ))]
Lem. B.11
≥ cM ·

(
1− 1

e

)
· f̃(ỹ),

where f̃ is the concave relaxation of the WTP function f , as defined in Eq. (6).

Let y∗ ∈ argmaxy∈ỸM(x̃) f̃(y). By selecting ỹ = y∗ in the above inequality we get

E
x∼Ξ(x̃)

[F (x)] ≥ cM ·
(
1− 1

e

)
· f̃(y∗) = cM ·

(
1− 1

e

)
· F̃ (x̃),

where in the last equality we used that F̃ (x̃) = f̃(y∗) by the definition of the fractional reward
function (Eq. (8)).

D Regret of OCO Policies in Fractional O2SSM

In this section, we prove Lemma 5.2 which states that any standard OCO policy (e.g., FTRL or OGA,
see Appendix H for more details) has no-regret in the fractional relaxation of O2SSM.

Notation. We introduce some extra notation regarding matroids that we will use in our proofs in
this section. For a matroidM = (V, I), the rank function ofM, rank : 2V → N, maps each set
U ⊆ [n] to the size of the largest independent set contained in U . Also, the matroid polytope P(M)
can equivalently be written as: P(M) = {ỹ ∈ [0, 1]n :

∑
i∈S ỹi ≤ rank(S), ∀S ⊆ V}.

First, we will show that the fractional reward function F̃ associated with a WTP function f is concave
and Lipschitz. These two properties are proven in the next two lemmas (Lemmas D.1 and D.2).

Lemma D.1. Let f be any WTP function, f̃ be its concave relaxation as defined in Eq. (6) and F̃ be
the concave relaxation of the reward function associated with f̃ , as defined in Eq. (8). Then, F̃ is
concave over the domain X̃ℓ.

Proof of Theorem D.1. Recall that F̃ is defined in Eq. (8) as

F̃ (x̃) = max
ỹ∈ỸM(x̃)

f̃(ỹ), ∀x̃ ∈ X̃ℓ.
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Let x̃1, x̃2 ∈ X̃ℓ be any two fractional restricted ground sets. We will show that for any λ ∈ [0, 1],
the following holds

F̃t(λx̃1 + (1− λ)x̃2) ≥ λF̃t(x̃1) + (1− λ)F̃t(x̃2).

We define the vectors ỹ1 ∈ ỸM(x̃1) and ỹ2 ∈ ỸM(x̃2) as follows

ỹ1 = argmax
ỹ∈ỸM(x̃1)

f̃t(ỹ) and ỹ2 = argmax
ỹ∈ỸM(x̃2)

f̃t(ỹ).

It holds that

λF̃ (x̃1) + (1− λ)F̃ (x̃2) = λf̃(ỹ1) + (1− λ)f̃(ỹ2)

≤ f̃(λỹ1 + (1− λ)ỹ2)

≤ max
ỹ∈ỸM(λx̃1+(1−λ)x̃2)

f̃(ỹ)

= F̃ (λx̃1 + (1− λ)x̃2),

where first inequality is true by the concavity of f̃ and to get the second inequality we used the fact
that λỹ1 + (1− λ)ỹ2 ∈ ỸM(λx̃1 + (1− λ)x̃2), which we prove below.

The memberships ỹ1 ∈ ỸM(x̃1) and ỹ2 ∈ ỸM(x̃2) imply the following inequalities:λỹ1 ≤ λx̃1,

λ
∑
i∈S

ỹ1,i ≤ λ rank(S),∀S ⊆ V and

(1− λ)ỹ2 ≤ (1− λ)x̃2,

(1− λ)
∑
i∈S

ỹ2,i ≤ (1− λ)rank(S), ∀S ⊆ V.

Adding up the above inequalities gives us that λỹ1 + (1− λ)ỹ2 ∈ ỸM(λx̃1 + (1− λ)x̃2), which
concludes the proof.

Note that the proof of Lemma D.1 does not actually require that f is a WTP function; the lemma
follows for any f that admits a concave relaxation f̃ .

The following lemma establishes the Lipschitz property of F̃ :

Lemma D.2. Let f ∈ FG,M be a WTP function, as defined in Eq. (5). Let also f̃ be its concave
relaxation, as defined in Eq. (6) and F̃ be the corresponding first-stage relaxation associated with f̃ ,
as defined in Eq. (8). Then, F̃ is GM2

√
n-Lipschitz.

Proof of Lemma D.2. Recall the definitions of f̃ (Eq. (6)) and F̃ (Eq. (8)):

f̃(ỹ) =
∑
j∈C

cj min {bj , ỹ ·wj} , ỹ ∈ [0, 1]n and F̃ (x̃) = max
ỹ∈Ỹ(x̃)

f̃(ỹ), x̃ ∈ X̃ℓ.

Recall that the family FG,M consists of the WTP functions whose index set C has size at most G and
whose parameters cj , bj , wij are upper bounded by M .

