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Abstract

Medical time-series analysis differs fundamentally from general ones by requiring
specialized domain knowledge to interpret complex signals and clinical context.
Large language models (LLMs) hold great promise for augmenting medical time-
series analysis by complementing raw series with rich contextual knowledge drawn
from biomedical literature and clinical guidelines. However, realizing this po-
tential depends on precise and meaningful prompts that guide the LLM to key
information. Yet, determining what constitutes effective prompt content remains
non-trivial—especially in medical settings where signal interpretation often hinges
on subtle, expert-defined decision-making indicators. To this end, we propose In-
DiGO, a knowledge-aware evolutionary learning framework that integrates clinical
signals and decision-making indicators through iterative optimization. Across four
medical benchmarks, InDiGO consistently outperforms prior methods. The code is
available at: https://github.com/jinxyBJTU/InDiGO.

1 Introduction

Medical time series analysis forms an essential foundation for continuous health monitoring, under-
pinning key applications such as sleep staging [11], cardiac arrhythmia detection [19], and mobility
assessment [50]. Unlike generic time series analysis, medical data requires models to capture
clinically meaningful signal patterns and incorporate domain-specific knowledge for trustworthy
interpretation. Earlier studies integrating knowledge priors into model architectures and aligning loss
functions with physiological semantics have yielded promising results [14, 33, 17].

In recent years, large language models (LLMs) have gained traction in time series analysis for their
ability to integrate complementary knowledge through two key paradigms. The implicit paradigm
builds on inductive biases embedded in pretrained architectures, harnessing LLMs’ strength in compo-
sitional reasoning and contextual abstraction [36, 49]. Meanwhile, the explicit paradigm formulates
expert knowledge as structured textual prompts, enabling direct and interpretable knowledge injection
[12, 23, 24]. While both strategies offer notable advantages over traditional unimodal approaches,
several key challenges remain in fully realizing the potential of LLMs for medical analysis.
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C1: What kinds of promptable knowledge are most effective for decoding medical time series?

The selection of textual content as a knowledge
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Figure 1: Task-relevant indicators provide critical
cues for physiological state interpretation in sleep
analysis and cardiac assessment.

carrier varies across existing works. For ex-
ample, Time-LLM [12] designs a template that
includes dataset descriptions and sample statis-
tics to guide prediction tasks, while AutoTimes
[23] encodes timestamp information for token-
wise prompting. KEDGN [24] uses variable-
specific textual medical knowledge to model
time-varying inter-variable dependencies. How-
ever, such promptable knowledge remains overly
broad and lacks discriminative power even in
common domain-informed tasks—let alone in
expertise-intensive clinical domains.

In these contexts, a wealth of decision-making
indicators actually remains overlooked. As
shown in Figure 1, sleep waveforms like spindles
and slow waves are key indicators for identifying
sleep stages [3], while features such as RR inter-
vals and QRS complex provide essential cues for
cardiac assessment [8]. Although the extraction
of these indicators via semi-automated tools may
suffer from limited accuracy, they are easy to
obtain and offer high utility for task, yet current
LLM-assisted paradigms fail to leverage these crucial clues, missing important insights and losing a
natural attribution pathway.

C2: How to robustly integrate time series and suboptimal text prompts?

Despite growing efforts to integrate textual knowledge into time-series models, no unified strategy
has emerged. A common approach directly concatenates textual and time-series representations as
LLM input [4, 23], while others either enforce alignment constraints across modalities [36, 30], or
use time-series features to query pretrained word embedding dictionaries for semantic enrichment
[12, 22]. These strategies presuppose that textual inputs are sufficiently informative for the task.
When this condition is unmet, there is no further mechanism to reconcile the misalignment between
modalities, and the synergy between time-series and text collapses, offering little valuable information
for the LLM to exploit—ultimately resulting in marginal performance gains and underutilization of
its inferential capacity.

To this end, we propose InDiGO—Indicator-informed Diversity-Guided Optimization—a frame-
work that integrates domain-informed decision indicators to enhance prompt robustness for medical
time-series analysis. InDiGO incorporates alignment- and diversity-aware optimization to maximize
synergy between text and time-series modalities, enabling more informative and resilient prompt
learning while maintaining robustness to initial prompt variations across diverse clinical tasks.

• We present a theoretical analysis of joint time series–text decoding, revealing that existing
limitations largely arise from biased estimation due to mismatched series-text pairs.

• We propose a mask-based importance sampling strategy grounded in indicator-informed prompts
to approximate optimal series-text combinations through alignment and diversity optimization.

• Experiments on four real-world physiological datasets show that InDiGO outperforms state-of-
the-art methods, with visualizations further demonstrating its strong interpretability.

2 Related Works

2.1 Knowledge-Empowered Medical Modeling

Prior to the rise of language models and multimodal learning, many studies incorporated prior
knowledge through task-specific module design and task-agnostic loss design.
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Task-specific module design. SleepHGNN [10] models the brain functional relationships across
different sleep stages using heterogeneous graph convolution. L-SeqSleepNet [33] and SleepKD [21]
both focus on modeling sleep transition rules between epochs, building upon the extraction of local
features within each individual epoch.

Task-agnostic loss design. CLOCS [17], based on ECG acquisition scenarios, defines a family of
patient-specific contrastive learning losses to guide the model in learning patient-centric invariances.
Building on this, COMET [43] further strengthens the consistency and discriminative constraints
at the trial and observation levels. ExpCLR [27] utilizes continuous expert features instead of view
transformations to encourage consistency between the sample relationships and expert features.
SmdCLR [13] extends InfoNCE [29] with multi-instance discrimination and semantic consistency
regularization to alleviate false negatives and class imbalance in time-series contrastive learning.

2.2 LLM-Assisted Time Series Analysis

The emergence of pre-trained language models has revolutionized the knowledge-empowered mod-
eling. Early works leverage LLMs’ language priors for implicit knowledge modeling, while more
recent efforts integrate textual content for explicit knowledge encoding.

Implicit knowledge modeling. PromptCAST [44] and LLMTIME [9] attempt to convert time
series into text to exploit the zero-shot generalization capabilities inherent to LLMs. OneFitsAll
[49] treats LLMs as universal sequence encoders by leveraging pre-trained self-attention to perform
non-data-dependent operations, eliminating the need to convert time series into text. Following this,
TEST [36] and S2IP-LLM [30] attempted to align pre-trained dictionary tokens or text prototypes to
better leverage the sequential modeling capabilities of LLMs.

Explicit knowledge encoding. TimeLLM [12] combines dataset information, task instructions,
and input statistics into a template to provide a prompt prefix for time series, effectively activating
specific tasks. TEMPO [4] introduces a semi-soft prompting strategy to provide component-specific
prompts for different time series trend components. AutoTimes [23] transforms timestamps into
textual prompts and integrates them with each series step as input, aligning with language models’
autoregressive token modeling. KEDGN [24] converts the medical properties of variables into
textual knowledge, enabling the language model to better capture the relationships between variables.
TALON [37] further unifies time-series and textual modalities under a single large language model,
enabling multimodal reasoning and generalizable forecasting across domains.

Despite these advances, existing approaches fall short in the context of physiological and healthcare
data, leaving rich domain knowledge underexplored. Moreover, the paradigm of jointly decoding
time series and text remains insufficiently explored and understood.

