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ABSTRACT

In many situations, the data one has access to at test time follows a different
distribution from the training data. Over the years, this problem has been tackled
by closed-set domain adaptation techniques. Recently, open-set domain adaptation
has emerged to address the more realistic scenario where additional unknown
classes are present in the target data. In this setting, existing techniques focus on
the challenging task of isolating the unknown target samples, so as to avoid the
negative transfer resulting from aligning the source feature distributions with the
broader target one that encompasses the additional unknown classes. Here, we
propose a simpler and more effective solution consisting of complementing the
source data distribution and making it comparable to the target one by enabling the
model to generate source samples corresponding to the unknown target classes. To
this end, we attach a generative model to a standard domain adaptation network and
augment the source data with the generated samples before matching the source
distribution to the target one, thus avoiding negative transfer between the domains.
We formulate this as a general module that can be incorporated into any existing
closed-set approach and show that this strategy allows us to outperform the state of
the art on standard open-set domain adaptation benchmark datasets.

1 INTRODUCTION

Domain shift, referring to the training (i.e., source) and test (i.e., target) data being drawn from
different distributions, challenges the standard machine learning assumption, thus typically causing
dramatic training-testing performance drops. Domain adaptation (DA) aims to alleviate this problem
by reducing the gap between the source and target distributions. While many methods exist to measure
the distance between two distributions, two approaches have emerged as particularly effective
for DA. The first one consists of relying on the Maximum Mean Discrepancy (MMD) (Gretton
et al., 2006). Initially employed for non-deep-learning DA (Tzeng et al., 2014; Pan et al., 2010;
Baktashmotlagh et al., 2013; Gong et al., 2013), this metric has been exploited within state-of-
the-art deep learning frameworks, such as Deep Adaption Network (Long et al., 2015) and Joint
Distribution Adaption (Long et al., 2013). The second approach, inspired by Generative Adversarial
Networks (Goodfellow et al., 2014), involves the use of an adversarial domain classifier. This
classifier attempts to discriminate the source and target features, while the feature extractor aims to
fool the discriminator. This has become highly popular in DA, with many state-of-the-art techniques
building on this idea (Ganin et al., 2016; Tzeng et al., 2017; Long et al., 2017; 2018; Ma et al., 2019).

Whether using the MMD or a domain discriminator, the aforementioned techniques all tackle the
closed-set DA scenario, where the source and target data contain the same classes. As such, they
cannot handle the presence of additional, unknown classes in the target domain, which may further
accentuate negative transfer by increasing the source-target distribution mismatch. This more realistic,
yet more challenging, scenario is addressed by open-set DA. In this context, the existing methods
all aim to separate the unknown classes from the known ones, so that distribution alignment can
focus on the latter. To this end, Assign-and-Transform-Iteratively (ATI) (Busto & Gall, 2017) utilizes
the distance between the target samples and the source class centroids; Factorized Representations
for Open-set Domain Adaptation (FRODA) (Baktashmotlagh et al., 2019) factorizes the data into
shared and private parts; Open Set Domain Adaptation by Back Propagation (OSBP) (Saito et al.,
2018) revisits the adversarial learning strategy; Feng et al. (2019) exploit a contrastive-center loss,
aiming to discriminate the known classes while pushing the unknown target samples away from the
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decision boundary; the state-of-the-art Separate To Adapt (STA) (Liu et al., 2019) extends OSBP
with a classifier pre-trained on the source data to estimate the probability that a target sample belongs
to a known or unknown class. While isolating the unknown target classes seems intuitive, the
resulting methods have to rely on either costly alternative optimization strategies (Busto & Gall,
2017), carefully-tuned hyperparameters (Baktashmotlagh et al., 2019; Saito et al., 2018) whose
effectiveness highly depends on the openness of the dataset, i.e., the ratio of unknowns to all target
samples, or a classifier trained on the source data (Liu et al., 2019), which may lead to negative
transfer when the source and target distributions differ significantly.

