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Abstract

Most works in learning with differential privacy (DP) have focused on the setting
where each user has a single sample. In this work, we consider the setting where
each user holds m samples and the privacy protection is enforced at the level
of each user’s data. We show that, in this setting, we may learn with a much
fewer number of users. Specifically, we show that, as long as each user receives
sufficiently many samples, we can learn any privately learnable class via an (", �)-
DP algorithm using only O(log(1/�)/") users. For "-DP algorithms, we show
that we can learn using only O"(d) users even in the local model, where d is the
probabilistic representation dimension. In both cases, we show a nearly-matching
lower bound on the number of users required.
A crucial component of our results is a generalization of global stability [BLM20]
that allows the use of public randomness. Under this relaxed notion, we employ a
correlated sampling strategy to show that the global stability can be boosted to be
arbitrarily close to one, at a polynomial expense in the number of samples.

1 Introduction

Differential privacy (DP) [DMNS06, DKM+06] has emerged as the accepted notion for quantifying
the privacy of algorithms, whereby a method is considered private if the presence or absence of a
single user has a negligible impact on its output. The two most widely-studied models of DP are the
central model, where an analyzer has access to the raw user data, and is required to output a private
answer, and the local model [War65, KLN+11, DJW13], where the output of each user is required
to be private. DP has become a widely adopted standard in both industry [EPK14, Sha14, Gre16,
App17, DKY17] and government agencies, including the recent 2020 US Census [Abo18]. For a
technical overview of DP, see the monographs by Dwork and Roth [DR14] and by Vadhan [Vad17].

DP has gained spotlight in machine learning (e.g., [CMS11, ACG+16]), with an increased emphasis
on protecting the privacy of user data used for training models. In the traditional notion of DP, the
goal is to protect the privacy of each training example, where it is assumed that each user contributed
precisely one such example; this is sometimes referred to as item-level privacy. However, a more
realistic and practical setting is where a single user can contribute more than one training example.
Here, the goal would be so-called user-level privacy, i.e., protecting the privacy of all the training ex-
amples contributed by a single user. This is especially relevant for federated learning settings, where
each user can contribute multiple training examples [MRTZ18, WSZ+19, AMR+19, EMM+20]; see
the survey by Kairouz et al. [KMA+19, Section 4.3.2], where the question of determining trade-offs
between item-level and user-level DP is highlighted. It then becomes important to understand the
learnability implications of this distinction between user-level vs item-level privacy.

One way to understand this problem is to artificially limit the number of training examples con-
tributed by each user. This has been explored for some analytics and learning tasks in [AKMV19,
WZL+20] and is related to node-level DP [KNRS13]. While this is an interesting line of work,
it does not sufficiently address the core of the problem. For instance, is learning possible with
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only a small number of users if each user contributes sufficiently many training examples? This
question was addressed by Liu et al. [LSY+20] for learning discrete distributions and by Levy et
al. [LSA+21] for some learning tasks including mean estimation, ERM with smooth losses, stochas-
tic convex optimization. They show that the privacy cost decreases faster as the number of samples
per user increases.

In this paper we address the question in a very general setting: what can user-level privacy gain for
any privately PAC learnable class? Recall that it had recently been shown that a class is learnable
via (", �)-DP algorithms iff it is online learnable [ALMM19, BLM20], which is in turn equivalent
to the class having a finite Littlestone dimension [Lit87]. Furthermore, it is also known that a class
is learnable via "-DP algorithms iff it has a finite probabilistic dimension [BNS19a].

As discussed below, our protocols are based on a novel connection between correlated sampling—a
tool from sketching and approximation algorithms [Bro97, KT02, Cha02]—and DP learning.

1.1 Our Results

Our first main result is that, for any online learnable class, it is possible to learn the class with an
(", �)-DP algorithm using only O(log(1/�)/") users, as long as each user has at least poly(d/↵)
samples (Theorem 1), where d is the Littlestone dimension and ↵ is the error of the hypothesis output
by the learner. It should be noted that the remarkable and arguably surprising aspect of this result
is that we can learn using a constant number of samples (depending only on the privacy parameters
", �), regardless of how complicated the class might be, as long as the class is online learnable. (For
all formal definitions, see Section 2.) Indeed, previous work [AKMV19] had explicitly conjectured
that such a bound is impossible for user-level learning, albeit in a different setting than ours.
Theorem 1. Let ↵,� 2 (0, 0.1), and C be any concept class with finite LDim(C) = d.

Then, for any ", � 2 (0, 1), there exists an (", �)-DP (↵,�)-accurate learner for C that requires

O (log(1/(��))/") users where each user has Õ�

�
(d/↵)O(1)

�
samples.

Our algorithm in Theorem 1 can in fact be extended to work even in the weaker shuffle model of DP.
We provide more detail about such an extension in Appendix D.

