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ABSTRACT

Causal inference across multiple data sources can improve the generalizability
and reproducibility of scientific findings. However, for time-to-event outcomes,
data integration methods remain underdeveloped, especially when populations are
heterogeneous and privacy constraints prevent direct data pooling. We propose
a federated learning method for estimating target site-specific causal effects in
multi-source survival settings. Our approach dynamically re-weights source contri-
butions to correct for distributional shifts, while preserving privacy. Leveraging
semiparametric efficiency theory, data-adaptive weighting and flexible machine
learning, the method achieves both double robustness and efficiency improvement.
Through simulations and two real data applications: (i) multi-site randomized trials
of monoclonal antibodies for HIV-1 prevention among cisgender men and transgen-
der persons in the United States, Brazil, Peru, and Switzerland, as well as women
in sub-Saharan Africa, and (ii) an analysis of sex disparities across biomarker
groups for all-cause mortality using the “flchain” dataset, we demonstrate the va-
lidity, efficiency gains, and practical utility of the approach. Our findings highlight
the promise of federated methods for efficient, privacy-preserving causal survival
analysis under distribution shift.

1 INTRODUCTION

Data fusion, or data integration, can substantially enhance the generalizability, transportability, and
replicability of scientific findings. By combining heterogeneous studies, researchers can gain larger
and more diverse samples, extend insights beyond single settings, and strengthen causal conclusions.
Yet, integration is challenging: distributional shifts in covariates, outcomes, or censoring can invalidate
naive pooling, while privacy regulations such as the General Data Protection Regulation (GDPR) in
Europe and the Health Insurance Portability and Accountability Act (HIPAA) in the United States
often preclude sharing individual-level data.

Limitations of existing work. Most existing causal data fusion methods focus on binary or
continuous outcomes (Han et al., 2025; 2024; Yang & Ding, 2019; Liu et al., 2024; Han et al., 2023;
Li et al., 2023; Makhija et al., 2024; Almodóvar et al., 2024), neglecting the timing of events that is
often crucial in biomedical and policy settings. Distinguishing between preventing versus delaying
hospitalization, for example, has markedly different implications.

Existing extensions to survival data rely on restrictive assumptions. For example, the Cox proportional
hazards (PH) model imposes a log-linear hazard structure (Hernán, 2010; Han, 2023; Nagpal et al.,
2023), or the assumption of a common conditional outcome distribution (CCOD) across sites (Lee
et al., 2022; Cao et al., 2024; Wen et al., 2025) may fail under heterogeneous data distributions.
Violations of these assumptions yield biased estimates and inference. In addition, privacy-preserving
methods avoiding sharing raw data across sites for survival outcomes remain scarce (Jia et al., 2021).

Time-to-event outcomes are typically analyzed within single-site studies using nonparametric survival
curves such as the Kaplan–Meier estimator (Kaplan & Meier, 1958). With covariate-rich data,
semiparametric extensions such as the Cox model (Cox, 1972; Xie & Liu, 2005; Bull & Spiegelhalter,
1997) and doubly robust estimators (Bai et al., 2013) are standard. More recently, Westling et al.
(2024) integrated double machine learning (Chernozhukov et al., 2018) to flexibly estimate nuisance
functions in survival analysis (Wolock et al., 2024; Cui et al., 2023; van der Laan et al., 2007).
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However, these methods remain focused on single-study contexts and do not address how to combine
survival data across multiple sources.

Contributions. Recognizing that pooling is often infeasible and that CCOD may not hold, we
develop a federated estimator with adaptive site weighting that accommodates both continuous-
and discrete-time outcomes. Our approach leverages influence function theory to construct site-
specific estimators based only on local summary statistics, combined through a constrained convex
optimization that upweights informative sites and downweights or excludes biased ones. We establish
consistency, asymptotic normality, and conditions under which our method improves efficiency over
target-only analysis. By integrating cross-fitting (Chernozhukov et al., 2018) and ensemble learning
(Díaz et al., 2019; Díaz, 2020; Westling et al., 2024; van der Laan et al., 2007), our estimator avoids
restrictive assumptions while retaining fast convergence rates.

We validate the method through extensive Monte Carlo simulation studies and two real applications:
(i) multi-site randomized trials of monoclonal antibodies for HIV-1 prevention among cisgender men
and transgender persons in the United States, Brazil, Peru, and Switzerland, as well as women in
sub-Saharan Africa, and (ii) an analysis of sex disparities in all-cause mortality using the flchain
dataset in the survival R package, stratified into biomarker-defined groups. Together, these
examples highlight the potential of federated methods to enable efficient, privacy-preserving causal
inference for time-to-event outcomes in realistic multi-source settings.

2 METHODOLOGY

2.1 PROBLEM SETUP AND TARGET ESTIMAND

Observed data. Consider K studies, each of which may be randomized or observational. For each
participant, we observe baseline covariates X, a binary treatment A ∈ {0, 1}, and right-censored
outcomes. Let T (a) and C(a) denote the potential event and censoring times under treatment
a ∈ {0, 1}. By the stable unit treatment value assumption (SUTVA) (Rosenbaum & Rubin, 1983), the
observed event and censoring times are T = AT (1) + (1−A)T (0), C = AC(1) + (1−A)C(0).
With right censoring, however, we only observe Y = min(T,C) and ∆ = I(T ≤ C).