In this paper, we introduce a simpler yet more effective approach to open-set DA. Specifically,
we propose to complement the source data by generating source samples depicting the unknown
target classes so as to reduce the negative transfer entailed by these classes. This is achieved by
incorporating a generator that produces unknown source samples into a DA model. To encourage
the generated samples to truly encode unknown target classes, we align the distributions of the
target and augmented source data, while training the final multi-class classifier to account for an
unknown class, so that the generated samples differ from those containing known classes. In contrast
to the above-mentioned open-set DA methods, our model, including the generator, does not rely on
openness-sensitive hyperparameters and can be trained in a standard end-to-end fashion.

In essence, by generating unknown source samples, we turn open-set DA into a closed-set prob-
lem. As such, our solution can be implemented in most existing closed-set DA techniques. We
demonstrate this with both the MMD- and domain discriminator-based approaches discussed above.
The resulting framework outperforms the state-of-the-art open-set DA methods on the challenging
Office-Home (Venkateswara et al., 2017), VisDA-17 (Peng et al., 2017) and Syn2Real-O (Peng et al.,
2018) benchmarks. Furthermore, it is robust to openness without any hyperparameter tuning. We will
make our code publicly available upon acceptance of the paper.

2 RELATED WORK

Closed-set DA: By aiming to mitigate the domain shift between the source and target data, domain
adaptation is broadly applicable to many areas, such as computer vision, speech and natural lan-
guage processing, and robotics. Recent DA approaches can be roughly divided into two categories:
statistically-inspired methods, which reduce the domain gap by directly minimizing a distribution
discrepancy measure between the source and target domain in feature space, and domain-adversarial
methods, which indirectly align the feature distributions by exploiting a domain discriminator.

Among the statistically-inspired methods, the Maximum Mean Discrepancy (MMD) (Gretton et al.,
2006) has emerged as one of the most popular distance metrics between the source and target
distributions. While originally used in DA with handcrafted features (Pan et al., 2010; Baktashmotlagh
et al., 2013; Gong et al., 2013), it has since then been introduced in deep learning models (Tzeng et al.,
2014). In this context, Joint Distribution Adaption (Long et al., 2013) utilizes the MMD to measure
both the conditional and marginal distribution differences between the source and target domain;
Deep Adaption Network (Long et al., 2015) further strengthens this regularization by exploiting
multiple kernels between the hidden representations at different layers in both domains.

Domain adversarial methods were motivated by generative adversarial networks (Goodfellow et al.,
2014). They train an additional domain discriminator, whose role is to distinguish the source
features from the target ones. The feature extractor of the main network is then trained to generate
image representations that this domain discriminator cannot distinguish (Ganin et al., 2016; Tzeng
et al., 2017; Long et al., 2017). In this context, CDAN (Long et al., 2018) further conditions the
discriminator on the multi-class predictions; DRCN (Ghifary et al., 2016) incorporates an additional
module aiming to reconstruct the target data; GCAN (Ma et al., 2019) exploits a graph convolutional
network to extract domain-specific data structure information.