Fix an x̃ ∈ X̃ℓ and let ỹ ∈ argmaxz∈ỸM(x̃) f̃(z). As we show in Appendix E, computing the reward

F̃ (x̃) can be cast into a linear program. We focus on a dimension i ∈ [n] and employ a sensitivity
analysis to upper bound how much the objective value of this linear program can increase when
we increase the i-th coordinate of x̃ by ϵ, i.e. x̃′ = x̃ + ϵ · ei. Notice that x̃i appears only as the
right-hand side in the constraint ỹi ≤ x̃i. Therefore, by increasing x̃i to x̃′

i = x̃i + ϵ, the objective
function can increase by at most: ∑

j∈C
ϵ|cj ||wji| ≤ ϵGM2.
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Furthermore, by decreasing a coordinate of x̃, the objective value can only stay the same or decrease.
Therefore, for two points x̃1, x̃2 ∈ X̃ℓ with F̃ (x̃2) ≥ F̃ (x̃1) we get that

|F̃ (x̃2)− F̃ (x̃1)| = F̃ (x̃2)− F̃ (x̃1)

≤ GM2 ·
∑
i∈[n]

(x2i − x1i)
+

≤ GM2 ·
∑
i∈[n]

|x2i − x1i|

= GM2 · ∥x̃2 − x̃1∥1
≤ GM2

√
n · ∥x̃2 − x̃1∥2.

Lemma D.3. The diameter of the convex set X̃ℓ is at most 2ℓ.

Proof. For the diameter D of the set X̃ℓ it holds that

D = max
x̃1,x̃2∈X̃ℓ

∥x̃2 − x̃1∥2

≤ max
x̃1,x̃2∈X̃ℓ

∥x̃2 − x̃1∥1

≤ max
x̃1,x̃2∈X̃ℓ

∥x̃2∥1 + ∥x̃1∥1

≤ 2ℓ,

where for the last inequality we used that ∥x̃∥1 ≤ ℓ, ∀x̃ ∈ X̃ℓ.

We are now ready to prove Lemma 5.2, which we restate below for convenience.

Lemma 5.2. Let {ft}Tt=1 ⊆ FG,M be a sequence of WTP functions, let {Ft}Tt=1 be the corresponding
reward functions as defined in Eq. (7) and {F̃t}Tt=1 be the corresponding concave relaxations of the
reward functions as defined in Eq. (8). Suppose that {x̃t}Tt=1 is the sequence of fractional restricted
ground sets computed by the OCO policy of Algorithm 1. Then,

max
x∈Xℓ

T∑
t=1

Ft(x)−
T∑

t=1

F̃t(x̃t) = O
(
ℓGM2

√
n
√
T
)
.

Proof of Lemma 5.2. The fractional reward functions F̃ are concave (Lemma D.1) and Lipschitz
(Lemma D.2) and the set of actions, X̃ℓ has diameter at most 2ℓ (Lemma D.3). Therefore, by the
standard regret analysis (Theorem 3.1) we get that

max
x̃∈X̃ℓ

T∑
t=1

F̃t(x̃)−
T∑

t=1

F̃ (x̃t) = O(ℓGM2
√
n
√
T ).

The proof of the lemma is completed by noticing that

max
x̃∈Xℓ

T∑
t=1

Ft(x̃) ≤ max
x̃∈Xℓ

T∑
t=1

F̃t(x̃) ≤ max
x̃∈X̃ℓ

T∑
t=1

F̃t(x̃),

because F̃ (x̃) = F (x̃), ∀x̃ ∈ Xℓ and Xℓ ⊂ X̃ℓ.

E Supergradient Computation

In this section, we show how to efficiently compute the supergradient of F̃ (x̃) for any x̃. See
Algorithm 2 for the pseudocode. In particular, we are going to prove Lemma 5.3, which we restate
below for convenience.
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Lemma 5.3. Let f ∈ FG,M be a WTP function and let F̃ be the corresponding fractional reward
function, as defined in Eq. (8). For any fractional restricted ground set x̃ ∈ X̃ℓ, both the time to
compute F̃ and the time to compute a supergradient of F̃ at x̃ are polynomial in n,G and logM .

Proof of Lemma 5.3. Consider the concave program:

F̃ (x̃) = max
ỹ∈ỸM(x̃)

∑
j∈C

cj min {bj , ỹ ·wj} ,

where the feasible region is given by ỸM(x̃) = {ỹ ∈ [0, 1]n : ỹ ∈ P(M), ỹ ≤ x̃}. Let ỹ⋆ be an
optimal solution to this program. We will show that the dual variables λ = (λ1, . . . , λn) associated
with the constraints ỹi ≤ x̃i are a valid supergradient of F̃ at x̃.

First, we linearize the concave objective. For each j ∈ C, we introduce an auxiliary variable zj and
enforce zj ≤ bj and zj ≤ ỹ ·wj . This yields the equivalent linear program:

max
ỹ,z

∑
j∈C

cjzj

s.t. zj ≤ bj , ∀j ∈ C,
zj ≤ ỹ ·wj , ∀j ∈ C,
ỹ ∈ P(M),

ỹ ≤ x̃.

Next, we show how to solve the above linear program using the ellipsoid method. The main
requirement is to construct a separation oracle for the feasible set. Crucially, for any ỹ ∈ [0, 1]n, we
can check membership in P(M) = {ỹ ∈ [0, 1]n :

∑
i∈S ỹi ≤ rank(S), ∀S ⊆ V} by solving the

submodular maximization problem

max
S⊆[n]

(∑
i∈S

ỹi − r(S)

)
,

where r(·) is the matroid rank function. This can be done efficiently via the greedy algorithm [Ed-
monds, 2003, Schrijver, 2003]. If ỹ /∈ P(M), we return the most violated constraint. The rest of the
constraints zj ≤ bj , zj ≤ ỹ ·wj , ỹ ≤ x̃ can be explicitly checked in polynomial time.