3 Preliminaries and Motivation

Time-Series Text Joint Decoding. In this study, each physiological sample can be represented by a
triplet (si, ti, yi), where si ∈ RC×L denotes the multichannel time series with C channels and length
L, ti is a variable-length descriptive text prompt, and yi ∈ {1, 2, . . . ,K} is the corresponding label
among K predefined categories. The joint decoding process can be formulated as:

PLLM(Y = yi|si, ti) = N (µi(si, ti; θ), σ
2
i (si, ti; θ) ∗ I) (1)

where µi(si, ti; θ) and σ2
i (si, ti; θ) represent the predicted mean and variance respectively, and I

denotes the identity matrix, assuming independent output dimensions. By leveraging the conditional
probability relationships, target Y can be obtained through integration as:

PLLM(Y ) = E(s,t)∼P (s,t) [PLLM(Y |s, t)] ≈ 1

n

n∑
i=1

Et∼P (t|si) [PLLM(Y |si, t)] (2)

where P (t|si) is the distribution of possible text prompts conditioned on the series si, and the
decoding process is achieved by integrating over the potential text distribution corresponding to all
possible prompts for a given series si. Further, the optimal parameters θ∗ for the LLM backbone as a
joint decoding model can be estimated by Maximum Likelihood Estimation (MLE) as:

θ∗ = argminθ −
n∑

i=1

logPLLM(Y = yi) = argminθ −
n∑

i=1

log(
∫

PLLM(yi|si, t)P (t|si)dt) (3)
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This implies that the marginal likelihood (i.e., M =
∫
PLLM(yi|si, t)P (t|si)dt) can be approximated

by drawing a large number of samples from the potential distribution of all text prompts:

M̂ = E[PLLM(yi|si, t)P (t|si)] ≈
1

m

m∑
j=1

PLLM(yi|si, tj)P (tj |si) (4)

which is evidently impractical due to the immense computational and data requirements involved in
such a process. In practical scenarios, using a finite number of text samples often leads to bias:

Bias(M̂) = E[PLLM (yi|si, t)P (t|si)]−
∫

PLLM (yi|si, t)P (t|si)dt (5)

where previous work usually leverages a specific text tji to essentially approximate the expectation of
the posterior distribution P (t|si). This can be interpreted in the form of a Laplace approximation:∫

PLLM(yi|si, t)P (t|si)dt ≈ PLLM(yi|si, t∗i )P (t∗i |si)

t∗i = argmax
ti

[logPLLM(yi|si, ti) + logP (ti|si)]
(6)

where t∗i represents the text that simultaneously maximizes both the likelihood function
PLLM(yi|si, ti) and the posterior distribution P (ti|si), in other words, t∗i is the optimal text corre-
sponding to the series si under the target yi. In the case of imprecise text t, such as rough statistical
descriptions [12] or conceptual clinical knowledge [24], it is evident that this will cause severe bias.

In this paper, we propose an efficient solution based on importance sampling [26], aiming to quickly
approximate the optimal text through multiple samplings from a simple distribution related to the
initial prompt, thereby avoiding the significant bias risk caused by any single inaccurate text.

4 Methodology

The overall architecture of our model is illustrated in Figure 2. To better approximate the ideal
marginal likelihood, we begin by crafting a contextually relevant text prompt by formalizing decision-
making indicators extracted via semi-automated tools. Subsequently, we propose a masked Monte
Carlo importance sampling (MCIS) mechanism, which supplants exhaustive prompt enumeration
by iteratively sampling from a tractable proposal distribution. To foster deeper synergy between
sampled prompts and time-series inputs, we introduce a heuristic optimization scheme that promotes
informative and resilient prompt learning through relevance-based match alignment (MA) and
diversity optimization (DO), while maintaining robustness to variations in initial prompt quality.
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Figure 2: Overview of InDiGO. Given medical time series and initial texts, we apply mask-based
importance sampling and pre-trained encoders to extract features. A series-text interactor captures
relevance, followed by alignment and diversity optimization to identify the optimal combination.
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4.1 Series Tokenization

Each input medical time series si is passed through a pre-trained, frozen parameter time series
encoder for feature extraction, where each series is initially divided into consecutive patches with
length Lp. The total number of patches is given by Ls = ⌊L−Lp

S + 2⌋, where S is the stride for the
horizontal sliding operation. Once the patches are created, the pre-trained time series encoder will be
leveraged to embed each patch in series si = {s1i , s2i , . . . , s

Ls
i } as:

si = SeriesEnc(s1i , s
2
i , . . . , s

Ls
i , [CLSs]) (7)

where si ∈ R(Ls+1)×ds , and [CLSs] is the special category token added at the end of each series.

4.2 Indicator-Guided Prompt Prototype Construction

To provide as much complementary information
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Figure 3: Scene-specific indicator prompting via
semi-automated extraction.

as possible for time-series signals and facilitate
faster approximation of the optimal textual de-
scription, we move beyond general dataset [12],
timestamp-based descriptions [23] or concep-
tual clinical knowledge [24] and instead con-
struct task-oriented prompts that incorporate key
indicator-specific descriptions.

While it is challenging to exhaustively identify
all task indicators, our goal is not to achieve
completeness, but rather to extract relatively in-
formative cues that complement input signals
and enhance downstream task performance. As
shown in Figure 3, an initial prompt prototype
includes specific task instruction, a summary of
signal statistics, and the presence or relationships
of task-relevant indicators. For example, in sleep
analysis, we detect slow and spindle waves in
EEG signals, while in cardiac analysis, we ex-
tract rhythm-related features such as RR inter-
vals, PR intervals, and QRS durations to support
a better understanding of physiological states.
These indicators are integrated into prompts through automated extraction, providing task-relevant
insights and enabling strong potential for generalization to other expertise-intensive domains.

4.3 Masked Monte Carlo Importance Sampling

Based on the aforementioned indicator-guided prompts, we obtain an initial text sample t0i corre-
sponding to si, which serves as a coarse approximation of the optimal text t∗i . However, even so,
manually designed prompts inevitably introduce bias in the estimation of the marginal likelihood.
To mitigate this limitation, we aim to construct and perform multiple importance samplings from a
simple distribution q(t|t0i ) that is both computationally tractable and closer to the optimal distribution
t∗i , thereby replacing infeasible enumeration with sampling-driven surrogate approximation.

To be specific, for the estimation of the marginal likelihood M, we can approximate it by performing
multiple important sampling from a easy-tractable distribution q(t|t0i ):

M̂ =

∫
PLLM(yi|si, t)q(t|t0i )

P (t|si)
q(t|t0i )

dt ≈ 1

m

m∑
j=1

PLLM(yi|si, tji )
P (tji |si)
q(tji |t0i )

(8)

where q(t|t0i ) is centered around a reference prompt t0i and expected to cover the main support region
of the target distribution P (t|si). At this point, the optimal value of t∗i changes as follows:

t∗i = argmax
ti

[logPLLM(yi|si, ti) + logP (ti|si)− log q(ti|t0i )] (9)

In this way, the ideal marginal likelihood can be estimated efficiently rather than blindly attempting
to replace it with a single textual prompt, which carries the risk of inaccuracy and mismatch.
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Masked Sampling. We perform m random masking operation iterations on the given text prompt
t0i . Specifically, after tokenizing the textual prompts, we randomly select r% of the tokens at any
position and replace them with the special [Mask] token, resulting in a masked sampling set Dti :

Dti = {tji |t
j,1
i , tj,2i , . . . , t

j,Lti
i ; j = 1, . . . ,m} (10)

where Lti is the length of the prompt t0i and each tji with a different random mask. Subsequently, we
use a pre-trained text encoder to extract semantic representation of each tji and repeat m times:

tji = TextEnc([CLSt], tj,1i , tj,2i , . . . , tj,lii , [SEP]) (11)

where tji ∈ R(Lti
+2)×dt , [CLSt] and [SEP] are special tokens indicating the category and end of

prompt tji , respectively. This masked sampling and encoding process provides the initial (inaccurate)
text prompt with an opportunity to infer and complete missing semantics from its surrounding context.
To ensure consistency, both the text encoder and LLM decoder share the same architecture (e.g.,
GPT-2), using different layers from the front and back of the model.

