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Abstract— In this paper, we propose a method to achieve rein-
forcement learning based with a changeable pattern using a top-
two selection mechanism. The selection mechanism functions as
a method that fixes the number of utilized neighbors by train-
ing the scoring network through ListMLE loss computation
between the top-two candidates derived from limited neighbor
information scoring and the top-two estimates based on global
value network. With fixed neighbor utilization, formation errors
and other neighbor-related information can be directly fed into
the policy network without structural modifications. Unlike
other approaches that embed formation constraints in value
networks, our method directly inputs formation error into the
policy network, enabling formation control with changeable
pattern. In the experiments, we further propose a training data
processing method to handle varying numbers of neighbors
across batches, where neighbor sequences are vectorized by
masking techniques improving training efficiency.

I. INTRODUCTION

Formation control, a cornerstone of multi-agent systems,
enables autonomous agents like UAVs and UGVs to achieve
and maintain desired geometric configurations, with applica-
tions spanning industrial, rescue, and military domains. Early
methodologies, such as the virtual structures approach by
Lewis et al. [1] and the behavior-based framework by Balch
and Arkin [2], laid the groundwork for high-precision and
adaptive formation control. Recent advancements, including
data-driven techniques for systems with unknown dynamics
[3], have further expanded the field. Notably, reinforcement
learning (RL) has emerged as a powerful tool for formation
control due to its model-free nature, enabling agents to learn
complex policies without explicit dynamical models. With
multi-agent reinforcement learning (MARL) algorithm, RL-
based policy can deal with formation control, and some
examples: DQN [4], DDPG [5], PPO [6], and momentum
policy gradient [7], have demonstrated its success in discrete
and continuous action spaces for formation tasks.

A critical challenge in RL-based formation control lies in
handling variable numbers of agents. Traditional actor-critic
architectures face input dimensionality mismatches when
agent counts change, as the critic network must process
dynamic system-wide information, and the actor’s observa-
tion space depends on a fixed number of neighbors. Prior
solutions include graph neural networks (GNNs) [8], which
parameterize policies independent of graph size, and teacher-
student frameworks [6] that enumerate scenarios for different
agent counts. However, GNN often requires deep architec-
tures for effective training, while teacher-student methods
lack scalability. Furthermore, many RL approaches simplify
dynamics of control objects during training, limiting real-
world applicability.

To address these limitations, we propose a novel RL-
based formation control method with changeable patterns
for UGVs, leveraging a top-two selection mechanism to
dynamically adapt to varying UGV numbers in actor. Our
approach trains a scoring network to rank neighbors using
local observations and global value estimates, resolving input
dimensionality conflicts by selecting a fixed number of
neighbors. The scoring network is optimized via a modified
ListMLE [9] loss, which aligns the top-two candidates from
local scoring with those from a global value network. This
mechanism decouples policy inputs from the total number
of UGVs, enabling the policy network to process formation
errors and neighbor states without structural modifications.
Unlike existing method [6] that encode formation pattern
in value networks, our framework directly injects forma-
tion errors into the policy network, enhancing flexibility
for dynamic pattern changes. For the critic, we use graph
convolutional network (GCN) to replace GNN, where fewer
layers are required. To further improve training efficiency
with variable neighbors, we introduce a masking-based batch
processing technique that vectorizes irregular neighbor se-
quences.

The contributions are listed below

« We propose a top-two selection algorithm trained by
ListMLE that selects the two most valuable neighbors
and leverage their information to generate action.

o The formation pattern can vary between different tasks,
benefiting from the proposed algorithm that fixes the
number of neighbors utilized.

« We proposed a way that enable batch processing of
neighbors’ information across UGVs or parallel envi-
ronments with varying numbers of neighbors.

II. PROBLEM FORMULATION
A. Notations

The system in this paper consists of n follower UGVs and
one leader UGV, denoted as V = {v;}, i € {0,1,--- ,n},
where {1,--- ,n} is the follower index set, and 0 is the leader
index.

The properties of each UGV used for policy are position,
velocity, orientation and LiDAR sensor data. The position in
world coordinate of ith UGV is denoted as p; = [z;, yi]T
and acceleration denote as a; = [am,ayi]T, where i €
{0,1,--- ,n}. The relative position of jth UGV in the
coordinate of ith UGV is denoted as p;; = p; — p; =
[z:;,i;] . The relative distance between ith UGV and jth
UGV is denoted as d;;. The velocity of ith UGV in world



coordinate is denoted as v; = [v;, wi]T, where v; is the linear
speed and w; the angular speed, and the relative velocity of
jth UGV in ith UGV’s coordinate as v;; = [vij,wij}T. The
orientation is defined as the heading of th UGV, denoted as
;. LiDAR is equipped for collision detecting, and the data
from LiDAR of ith UGV is denoted as s; = [s},..., s’ | I
in which m = r x 360 and r represents the resolution per
degree. We use dim to indicate the dimension of a vector.