We solve the linearized primal LP using the ellipsoid method. During the process, the ellipsoid method
generates only a polynomial number of constraints from the exponential family that are necessary
to define the optimal face of the feasible region. We then reconstruct a reduced LP consisting of
these constraints along with the explicit ones (i.e., zj ≤ bj , zj ≤ ỹ ·wj , and ỹ ≤ x̃). This approach
follows a standard technique for solving LPs with exponentially many constraints via the ellipsoid
method and extracting a reduced LP from the active constraints [Grötschel et al., 2012, Schrijver,
1998].

This reduced LP has polynomial size and can be solved in polynomial time using an interior-point
method [Nesterov and Nemirovskii, 1994, Boyd, 2004], or efficiently in practice using the simplex
method. Both types of solvers return the primal and dual optimal solutions. In particular, we obtain
the vector of dual variables λ = (λ1, . . . , λn) corresponding to the constraints ỹi ≤ x̃i.

These dual variables constitute a valid supergradient of F̃ at x̃ [Boyd, 2004]. That is, for any x̃′ ∈ Rn,

F̃ (x̃′) ≤ F̃ (x̃) + ⟨λ, x̃′ − x̃⟩ .
We give the pseudocode of the above procedure in Algorithm 2.

For completeness, we show that the vector of dual variables λ is a valid supergradient. This result is
proven in Chapter 5.6 of Boyd [2004], which establishes the correspondence between dual variables
and subgradients in parametric convex optimization. Consider the following optimization problem:

max
ỹ

f(ỹ)

s.t. ỹ ∈ P(M)

ỹ ≤ x̃

0 ≤ ỹ ≤ 1.
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Algorithm 2 Compute Supergradient of F̃ (x̃)

Require: Point x̃ ∈ [0, 1]n, matroidM
1: Define the LP:

max
ỹ,z

∑
j∈C

cjzj

s.t. zj ≤ bj , zj ≤ ỹ ·wj ∀j ∈ C,
ỹ ∈ P(M), ỹ ≤ x̃

2: if P(M) has polynomially many constraints then
3: Solve the LP using a solver that returns both primal and dual solutions (e.g., interior-point)
4: else
5: Solve the LP using the ellipsoid method with a separation oracle for P(M)
6: Record the violated constraints identified by the oracle during optimization
7: Construct a reduced LP with:

• the recorded matroid constraints,
• the explicit constraints: zj ≤ bj , zj ≤ ỹ ·wj , and ỹ ≤ x̃

8: Solve the reduced LP using a solver that provides access to the dual variables
9: end if

10: return dual variables λ = (λ1, . . . , λn) corresponding to constraints ỹi ≤ x̃i

The Lagrangian is:

L(ỹ,λ,ν,µ) = f(ỹ) +
∑
i

λi(xi − yi) +
∑
i

νi(1− yi) +
∑
S⊆[n]

µS1S(ỹ),

where 1S(ỹ) is an indicator function that is 1 if ỹ ∈ S and 0 otherwise.

The dual function is:

g(λ,ν,µ) = min
ỹ
L(ỹ,λ,ν,µ).

The optimal value of the primal problem is:

F̃ (x̃) = max
λ≥0,ν≥0,µ≥0

g(λ,ν,µ).

Now, suppose that we perturb x̃ to x̃′ = x̃+ u. The perturbed optimization problem becomes:

max
ỹ

f(ỹ)

s.t. ỹ ∈ P(M)

ỹ ≤ x̃′ = x̃+ u

0 ≤ ỹ ≤ 1.

The Lagrangian for the perturbed problem is:

L′(ỹ,λ,ν,µ) = f(ỹ) +
∑
i

λi ((xi + ui)− yi) +
∑
i

νi(1− yi) +
∑
S∈[n]

µS1S(y),

which simplifies to:

L′(ỹ,λ,ν,µ) = L(ỹ,λ,ν,µ) +
∑
i

λiui.

Minimizing over ỹ, the perturbed dual function is:

g′(λ,ν,µ) = g(λ,ν,µ) +
∑
i

λiui.
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The optimal value of the perturbed problem is:

F̃ (x̃′) = max
λ≥0,ν≥0,µ≥0

g′(λ,ν,µ) = max
λ≥0,ν≥0,µ≥0

(
g(λ,ν,µ) +

∑
i

λiui

)
.

Thus, we get the inequality:

F̃ (x̃′) ≤ F̃ (x̃) +
∑
i

λiui.

The dual variables λ = (λ1, λ2, . . . , λn) are supergradients of the function F̃ (x̃) since they satisfy
the following inequality for any x̃ and x̃′:

F̃ (x̃′) ≤ F̃ (x̃) + λ⊺(x̃′ − x̃),

where we substituted u = x̃′ − x̃.