4.4 Match Alignment and Diversity Optimization

By performing mask-based Monte Carlo sampling from a simple distribution, we obtain a set of candi-
date texts Dti that close to the optimal t∗i , but their proximity still depends on the correlation between
q(t|t0i ) and P (t|si). Moreover, since the distribution P (t|si) is intractable, directly minimizing the
KL divergence between the sampling distribution and the true posterior is not feasible.

To address this, we introduce an indirect optimization strategy that provides a pathway for guiding
the representations learning process of samples Dti to approximate the true posterior P (ti|si)
through joint optimization with the downstream task objective PLLM(yi|si, ti), enabling the sampling
process from q(t|t0i ) to evolve dynamically during training via modeling the series-text interaction
understanding and a lightweight combination of alignment and diversity constraints.

Series-Text Interaction. We first model the correlation for each series-text pair (si, t
j
i ) using a

co-attention mechanism in Series-Text Interactor (STI). Formally, we define the queries, keys and
values matrices for both modalities. For each time series, the query, key and value are given by
qs = sW s

q , ks = sW s
k and vs = sW s

v , respectively. Similarly, for each text, the query, key and
value are defined as qt = tW t

q , kt = tW t
k and vt = tW t

v , where W s
q ,W

s
k ,W

s
v ∈ Rds×d, and

W t
q ,W

t
k,W

t
v ∈ Rdt×d are learnable weight matrices. The interaction between the time series s and

the text t is modeled using a bidirectional co-attention mechanism, where each modality serves as
both the query and the key/value for the other. Formally, we compute:

(zs, zt) = BiCoAttn(s, t) =

(
softmax

(
qsk⊤

t√
d

)
vt, softmax

(
qtk

⊤
s√
d

)
vs

)
(12)

where zs ∈ R(Ls+1)×d and zt ∈ R(Lt+2)×d denote the co-attended representations of the series and
the text. These are later integrated into their original representations as updated s and tj .

Alignment and Diversity Optimization for Evolving the Proposal Distribution. Approximating
the optimal t∗i involves both task likelihood and prompt posterior. Since the latter is intractable, we
introduce a heuristic surrogate objective based on Bayes’ theorem, replacing P (tji |si) with P (si|tji )
and gradually guide the proposal distribution q(t|t0i ) toward the true posterior. We then design an
alignment loss encourage precision and a diversity loss to promote coverage, jointly driving q(t|t0i )
to evolve toward the true posterior:

Lobjective = Etji∼q(t|t0i )
[− logP (si|tji )]−H(q(t|t0i )) (13)

where the first term encourages the sampled texts to be semantically informative with respect to si,
while the second term promotes diversity by maximizing the entropy of the proposal distribution
q(t|t0i ). This balance facilitates the discovery of more informative and diverse prompts that not only
better approximate the unknown optimal prompt t∗i , but also enhance resilience of inaccurate prompts
to downstream tasks when integrated into fine-tuning.
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Specifically, to further enhance semantic consistency between series si and its sampled prompts tji ,
we introduce a match alignment loss that explicitly aligns their representations:

Lalign = E(si,t
j
i )
[− log

exp(sim(si, tji )/τ)∑N
k=1

∑m
j=1 exp(sim(si, tjk)/τ)

] (14)

Additionally, to encourage a broader exploration of the prompt space and reduce over-reliance on the
initial prompt t0i , we incorporate a diversity optimization objective based on entropy:

Ldiverse = −H(q(t|t0i )) =
1

m

m∑
j=1

log q(tji |t
0
i ) (15)

Together, these components enable the proposal distribution q(t|t0i ) to evolve during training in both
a semantically aligned and exploration-rich manner, progressively approximating the true posterior.

Joint Decoding and Output Projection. For the multiple series-text pairs after STI modeling, we
take their respective means s̃i, t̃i and concatenate them, then feed the result into the LLM decoder
and projection head for final inference, yielding the predicted target:

ŷi = OutputProj(Flatten(DecoderLLM([̃si, t̃i]))) (16)

Finally the task loss (i.e., cross-entropy) collaborates with alignment and diversity objectives to jointly
guide the model optimization and learning of proposal distribution as L = Lalign + Ldiverse + Ltask.

5 Experiments

5.1 Datasets and Data Processing

Datasets. We evaluate InDiGO on four public medical healthcare datasets: Sleep-EDF-20/78
(EEG/EOG, 100Hz) [16], PTB-XL (12-lead ECG, 500Hz) [41], and UCI HAR (wearable motion
signals, 50Hz) [2]. Sleep-EDF-20/78 provides five sleep stages under AASM standards [3]; PTB-XL
adopts two arrhythmia prototypes as established in prior work [45]; HAR supports six-class activity
recognition from wearable sensors. More descriptions details please refer to Appendix A.

Data Splitting. We segment sleep recordings into 30s epochs and perform 5-fold subject-independent
cross-validation (3:1:1 split). PTB-XL uses its standard 8:1:1 patient split, repeated over five seeds.
HAR uses its official split, with the test set divided 1:1 into validation and test.

Indicator Extraction. For sleep staging, we annotate key indicators such as spindles and slow waves
using A7 [18] and YASA [40]. For arrhythmia detection, we extract inter-wave features—RR, PR,
QRS, and PP intervals—using NeuroKit2 [25]. HAR lacks distinct waveform structures, allowing us
to evaluate model performance in the absence of explicit physiological indicators.

5.2 Experimental Settings and Baselines

The experiments are implemented by Pytorch framework. For Table 1 and Table 2, we report the
mean and standard deviation values. Our model is trained by Adam optimizer with a learning rate
lr=0.0003, a mask ratio of r = 40%, and m=10 sampling times. We use BIOT [45], a pre-trained
model tailored for physiological time series, as the time series encoder, and use the first/last 24 layers
of GPT-2 XL [34] as the pre-trained text encoder and decoder, respectively. For details on pre-trained
model configurations and hyperparameter choices, please refer to Table 9, 10 in Appendix B and C.

Baselines. We compare InDiGO with state-of-the-art methods, including general time-series represen-
tation models (TF-C [48], SimMTM [7], OneFitsAll [49], Time-LLM [12], KEDGN [24], MiniRocket
[5], BIOT [45]), sleep stage classifiers (TinySleepNet [38], XSleepNet [32], L-SeqSleepNet [33],
SleepHGNN [10], SleepKD [21], SleepDG [42], Brant-X [47]), and physiological signal decoders
(SPaRCNet [15], ContraWR [46], CNN-Transformer [31], FFCL [20], ST-Transformer [35]).

5.3 Main Results

Tables 1 and 2 report the accuracy of InDiGO and baselines across three physiological tasks. InDiGO
consistently outperforms all methods. General pre-trained models underperform due to their lack of
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Table 1: 5-fold cross-validated average results for sleep stage classification.