Our second result is a generic "-DP learner in the local model for any class C with finite probabilis-
tic representation dimension PRDim(C). This gives a separation in the local DP model between
the user-level and item-level settings; the sample complexity in the latter is known to be polyno-
mial in the statistical query (SQ) dimension [KLN+11], which can be exponentially larger than the
probabilistic representation dimension. A simple example of such a separation is PARITY on d
unknowns, whose probabilistic representation dimension is O(d) (this can be seen by taking the
class itself to be its own representation), whereas its SQ dimension is 2⌦(d) [BFJ+94]. In this case,
our Theorem 2 implies that PARITY can be learned using only O�(d/"2) users when each user has
O↵,�(d3) examples; by contrast, the aforementioned lower bound [KLN+11] implies that, in the
item-level setting (where each user has a single example), 2⌦(d) users are needed.
Theorem 2. Let ↵,� 2 (0, 0.1), and C be any concept class with finite PRDim(C) = d. Then, for

any " 2 (0, 1), there exists an "-DP (↵,�)-accurate learner for C in the (public randomness) local

model that requires O
⇣

d+log(1/�)
"2

⌘
users where each user has Õ�

�
d3/↵2

�
samples.

In the central model, we get a slightly improved bound on the number of users in terms of 1/".
Theorem 3. Let ↵,� 2 (0, 0.1), and C be any concept class with finite PRDim(C) = d. Then,

for any " 2 (0, 1), there exists an "-DP (↵,�)-accurate learner for C that requires O
⇣

d+log(1/�)
"

⌘

users where each user has Õ�

�
d3/↵2

�
samples.

Interestingly, we can also show that the number of users required in the above results is essentially
the smallest possible (up to a 1/" factor in Theorem 2), as stated below.
Lemma 4. For any ↵,�  1/4, " 2 (0, 1) and � 2 (0, 0.1"1.1), if there exists an (", �)-
DP (↵,�)-accurate learner on n users for a concept class C, then we must have n �

⌦(min{log(1/�),PRDim(C)}/").

The summary of our results described above can be found in Table 1.
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User-Level Item-Level
Bounds # users # samples/user Ref. # users

"-DP Upper O(PRDim /") PRDimO(1) Theorem 3 ⇥(PRDim /")
(Central) Lower ⌦(PRDim /") - Lemma 4 [BNS19a]
"-DP Upper O(PRDim /"

2) PRDimO(1) Theorem 2 SQDim⇥(1)

(Local) Lower ⌦(PRDim /") - Lemma 4 [KLN+11]
(", �)-DP Upper O(log(1/�)/") LDimO(1) Theorem 1 LDimO(1) [GGKM21]
(Central) Lower ⌦(min{log(1/�), - Lemma 4 ⌦(log⇤ LDim)

PRDim}/") [ALMM19]
Table 1: Summary of our results in the user-level setting and prior results in the item-level setting. For sim-
plicity, we assume that the accuracy parameter and success probability of the learner are constants, and we
disregard their dependencies. Our lower bounds hold regardless of the number of samples each user receives.

While our previous results establish nearly tight bounds on the number of users required for DP
learning, they are in general not efficient. For example, the pure-DP learners have running times that
grow (at least) exponentially in the size of the probabilistic representation, and the approximate-DP
learner similarly has a running time that grows (at least) exponentially in the Littlestone dimension.
Our final result investigates how to get efficient learners. Informally, we show that we can take any
efficient SQ algorithm and turn it into an efficient learner in the user-level setting (Theorem 5).

Theorem 5. Let C be any concept class, and suppose that there exists an algorithm A that can

↵-learn C using q statistical queries STATD(⌧). Furthermore, suppose that any hypothesis output

by A can be represented by b bits. Then, there exist the following algorithms:

(i) An (", �)-DP (↵,�)-accurate learner with O(log(1/�)/") users, where each user has poly
⇣

q
�⌧

⌘

samples.

(ii) An "-DP (↵,�)-accurate learner with O
⇣

b+log(1/�)
"

⌘
users, where each user has poly

⇣
q
�⌧

⌘

samples.

(iii) An "-DP (↵,�)-accurate learner in the (public randomness) local DP model with

O
⇣

b+log(1/�)
"2

⌘
users, where each user has poly

⇣
q
�⌧

⌘
samples.

Moreover, all DP learners described above run in time poly(time(A), 1/⌧, 1/�).

Thanks to the abundance of SQ learning algorithms, the above result can be applied to turn those into
efficient user-level DP learners. We discuss some interesting examples of these in Appendix B.2.

Independent Work of Impagliazzo et al. [ILPS21]

As an intermediate step of our proofs, we define a property called pseudo-globally stability for
learning algorithms (Definition 15) and provide several such algorithms (Corollaries 21 and 27, and
Lemma 32). In an independent work, Impagliazzo et al. [ILPS21] studies a similar notion under the
name reproducibility and provide several reproducible algorithms e.g. for heavy hitters, SQ-based
algorithms and learning halfspaces. Below we provide a more detailed discussion on the similarities
and differences between the two papers:

• Definition. Strictly speaking, the main definition in [ILPS21] is slightly different com-
pared to ours, but they note in the appendix that the two definitions are equivalent up to a
polynomial factor in the parameters.

• SQ Algorithms. Both Impagliazzo et al.’s work and ours (Lemma 32) give generic reduc-
tions for turning SQ algorithms to pseudo-globally stable ones.