B. Control Objective

We consider a UGV formation system in planar envi-
ronments employing a leader-follower framework. The con-
figuration comprises a leader UGV capable of executing
planned trajectories or maintaining stationary, accompanied
by follower UGVs that utilize trained reinforcement learning
policy to preserve formation geometry while ensuring inter
UGV collision avoidance.

The UGVs employ a differential-drive mechanism with
independently actuated wheel pairs, where their global trans-
lational and rotational velocities emerge from coordinated
control of bilateral wheel speeds as
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where [, is the distance between two wheels, v; is the linear
speed of the left wheel and v, the right side one. Convert
(1) into Cartesian coordinate
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where 6 is orientation of UGV in global coordinate. For
enhanced clarity, Fig. 1 explicitly details the locomotion
mechanism of the UGV.

Fig. 1: A UGV locomotion mechanism

The control objective is to minimize the global formation
error ey defined by the distance-based formation, which
consists of the sum of individual UGV formation errors e; ¢
as:
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III. METHOD
A. PPO with Top-two ListMLE

ListMLE is a method for calculating the loss between a
target order of items and the estimated order predicted by a
model based on scoring functions. The key idea is to measure
how well the model’s predicted order aligns with the true
order by leveraging the Plackett-Luce model, a probabilistic
framework for ranking.

The probability of a specific order 7 under the scores s is
defined by the Plackett-Luce model as
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where 7(j) represents the index of the item in the j-th
position of the order, and s, ;) is the corresponding score
assigned by the model. The model computes the probability
of the order 7 by sequentially selecting items based on their
scores, normalized by the scores of the remaining items at
each step.

To optimize the model, it aims to minimize the negative
log-likelihood of the true order w, which serves as the loss
function
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This loss function penalizes deviations between the predicted
scores and the true order, guiding the model to produce
scores that better align with the desired ranking.

In our formation control scenario, we need to select a
fixed number of neighbors and feed the information about the
selected neighbors into the policy network, so that the policy
network can adapt to changes in the number of neighbors due
to adjustments in formation geometry or inherent differences
in the number of neighbors among UGVs. Selecting two as
the fixed number, so we care about only the top-two valuable
neighbors during control. Thus, we edit the probability that
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Comparing to the original Plackett-Luce model (5), in this
modified version, only possibilities of the order of the top-
two in 7 are considered, which reduces the computational
complexity of the loss calculation while meet the requirement
of selecting a fixed number of two neighbors in our formation

control scenario. Based on (7) the loss function of top-two
ListMLE is
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PPO is used as the basic algorithm, the model structure is
specified in Fig. 2. The scoring function is an MLP layer as
the MLP1 shown in Fig. 2, and the target order is defined by
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Fig. 2: The actor and critic network model employs a multiple-branch architecture to handle heterogeneous input sources.
The encoder with one-dimensional convolutional layers handles LiDAR data through spatial feature extraction, while the
GCN layers process system-level data by modeling relationships between data of each UGV in system.

the value estimation by the centralized critic for each UGV.
The top two neighbors are not directly from neighbors of
top-two score, but selected probabilistically based on their
scores to enhance exploration performance. To train both the
scoring network and the policy network, top-two ListMLE
loss is added into PPO loss that

L=LA+ Lo+ L+ cmLELMLE, )

where Lp is the policy entropy loss, ¢, is value loss
coefficient, c. is the entropy coefficient, and cyp is the
ListMLE coefficient.

B. Observation, Action and Reward
The environmental observations for each UGV comprise:

o Neighbor information sequence q;, where each entry
contains relative position p;;, relative velocity v;;, for-
mation error e{ ; = Ilpij |l — d;;, and leader indicator flag
I; for all neighbors j € A;

o LiDAR measurements s; = [s%, 85, -
ing of m sensor readings;

« Current velocity state v; =
angular components;

e Acceleration measurements a; = [a:ci,ayi]T
sian coordinates.

,s0 1T consist-

[v;,w;] T detailing linear and
in Carte-

A PI controller regulates wheel speed, while a rein-
forcement learning policy generates velocity commands to
accomplish system control objectives. The action space for
UGV i contains two primary control outputs:

o Linear velocity v; command;
o Angular velocity w; command.

There are multiple objectives in our formation control
with collision and collision avoiding, and each objective
corresponds to a reward function, where R,y is the global
formation reward, [;; the local formation reward, Ry the
leader formation reward, R, the collision avoiding reward,
R, is the dropping out avoiding reward, R, the action
smoothing reward, and R, the global formation forming
speed reward. The total reward R for policy training is a
weighted sum of all rewards, where the weight coefficients
are defined as follows
]T
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where « is the coefficient vector. All the reward functions
are specified below.