Methods Sleep-EDF-20 Sleep-EDF-78

Acc. Macro F1 Kappa Acc. Macro F1 Kappa

TF-C [48] 55.42 ±1.39 26.04 ±0.21 30.74 ±1.52 53.90 ±4.03 26.00 ±2.09 29.32 ±6.43
SimMTM [7] 66.91 ±1.89 53.21 ±1.95 53.25 ±2.02 63.06 ±2.67 57.07 ±2.13 53.07 ±3.42

OneFitsAll [49] 72.60 ±1.51 61.61 ±5.80 61.81 ±3.50 68.50 ±2.19 54.24 ±1.96 55.21 ±3.07
Time-LLM [12] 80.31 ±2.63 71.64 ±3.02 70.22 ±2.84 78.08 ±2.96 66.09 ±3.25 68.04 ±3.14

KEDGN [24] 74.89 ±3.86 64.29 ±3.36 64.90 ±5.46 70.34 ±1.85 58.59 ±2.74 57.47 ±2.56
MiniRocket [5] 81.60 ±1.55 72.82 ±2.01 72.79 ±1.96 78.36 ±1.93 70.18 ±2.35 69.46 ±2.46

BIOT [45] 81.86 ±4.41 75.29 ±4.47 75.14 ±6.00 77.15 ±3.04 69.36 ±4.13 68.26 ±4.36

TinySleepNet [38] 83.64 ±2.31 77.54 ±2.55 77.63 ±2.29 83.49 ±2.24 76.64 ±2.61 76.41 ±2.59
XSleepNet [32] 80.93 ±2.34 76.71 ±2.59 74.31 ±2.32 81.83 ±2.30 75.28 ±2.66 75.44 ±2.37

L-SeqSleepNet [33] 82.90 ±2.12 74.90 ±2.22 76.47 ±2.24 80.84 ±2.18 72.67 ±2.38 74.94 ±2.51
SleepHGNN [10] 81.15 ±1.96 72.88 ±2.17 73.35 ±2.16 77.35 ±2.13 69.56 ±2.39 68.65 ±2.41

SleepKD [21] 82.44 ±2.40 74.11 ±2.72 76.87 ±2.63 80.19 ±2.85 72.65 ±2.84 74.86 ±2.93
SleepDG [42] 81.92 ±2.27 74.74 ±2.53 76.43 ±2.47 79.95 ±2.42 72.21 ±2.59 74.16 ±2.68
Brant-X [47] 84.58 ±1.98 77.63 ±2.13 79.29 ±2.18 82.84 ±2.21 77.04 ±2.30 76.67 ±2.49

InDiGO 89.04 ±1.80 80.53 ±1.77 84.91 ±2.51 86.79 ±1.90 81.12 ±1.88 81.60 ±2.89

Table 2: Average performance on arrhythmia detection and human activity recognition tasks.

Methods PTB-XL HAR

BaAcc. AUCPR AUROC BaAcc. Kappa Weighted F1

TF-C [48] 58.91 ±2.24 61.08 ±3.52 33.79 ±3.55 82.95 ±3.09 81.71 ±3.84 82.13 ±2.25
SimMTM [7] 64.13 ±2.16 67.91 ±2.80 42.95 ±4.98 88.53 ±0.52 86.42 ±0.63 88.40 ±0.51

OneFitsAll [49] 71.16 ±1.26 77.41 ±1.53 57.39 ±1.72 88.21 ±0.93 85.79 ±1.02 88.24 ±0.82
Time-LLM [12] 75.79 ±0.49 82.99 ±0.40 67.36 ±0.77 90.71 ±1.92 86.21 ±1.47 89.03 ±1.35

KEDGN [24] 74.64 ±1.42 80.06 ±1.83 66.73 ±2.49 89.50 ±0.28 86.14 ±0.33 88.74 ±0.24
MiniRocket [5] 81.79 ±0.34 87.79 ±0.13 75.03 ±0.19 91.68 ±0.53 89.58 ±0.25 91.32 ±0.69

BIOT [45] 84.21 ±0.30 92.21 ±0.75 76.59 ±0.76 94.61 ±1.34 93.51 ±1.60 94.58 ±1.36

FFCL [20] 70.34 ±0.52 70.88 ±0.53 51.27 ±0.51 85.19 ±1.48 82.16 ±1.77 85.08 ±1.38
SPaRCNet [15] 82.75 ±0.47 90.40 ±0.67 75.50 ±0.73 93.71 ±1.60 92.36 ±1.89 93.65 ±1.55
ContraWR [46] 75.32 ±5.61 75.49 ±1.64 52.58 ±11.90 90.68 ±1.64 88.79 ±2.01 90.55 ±1.82

CNN-Transformer [31] 66.50 ±4.59 71.75 ±5.58 49.96 ±9.36 86.90 ±8.39 82.73 ±9.53 83.52 ±11.66
ST-Transformer [35] 72.38 ±0.83 77.75 ±1.53 60.03 ±1.79 93.36 ±0.63 92.13 ±0.76 93.37 ±0.68

InDiGO 86.02 ±0.19 92.31 ±0.26 82.98 ±0.50 95.83 ±0.26 95.02 ±0.26 95.81 ±0.23

physiological signal awareness, while task-specific models benefit from prior knowledge integration.
OneFitsAll, Time-LLM, and KEDGN despite leveraging knowledge encoding, offer limited gains,
underscoring our method’s strength. Notably, our advantage on the HAR task demonstrates that
InDiGO remains effective even without task-specific waveform prompts.

5.4 Ablation Studies

Table 3: Ablation study of model design.

Metrics Sleep-EDF-20 PTB-XL

Macro F1 Kappa BaAcc. AUCPR

w/o MCIS 76.23 79.97 84.31 90.12
w/o STI 78.70 82.98 85.46 91.57
w/o MA 78.31 82.18 85.89 91.25
w/o DO 77.12 80.33 84.52 90.54

Full 80.53 84.91 86.02 92.31

To better understand the contribution of each
component, we conduct ablation studies as sum-
marized in Table 3. We can observe a consis-
tent performance decline across all metrics when
any of the key modules is ablated, highlighting
their individual importance. w/o Masked Monte
Carlo Importance Sampling (MCIS) shows the
most significant drop, highlighting the critical
role of masked importance sampling in enhanc-
ing robustness against inaccurate prompts. w/o
Series-Text Interaction (STI) module also causes

a notable degradation, which underscores the necessity of cross-modal interaction in capturing
complementary information from series and text. w/o Match Alignment (MA) and w/o Diversity
Optimization (DO) lead to moderate declines, highlighting their contribution to enhancing textual
diversity, which in turn enables more effective activation of LLM’s potential through joint fine-tuning.

5.5 Low-Resource Generalization: Few-Shot and Zero-Shot Settings

We evaluate InDiGO in low-resource settings, including few-shot and zero-shot scenarios. As
shown in Tables 4 and 5, it consistently achieves the best results across all datasets, demonstrating
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strong generalization and robustness. This improvement can be attributed to the indicator-guided
prompting and mask-based diversity sampling, which jointly expand the textual representation space
and strengthen series–prompt alignment, enabling effective adaptation under limited supervision.

Table 4: Performance Comparison on Few-Shot Learning Tasks (5% Training Data).
Methods SimMTM OneFitsAll Time-LLM KEDGN BIOT InDiGO

Acc. Macro F1 Acc. Macro F1 Acc. Macro F1 Acc. Macro F1 Acc. Macro F1 Acc. Macro F1

EDF-20 63.91 47.08 60.81 53.81 59.21 50.37 66.65 52.79 65.72 51.49 75.40 69.63
EDF-78 62.06 42.72 60.28 52.08 66.47 55.14 66.20 51.53 66.38 51.37 74.81 68.63
PTB-XL 55.44 48.91 61.01 55.55 64.79 57.38 62.99 56.25 65.38 60.99 72.46 67.06

HAR 55.75 50.30 52.55 47.20 55.40 48.40 58.92 57.69 67.18 63.46 76.79 74.60

Table 5: Performance Comparison on Few-Shot Learning Tasks (10% Training Data).
Methods SimMTM OneFitsAll Time-LLM KEDGN BIOT InDiGO

Acc. Macro F1 Acc. Macro F1 Acc. Macro F1 Acc. Macro F1 Acc. Macro F1 Acc. Macro F1

EDF-20 64.03 48.78 64.10 56.96 67.42 53.55 69.37 57.16 68.99 56.34 76.70 70.83
EDF-78 62.82 44.49 63.98 53.21 68.11 57.65 66.97 53.31 67.00 53.39 75.30 69.09
PTB-XL 56.15 53.24 67.14 56.39 65.01 58.82 64.92 57.14 70.78 64.57 75.86 70.30

HAR 57.96 53.38 62.38 61.32 63.76 62.78 60.69 59.20 69.42 68.98 79.45 79.45

We further conduct zero-shot transfer experiments between Sleep-EDF-20 and Sleep-EDF-78 by
excluding the first 20 overlapping subjects from Sleep-EDF-78, as shown in Table 6. Even without
target-domain labels, InDiGO surpasses baselines, showing that indicator-guided prompting and
Monte Carlo sampling boost representation diversity and low-resource adaptability.