• Amplification of Stability Parameter. In [ILPS21, Theorem A.2], a reduction for decreas-
ing the stability parameter is given. Indeed, one can also view our reduction in Theorem 20
in this form but our result is weaker as our reduction starts out with a (not pseudo) globally
stable algorithms, whereas their reduction works even when starting with pseudo globally
stable algorithms.

• Heavy Hitter Algorithms. Our aforementioned reduction also implicitly gives an algo-
rithm for heavy hitters. Once again, this is weaker than that in Impagliazzo et al.: ours only
gives a single heavy hitter whereas that of [ILPS21] can provide a list of all heavy hitters.
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• Additional Results in [ILPS21]. [ILPS21] also contains many additional results, includ-
ing a lower bound on the overhead due to pseudo-global stability, a pseudo-globally stable
median algorithm and a pseudo-globally stable algorithm for learning halfspaces with a
margin.

1.2 Proof Overview

For simplicity of presentation, we will focus on Theorem 1; we will briefly discuss the proofs of the
other results, which are similar in flavor, at the end of this section.

Let us assume for the moment that each user, given their m samples drawn i.i.d. from D, can output
the same hypothesis h⇤ (with small error) with high probability. If this holds, then we would be
done: we can simply run a DP selection1 algorithm to pick the most frequently seen hypothesis.

This assumption is quite strong, but not completely unreasonable. Specifically, Bun et
al. [BLM20]—in their seminal work that characterizes hypothesis classes learnable in the item-
level DP setting—showed that it is possible to come up with a learner that outputs some hypothesis
h⇤ with probability 2�O(d), where d denotes the Littlestone dimension of the concept class. We may
attempt to use this in the approach described above, but this does not work: in order to even see h⇤

at all (with say a constant probability), we would need 2O(d) users, which is prohibitive!

To overcome this, we exploit shared randomness between users. Our main technical result here is
that, if the users share randomness, we can ensure that they output the same h⇤ with probability
arbitrarily close to one; we can then run the DP selection algorithm to pick h⇤. This immediately
allows our overall strategy described above to go through.

The shared randomness is used in our algorithm(s) via correlated sampling. Recall that a correlated
sampling strategy is an algorithm that takes in a probability distribution P together with randomness
r. The guarantee is that, if we run it on two distributions P1,P2 but with the same randomness r,
then the probability (over r) that the outputs disagree is at most a constant times the total variation
distance between P1 and P2. The task then is simply to compute, for each user i, such a probability
distribution Pi from their own samples such that the Pi’s do not differ much between different users.

Our algorithms in Theorems 1 to 3 follow this framework. The differences are in the DP selection
algorithms (based on central vs local model and whether we are interested in pure- or approximate-
DP)—and, more importantly—how we construct the distribution Pi of hypotheses. In the case of
the approximate-DP learner (Theorem 1), we build this on top of a learning algorithm of Ghazi
et al. [GGKM21], which has a slightly stronger guarantee than that of [BNS19b]: it outputs a list
of size at most 2poly(d) with the guarantee that h⇤ belongs to it with probability at least 1/poly(d).
Each user runs such an algorithm poly(d) times on fresh samples drawn from D, and uses the output
hypotheses to build the distribution Pi. For pure-DP learners (Theorems 2 and 3), each user simply
uses the empirical error on the probabilistic representation of the class to build the distribution Pi.

Finally, our SQ algorithm (Theorem 5) deviates slightly from this framework. Instead of computing
Pi outright (which is usually inefficient since its support is large), we proceed one statistical query at
a time. Specifically, each user employs correlated sampling to answer each statistical query; if they
manage to answer all queries in the same manner, then the algorithm will output the same hypothesis.
The point here is that, since the answer to each statistical query is just a bounded-precision number
in [0, 1], building a probability distribution of the possible answers can be done efficiently.

2 Preliminaries

Let Y = {0, 1}. For a set ⌦, we use 2⌦ to denote the set of all functions from ⌦ to Y and use �⌦

to denote the set of all distributions on ⌦. For distributions P,Q, we use p ⇠ P to denote that p is
drawn from P and dtv(P,Q) to denote the total variation distance between P and Q.

Let X be a finite set.2. Let C denote the set of concepts from X to Y , and let D be any distribution
on X ⇥ Y realizable by some h 2 C.

1Section 2.3 contains the formal definition of the selection problem and known DP algorithms for it.
2While our results can be extended to the case where X is infinite, it does require non-trivial generalization

of notation and tools (e.g., correlated sampling) to that setting.
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We first recall the notion of DP. Let ", � 2 R�0. Two datasets are neighboring if one can be obtained
from the other by adding or removing a single user.
Definition 6 (Differential Privacy (DP) [DMNS06, DKM+06]). A randomized algorithm A taking

as input a dataset is (", �)-differentially private ((", �)-DP or approximate-DP) if for any two neigh-
boring datasets D and D0

, and for any subset S of outputs of A, it holds that Pr[A(D) 2 S] 
e" · Pr[A(D0) 2 S] + �. If � = 0, then A is "-differentially private ("-DP or pure-DP).