Whether statistically inspired or domain adversarial, DA has recently been shown to benefit from the
use of pseudo-labels in the target domain (Saito et al., 2017; Chen et al., 2019; Zhang et al., 2018;
Xie et al., 2018). In essence, this strategy consists of labeling a portion of the target samples with the
source classifier and using such pseudo-labels as supervision. In any event, while the aforementioned
unsupervised DA approaches represent great progress in the field, they all tackle the closed-set
scenario, where the source and target data contain the same classes. As such, they are vulnerable to
the presence of previously-unseen, unknown classes in the target data, which lead to negative transfer.
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Open-set Domain Adaptation: While open-set recognition has been relatively well studied in the
single-domain scenario (Manevitz & Yousef, 2001; Júnior et al., 2016; Scheirer et al., 2012; Jain et al.,
2014b; Bendale & Boult, 2016), the open-set DA literature remains sparse. Assign-and-Transform-
Iteratively (ATI) (Busto & Gall, 2017) constitutes the first attempt at tackling this challenging, yet
more realistic scenario. To this end, it follows an approach similar to pseudo-labeling, assigning the
target samples to one of the known or unknown classes based on the distance of the target features to
the source class centroids. By contrast, Factorized Representations for Open-set Domain Adaptation
(FRODA) (Baktashmotlagh et al., 2019) separates the known and unknown samples by factorizing
them into shared and private representations. Open Set Domain Adaptation by Back Propagation
(OSBP) (Saito et al., 2018) employs a domain adversarial approach, relying on a pre-defined threshold
to identify the unknown samples from the known ones. Feng et al. (2019) extend OSBP by exploiting
a contrastive-center loss to preserve the discriminative information in the known classes while pushing
the unknown samples away from the decision boundary. Separate To Adapt (STA) (Liu et al., 2019)
alleviates the need for a pre-defined threshold by exploiting a classifier that estimates the probability
of a target sample to belong to one of the source classes or to the unknown ones.

While promising, the existing open-set DA methods rely on either complex architectures or optimiza-
tion strategies, or hyper-parameters that make them sensitive to the openness of the dataset, i.e., the
ratio of unknowns to all target samples. This is due to the fact that they aim to solve the challenging
problem of explicitly isolating the unknown target samples. Here, by contrast, we propose to embrace
the presence of unknown classes, and generate unknown source samples so as to turn the open-set
problem into a closed-set one, thus building on the advances of the more mature closed-set DA field.

Note that our approach is different in nature from the ones that use generative models for data
augmentation (Antoniou et al., 2017) and few-shot learning (Wang et al., 2018; Hariharan & Girshick,
2017). Specifically, the methods that use generative models to make up for insufficient data (Antoniou
et al., 2017) aim to generate samples of observed, known classes, and do not tackle the domain
shift problem. By contrast, our method generates images of unknown classes for which we have
no samples in the source domain, so as to complement the source data distribution and make it
comparable to the target one. Furthermore, the hallucination-based methods (Wang et al., 2018;
Hariharan & Girshick, 2017) work under the assumption of having access to a few labeled images of
the new classes. As such, they can explicitly focus on the given samples from this class to generate
new images, while transferring the modes of variations, e.g., different poses and surroundings, from
the base classes. By contrast, we do not know which target images depict new classes, i.e., the
unknown classes are mixed with the known ones, and none of the images are labeled. This makes our
task significantly more challenging.

3 OUR APPROACH

Let us now introduce our approach to open-set domain adaptation. To this end, letDs = {(xsi , ysi )}
ns

i=1
denote the set of ns labeled source samples, where ysi ∈ Ys = {1, . . . C − 1} is a label coming from
one of the C − 1 known classes. Furthermore, let Dt =

{
xtj
}nt

j=1
denote the set of nt unlabeled

target samples, where xtj ∈ Xt. Our goal is to learn a classifier F : Xt → Yt that, given a target
sample xt, produces a label ŷt ∈ Yt = {1, . . . C − 1, C}, where C jointly accounts for additional,
unknown classes, not observed in the source data.

To this end, as depicted by Figure 1, we propose to incorporate a generator network G that, given a
noise vector z as input, produces a source sample xg from an unknown target class. For the generated
samples to be effective and contain useful information for our underlying open-set DA problem, they
must satisfy two properties. First, they must be correctly classified to class C so as to avoid confusion
with the known classes. Second, once processed by a feature-extractor backbone network, the data
obtained by combining the generated samples with the original source samples must follow the same
distribution as the target data. Below, we discuss our approach to enforcing these two properties.