F Experiments

F.1 Datasets and Problem Instances

We run experiments on six datasets: datasets Wikipedia, Images, and MovieRec were taken from
the experimental setups of Balkanski et al. [2016], Stan et al. [2017]; an influence maximization
dataset based on the Zachary’s Karate Club graph Zachary [1977], Influence; and two synthetic
datasets: a team formation dataset, TeamFormation, and a weighted coverage dataset, Coverage.

As in O2SSM, the objective is to select, in an online fashion, a set of ℓ items corresponding to articles,
images, movies, nodes, experts, or sets and receive a reward equal to that of the best k among them.
For Wikipedia, Images, and MovieRec, ℓ and k were selected based on the experiments of prior
work [Balkanski et al., 2016, Stan et al., 2017]. For Influence and TeamFormation the choice
was arbitrary, while for the Coverage dataset the choice was adversarial to the One-stage-OGA
algorithm.

In all cases, we use n to denote the dimension of the decision space, m the number of distinct
objective functions, and T the time horizon. For Wikipedia, Images, and MovieRec, we construct
a sequence of T objective functions by sampling T = 4 ·m functions uniformly at random from the
m available functions. For the remaining datasets (Influence, TeamFormation, and Coverage)
we set T = m and use each of the m functions exactly once, in sequence.

We summarize the basic information for each dataset in Table 2.

Wikipedia. In the Wikipedia dataset, the goal is to maintain a set of articles for Machine Learning
that are highly relevant for a diverse set of subtopics (e.g., Markov Models, Neural Networks). The
function fi(S) measures how relevant the set of articles S is to the subtopic i. In total, we have
n = 407 articles and m = 22 subtopics. We define fi(S) as the number of Wikipedia pages in the
subtopic i that have a link to at least one article in S. Note that fi is a coverage function. We set
ft = fi by sampling a subtopic i uniformly at random. We consider a total of T = 4 ·m = 88 time
steps.

Images. In the Images dataset, the goal is to maintain a set of images that contain a diverse set of
visual elements. We used the VOC2012 dataset Everingham and Winn [2011] where each image
contains a set of categories (e.g., chair, car, bird, etc.). For each image i we define fi(S) as the
maximum similarity (minimum ℓ2 distance) between the image and an image in S. This objective is
named Clustered Facility Location in Balkanski et al. [2016] and Exemplar-Based Clustering in Stan
et al. [2017]. We have a total of m = 10 different functions fi. We set ft = fi by sampling an image
i ∈ [n] uniformly at random. We consider a total of T = 4 ·m = 40 time steps.

MovieRec. In the MovieRec dataset Harper and Konstan [2015], we consider a movie recommender
system. We use the MovieLens dataset that contains movies from different genres and user ratings.
The goal is to maintain a small set of movies so that every user can find enjoyable movies in this
set. For each user i, we define the function fi(S) as follows. Let rik be the rating given by user i to
movie k. Let Rij(S) = {maxk∈S rik | k in genre j} be the highest rating that user i has given to a
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movie in genre j that belongs in S. Let wij be the percent of movies in genre j that user i has rated
out of all their rated movies. Then,

fi(S) =
∑

j∈Genres

wijRij(S).

Note that fi is a facility location function [Si Salem et al., 2024, Karimi et al., 2017]. We have a total
of m = 100 different functions fi. We set ft = fi by sampling a user i ∈ [n] uniformly at random.
We consider a total of T = 4 ·m = 400 time steps.

Team Formation. In the TeamFormation dataset, we consider a roster selection problem. The goal
is to maintain a set of ℓ individuals (i.e., a roster), so that when a new task ft arrives, there exists a
subset of k individuals within the roster that can handle the task. In order to model the performance
of a team when faced with a task ft, we use a quadratic function of the form

ft(y) = h⊺
t y +

1

2
y⊺Hty.

The linear/modular part of the function captures the strength of each team member, and the quadratic
part captures the complementarity/overlaps between their skills. Note that ft is monotone and
submodular, iff H ≤ 0 and h + Hy ≥ 0, for all y ∈ YM(x). We generate ht by sampling
each coordinate from a Gaussian distribution with mean µ = 30 and standard deviation σ = 20.
Then, we generate Ht by sampling each entry from a Gaussian distribution with mean µ = −20
and standard deviation σ = 10, while ensuring the all entries are non-positive. If the constraint
ht+Hty ≥ 0,∀y ∈ YM(x) is violated, we shrink the entries of Ht until it is satisfied. We construct
a total of m = 50 functions and consider a total of T = m = 50 time steps.

Influence. In the Influence dataset, we address a two-stage influence maximization problem using
Zachary’s Karate Club as the underlying graph. The dataset assumes the presence of 5 distinct topics
(e.g., sports, politics, etc.), with each node in the graph being assigned a subset of these topics. The
objective is to maintain a set of ℓ nodes such that, at any time step t, it is possible to select a subset of
k nodes from this set to maximize the influence on a specific topic. We generate a total of T = 100
random cascades by sampling each edge of the graph with probability p = 0.25. In addition, a topic
i ∈ [5] is selected uniformly at random. A node can influence other nodes only within its connected
component in the sampled graph, provided that it has been assigned the selected topic. Note that
the influence function is a weighted coverage function, since every node covers all the nodes in its
connected component [Kempe et al., 2003].