A dataset in our setting consists of n users, where user i receives a sequence of m samples
(xi

1, y
i
1), . . . , (x

i
m, yim) drawn i.i.d. from D. Similar to the standard PAC setting [Val84], the al-

gorithm A takes in the dataset and outputs a hypothesis f . We say that it is an (↵,�)-accurate

learner if errD(f)  ↵ with probability 1 � � (where ↵,� 2 (0, 1) are parameters); here,
errD(f) = Pr(x,y)⇠D[f(x) 6= y]. We use time(A) to denote the running time of A. If A is random-
ized, sometimes we use the notation A(·; r) to explicitly call out the (public) randomness r it might
use.

When each user holds exactly a single example (i.e., m = 1), we call this the item-level setting. We
show results in both the (usual) central and local3 models of DP.

All missing proofs are in the Supplementary Material.

2.1 Correlated Sampling

Definition 7 (Correlated Sampling). A correlated sampling strategy for a set ⌦ with multiplicative

error  is an algorithm CS : �⌦ ⇥R
0
! ⌦ and a distribution R

0
on random strings such that

• (Marginal Correctness) For all P 2 �⌦ and ! 2 ⌦, Prr0⇠R0 [CS(P; r0) = !] = P(!).
• (Error Guarantee) For P,Q 2 �⌦, Prr0⇠R0 [CS(P; r0) 6= CS(Q; r0)]   · dtv(P,Q).

Theorem 8 ([Bro97, KT02, Hol07]). For any finite set ⌦, there exists a correlated sampling strategy

for ⌦ with multiplicative error 2.

2.2 Representation Dimension

The size of a hypothesis class H is defined as size(H) := log |H|, and the size of a distribution H

of hypothesis classes is defined as size(H) := maxH2supp(H) size(H).

Definition 9 (Probabilistic Representation Dimension [BNS19a]). A distribution H on 2X is said to

(↵,�)-probabilistically represent a concept class C if for every f 2 C and for every distribution D

on X , with probability 1� � over H ⇠ H, there exists h 2 H such that Prx⇠D[f(x) 6= h(x)]  ↵.

The (↵,�)-probabilistic representation dimension of a concept class C is defined as

PRDim↵,�(C) := min
H that (↵,�)-probabilistically represents C

size(H).

We use PRDim(C) as a shorthand for PRDim1/4,1/4(C).

Lemma 10 ([BNS19a]). For every concept class C and ↵,� > 0, we have

PRDim↵,�(C)  O (log(1/↵) · (PRDim(C) + log log log(1/↵) + log log(1/�))) .

For a concept class C, let LDim(C) denote its Littlestone dimension [Lit87].

2.3 Tools from DP

In the selection problem, each user i receives an element ui from a universe U . For each u 2 U ,
define cu := |{i 2 [n] | ui = u}|. The goal is to output u⇤ such that cu⇤ � maxu2U cu � ↵; when
the output satisfies this with probability 1� �, the algorithm is said to be (↵,�)-accurate.
Lemma 11 (Approximate-DP Selection [KKMN09, BNS19b]). There is an (", �)-DP

(O(log(1/�)/"), 0)-accurate algorithm for the selection problem in the central model. Moreover,

the algorithm runs in poly(n, log |U |) time.

3A DP algorithm in the local model consists of a randomizer whose input is the samples held by one user
and whose output is a sequence of messages, and an analyzer, whose input is the concatenation of the messages
from all the randomizers and whose output is the output of the algorithm. An algorithm is DP in the local model
if for any dataset, the concatenation of the outputs of all the randomizers is DP.
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The following pure-DP histogram algorithm in the central model follows from the exponential mech-
anism [MT07]. While a trivial implementation would result in a running time that depends linearly
on |U |, it is not hard to see that we can first toss a coin to determine whether the output would come
from the input set. If so, the sampling can be done in O(n) time; if not, one can randomly output one
of the remaining candidates in U , which only requires time O(log |U |). This yields the following.
Lemma 12 (Pure-DP Selection [MT07]). There is an "-DP (O(log(|U |/�)/"),�)-accurate al-

gorithm for the selection problem in the central model. Moreover, the algorithm runs in

poly(n, log |U |) time.

The next guarantee follows from the heavy-hitters algorithm of Bassily et al. [BNST17]:
Lemma 13 (Pure-DP Histogram in the Local Model [EPK14]). There is an "-DP⇣
O
⇣p

n · log(|U |/�)/"
⌘
,�
⌘

-accurate algorithm for the histogram problem in the local model.

Furthermore, the algorithm runs in poly(n, log |U |) time.

3 Global Stability and Pseudo-Global Stability

We recall the notion of global stability of Bun et al. [BLM20] and generalize it in two ways.
Definition 14 (Global Stability [BLM20]). A learner A is said to be m-sample ↵-accurate ⌘-globally
stable if there exists a hypothesis h (depending on D) such that errD(h)  ↵ and

Pr(x1,y1),...,(xm,ym)⇠D[A((x1, y1), . . . , (xm, ym)) = h] � ⌘.