For the first one, let θG denote the parameters of the generator G(z), θF those of the feature-extractor
backbone network F (x), and θH those of a multi-class classifier H(f) acting on the features f
computed by the backbone. Our goal then is to learn these parameters so as to solve the problem

min
θG,θF ,θH

Lh(θG, θF , θH) , (1)
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Figure 1: Proposed framework. We introduce a generator (G) that produces source samples from
the unknown target classes. To ensure that these samples contain the correct information, we align
the target feature distribution to the augmented source one via standard closed-set DA strategies,
including an MMD-based loss and an adversarial domain classifier (D), with hd the probability of
classifying a sample in domain d. Furthermore, we encourage the generated samples to be classified
as unknowns by the multi-class classifier (H). Our entire framework, including the generator, is
trained in an end-to-end fashion.

where

Lh =
1

ns + ng

(
ns∑
i=1

L (H (F (xsi )) , y
s
i ) +

ng∑
i=1

L (H (F (xgi (θG))) , C)

)
, (2)

with ng the number of generated samples, and L(·) the cross-entropy loss function.

Solving (1) is of course not sufficient, because it does not exploit the target data at all, and thus
cannot encode the second property, i.e., the fact that the distribution of the augmented source data
should match that of the target data. To model this, we note that, by augmenting the source data with
unknown samples, we have in essence turned open-set DA into a closed-set problem. Therefore, we
can exploit the same distribution-alignment strategies as in closed-set DA. Below, we discuss the two
most popular such strategies, which we used in our experiments. Note, however, that our formalism
extends to most closed-set DA techniques.

Distribution alignment with an adversarial domain classifier. In the context of deep closed-set
DA, one of the most popular trends to minimize the discrepancy between the source and target
distributions, introduced by Ganin et al. (2016), consists of jointly training a binary domain classifier
D(f). The goal then becomes learning a feature representation that fools this classifier, i.e., makes
the target features indistinguishable from the source ones. In our context, and combining this idea
with the previous loss function, this can be expressed as the minimax problem

min
θG,θF ,θH

Lh(θG, θF , θH)− λdLd(θG, θF , θD) (3)

min
θD

Ld(θG, θF , θD) ,

where θd denotes the discriminator parameters, λd trades off the influence of the two loss terms in
the first optimization problem, and Ld(·) is a discriminator loss. As shown by Ganin et al. (2016),
both optimization problems can be solved jointly using a gradient reversal layer. Note that, w.l.o.g.,
we assume that source samples to be ordered, the original ones first followed by the generated ones.
Furthermore, fs,gi denotes the feature vector of either an original source sample or a generated one.

In (Ganin et al., 2016), the discriminator loss is the binary cross-entropy defined as

Lb = −
1

ns + ng

ns+ng∑
i=1

log [D (fs,gi )]− 1

nt

nt∑
j=1

log
[
1−D

(
f tj
)]

. (4)
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Following CDAN (Long et al., 2018), we modify this formulation to further condition the discrimi-
nator D on the prediction of the multi-class classifier H . Specifically, let h denote the multi-class
probability vector output by the classifier H . We then write the discriminator loss as

L′d = −
1

ns + ng

ns+ng∑
i=1

log [D (T⊗(f
s,g
i ,hs,gi ))]− 1

nt

nt∑
j=1

log
[
1−D

(
T⊗(f

t
j ,h

t
j)
)]

, (5)

where T⊗(·) is the multilinear map, i.e., outer product in our case, defined as T⊗(f ,h) = f ⊗ h .
This was shown by Long et al. (2018) to be more effective than concatenating f and h.

Finally, as suggested by Long et al. (2018), to prevent the minimax problem from giving equal
importance to the samples with uncertain predictions in the adaptation procedure, we re-weight
their influence according to uncertainty. Specifically, we measure uncertainty using the entropy
e(h) = −

∑C
c=1 hc loghc, where hc denotes the probability of classifying a sample in class c. This

gives the discriminator loss

Ld = −
1

ns + ng

ns+ng∑
i=1

e(hs,gi ) log [D (T⊗(f
s,g
i ,hs,gi ))]− 1

nt

nt∑
j=1

e(htj) log
[
1−D

(
T⊗(f

t
j ,h

t
j)
)]

.