HotpotQA. The HotpotQA9 [Yang et al., 2018] dataset consists of approximately 97K questions
along with ground-truth answers and Wikipedia articles that support the ground-truth answer. We
create an O2SSM instance with the goal of maintaining a small collection of Wikipedia articles that can
be used to answer questions from the HotpotQA dataset. The universe of elements is chosen to be the
union of all Wikipedia articles that are supporting any question and its size is approximately n = 111K
articles. For every question q in the HotpotQA dataset, let S(q) ⊆ [n] be the set of its supporting
articles and eS(q) ∈ {0, 1}n be its characteristic vector. We associate q with a coverage-like WTP
function fq defined as:

fq(x) = min(1, eS(q) · x).
For our experiment, we create an arbitrary ordering of the above WTP functions and sample T = 500
functions in the following way: with probability 0.5 we pick a uniformly random function (with
replacement) from the first 30 functions of the order, otherwise we pick a uniformly random function
(with replacement) from the rest.

Coverage. In the Coverage dataset, we consider a weighted coverage problem with n = 100 sets
S1, . . . , Sn. We set ℓ = 10 and k = 1. Consider the ℓ sets S1, S2, . . . , Sℓ defined as follows. The
first set covers the first ℓ elements of the ground set and receives reward M for every covered element:

f1(x) =

ℓ∑
i=1

M min(1, ei · x),

9https://huggingface.co/datasets/BeIR/hotpotqa
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where M = 100 is the value of covering an element of the groundset and ei is an indicator vector
with 1 at coordinate i and 0 everywhere else.

The rest of the sets i = 2, . . . , ℓ, cover one, different, element each:
f2(x) = M min(1, eℓ+1 · x),

...
fℓ(x) = M min(1, e2ℓ · x),

The online sequence of functions follows the pattern f1, f2, ..., fℓ and then cycles back to f1. We
consider a total of 50 cycles, which results in T = ℓ · 50 = 500 iterations.

This dataset is constructed in such a way so that One-stage-OGA algorithm performs poorly. Specif-
ically, when One-stage-OGA receives f1 it aggressively updates all coordinates x1, ..., xℓ without
taking into account that only one element can eventually be used for f1 due to the second-stage
cardinality constraint of k = 1. Eventually, One-stage-OGA converges to a vector having equal
weight on the first 2ℓ coordinates and all other coordinates equal to 0, i.e.,

x̃T ≈ (1/2, 1/2, . . . , 1/2︸ ︷︷ ︸
2ℓ

, 0, . . . , 0).

After rounding the above vector with Randomized Pipage Rounding we get a restricted dataset that
has an expected reward of M/2 for the functions f2, . . . , fℓ and approximately M for f1.

The optimal solution in hindsight, however, only puts weight ℓ coordinates, using exactly one element
for each second-stage objective, due to the inner constraint k = 1. That is, the optimal solution in
hindsight is

x̃⋆ = (0, . . . , 0︸ ︷︷ ︸
ℓ−1

, 1, . . . , 1︸ ︷︷ ︸
ℓ

, 0, . . . , 0)

and achieves value M for every function.

On the other hand, RAOCO eventually converges to a vector that has a uniform mass of 1 element
spread across the elements of function f1 and also takes 1 more element for every other function
f2, . . . , fℓ:

x̃T ≈

1

ℓ
, . . . ,

1

ℓ︸ ︷︷ ︸
ℓ

, 1, . . . , 1︸ ︷︷ ︸
ℓ−1

, 0, . . . , 0

 .

Rounding the above vector with Randomized Pipage Rounding yields a restricted ground set that has
expected value M for every function.

The above also explain the result we observe in the Coverage experiment in Figure 1. As the time
evolves, RAOCO improves and converges to the offline optimum in hindsight achieving cumulative
average reward approximately M = 100, while the cumulative average of One-stage-OGA remains
constant at approximately M/2 = 50.

F.2 Algorithms

Online Algorithms. We provide several implementations of the RAOCO algorithm (Algorithm 1).
Implementations differ only in the OCO policy used in the fractional domain. In particular, we have
implemented RAOCO-OGA, RAOCO-FTRL-L2, RAOCO-FTRL-H, where we use Online Gradient Ascent
(OGA), Follow the Regularized Leader (FTRL) with L2 regularization and entropy regularization,
respectively. For each algorithm and dataset, we tested different values for the learning rate η ∈
{0.0001, 0.001, 0.01, 0.1, 1, 10} and reported the best results. In Table 3, we report the η we used for
each algorithm and dataset.

Online Competitors. We implement the following online competitors: Random selects a set of
ℓ elements uniformly at random at each timestep; One-stage-OGA (1S-OGA) runs RAOCO-OGA
as if the second stage cardinality constraint was k = ℓ, i.e., (single stage) online submodular
maximization. This is the algorithm presented by Si Salem et al. [2024] for (one-stage) online
submodular maximization.
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Dataset RAOCO-OGA RAOCO-FTRL-L2 RAOCO-FTRL-H 1S-OGA

Wikipedia 0.1 0.1 1 1
Images 10 10 10 0.1
MovieRec 0.001 0.001 0.01 1
TeamFormation 0.01 1 1 0.1
Influence 0.01 0.01 0.01 0.01
Coverage 0.01 0.001 0.01 0.1

Table 3: Optimal learning rates for each combination of dataset and algorithm.