Table 6: Performance Comparison on Zero-Shot Learning Tasks.
Methods SimMTM OneFitsAll Time-LLM KEDGN BIOT InDiGO

Acc. Macro F1 Acc. Macro F1 Acc. Macro F1 Acc. Macro F1 Acc. Macro F1 Acc. Macro F1

EDF-20 → EDF-78 54.49 44.18 64.57 56.57 63.97 55.22 63.87 51.82 64.55 53.11 73.57 68.09
EDF-78 → EDF-20 64.37 54.93 76.09 68.70 75.49 67.55 71.41 60.19 73.30 63.24 76.86 72.94

5.6 Efficiency Analysis

Table 7: Efficiency Evaluation: Training and
Inference Overhead.

Model Name Training(s) Inference(s)

SimMTM (m=3) 2333.13 38.73
TimeLLM 1742.10 237.05
KEDGN 2321.37 241.27

InDiGO (m=5) 632.98 127.91
InDiGO (m=10) 788.79 144.23
InDiGO (m=20) 1118.17 175.12

We conducted an efficiency comparison on the
PTB-XL dataset to evaluate the computational
cost of InDiGO against several representative base-
lines. As shown in Table 7, SimMTM exhibits the
highest training cost, primarily due to its masked
sampling mechanism and multi-scale contrastive
objective. TimeLLM incurs substantial inference
latency because it generates a separate textual
prompt for each channel, introducing repeated
computation. KEDGN suffers from the limited
parallelism of its recurrent backbone, leading to
longer execution times. In contrast, our method maintains high efficiency across varying prompt
sample times (m = 5, 10, 20). While increasing m leads to a slight rise in training and inference time,
InDiGO consistently outperforms the baselines in computational efficiency.

5.7 Diversity Enhancement via DO: Prompt Similarity Distribution Analysis

As shown in Figure 4, DO significantly shifts the distribution toward lower similarity values across
all datasets, indicating a broader semantic spread among the sampled prompts. This validates that
DO promotes greater lexical and semantic diversity, thereby enriching the representational space of
textual cues. Such diversity enables the model to explore a wider range of series-text alignments
during fine-tuning, improving generalization especially under weak or partially informative prompts.

(a) Sleep-EDF-20 (b) Sleep-EDF-78 (c) PTB-XL (d) HAR

Figure 4: Distribution of prompt similarities with/without Diversity Optimization across four datasets.
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5.8 Prompt Robustness under Alignment and Diversity Objectives

Here, we further provide experimental validation of the effectiveness and robustness of indicator-
guided prompts, match alignment (MA), and diversity optimization (DO).

Specifically, we progressively refine the prompts,
Given this <T>-second 12-lead ECG signal,
identify the current arrhythmia phenotyping.

(a) Five prompt variants

Prompt 1: Task Instruction Only.

[Instruction] + The heart rate is <heart rate> bpm,
signal amplitude std is <amplitude std>,…

Prompt 2: Basic Signal Statistics.

[Instruction] + [Signal Stats] + The following
waves are detected: <waveform presence>.

Prompt 3: Statistics + Wave Presence.

[Instruction] + [Signal Stats] + The distances
between the R peaks are <RR List>, ...

Prompt 4: Statistics + Inter-Wave Intervals.

[Instruction] + [Signal Stats] +[Intervals] + The
lengths of QRS waves are <QRS Length> .

Prompt 5: Full Temporal Profile 
(Incl. QRS Duration). (b) Results in Sleep-EDF-20 &

PTB-XL

PTB-XL

Sleep-EDF-20

Figure 5: Different prompt designs.

starting from general instruction of the task and
signal statistics, and incrementally incorporating
task-relevant domain indicators to enhance their
specificity. We then evaluate the model under all
combinations of match alignment and diversity
optimization, including the baseline without ei-
ther strategy. As shown in Figure 5 (results for
Sleep-EDF-78 are in Appendix F), our MA-DO
optimization framework ensures robust adapta-
tion across varying prompt qualities. Notably,
even under limited or generic prompt conditions,
MA and DO offer stable gains. More impor-
tantly, once key indicator cues are partially in-
troduced, these strategies effectively expand the
semantic utility of prompts—facilitating align-

ment between textual hints and task objectives, and substantially improving model generalization.

5.9 Model Interpretation Analysis of Series-Text Interactions

We present a case study on Sleep-EDF-20, as

[Task Instruction]: Given this 30 seconds of
EEG and EOG signals, identify the current
sleep stage.
[Signal Statistics]: The peak power of
current EEG and EOG are at 14.0 Hz and 3.0
Hz severally.
[Indicator]: There are 6 spindle waves
present here. <EOS>(d) Sleep signals - EEG

Prompt Tokens

Se
rie

s P
at

ch
es

(e) Text Prompt

spindles

(a) Epoch 1 (b) Epoch 5 (c) Epoch 20

Figure 6: A showcase of series-text correlation
with network training. (a)-(c) represent the co-
attention scores of the series-text pair, (d) and (e)
represent the series and text samples.

illustrated in Figure 6. We visualize the co-
attention scores between series and text prompts
throughout the network’s optimization process.
The top 3 subplots show the evolution of the
network’s learning of the series-text correlation:
from initial misalignment in (a) to indiscrimi-
nate attention in the middle stages in (b), and
finally to a more refined, discriminative focus on
text prompts as the network matures in (c). The
patches with higher attention scores correspond
to specific spindles in the sleep EEG, indicating
that our series-text interaction process is progres-
sively guided by localized waveform indicators.
Moreover, the indicator-related sentences in the
textual prompts gradually play a more significant
role, while the statistical feature parts become less influential during network optimization. This
further demonstrates that, through informative indicator-related prompts and the dynamic evolution
guided by MA-DO sampling, our model enhances the mutual understanding between time series and
text, allowing the embedded knowledge to be effectively interpreted by the model.