(6)

MMD-based distribution alignment. Another popular approach to align the source and target
distributions in the closed-set DA literature consists of using the MMD (Gretton et al., 2006). This
metric measures the discrepancy between two empirical distributions as the distance between their
means in a reproducing kernel Hilbert space. In our context, we can express this as the loss function

L′mmd =

∥∥∥∥∥∥ 1

ns + ng

ns+ng∑
i=1

φ (fs,gi )− 1

nt

nt∑
j=1

φ
(
f tj
)∥∥∥∥∥∥

2

H

, (7)

where φ(·) encodes the mapping to the reproducing kernel Hilbert spaceH.

Following the same intuition as in the domain classifier case, we propose to re-weigh the contribution
of each sample in this loss according to its uncertainty. This lets us re-write our MMD loss as

Lmmd =

∥∥∥∥∥∥ 1

ns + ng

ns+ng∑
i=1

e(hs,gi )φ (fs,gi )− 1

nt

nt∑
j=1

e(htj)φ
(
f tj
)∥∥∥∥∥∥

2

H

(8)

=
1

(ns + ng)(ns + ng − 1)

ns+ng∑
i=1

ns+ng∑
j 6=i

e(hs,gi )e(hs,gj )k
(
fs,gi , fs,gj

)
+

1

nt(nt − 1)

nt∑
i=1

nt∑
j 6=i

e(hti)e(h
t
j)k
(
f ti , f

t
j

)
− 2

(ns + ng)nt

ns+ng∑
i=1

nt∑
j=1

e(hs,gi )e(htj)k
(
fs,gi , f tj

)
,

where k(·, ·) is the kernel function corresponding to φ(·). In practice, we use a Gaussian kernel whose
bandwidth we set to the mean pairwise squared distance between the source and target features.

We then incorporate this loss function in (3) to obtain our complete learning formulation

min
θG,θF ,θH

Lh(θG, θF , θH)− λdLd(θG, θF , θD) + λmLmmd(θG, θF , θH) (9)

min
θD

Ld(θG, θF , θD) ,

where λm sets the relative influence of the MMD term. Note that, by setting either λd or λm to 0, our
formalism allows us to employ a single distribution-alignment strategy. As will be evidenced by our
experiments, our method remains highly effective in such cases.
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Table 1: Recognition accuracy (OS) on the 12 pairs of source/target domains from Office-Home
benchmark using ResNet-50 as backbone. Ar: Art, Cp: Clipart, Pr: Product, Rw: Real-World.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Rw Cl→Pr Cl→Ar Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.
ResNet+OSVM 37.5 42.2 49.2 53.8 48.5 39.2 53.4 43.5 70.6 65.6 49.5 72.7 52.1
DANN+OSVM 52.3 71.3 82.3 73.2 62.8 61.4 63.5 46.0 77.2 70.5 55.5 79.1 66.2
MMD+OSVM 50.6 65.5 77.8 57.8 62.9 70.2 59.2 47.7 74.3 68.2 56.3 76.2 63.9

ATI-λ 53.1 68.6 77.3 74.3 66.7 57.8 61.2 53.9 79.9 70.0 55.2 78.3 66.4
OSBP 56.1 75.8 83.0 75.5 69.2 64.6 64.6 48.3 79.5 72.1 54.3 80.2 68.6
STA 58.1 71.6 85.0 75.8 69.3 63.4 65.2 53.1 80.8 74.9 54.4 81.9 69.5