Offline Benchmarks. As offline benchmarks, we implemented the Continuous-Optimization
(OFLN-CO) algorithm proposed by Balkanski et al. [2016], and the Replacement-Greedy
(OFLN-RGR) algorithm proposed by Stan et al. [2017]. For completeness, we present the algorithms
here.

Continuous-Optimization [Balkanski et al., 2016] follows the relax-then-round paradigm. First,
they solve the following program:

max
x̃,ỹ1,...,ỹT

T∑
t=1

f̃t(ỹt)

s.t. ỹt ∈ P(M),∀t ∈ [T ]

ỹt ≤ x̃

0 ≤ ỹt ≤ 1,∀t ∈ [T ].

Let (x̃⋆, ỹ⋆
1 , . . . , ỹ

⋆
T ) be the solution of the program. Then, they reduce x̃⋆ by a factor (1− ϵ′), where

ϵ′ = 1/k1/2−ϵ, for 0 < ϵ < 1/2. We set ϵ = 1/4. Next, they round each coordinate of (1− ϵ′)x̃⋆

independently to get an integral solution x:

xi =

{
1,w.p. x̃⋆

i

0, otherwise
,∀i ∈ [n].

If x satisfies the cardinality constraint, we return x. Otherwise, if x violates the cardinality constraint
(
∑n

i=1 xi ≤ ℓ), we return a uniformly random solution.

Replacement-Greedy [Stan et al., 2017] is based on a local search approach. First, we start with a
series of useful definitions. Let ∆t(e,A) = ft(A ∪ {e})− ft(A) denote the marginal gain of adding
e to the set A if we consider the function ft. Let I(e,A) = {e′ ∈ A | A ∪ {e} \ {e′} ∈ I} be the set
of all elements in A that can be replaced by e without violating the matroid constraint. Let

∇i(e,A) =

{
∆t(e,A), if A ∪ {e} ∈ I
max

(
0,maxe′∈I(e,A) fi(A ∪ {e} \ {e′})− fi(A)

)
, otherwise

be the gain of either inserting e into A or replacing e with one element of A while keeping A an
independent set. Let

Rept(e,A) =

{
∅ if A ∪ {e} ∈ I
argmaxe′∈I(e,A) ft(A ∪ {e} \ {e′})− ft(A) otherwise

be the element that should be replaced by e to maximize the gain and stay independent. Using the
above definitions, we give the pseudocode of Replacement-Greedy in Algorithm 3.

Metrics. For the online algorithms we measure the cumulative average reward.

Ct =
1

t

t∑
τ=1

Ft(xt).

In order to calculate Ft(xt) we use Gurobi’s integer linear program solver. We also compute the
optimal (integral) solution in hindsight (OPT):

F ⋆ =
1

T
max
x∈Xℓ

T∑
t=1

Ft(x).
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Algorithm 3 Replacement-Greedy

1: S ← ∅
2: Bt ← ∅ for all 1 ≤ t ≤ T
3: for j = 1 to ℓ do
4: e⋆ ← argmaxe∈V

∑T
t=1∇t(e,Bt)

5: S ← S ∪ {e⋆}
6: for t = 1 to T do
7: if ∇t(e

⋆, Bt) > 0 then
8: Bt ← Bt ∪ {e⋆} \ Rept(e

⋆, Bt)
9: end if

10: end for
11: end for
12: return S

We repeat each experiment 5 times and report the average Ct along with one standard deviation
above and below the average depicted via the shaded regions. The sources of randomness are: (i)
Randomized Pipage rounding, and (ii) sampling of the objective functions ft for datasets Wikipedia,
Images, and MovieRec.

Setup. All the experiments were ran on an Apple M2 Macbook with 16GB RAM. The code is written
in Python 3.11.2. We make the code and data used for the experiments publicly available on GitHub.
Each experiment runs efficiently on a personal laptop: every problem instance could be computed
until the time horizon T in less than one minute.

G Additional Experimental Results

G.1 Exploring the k vs CT tradeoff

In this section, we explore the tradeoff between k and CT , where T is defined for each dataset at
Table 2. Recall that when ℓ = k, the problem becomes equivalent to one-stage online submodular
maximization. We focus on the following algorithms: RAOCO-OGA, One-stage-OGA. We also report
the value of the optimal (integral) solution in hindsight OPT. In Figure 2, for each dataset, we show
the cumulative average reward CT = 1

T

∑T
t=1 Ft(xt) of each algorithm for each value of k. For

each dataset and each k, we run each experiment 5 times and report the average CT as well as the
standard deviation. For each dataset, we fix ℓ to the value reported in Table 2.

We observe that for most datasets, varying k does not significantly affect the performance gap between
the two algorithms. In many cases, the two algorithms perform similarly, with the MovieRec dataset
being a notable exception: RAOCO consistently outperforms One-stage-OGA and its performance
remains close to that of the optimal solution in hindsight.

However, in the Coverage dataset, we observe that as k increases, the gap between the two algorithms
narrows. This is expected due to the dataset’s construction: One-stage-OGA tends to greedily select
multiple elements for the first coverage function f1, whereas RAOCO learns to pick one element per
function. Consequently, for small values of k, many of the elements selected by One-stage-OGA
cannot be used in the second stage for f1. As k grows, these elements become usable, and the
performance of One-stage-OGA begins to recover.