6 Conclusion

In this paper, we propose the Indicator-informed Diversity-Guided Optimization framework (In-
DiGO), a knowledge-aware method tailored for multimodal modeling of medical time-series analysis.
While our current approach requires relatively structured indicator-to-text conversion—often rely-
ing on domain expertise—we demonstrate that InDiGO significantly lowers the barrier for clinical
professionals to participate in LLM-driven multimodal analysis, offering a promising step toward
broader adoption of foundation models in medical time-series applications.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly articulate the limitations of existing
physiological time-series analysis methods in terms of knowledge incorporation, particularly
the lack of principled design in both content and method. Our introduction part further
outlines our key contributions, especially the proposed knowledge-empowered decoding
framework that utilizes waveform-aware prompts and an optimization strategy to address
these challenges effectively.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes. In Appendix Section H, our paper acknowledges that although the
proposed method reduces reliance on expert knowledge by using semi-automated tools and
selecting a minimal subset of signal features, it still assumes the availability of basic domain
priors. In scenarios where such priors are unclear or unavailable, constructing effective
prompts and cues may remain challenging.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Our paper provides a complete theoretical analysis of the joint time series–text
decoding process and the proposed importance sampling method. For each theoretical
result, we clearly specify the required assumptions and offer detailed, rigorous proofs. The
derivations, including bias analysis and optimal sampling objectives, are logically consistent
and mathematically sound, supporting the correctness of the proposed framework.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our paper provides comprehensive details necessary to reproduce the main
experimental results. The method section clearly describes the key components, including
the mask-based sampling strategy, co-attention mechanism, and diversity optimization ob-
jectives. Additionally, the experimental setup specifies the waveform types, extraction tools,
and dataset configurations, ensuring the main claims and conclusions are fully supported
and reproducible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide an anonymous link to the full codebase with implementation
details. For the datasets, due to their physiological nature, access requires official request
and approval. The data access path can be found in references and in the footnote of
Appendix A. We also include detailed preprocessing instructions in the main text to ensure
faithful reproduction of the experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify key details on data processing and experimental setup in the main
text. Additional information such as preprocessing procedures, data splits, and hyperparam-
eter configurations is provided in Appendix B and C for full reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes. Appendix E reports standard deviations alongside average performance
scores for each model across multiple datasets. Moreover, statistical significance is evaluated
using MANOVA tests, and significance levels are clearly marked using conventional star
annotations (p < 0.05, p < 0.01, p < 0.001), ensuring transparent and rigorous comparison.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: GPU resources used for training and inference are detailed in the Appendix A.
In addition, memory usage and execution time are reported and compared in the experimental
section to ensure reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]
Justification: We ensured that the study complied with the NeurIPS Code of Ethics in all
respects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This paper discusses the potential of improving physiological signal un-
derstanding for health-related applications, while also acknowledging limitations such as
potential misinterpretation risks and data privacy concerns.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper uses publicly available physiological datasets that require institu-
tional access approval, ensuring controlled usage. The released code is task-specific and
does not include any high-risk general-purpose models, minimizing potential misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets used in the paper are properly credited. We have clearly cited the
datasets and baseline models, including the pre-trained time series encoder BIOT and the
pre-trained language model GPT-2, and we have respected their respective licenses and
terms of use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets introduced in the paper—such as our proposed InDiGO frame-
work and associated components—are thoroughly documented. We provide implementation
details, model design, and training procedures in the main text and supplementary material
to ensure transparency and reproducibility.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
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Justification: This paper does not involve crowdsourcing experiments or research with
human subjects, so no participant instructions, screenshots, or compensation details are
applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve study participants or human subject research;
therefore, no potential risks, disclosures, or IRB approvals are applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Yes. Our method employs large language models (LLMs) as both text encoders
and decoders for multimodal analysis, forming an essential part of the core methodology.
We have clearly stated the use of LLMs in both the model description and experimental
setup.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details of Datasets and Experimental Settings

A.1 More for Datasets and Processings

We evaluate the proposed InDiGO on four diverse physiological datasets to assess its generalizability
across modalities. The dataset statistics are summarized in Table 8.

Table 8: Dataset statistics.

Datasets Sleep-EDF-20 Sleep-EDF-78 PTB-XL HAR

# Samples 42,308 195,479 65,511 10,299
# Rate 100 100 500 50

# Channels 1 EEG,1 EOG 1 EEG,1 EOG 12 ECG leads 9 coordinates
# Duration 30 seconds 30 seconds 5 seconds 2.56 seconds

# Max Observation Length 3000 3000 2400 128

• Sleep-EDF-20 & Sleep-EDF-78 2: Contain overnight polysomnographic recordings with
EEG Fpz-Cz and horizontal EOG signals sampled at 100 Hz. Sleep stages are annotated
based on AASM rules into five categories: Wake, N1, N2, N3, and REM. Sleep-EDF-20
includes 39 recordings from 20 subjects; Sleep-EDF-78 contains 153 recordings from
78 participants aged 25–101. We segment recordings into 30-second epochs, and retain
corresponding sleep labels. We adopt a 5-fold subject-independent cross-validation setup.
Each fold divides subjects into training, validation, and test sets with a 3:1:1 ratio.

• PTB-XL 3: A large-scale 12-lead ECG dataset with 21,837 10-second recordings from
18,885 patients. For all signals, we use the original standard set of 12 leads (I, II, III,
AVL, AVR, AVF, V1, ..., V6) with reference electrodes on the right arm. Each ECG record
is labeled using standardized SCP-ECG statements across diagnostic, form, and rhythm
classes. Recordings are sampled at 500 Hz. We use the standard 80%/10%/10% patient-
level split and repeat experiments five times with different random seeds. Each ECG is
associated with multiple diagnostic labels (up to 27 classes). Following BIOT [45], we
group arrhythmia-related diagnoses into a binary label: a record is considered positive if at
least one arrhythmia-type diagnosis is present.

• HAR 4: Contains tri-axial accelerometer and gyroscope signals (50 Hz) collected from 30
individuals performing six daily activities while wearing a waist-mounted Samsung Galaxy
S2 smartphone. Activities include walking, walking upstairs/downstairs, sitting, standing,
and lying down. We directly use the pre-segmented time windows and activity labels.
The dataset is used as-is for 6-class human activity recognition to validate our method’s
adaptability to non-waveform physiological time series.

We use 1 RTX A6000 48GB GPU to train models for 200 epochs with a batch size of 256. Learning
rate and weight decay are grid-searched to the optimal.

A.2 Evalution metrics

Below, we provide the definitions of some of the metrics used in our study.

• Macro F1 is the arithmetic mean of the F1 scores computed for each class, treating each
class equally regardless of its frequency in the dataset.

• Coken’s Kappa is a statistical measure used to assess the level of agreement between two
raters (or systems) when classifying items into mutually exclusive categories. It considers
both the observed agreement (the proportion of times the raters agree) and the expected
agreement (the agreement that would occur by chance).

2https://www.physionet.org/content/sleep-edfx/1.0.0/
3https://physionet.org/content/ptb-xl/1.0.1/
4https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+

smartphones
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• Balanced Accuracy is a metric used to evaluate the performance of a classification model,
especially when the dataset is imbalanced. It calculates the average of the sensitivity (true
positive rate) and specificity (true negative rate) to ensure that both classes are treated
equally.

• AUC-PR is the area under the precision recall (PR) curve for binary classification task.

• AUROC is the area under the ROC curve, summarizing the ROC curve into an single
number that describes the performance of a model for multiple thresholds at the same time.

B Selection of Pretrained Models

B.1 Pretrained Series Encoder

Due to the variability of physiological time-series scenarios, where different diseases or treatment
processes involve distinct data collection paradigms, there is currently no mature, widely recognized
multi-modal physiological time-series foundation model. In the context of this study, we utilize BIOT
[45], a model specifically pre-trained on EEG and ECG data.

Sleep stage classification. We initialize our time series encoder using the pre-trained model provided
by the official release, which was trained on six EEG datasets.

Arrhythmias phenotype detection. Since the official code of BIOT [45] does not provide pre-
trained models for ECG tasks, we follow the strategy outlined in its paper and perform unsupervised
pre-training on five cardiology subsets [1] using 12-lead ECG data.

B.2 Pretrained LLM

Table 9: The classification performance of different pretrained LLMs on Sleep-EDF-20 and PTB-XL.