We now present the first generalization. Let R be a distribution of random strings.
Definition 15 (Pseudo-Global Stability). A learner A is said to be m-sample (↵,�)-accurate (⌘, ⌫)-
pseudo-globally stable if there exists a hypothesis hr for every r 2 supp(R) (depending on D) such

that Prr⇠R[errD(hr)  ↵] � 1� � and

Pr
r⇠R


Pr

(x1,y1),...,(xm,ym)⇠D

[A((x1, y1), . . . , (xm, ym); r) = hr] � ⌘

�
� ⌫.

We also generalize global stability in a slightly different manner, in order to capture the guarantees
of [GGKM21].
Definition 16 (List Global Stability). A learner A is said to be m-sample ↵-accurate (L, ⌘)-list
globally stable if A outputs a set of at most L hypotheses and there exists a hypothesis h (depending

on D) such that Pr(x1,y1),...,(xm,ym)⇠D[h 2 A((x1, y1), . . . , (xm, ym))] � ⌘ and errD(h)  ↵.

3.1 Learners with Global Stability

Bun et al. [BLM20] give a globally stable learner in terms of the Littlestone dimension:
Theorem 17 ([BLM20]). Let ↵ > 0 and C be any concept class with LDim(C) = d. Then, there

exists a (2O(d)/↵)-sample ↵-accurate 2�O(d)
-globally stable learner for C.

Although not explicitly stated in this manner, the improved result of Ghazi et al. [GGKM21] pro-
ceeds by giving a list globally stable learner, where the stability parameter ⌘ is ⌦(1/d), the list size
L is 2(d/↵)

O(1)

, and the sample complexity is (d/↵)O(1).
Theorem 18 ([GGKM21]). Let ↵ > 0 and C be any concept class with LDim(C) = d. Then, there

is a (d/↵)O(1)
-sample ↵-accurate

⇣
exp

⇣
(d/↵)O(1)

⌘
,⌦(1/d)

⌘
-list globally stable learner for C.

We will need a slight strengthening of the above result, where there is another parameter ⇣ > 0 and
we want to ensure that every hypothesis in the output list has error at most 2↵. This is stated below.
Lemma 19. Let ↵, ⇣ > 0 and C be any concept class with LDim(C) = d. Then, there is

a (d log(1/⇣)/↵)O(1)
-sample ↵-accurate

⇣
exp

⇣
(d/↵)O(1)

⌘
,⌦(1/d)

⌘
-list globally stable learner

for C such that with probability 1� ⇣, every hypothesis h0
in the output list satisfies errD(h0)  2↵.
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Proof Sketch. This can be done by first running the algorithm in Theorem 18 to get a set H of size
at most L = exp

⇣
(d/↵)O(1)

⌘
. Then, we draw additional 100 · log(L/⇣)/↵2 samples S. Finally,

we output H 0 = {h0
2 H | errS(h0)  1.5↵}. By the Chernoff bound, with probability 1� ⇣, every

hypothesis h0
2 H satisfies | errD(h0)�errS(h0)|  0.5↵, which yields the desired guarantees.

4 Approximate-DP Learner

In this section, we prove Theorem 1. We first show how to go from list global stability to pseudo-
global stability using correlated sampling (Theorem 20). We then show how to go from pseudo-
global stability to an approximate-DP learner using DP selection (Theorem 25).

4.1 From List Global Stability to Pseudo-Global Stability

Theorem 20. Let ↵,�, ⌘ 2 (0, 0.1), L 2 N, and C a concept class. Suppose that there exists a

learner A that is m-sample ↵/2-accurate (L, ⌘)-list globally stable. Furthermore, with probability

1 �

⇣
�·⌘2

106·log(L/⌘)

⌘2
, every hypothesis h0

in the output list satisfies errD(h0)  ↵. Then, there

exists a learner A0
that is m0

-sample (↵,�)-accurate (1� �, 1� �)-pseudo-globally stable, where

m0 = O�

�
m · log3(L/⌘)/⌘2

�
.

Before we prove Theorem 20, we note that with Lemma 19, it gives the following corollary.
Corollary 21. Let ↵,� 2 R>0 and C be any concept class with finite LDim(C). Then, there exists

a learner A that is m-sample (↵,�)-accurate and (1 � �, 1 � �)-pseudo-globally stable, where

m = O�((LDim(C)/↵)O(1)).

Proof of Theorem 20. Let ⌧ = 0.5⌘, � = 106 log(L/(�⌧))
⌧ , k1 = 106 log(L/(�⌧))

⌧2 , and k2 =

d
106�2

·log(L/(⌧�))
�4 e. Let CS be a correlated sampling strategy for 2X and let R0 be the (public)

randomness it uses, as in Theorem 8. Algorithm 1 presents our learner A0.

Algorithm 1 Pseudo-Globally Stable Learner A0.
for i = 1, . . . , k1 do

Draw Si ⇠ D
m, run A on Si to get a set Hi

Let H be the set of all f 2 2X that appears in at least ⌧ · k1 of the sets H1, . . . , Hk1

for j = 1, . . . , k2 do
Draw Tj ⇠ D

m, run A on Tj to get a set Gj

for h 2 H do
Let Q̂H,G1,...,Gk2

(h) = |{j2[k2]|h2Gj}|

k2

Let P̂H,G1,...,Gk2
be the probability distribution on 2X defined by

P̂H,G1,...,Gk2
(h) =

8
<

:

exp(�·Q̂G1,...,Gk2
(h))

P
h02H exp(�·Q̂G1,...,Gk2

(h0))
if h 2 H,

0 otherwise.