G.2 Exploring the ℓ vs CT tradeoff

In this section, we explore the tradeoff between ℓ and CT , where T is defined for each dataset at
Table 2. We focus on the following algorithms: RAOCO-OGA, One-stage-OGA. We also report the
value of the optimal (integral) solution in hindsight OPT. In Figure 3, for each dataset, we show
the cumulative average reward CT = 1

T

∑T
t=1 Ft(xt) of each algorithm for each value of ℓ. For

each dataset and each ℓ, we run each experiment 5 times and report the average CT as well as the
standard deviation. For each dataset, we fix k to the value reported in Table 2 and we vary ℓ as a
multiple of k, that is ℓ = k, 2k, . . . , 5k. We observe that varying ℓ while keeping the second-stage
cardinality constraint k fixed does not significantly affect the performance gap between the two online
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Figure 2: k vs CT tradeoff for RAOCO-OGA and One-stage-OGA, where T is defined for each dataset
at Table 2. We report the average value of CT over 5 runs. The shaded regions correspond to one
standard deviation above and below the average.
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Figure 3: ℓ vs CT tradeoff for RAOCO-OGA and One-stage-OGA, where T is defined for each dataset
at Table 2. We report the average value of CT over 5 runs. The shaded regions correspond to one
standard deviation above and below the average.

algorithms in most datasets. Across these settings, both algorithms exhibit nearly overlapping curves,
indicating similar behavior. A notable exception is the MovieRec dataset, where RAOCO consistently
outperforms One-stage-OGA and approaches the performance of the optimal fixed restricted ground
set in hindsight.

In contrast, the Coverage dataset highlights a clear divergence: for small values of ℓ, the two
algorithms perform similarly, but as ℓ increases, the performance of One-stage-OGA deteriorates
while that of RAOCO improves. This behavior is expected given the construction of the dataset;
One-stage-OGA tends to allocate more mass to elements that benefit the first coverage function f1,
despite the second-stage constraint allowing only one element to be used. In contrast, RAOCO learns
to include elements that are useful for different functions, resulting in a higher cumulative reward.

G.3 Scalability of RAOCO

To further assess the scalability of our approach, we experiment on a substantially larger dataset,
namely HotpotQA10 [Yang et al., 2018], which consists of 97,852 questions with ground-truth

10https://huggingface.co/datasets/BeIR/hotpotqa
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Figure 4: Cummulative reward of RAOCO-OGA, Random and OPT on HotpotQA

answers and supporting Wikipedia articles. We construct an O2SSM instance by associating each
question with a coverage-like function as described in Appendix F.1. The union of all supporting
articles forms a ground set of 111,140 articles. Our goal is to identify a restricted ground set of size
ℓ = 150, from which k = 4 articles are selected in the second stage for each question.

We generate T = 500 objectives f1, . . . , fT using the following sampling scheme: with probability
0.5 we select a random question from a fixed pool of 30 questions, and with probability 0.5 we select
one uniformly at random from the remaining questions. In Figure 4 we compare the cumulative
reward of RAOCO-OGA against the fractional offline optimum (OPT) and Random.

Each iteration of RAOCO-OGA requires solving one linear program, which we do via Gurobi (using a
free academic license), followed by randomized pipage rounding of the fractional solution. On an
Apple M1 MacBook Pro (16GB RAM), each step completes in approximately 30 seconds on average.

H Online Convex Optimization (OCO)

In this section, we describe the the OCO policies PX̃ used by our algorithm, i.e., Online Gradient
Ascent (OGA) and Follow the Regularized Leader (FTRL). Both algorithms enjoy sublinear regret
guarantees (O(

√
T )). We refer the interested reader to Hazan [2016] for a more detailed treatment.

H.1 Online projected (super-)Gradient Ascent (OGA)

Online projected (super-)Gradient Ascent (OGA) [Hazan, 2016] comprises the following update rule:

x̃t+1 = ΠX̃ℓ
(x̃t + ηgt),

where η is the learning rate, gt is a supergradient of F̃t at x̃t, and ΠX̃ℓ
(·) is the orthogonal projection

on the set X̃ℓ.

H.2 Follow the Regularized Leader (FTRL)

Follow-the-Regularized-Leader (FTRL) [Hazan, 2016] comprises the following update rule:

x̃t+1 = argmax
x̃∈X̃ℓ

{
η

t∑
τ=1

⟨gτ , x̃⟩ − R(x̃)

}
,

where η is the learning rate, gt is a supergradient of F̃t at x̃τ , andR is a strongly convex regularizer.
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I Randomized Pipage Rounding

In this section, we describe the Randomized Pipage Rounding algorithm for the case of cardinality
constraints. The algorithm proceeds by iteratively rounding the fractional entries of x̃ until all
components are either 0 or 1. LetHx̃ = {x̃i | 0 < x̃i < 1} be the set of fractional components. At
each iteration, two cases are considered:

If only one element in x̃ is fractional (i.e., |Hx̃| = 1), we simply round this element to 1. This
operation is guaranteed to be feasible.