Ours 57.6 79.3 85 76.4 69.1 65.8 68.4 53.1 81.2 76.4 62.1 81.8 71.4

4 EXPERIMENTS

We compare our approach with the open-set domain adaptation methods ATI-λ (Busto & Gall, 2017),
OSBP (Saito et al., 2018), and STA (Liu et al., 2019), on the three most challenging open-set DA
datasets: Office-Home, VisDA-17, and Syn2Real-O. Furthermore, we report the results of two closed-
set domain adaptation baselines representative of the two adaptation strategies we employ: the use of
MMD (Gretton et al., 2006) in a deep network, and the domain discriminator-based DANN (Ganin
et al., 2016). Finally, we also provide the results of not performing any domain adaptation using
either a ResNet-50 (He et al., 2016) or a VGGNet (Simonyan & Zisserman, 2015), according to
the backbone used in the DA networks. For MMD, DANN, and ResNet-50/VGGNet, we utilize
OSVM (Jain et al., 2014a) to reject the unknown target samples.

All networks were trained using SGD with a learning rate of 0.001, a weight decay of 5 × 10−5,
and a momentum of 0.9. Following the learning rate annealing strategy of (Ganin et al., 2016;
Long et al., 2018), we adjust the learning rate by (1 + αp)−β , where p is the training progress, and
α = 0.001, β = 0.75. For our approach, we used the same architectures as in (Long et al., 2018) to
define our classifier H and domain discriminator D. Our generator consists of six deconvolution
layers, with 512, 256, 128, 64, 32, and 3 channels, respectively. These layers use kernels of size 4
and are connected by batch normalization and ReLU nonlinearities. They map an embedding vector
of size 100 to an image of size 3 × 224 × 224. During training, we set λm to 1, and, relying on
the progressive training strategy of (Ganin et al., 2016; Long et al., 2018), increase λd from 0 to 1
as 1−exp(−10p)

1+exp(−10p) , with p the training progress. We report the two widely-used metrics of normalized
accuracy for the known classes (OS∗), and normalized accuracy for all classes (OS).

4.1 DATASETS

Office-Home (Venkateswara et al., 2017) is a challenging domain adaptation benchmark containing
15,500 images from 65 classes of everyday objects. There are 4 domains in the dataset: Art (Ar),
Clipart (Cp), Product (Pr), and Real-World (Rw). For our experiments, we follow the same setting
as in Liu et al. (2019), consisting of taking the first 25 classes in alphabetical order as known classes
and the remaining classes as unknown ones. For this set of experiments, all DA networks rely on a
ResNet-50 (He et al., 2016) pre-trained on ImageNet as backbone network.

VisDA-17 (Peng et al., 2017) is a standard domain adaptation benchmark dataset comprising two
domains, Synthetic and Real, which share 12 object classes. The Synthetic domain contains 152,397
synthetic images generated by 3D rendering. The Real domain consists of 55,388 real-world images
taken from the MSCOCO Lin et al. (2014) dataset. For our experiments, we follow the same protocol
as in (Saito et al., 2018; Liu et al., 2019), choosing 6 classes as the known set, and the remaining 6
classes as the unknown one. In this set of experiments, all DA networks employ a VGGNet (Simonyan
& Zisserman, 2015) pre-trained on ImageNet as backbone network.

Syn2Real-O (Peng et al., 2018) constitutes the most challenging synthetic-to-real benchmark for
open-set domain adaptation. It consists of synthetic and real objects from 12 categories which forms
the known set in the Synthetic source domain and in the Real target domain. We take 50k MSCOCO
images from irrelevant classes to form the unknown set in the target domain. Even though Syn2Real-
O introduces 33 additional categories from ShapenetCore as unknowns in the source domain, we did
not use that part of the data. This is consistent for all the methods we evaluate. In essence, we follow
the open-set setting of Peng et al. (2018), taking 12 classes as known ones for the source and target
domains, and the other 69 COCO categories as the unknown classes in the target domain. In this set
of experiments, all DA networks employ a ResNet-50 pre-trained on ImageNet as backbone network.