Model Name Parameters Layers dmodel
Sleep-EDF-20 PTB-XL

Acc. Sens Spec Macro F1 Kappa BaAcc. AUCPR AUROC

BERT 110M 12 768 85.73 76.98 95.72 75.39 80.98 84.15 89.97 80.73

GPT-2 Small 124M 12 768 86.69 77.41 96.90 76.04 81.68 84.97 90.84 81.48
GPT-2 Medium 355M 24 1024 88.10 78.42 97.24 77.51 83.59 84.97 90.95 81.79

GPT-2 Large 774M 36 1280 88.55 80.12 97.35 79.29 84.22 85.44 91.09 81.33
GPT-2 XL 1.5B 48 1600 89.04 81.32 97.44 80.53 84.91 86.02 92.31 82.98

LLaMA(8) 1.71B 8 4096 86.55 78.74 95.93 77.22 81.24 83.95 90.13 80.84
LLaMA(32) 7B 32 4096 88.13 79.29 96.86 79.15 82.45 84.94 90.82 81.35

We evaluated the classification performance of several pre-trained LLMs as the language encoder-
decoder in InDiGO, including four versions of GPT-2 [34], BERT [6], and two variants of LLaMA
[39], as summarized in Table 9. Overall, different LLMs yield comparable performance across
both tasks. We attribute this to the nature of our physiological time series classification task, where
the textual prompts are relatively concise and structurally simple, placing limited demand on the
encoder’s capacity for deep semantic reasoning.

Notably, increasing model size (e.g., among GPT-2 variants) does not bring substantial gains, while
the performance of LLaMA models shows no consistent advantage despite their high dimensional-
ity—possibly due to optimization difficulties during training. These observations further confirm that
the primary challenge in our setting lies not in modeling complex text, but in enhancing the mutual
understanding between time series and prompts through effective series-text alignment.

C Selection of optimal hyper-parameters

We provide diagnostic experiments on the selection of hyperparameters in the InDiGO, as shown in
Table 10. It is important to note that when adjusting a specific parameter, the remaining parameters
are set to the same values as those of the optimal result.

Layers of LLM Encoder and Decoder. Considering the joint series-text decoding process in this
paper and the encoding process of initial textual prompts, the text encoder and decoder used in
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Table 10: Diagnostic experiments of our model on Sleep-EDF-20 and PTB-XL.

Variants Sleep-EDF-20 PTB-XL

Acc. Sens Spec Macro F1 Kappa BaAcc. AUCPR AUROC

Full Model LEnc = 24, LDec = 24 89.04 81.32 97.44 80.53 84.91 86.02 92.31 82.98
r = 40%,m = 10

Layer of LLM Enc-Dec

LEnc = 6, LDec = 42 87.62 79.13 96.91 78.03 84.12 84.72 90.01 80.73
LEnc = 12, LDec = 36 88.00 79.86 97.21 78.84 83.51 85.27 90.62 81.04
LEnc = 18, LDec = 30 88.62 79.75 97.38 78.38 84.28 85.57 91.37 82.92
LEnc = 30, LDec = 18 88.93 79.59 97.45 78.62 84.71 85.10 90.97 81.63
LEnc = 36, LDec = 12 88.65 79.34 97.41 78.17 84.32 84.83 90.12 80.79
LEnc = 42, LDec = 6 87.89 79.43 97.20 77.96 83.35 84.31 90.79 81.27

Mask Ratio
r = 20% 86.49 74.77 96.88 73.17 81.32 85.26 90.60 80.35
r = 60% 88.73 79.80 97.40 79.11 84.45 85.34 90.65 81.53
r = 80% 87.93 80.32 97.18 79.14 83.44 84.06 90.41 81.28

Sampling times

m = 5 88.20 79.53 97.28 78.49 83.73 84.41 90.21 80.24
m = 15 89.34 79.78 97.55 78.93 85.28 85.36 90.69 80.82
m = 20 89.18 79.45 97.54 78.26 85.03 85.39 90.44 81.03
m = 30 89.46 80.57 97.55 80.52 85.46 85.38 90.79 81.23

InDiGO are derived from different layers of GPT-2. We divide the 48 hidden layers of GPT-2 XL into
several groups based on their sequential order. Since we freeze the text encoder and fine-tune the text
decoder, different layer combinations can impact the optimization speed of the network. However, a
more critical issue lies in the alignment condition. Mismatched layer configurations between the text
encoder and decoder may lead to misalignment, causing the representations of the series and text
under the alignment loss constraint to lose their intended meaning. From the experimental results,
we observe that when the language model layers are balanced between the encoder and decoder, our
series-text joint decoding achieves the best performance on downstream tasks. This conclusion also
holds true across different scales of GPT-2.

Mask Ratio. In the masked Monte Carlo importance sampling, we achieve sampling from a simple
distribution by applying token-wise random masking to the initial waveform-related text prompts.
During the adjustment of the masking probability, we observed that with a fixed number of samples, a
lower masking rate limited the diversity of the samples, while a higher masking rate caused distortion
in the generated text. Therefore, the optimal masking ratio, as experimentally proven, is 40%, though
it also depends on the number of subsequent samples.

Sampling Times. In fact, the number of samples is closely related to the masking ratio. When the
masking ratio is low, fewer sampling iterations do not effectively approximate the optimal text. When
the masking ratio is moderate, adjusting the number of samples still doesn’t necessarily lead to better
results with too many iterations. Therefore, considering the training cost, we select 10 sampling
iterations as the optimal balance.

D Full Results

Due to space limitations and clarity considerations in the main text, we did not report the full set
of evaluation metrics for the sleep staging task. For completeness, we present the detailed results
in Table 11. Specifically, we additionally report sensitivity and specificity, which provide further
insights into stage-wise classification performance.

E Statistical Significance Analysis of Model Performance

Table 12 presents the statistical significance results of model performance comparisons against
InDiGO across four benchmark datasets using MANOVA tests [28]. From the table, we observe
that InDiGO consistently and significantly outperforms all baseline models across all datasets. Most
comparisons reach the highest level of significance, suggesting that InDiGO’s superiority is not
only consistent but also statistically robust. Particularly, on the PTB-XL dataset, all models show
highly significant differences, indicating that InDiGO’s improvements are most prominent in complex
physiological signal domains. Similarly, on HAR, all models except BIOT achieve *** significance,
while BIOT still maintains a ** level, reflecting InDiGO’s strong performance even against recent
competitive baselines.
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Table 11: Average performance on the sleep stage classification task.
Methods Sleep-EDF-20 Sleep-EDF-78

Acc. Sens. Spec. Macro F1 Kappa Acc. Sens. Spec. Macro F1 Kappa

TF-C [48] 55.42 ±1.39 31.52 ±1.09 86.07 ±0.39 26.04 ±0.21 30.74 ±1.52 53.90 ±4.03 31.35 ±2.40 85.80 ±1.34 26.00 ±2.09 29.32 ±6.43
SimMTM [7] 66.91 ±1.89 53.47 ±1.58 90.61 ±1.63 53.21 ±1.95 53.25 ±2.02 63.06 ±2.67 59.12 ±3.88 91.21 ±1.56 57.07 ±2.13 53.07 ±3.42

OneFitsAll [49] 72.60 ±1.51 63.50 ±8.36 92.76 ±1.12 61.61 ±5.80 61.81 ±3.50 68.50 ±2.19 56.58 ±4.16 91.34 ±0.86 54.24 ±1.96 55.21 ±3.07
Time-LLM [12] 80.31 ±2.63 76.53 ±3.15 94.53 ±2.95 71.64 ±3.02 70.22 ±2.84 78.08 ±2.96 67.44 ±3.73 94.13 ±3.01 66.09 ±3.25 68.04 ±3.14

KEDGN [24] 74.89 ±3.86 64.60 ±3.68 93.39 ±1.26 64.29 ±3.36 64.90 ±5.46 70.34 ±1.85 57.70 ±2.01 92.31 ±0.49 58.59 ±2.74 57.47 ±2.56
MiniRocket [5] 81.60 ±1.55 72.63 ±1.80 95.15 ±1.12 72.82 ±2.01 72.79 ±1.96 78.36 ±1.93 69.76 ±2.44 94.08 ±1.76 70.18 ±2.35 69.46 ±2.46