If multiple fractional elements remain (i.e. |Hx̃| > 1) , two components x̃i and x̃j are arbitrarily
selected fromHx̃. For these selected indices, we define two quantities ϵ1 and ϵ2 as follows:

ϵ1 = min(1− x̃i, x̃j), ϵ2 = min(x̃i, 1− x̃j)

These quantities represent the maximum possible adjustment to x̃i and x̃j while ensuring that
the values remain within the range [0, 1]. Then a random decision is made based on the ratio of
ϵ2/(ϵ1 + ϵ2). Specifically, the following actions are performed:

• With probability ϵ2
ϵ1+ϵ2

, we increase x̃i by ϵ1 and decrease x̃j by ϵ1.

• With the complementary probability, we decrease x̃i by ϵ2 and increase x̃j by ϵ2.

For a more detailed analysis, we defer the interested reader to Chekuri et al. [2009]. We state two
lemmas that we use during our analysis in Appendix C.

Lemma I.1. [Chekuri et al., 2009] Let x̃ ∈ X̃ be a fractional vector and x = Ξ(x̃) be resulting
vector after running Randomized Pipage Rounding on x̃. Then, the following is true

EΞ[x] = x̃.

Lemma I.2. [Chekuri et al., 2009] Let x̃ ∈ X̃ be a fractional vector and x = Ξ(x̃) be resulting
vector after running Randomized Pipage Rounding on x̃. Then, for any submdular function f , the
following holds

Ex∼Ξ(x̃)[f(x)] ≥ Ex∼Ind(x̃)[f(x)].

J RAOCO in the offline 2SSM problem

For the sake of completeness, we give a small proof that the ingredients of RAOCO can be used to
obtain a cM(1− 1/e)-approximation for the offline 2SSM problem when the input functions are WTP,
where cM = (1− e−kkk/k!) ifM is a uniform matroid of rank k and cM = (1− 1/e) otherwise.

The aforementioned guarantee improves upon the state-of-the-art for the case cadinality constraints
and WTP functions. Specifically, while Balkanski et al. [2016] achieve an approximation guarantee
of 1 − 1/e − Ω(1/

√
k), our bound converges to the optimal value of 1 − 1/e more sharply as k

increases, and yields strictly better guarantees for small values of k. We illustrate this comparison in
Figure 5.

We now prove our offline guarantee formally in the following lemma.
Lemma J.1. Let [n] be a universe of elements andM be a matroid over [n]. Let also ℓ, k ∈ N and
f1, . . . , fm ∈ FG,M be the input of the offline 2SSM problem. There exists a randomized algorithm
that runs in polynomial time in n,m,G and logM and outputs a ground set x ∈ Xℓ for which

E

[
m∑
t=1

Ft(x)

]
≥ cM(1− 1/e) · max

x∈Xℓ

m∑
t=1

Ft(x),

where the expectation is taken over the randomness of the algorithm and cM = (1− e−kkk/k!) if
M is a uniform matroid of rank k and cM = (1− 1/e) otherwise.

Proof of Lemma J.1. Description of the algorithm. The offline algorithm is the following: first,
construct the fractional reward functions F̃1, . . . , F̃m, as defined in Eq. (8), of the given WTP functions.
Then, solve the following concave program

max
x̃∈X̃ℓ

m∑
i=1

F̃i(x̃).
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Figure 5: Comparison of approximation guarantees as a function of k for the (offline) 2SSM. The
guarantee of both our algorithm and the one by Balkanski et al. [2016] converge to the optimal
value 1− 1/e as k →∞, but our algorithm achieves strictly better guarantees even for finite k ∈ N.
Notably, our guarantee for cardinality constraints also outperforms the state-of-the-art bound for
matroid constraints from Stan et al. [2017] for all k ≥ 2. For general matroids, our guarantee for
2SSM ((1−1/e)2 ≈ 0.40) is slightly worse than the one by Stan et al. [2017] (1/2(1−1/e2) ≈ 0.43).

Finally, round the solution of the above program using Randomized Pipage Rounding (see Ap-
pendix I).

Analysis. We know that each fractional reward function F̃t is concave over X̃ℓ (Lemma D.1) and
their supergradient, at any point in X̃ℓ, can be computed in polynomial time in n,G and logM
(Lemma 5.3).

Therefore, the above concave program can be solved in polynomial time in n,m,G and logM
using standard first-order or interior point methods [Bubeck, 2015]. Let x̃∗ be a maximizer of the
above program. In the last step, the algorithm rounds x̃∗ using Randomized Pipage Rounding. Let
x = Ξ(x̃∗) be the resulting integral vector.

The analysis is concluded as follows:

EΞ

[
m∑
t=1

Ft(x)

]
=

m∑
t=1

EΞ [Ft(Ξ(x̃
∗))]

Lem. 5.4
≥ cM(1− 1/e) ·

m∑
t=1

F̃i(x̃
∗)

= cM(1− 1/e) · max
x̃∈X̃ℓ

m∑
t=1

F̃t(x̃)

Xℓ⊂X̃ℓ

≥ cM(1− 1/e) · max
x̃∈Xℓ

m∑
t=1

F̃t(x̃)

Ft(x)=F̃t(x)
∀x∈Xℓ= cM(1− 1/e) · max

x̃∈Xℓ

m∑
t=1

Ft(x̃).
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