The global formation performance reward 1%, quantifies
the overall formation accuracy using the system-level error
term (4) as:

Rgfi—ln<€+%). 11
Here, x represents the spatial metric for the target formation
configuration, calculated as x = max d;‘j, while ¢ > 0
serves as a minimal stabilizing constant. Correspondingly,
the neighborhood formation reward Ry; evaluates individual
UGV i coordination with adjacent UGVs through:

Rp=—In (e+%f) (12)




where e;; denotes the localized formation error specified
in (3). The leader’s formation reward Ry follows similar
computation as (11), substituting ey with leader’s formation
error ey, = 37" by |[[pioll — djol-

Collision prevention compensation R, measures other
UGVs proximity by aggregating processed LiDAR measure-
ments through transformation operator J,:

Ro=—2_ Jolpi). (13)
Utilizing a graded penalty function J,(p;):
2(p—2psare)’ <9
Jo(p) = { Fage DI (14)
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where psafe defines the critical distance threshold for colli-
sion risk assessment.

The connectivity preservation reward R4 penalizes exces-
sive inter UGV separation to maintain formation integrity:

Ra == Ja(llpi;|l). (15)
Utilizing another graded penalty function Jg:
0 6 < 30%imit
Ja(0) = w L Stimit < 0 < O, (16)
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where d)imit specifies maximum permissible neighbor sepa-
ration and d.,isical indicates communication failure distance.

Policy stability encouragement R, implements temporal
smoothing through:

Ry = —(a; —a;_1)% (17)

This term regulates controller output variations between
consecutive time steps.
The formation error convergence speed rewards R, is

R, = exp (A;f> ’

where Aey = ef(k) — ef(k — 1) represents temporal
formation error differential, with normalization factor { > 0
moderating the progression rate sensitivity through exponen-
tial function.

(18)

C. Training

In training, the observations between different UGVs and
parallel environment are packed into batches. Length of
neighbors sequence of each batch or UGV may be differ-
ent, and processing these sequences with varying lengths
iteratively can hinder training efficiency. To solve this prob-
lem, padding is added into the neighbors sequence forcing
the lengths of all batched to be equal, and these padded
sequences are then handled through vectorized processing
to improve computational efficiency. However, the original
ListMLE algorithm may not treat paddings, so we propose a
method to handle the padding when use top-two ListMLE.

Specially, we add a tensor m to indicate the location
of padding the input neighbors sequence tensor, where 0

indicates padding and 1 the normal data. The score from
scoring model in the place indicated as padding are set
to the value of —I, where I is a large enough value that
exp(—I) — 0. So that the padding will not affect the
top-two ListMLE loss when training. The padding aligns
the neighbors sequence length to match the total number
of UGVs, making vectorized processing of the neighbors
sequence feasible.

IV. EXPERIMENT

Policy training and evaluation were conducted within
the Gazebo simulation platform featuring real-time physics
engine. The experimental setup employs a turtlebot3 mobile
platform - a differential drive unmanned UGV integrated
with LiDAR sensors, utilizing Robot Operating System
(ROS) for inter-module communication. During the learning
phase, each training episode terminates upon either physical
contact with other UGVs or reaching the maximum allowable
operational period. Our implementation leverages the RLIib
[10] reinforcement learning framework, with computational
tasks executed on a workstation.
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Fig. 3: The first experiment to train a basic formation policy.

The primary control object involves coordinating un-
manned ground vehicles to assemble into a predetermined
static formation at target static coordinates. Initial conditions
reset episodically, with follower UGVs dispersed arbitrarily
across a sector at random orientations, while the leader is
positioned at the geometrically central point of the intended
formation pattern.



A policy is first train for basic formation control. The
formation pattern targets a rectangular geometry spanning
1m? that one leader stabilizes at the centroid, while four
followers align with the corners (visualized in Fig. 3b). The
average time cost of the policy to generate an action is
approximately 0.02s, which is 50Hz for control frequency.
Training emphasizes foundational formation compliance with
the result in Fig. 3c.

Next, the pattern of the target formation is modified by
lower the distance between 1st, 4th and leader UGV as
shown in Fig. 4a, then the pre-trained model is employed
for formation control, with the results demonstrated in Fig.
4b. Compared with [6], since the formation data are not
embedded in the critic network, the policy network does not
require retraining when the formation configuration changes.

/é)

(a) The modified formation pat-
tern.

(b) The final modified formation
formed.

Fig. 4: The second experiment to show the ability to change
formation pattern of pre-trained policy.

The results in Figs. 3-4 validate that the framework retains
formation stability without policy retraining when transition-
ing from the original pattern to a modified configuration with
different distance between UGVs.

V. CONCLUSION

This paper presents a reinforcement learning-based
approach for achieving formation control with changeable
pattern for UGVs. The proposed policy employs a top-two
selection mechanism trained with ListMLE loss to acquire
formation error data and other information from key
neighbors, complemented by GCN layers for system value
prediction. Experimental results confirm the feasibility
of our method and its capability for formation pattern
change. Future research directions include conducting
real-world experimental validation with physical UGVs
and investigating the interaction effects of multiple reward
coefficients on policy behavior to achieve more precise
formation control.
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