6



Under review as a conference paper at ICLR 2021

(a) Generated unknowns vs target unknowns. (b) Generated unknowns vs source knowns.

Figure 2: t-SNE plots comparing the distributions of the generated unknown versus target unknowns
and source known samples.

Table 2: Accuracy comparison on VisDA-17 with VGGNet as backbone.

Method Bic Bus Car Mot Tra Tru unk OS OS∗

VGGNet+OSVM 31.7 51.6 66.5 70.4 88.5 20.8 38 52.5 54.9
MMD+OSVM 39.0 50.1 64.2 79.9 86.6 16.3 44.8 54.4 56.0
DANN+OSVM 31.8 56.6 71.7 77.4 87.0 22.3 41.9 55.5 57.8

ATI-λ 46.2 57.5 56.9 79.1 81.6 32.7 65.0 59.9 59.0
OSBP 51.1 67.1 42.8 84.2 81.8 28.0 85.1 62.9 59.2
STA 52.4 69.6 59.9 87.8 86.5 27.2 84.1 66.8 63.9

Ours 66.2 83.1 59.9 88.4 76.7 41.2 75.5 70.1 69.2

4.2 RESULTS

As shown in Tables 1, 2, and 3, our method outperforms the state-of-the-art baselines in most
cases, consistently improving the average accuracy (OS), by 1.9%, 3% and 6% on Office-Home,
VisDA-17, and Syn2Real-O, respectively. Note that the largest improvements occur on VisDA-17 and
Syn2Real-O, which are the most challenging open-set DA datasets.

t-SNE Visualization: The t-SNE plot of Fig. 2(a) compares the distributions of the feature vectors
fi of the generated samples and the unknown target samples, computed after training the whole
framework (including the feature extractor F ). Note that our generated unknown samples (in orange)
cover a large portion of the true unknown target sample distribution (in blue). While this confirms the
effectiveness of our approach, small parts in the true distribution nonetheless remain unaccounted for,
which, we believe, explains our slightly disappointing unknown class recognition accuracy. However,
we expect this to be improved via the use of pseudo-labeling, which has proven to be effective in
recent closed-set domain adaptation methods (Chen et al., 2019; Zhang et al., 2018; Xie et al., 2018),
and would thus easily extend to our formalism.

One potential source of errors in our approach would be that the generated samples depict known
classes, instead of unknown ones. This, however, is prevented by classifier H of Fig. 1, which forces
the generated examples to be classified as unknown. Specifically, for a dataset with C − 1 classes, H
is a C-way classifier, which we train by classifying the generated samples to class C. To confirm that
this approach is effective, we compare the distributions of the generated uknowns versus the known
classes for the Syn2Real-O dataset in Fig. 2(b). Note that the generated unknown samples have only
little overlap with the known classes.

4.3 METHOD ANALYSIS

In this section, we evaluate different aspects of our approach. First, while our complete framework
combines the MMD and a domain classifier to align the target and augmented source distributions,
it can in principle rely on either one of these standard approaches individually. To evidence this,
in Table 4(left), we compare our complete framework with these three alternatives, referred to as
Ours w Lh+Lmmd, Ours w Lh+Ld, and Ours w Lh+Ld w/o E.C., and with the state-of-the-art
STA baseline. Note that, while accuracy is improved by combining Lmmd and Ld, using each
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Table 3: Accuracy comparison on Syn2Real-O with ResNet-50 as backbone.