Output CS(P̂H,G1,...,Gj ; r
0), where r0 ⇠ R

0

Notice that the number of samples used in A0 is m · (k1 + k2) = m ·O�(log
3(L/⌘)/⌧2) as claimed.

(Accuracy Analysis) Since we assume that the output of A consists only of hypotheses with dis-
tributional error at most ↵ with probability 1 � �/k1, a union bound implies that this holds for all
hypotheses in H with probability 1� �. This yields the desired (↵,�)-accuracy of the algorithm.

(Pseudo-Global Stability Analysis) For this, we need a few additional notation. First, for every
h 2 2X , we let Q(h) denote PrS⇠Dm [h 2 A(S)]. Moreover, let H�1.1⌧ = {h 2 2X | Q(h) �

1.1⌧} and similarly H�0.9⌧ = {h 2 2X | Q(h) � 0.9⌧}. A crucial property we will use is that H
is w.h.p. sandwiched between H�1.1⌧ and H�0.9⌧ , as stated below.
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Lemma 22. Let E denote the event that H�1.1⌧ ✓ H ✓ H�0.9⌧ . Then,

Pr[E ] � 1� �2/30,

where the probability is over the randomness of S1, . . . , Sk1 and that of A on these datasets.

Proof of Lemma 22. We will separately argue that Pr[H�1.1⌧ * H]  �2/60 and Pr[H *
H�0.9⌧ ]  �2/60. A union bound then yields the claimed statement.

To prove the first bound, observe that since A outputs a set of size at most L, |H�1.1⌧ |  L/(1.1⌧) <
L/⌧ . Consider each f 2 H�1.1⌧ ; notice that 1[f 2 Hi] is simply an i.i.d. Bernoulli random variable
with success probability Q(f) � 1.1⌧ . Hence, by the Hoeffding inequality, we have

Pr[f /2 H]  exp
�
�0.02⌧2k1

�
< 0.001�2⌧/L,

where the last inequality follows from our choice of ⌧, k1. Taking a union bound over all f 2 H�1.1⌧

concludes our proof for the first inequality.

For the second inequality, consider the set H<0.9⌧ := 2X \ H�0.9⌧ . Since each element f 2

H<0.9⌧ satisfies Q(f) < 0.9⌧ , we may partition4 H<0.9⌧ into H1
<0.9⌧ [ · · · [ Hq

0.9⌧ such thatP
f2Hj

<0.9⌧
Q(f) < 0.9⌧ for all j 2 [q] and q  L/(0.45⌧) + 1 < 4L/⌧ . Fix j 2 [q]; notice that

Pr[H \Hj
<0.9⌧ 6= ;]  Pr[|{i 2 [k1] | Hi \Hj

<0.9⌧ 6= ;}| � ⌧k1].

Now, each 1[Hi \ Hj
<0.9⌧ 6= ;] is an i.i.d. Bernoulli random variable with success probability at

most
P

f2Hj
<0.9⌧

Q(f) < 0.9⌧ . Thus, we can apply the Hoeffding inequality to conclude that

Pr[H \Hj
<0.9⌧ 6= ;]  exp(�0.02⌧2k1) < 0.001�2⌧/L.

Taking a union bound over all j 2 [q], we have Pr[H \H<0.9⌧ 6= ;] < 0.01�2. This completes our
proof of the second inequality.

Next, let P be the probability distribution on 2X defined by

P(f) =

(
exp(�·Q(f))P

f02H�0.9⌧
exp(�·Q(f 0)) if f 2 H�0.9⌧

0 otherwise.
.

Furthermore, let PH be the probability distribution on 2X defined by

PH(f) =

(
exp(�·Q(f))P

f02H exp(�·Q(f 0)) if f 2 H,

0 otherwise.

Once again, notice that P is independent of the run of the algorithm (i.e., it only depends on A),
whereas PH can vary on different runs, depending on H . Our first component of the proof is to
argue that P and PH are often close:

Lemma 23. When E holds, we have dtv(P,PH)  �2/30.

Proof of Lemma 23. Recall that from the assumption of list global stability, there exists h such that
Q(h) � ⌘ = 2⌧ . When E holds, H is a subset of H�0.9⌧ , meaning that PH is the conditional
probability of P on H . Thus, we have

dtv(P,PH)  P(H \H�0.9⌧ ) =

P
f2H�0.9⌧\H

exp(� ·Q(f))
P

f 02H�0.9⌧
exp(� ·Q(f 0))

(a)


P
f2H�0.9⌧\H�1.1⌧

exp(� ·Q(f))
P

f 02H�0.9⌧
exp(� ·Q(f 0))



P
f2H�0.9⌧\H�1.1⌧

exp(� · 1.1⌧)
P

f 02H�0.9⌧
exp(� ·Q(f 0))


|H�0.9⌧ | · exp(� · 1.1⌧)

exp(� ·Q(h))

(b)
 |H�0.9⌧ | · exp(�� · 0.9⌧)  L/(0.9⌧) · exp(�� · 0.9⌧)

(c)
 �2/30,

where inequality (a) follows from H�1.1⌧ ✓ H (which in turns holds because of E ), inequality (b)
follows since Q(h) � 2⌧ , and inequality (c) follows from our choice of �.