BIOT [45] 81.86 ±4.41 75.98 ±3.66 95.12 ±1.31 75.29 ±4.47 75.14 ±6.00 77.15 ±3.04 70.85 ±2.87 93.94 ±0.76 69.36 ±4.13 68.26 ±4.36

TinySleepNet [38] 83.64 ±2.31 81.60 ±2.60 96.05 ±2.08 77.54 ±2.55 77.63 ±2.29 83.49 ±2.24 80.25 ±2.65 96.02 ±2.11 76.64 ±2.61 76.41 ±2.59
XSleepNet [32] 80.93 ±2.34 75.78 ±2.21 94.79 ±2.54 76.71 ±2.59 74.31 ±2.32 81.83 ±2.30 80.50 ±2.28 95.74 ±2.58 75.28 ±2.66 75.44 ±2.37

L-SeqSleepNet [33] 82.90 ±2.12 78.42 ±2.25 95.86 ±2.00 74.90 ±2.22 76.47 ±2.24 80.84 ±2.18 72.75 ±2.54 95.19 ±2.34 72.67 ±2.38 74.94 ±2.51
SleepHGNN [10] 81.15 ±1.96 74.23 ±2.10 94.93 ±1.96 72.88 ±2.17 73.35 ±2.16 77.35 ±2.13 69.94 ±2.48 94.04 ±2.02 69.56 ±2.39 68.65 ±2.41

SleepKD [21] 82.44 ±2.40 78.20 ±2.54 94.78 ±2.34 74.11 ±2.72 76.87 ±2.63 80.19 ±2.85 72.95 ±2.88 94.95 ±2.69 72.65 ±2.84 74.86 ±2.93
SleepDG [42] 81.92 ±2.27 79.12 ±2.35 95.75 ±2.68 74.74 ±2.53 76.43 ±2.47 79.95 ±2.42 73.31 ±2.41 93.57 ±2.63 72.21 ±2.59 74.16 ±2.68
Brant-X [47] 84.58 ±1.98 80.18 ±2.23 96.36 ±1.89 77.63 ±2.13 79.29 ±2.18 82.84 ±2.21 81.85 ±2.42 95.91 ±2.08 77.04 ±2.30 76.67 ±2.49

InDiGO 89.04 ±1.80 81.32 ±1.64 97.44 ±0.44 80.53 ±1.77 84.91 ±2.51 86.79 ±1.90 81.86 ±1.63 96.71 ±0.59 81.12 ±1.88 81.60 ±2.89

On Sleep-EDF-20 and Sleep-EDF-78, although all models are still significantly outperformed by
InDiGO, the significance levels are slightly more diverse. This reflects the relatively closer perfor-
mance gap among top models in sleep staging tasks, especially between InDiGO and MiniRocket or
BIOT. Nonetheless, even in these settings, the improvements by InDiGO are statistically justified.

Overall, this analysis reaffirms that InDiGO offers a substantial and statistically significant perfor-
mance gain across varied time-series datasets, underscoring its effectiveness and generalizability.

Table 12: Statistical significance of model performance compared to InDiGO on each dataset. Stars
indicate significance levels from MANOVA tests [28]. * p < 0.05, ** p < 0.01, *** p < 0.001

Dataset
Model

TF-C SimMTM OneFitsAll Time-LLM KEDGN MiniRocket BIOT

Sleep-EDF-20 *** *** *** ** *** ** *
Sleep-EDF-78 *** *** *** ** *** ** **

PTB-XL *** *** *** *** *** *** ***
HAR *** *** *** *** *** *** **

F Robustness Across Prompt Variants on Sleep-EDF-78

To further validate the generalizability of our approach, we replicate the prompt sensitivity study
on the Sleep-EDF-78 dataset. We consider three types of indicator-guided prompts with increasing
specificity: (i) prompts describing only the sleep staging task, (ii) prompts augmented with statistical
characteristics of sleep signals, (iii) prompts additionally incorporating references to sleep waveform
patterns.

As shown in Figure 7, results on Sleep-EDF-78 mirror the trends observed in the main datasets.
Specifically, our MA-DO framework consistently improves model performance under less infor-
mative prompts by broadening the effective representational space of textual inputs. Notably, once
waveform-based indicators are introduced, performance gains become more substantial—highlighting
the model’s improved ability to leverage semantically rich cues through alignment and diversity
enhancement.

G Additional Interpretation Analysis: Slow-Wave Alignment in Series-Text
Attention

We provide an additional case study from the Sleep-EDF-20 dataset, focusing on time-series segments
that exhibit prominent slow-wave activity. As illustrated in Figure 8, we visualize the co-attention
scores between the EEG series and textual prompts at three different stages of model optimization.

In the early stage (a), the model assigns low and scattered attention across both modalities, indicating
weak alignment. During intermediate training (b), attention becomes more concentrated, albeit not
yet task-relevant. By the final stage (c), the network distinctly emphasizes time points associated
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Given this <T>-second of EEG and EOG signals,
identify the current sleep stage.

(a) Three prompt variants

Prompt 1: Task Instruction Only.

[Instruction] + The peak power of current EEG
and EOG are at <EEG peak value> of Hz and
<EOG peak value> Hz severally,…

Prompt 2: Basic Signal Statistics.

[Instruction] + [Signal Stats] + The following
waves are detected: <waveform presence>.

Prompt 3: Statistics + Wave Presence. (b) Results in Sleep-EDF-20 &
PTB-XL

Sleep-EDF-78

Figure 7: Prompt Robustness Analysis on Sleep-EDF-78.

with slow-wave peaks, and correspondingly shifts textual focus toward phrases referencing waveform
patterns rather than general signal descriptions.

This progressive refinement highlights the model’s capacity to learn localized waveform semantics
from indicator-guided prompts. It also illustrates that our series-text alignment mechanism, enhanced
by prompt design and optimization strategies, effectively bridges raw signal patterns and high-level
textual representations—even under nuanced physiological phenomena like slow waves.

[Task Instruction]: Given this 30 seconds of
EEG and EOG signals, identify the current
sleep stage.
[Signal Statistics]: The peak power of current
EEG and EOG are at 1.5 Hz and 11.5 Hz
severally.
[Indicator]: There are 3 slow waves present
here. <EOS>

(d) Sleep signals - EEG

Prompt Tokens

Se
rie

s P
at

ch
es

(e) Text Prompt

(a) Epoch 1 (b) Epoch 5 (c) Epoch 20

Figure 8: Visualization of co-attention dynamics for slow-wave segments. (a)-(c) depict attention
maps at different training stages; (d)-(e) show corresponding series and prompt inputs.

H Limitations and Future Work

This work strives to reduce reliance on expert knowledge by employing semi-automated tools to
extract signal indicators and selecting only a small subset of salient features rather than aiming
for exhaustive domain coverage. While this approach improves scalability and practicality, it still
implicitly assumes the availability of some domain knowledge—namely, a minimal understanding of
what constitutes relevant cues or events within a given task. In domains where such priors are poorly
defined or altogether absent, constructing meaningful prompts may remain challenging.

Looking ahead, a key direction is to enhance the generality of our framework by moving from
instance-level cues to event-level schema abstraction. Rather than relying on manually defined signal
indicators, future prompting could employ loosely defined task schemas that describe events or state
changes, allowing LLMs to infer and internalize domain patterns in a self-supervised manner. This
paradigm would reduce human intervention, enable rapid adaptation across physiological domains,
and advance LLM-based temporal reasoning with minimal priors.
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