Method Aer Bic Bus Car Hor Kni Mot Per Pla Ska Tra Tru unk OS OS∗

ResNet+OSVM 29.7 39.2 49.9 54.0 76.8 22.2 71.2 32.6 75.1 21.5 65.2 0.6 45.2 44.9 44.8
MMD+OSVM 51 56.9 55.2 45.2 77 27.1 61.8 57.8 44.7 35.1 73 9.6 14.3 46.8 49.5
DANN+OSVM 50.8 44.1 19.0 58.5 76.8 26.6 68.7 50.5 82.4 21.1 69.7 1.1 33.6 46.3 47.4

OSBP 75.5 67.7 68.4 66.2 71.4 0.0 86.0 3.2 39.4 23.2 68.1 3.7 79.3 50.1 47.7
STA 64.1 70.3 53.7 59.4 80.8 20.8 90.0 12.5 63.2 30.2 78.2 2.7 59.1 52.7 52.2

Ours 86.3 65.7 69.7 64.6 88.7 13.7 91.4 52 63.9 34.6 75.9 6.3 50.9 58.7 59.4

Table 4: Analysis of different aspects of our method on Syn2Real-O. (Left) Comparison of different
distribution-alignment losses. (Right) Ablation study of the different components of our framework.

Method OS OS∗

STA 52.7 52.2
Ours w Lh + Lmmd 55 59.2
Ours w Lh + Ld 54.8 55.7
Ours w Lh + Ld w/o E.C. 54.2 54.7

Ours 58.7 59.4

Method UNK OS OS∗

Ours w Noise 20.9 44.8 46.8
Ours w/o E.C. in Lmmd 48.7 58 58.8
Ours w/o E.C. in Ld 43.9 57.7 58.9
Ours w/o E.C. in Ld + Lmmd 45.2 56.9 57.8

Ours 50.9 58.7 59.4

one separately within our model still consistently outperforms STA, thus showing the benefits and
generality of our approach. Moreover, the accuracy of our approach with DAN only, as in OSBP,
refereed to as Ours w Lh + Ld w/o E.C. still outperform OSBP and the state-of-the-art STA.

As a second analysis, we perform an ablation study to evaluate the influence of different components
of our approach. In particular, to evidence the importance of generating samples that correspond to
the unknown classes, as opposed to random noise treated as unknowns, we evaluate an Ours w Noise
baseline, consisting of removing the generator from our approach and using random noise images
instead. Furthermore, we report the results of our approach without the use of entropy conditioning
to reweigh the samples in Lmmd and Ld, referred to as Ours w/o E.C. in Lmmd, Ours w/o E.C. in
Ld, and Ours w/o E.C. in Ld + Lmmd respectively. As shown in Table 4(right), using random noise
as unknown samples yields a huge performance degradation, showing the importance of learning the
distribution of the unknown data. By contrast, entropy conditioning only has little influence on the
average accuracy. However, it helps to correctly classify the unknown samples.

Figure 3: Accuracy vs. openness on Syn2Real-O.

Finally, we analyze the robustness of our approach
to the openness of the data. To this end, follow-
ing the same protocol as in (Saito et al., 2018;
Liu et al., 2019), we vary the openness of the
Syn2Real-O data in {0.25, 0.5, 0.75, 0.9} by re-
moving different portions of the unknown sam-
ples. In Fig. 3, we compare the results of our
approach with those of OSBP and STA. Our ap-
proach is more stable than OSBP and consistently
outperforms both baselines by a large margin.

5 CONCLUSION

We have introduced an approach to open-set do-
main adaptation that, in contrast to existing ones,
does not aim to isolate the unknown target sam-
ples, but rather complements the source data by generating samples from the unknown target classes.
In essence, this has allowed us to turn open-set DA into a closed-set problem, and thus to benefit from
the great advances in closed-set DA. Our approach is simpler than existing open-set DA techniques,
yet, as evidenced by our experiments on the three most challenging open-set DA benchmarks, consis-
tently outperforms them. Furthermore, it is broadly applicable to most closed-set DA frameworks. In
the future, we will therefore investigate its use with more advanced closed-set DA strategies than the
MMD- and domain discriminator-based ones used here. Furthermore, we will extend our approach to
non-visual DA tasks, such as word translation in natural language processing (Conneau et al., 2017),
sentiment analysis (Han et al., 2019), and text classification (Chen & Cardie, 2018; Guo et al., 2020).
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