4A simple way is to start with a singleton partition and then merge any two parts whose total Q(·) is less
than 0.9⌧ ; in the end, we will left with a partition where all but at most one part has weight at least 0.45⌧ .
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Next, we show that PH is often close to its “empirical” version P̂H,G1,...,Gk2
.

Lemma 24. E[dtv(PH , P̂H,G1,...,Gk2
)]  �2/30 where the probability is over the randomness of

T1, . . . , Tk2 and that of A’s executions on these datasets.

Proof of Lemma 24. From how H is selected and from the assumption that the output of A has size
at most L, we have |H|  L/⌧ . Now, fix f 2 H . Note that Q̂H,G1,...,Gk2

(f) is simply an average of
k2 i.i.d. Bernoulli random variables with success probability Q(f). Using the Hoeffding inequality,

Pr

2

4|Q̂H,G1,...,Gk2
(f)�Q(f)| > 100

s
log(L/(⌧�))

k2

3

5 
�2

60 · (L/⌧)
. (1)

By a union bound over all f 2 H , we can conclude that with probability 1 � �2/60 we have

|Q̂H,G1,...,Gk2
(f)�Q(f)|  100

q
log(L/(⌧�))

k2
for all f 2 H . When this holds, we have

dtv(PH , P̂H,G1,...,Gk2
) =

X

h2h

PH(h) ·max

(
0,

 
P̂H,G1,...,Gk2

(h)

PH(h)
� 1

!)

(1)


X

h2h

PH(h) ·

0

@exp

0

@� · 100

s
log(L/(⌧�))

k2

1

A� 1

1

A  exp

0

@� · 100

s
log(L/(⌧�))

k2

1

A� 1

 200�

s
log(L/(⌧�))

k2
 �2/60, from our choice of k2.

Combining Lemmas 22 to 24, we can conclude that E[dtv(P, P̂H,G1,...,Gk2
)]  �2/10 where the

expectation is over all the randomness involved in the algorithm except r0. Now, let hr0 = CS(P ; r0).
From the error guarantee of correlated sampling in Theorem 8, we can conclude that

Pr
r0⇠R0,S1,...,Sk1 ,T1,...,Tk2

[A0(S1, . . . , Sk1 , T1, . . . , Tk2 ; r
0) 6= hr0 ]  �2/5.

Thus, applying Markov inequality, we get the pseudo-global stability of A

Pr
r0⇠R0


Pr

S1,...,Sk1 ,T1,...,Tk2

[A0(S1, . . . , Sk1 , T1, . . . , Tk2 ; r
0) = hr0 ] � 1� �

�
� 1� �.

4.2 From Pseudo-Global Stability to Approximate-DP Learner in the Central Model

In this section we prove Theorem 25 that allows us to convert any pseudo-globally stable learner to
an approximate-DP learner. Combining Theorem 25 and Corollary 21 yields Theorem 1.
Theorem 25. Let ↵,� 2 (0, 0.1) and C a concept class. Suppose that there exists a learner

A that is m-sample (↵,�/3)-accurate (0.9, 1 � �/3)-pseudo-globally stable. Then, for any

" 2 (0, 1), there is an (", �)-DP (↵,�)-accurate learner for C in the central model that re-

quires n = O (log(1/(��))/") users where each user has m samples. The learner runs in time

poly(time(A), n, d).

Proof. Let n = K ·log (1/(��)) /" where K is a sufficiently large constant. Let R denote the public
randomness shared between the users. Algorithm 2 shows our approximate-DP learner.

Algorithm 2 Approximate-DP Learner in the Central Model.

User i randomly draws m samples Si ⇠ D
m and runs A(Si; r) to obtain a hypothesis hi

Run the (", �)-DP selection algorithm from Lemma 11 where U = 2X and user i’s item is hi

Return the output h⇤ from the previous step

It is clear that Algorithm 2 is (", �)-DP. We will now analyze its accuracy. First, from the definition
of pseudo-global stability and a union bound, with probability 1� 2�/3 over r ⇠ R, there exists hr
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such that errD(hr)  ↵, and PrS⇠Dm [A(S; r) = hr] � 0.9. Conditioned on this, we can use the
Hoeffding inequality to conclude that, with probability 1� �/6, we have5

chr � 0.8n. (2)

Conditioned on (2), Lemma 11 guarantees that ch⇤ � maxh22X ch � 0.1n with probability 1� �/6
(for sufficiently large K); when this is the case, Algorithm 2 outputs h⇤ = hr. Hence, applying a
union bound (over this and (2)), we can conclude that the algorithm is (↵,�)-accurate as desired.

5 Conclusions and Future Directions

In this work, we study the question of learning with user-level DP when each user may have many
examples. We prove tight upper and lower bounds on the number of users required to learn each
concept class, provided that each user has sufficiently many i.i.d. samples. An immediate open
question here is whether one can also derive a tight bound on the number of samples per users

required; note that this bound will depend on the number of users. For approximate-DP learn-
ing, this problem might be hard because the big gap in the item-level learning setting between
poly(LDim) [GGKM21] and ⌦(log⇤ LDim) [ALMM19]) is still open. The pure-DP case might
be easier since tight bounds are known both in the central [BNS19a] and the local models (up to a
polynomial factor) [KLN+11].

Another interesting direction is to derive additional efficient user-level DP learners whose sample
complexities are better than item-level DP learners. We give two “weak” examples of this in Ap-
pendix B for the case of the non-interactive local model. It would be good to give such an example
for general algorithms in the local model as well. On this front, PARITY seems to be a good candi-
date; as stated earlier, it has SQ dimension 2⌦(d) [BFJ+94] meaning that it requires 2⌦(d) samples
in the (interactive) item-level local model [KLN+11]. Can we come up with an efficient user-level
DP algorithm in the local model that requires poly(d) samples in total?

Furthermore, our algorithms make extensive use of shared randomness—in the form of correlated
sampling. Is this necessary? In particular,

• Is there a local user-level DP algorithm for learning any class C using poly(PRDim(C))
users each having poly(PRDim(C)) samples, without using public randomness? In other
words, can the use of public randomness be removed from Theorem 2?

• Is there an ⌘-globally stable learner for any class C with finite Littlestone dimension where
⌘ > 0 is some absolute constant? In other words, can the use of public randomness be
removed from Corollary 21?

While it is not hard to show that the second question has a negative answer if we require ⌘ > 1/2,
we are not aware of a proof that ⌘ must go to zero for some family of concept classes.

Lastly, it would also be interesting to see whether techniques employed in our paper may be useful
beyond the PAC setting. For example, Golowich [Gol21] gives DP regression algorithms based on
stability notions similar to [BLM20, GGKM21] and it is plausible that our approach gives user-level
regression algorithm in a setting similar to [Gol21].
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[KT02] Jon M. Kleinberg and Éva Tardos. Approximation algorithms for classification prob-
lems with pairwise relationships: metric labeling and Markov random fields. JACM,
49(5):616–639, 2002.

[Lit87] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. In FOCS, pages 68–77, 1987.

[LSA+21] Daniel Levy, Ziteng Sun, Kareem Amin, Satyen Kale, Alex Kulesza, Mehryar Mohri,
and Ananda Theertha Suresh. Learning with user-level privacy. In NeurIPS, 2021.

[LSY+20] Yuhan Liu, Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and Michael Riley.
Learning discrete distributions: user vs item-level privacy. In NeurIPS, 2020.

[MRTZ18] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differ-
entially private recurrent language models. In ICLR, 2018.

[MT07] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In
FOCS, pages 94–103, 2007.

[Riv87] Ronald L. Rivest. Learning decision lists. Mach. Learn., 2(3):229–246, 1987.

[Sha14] Stephen Shankland. How Google tricks itself to protect Chrome user privacy. CNET,

October, 2014.

[Vad17] Salil P. Vadhan. The complexity of differential privacy. In Tutorials on the Foundations

of Cryptography, pages 347–450. Springer International Publishing, 2017.

[Val84] Leslie G. Valiant. A theory of the learnable. CACM, 27(11):1134–1142, 1984.

[War65] Stanley L Warner. Randomized response: A survey technique for eliminating evasive
answer bias. JASA, 60(309):63–69, 1965.

[WSZ+19] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong
Qi. Beyond inferring class representatives: User-level privacy leakage from federated
learning. In INFOCOMM, pages 2512–2520, 2019.

[WZL+20] Royce J Wilson, Celia Yuxin Zhang, William Lam, Damien Desfontaines, Daniel
Simmons-Marengo, and Bryant Gipson. Differentially private SQL with bounded user
contribution. PoPETS, 2:230–250, 2020.

13


	Introduction
	Our Results
	Proof Overview

	Preliminaries
	Correlated Sampling
	Representation Dimension
	Tools from DP

	Global Stability and Pseudo-Global Stability
	Learners with Global Stability

	Approximate-DP Learner
	From List Global Stability to Pseudo-Global Stability
	From Pseudo-Global Stability to Approximate-DP Learner in the Central Model

	Conclusions and Future Directions
	Pure-DP Learners
	Pseudo-Globally Stable Learner from Probabilistic Representation
	From Pseudo-Globally Stable Learner to Pure-DP Learner in the Local Model
	From Pseudo-Globally Stable Learner to Pure-DP Learner in the Central Model

	Efficient Reduction for SQ Algorithms
	From SQ Algorithms to Pseudo-Globally Stable Learners
	Implications

	Lower Bounds
	Extension to Shuffle DP
	Selection Algorithm from Negative Binomial Noise
	Binary Summation
	From Binary Summation to Selection
	From Binary Summation to Histogram