Denote a copy of the independent and identically distributed (i.i.d.) data by O. The observed data
across all sites are then given by

{Oi = (Xi, Ai, Yi,∆i, Ri) : i = 1, . . . , n},
where R ∈ {0, 1, . . . ,K − 1} denotes the site, with R = 0 indicating the target site and R =
1, . . . ,K − 1 the external sources.

Target estimand. Our goal is to estimate the treatment-specific survival function in the target
population over a finite horizon τ < ∞:

θ0(t, a) = P(T (a) > t | R = 0), a ∈ {0, 1}, t ∈ [0, τ ].

This function gives the probability that a target-site individual on treatment a (a = 1 for treated,
a = 0 for control) survives beyond time t.

Conditional survival functions. For each site k, define the conditional survival function Sk(t |
a,X) = P(T > t | A = a,X, R = k). To simultaneously accommodate continuous- and discrete-
time outcomes, we use the product integral representation (Gill & Johansen, 1990):

Sk(t | a,X) = R
(0,t]

{1− Λk(du | a,X)},

where Λk(t | a,X) is the conditional cumulative hazard function. This notation unifies both discrete
and continuous-time survival models, because in discrete time the product integral becomes the
standard discrete product

∏
, and in continuous time it becomes exp{−Λk(t | a,X)}.

We impose three standard assumptions for causal survival analysis:

Assumption 2.1 (Unconfoundedness). A ⊥⊥ T (a) | X, R and A ⊥⊥ C(a) | X, R.

Assumption 2.2 (Treatment-specific non-informative censoring). C(a) ⊥⊥ T (a) | A = a,X, R.
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Assumption 2.3 (Positivity). There exists η > 0 such that P(R = k) ≥ 1/η, and for almost all X,

min
k=0,...,K−1

{πk(a | X), Gk(t | a,X)} ≥ 1/η, min
k

Sk(t | a,X) > 0.

Here πk(a | X) = P(A = a | X, R = k) is the site-specific propensity score for treatment A = a,
and Gk(t | a,X) = P(C > t | A = a,X, R = k) the conditional survival function of censoring.
Each treatment and censoring mechanism has non-vanishing probability, and each site contributes a
non-negligible fraction of participants.

2.2 SINGLE-SITE ESTIMATION

Auxiliary process. For later use, define

Ht,a(O;Sk, Gk) =
I(Y ≤ t,∆ = 1)

Sk(Y | a,X)Gk(Y | a,X)
−
∫ t∧Y

0

Λk(du | a,X)

Sk(u | a,X)Gk(u | a,X)
, (1)

where t∧ Y = min(t, Y ). This functional plays a role as the inverse probability-weighted mean-zero
residual (part of an augmentation term) in doubly robust estimators for right-censored data.

Efficient influence function (EIF). When using only target-site data (R = 0), the nonparametric EIF
of θ0(t, a) given t ∈ [0, τ ] and a ∈ {0, 1} is given by (Westling et al., 2024):

φ∗0
t,a(O;P) =

I(R = 0)

P(R = 0)

[{
1− I(A = a)

π0(a | X)
Ht,a(O;S0, G0)

}
S0(t | a,X)− θ0(t, a)

]
.

This representation highlights two components: (i) an anchor term that S0(t | a,X)−θ0(t, a), which
anchors estimation through the conditional survival function under an outcome model by using target
data; and (ii) an augmentation term—the weighted part involving Ht,a(O;S0, G0) and π0(a | X),
which adjusts for censoring and treatment assignment.

Here, P in φ∗0
t,a(O;P) indicates that the EIF depends on nuisance functions under the true data

distribution. In other words, φ∗0
t,a(O;P) ≡ φ∗0

t,a(O;S0, G0, π0). The same convention applies to
other EIFs specified later. Throughout, Pn[f(O)] = n−1

∑n
i=1 f(Oi) denotes the empirical average.

Target-only estimator. Motivated by the EIF, we define θ̂0n(t, a) as the solution to the estimating
equation

0 = Pn[φ̂
∗0
t,a(O; P̂)],

where P̂ denotes that nuisance functions are replaced by their sample estimates. Under regularity
conditions, θ̂0n(t, a) is regular and asymptotically linear (RAL) and achieves the semiparametric
efficiency bound uniformly over t ∈ [0, τ ] when only target-site data are available.

2.3 THE CCOD ASSUMPTION

When multiple data sources are available, precision can be improved by data fusion. A common
simplifying assumption is that conditional survival functions are identical across sites given covariates.
Assumption 2.4 (Common conditional outcome distribution). T (a) ⊥⊥ R | X for a ∈ {0, 1}.

Assumption 2.4 implies that Sk(t | a,X) = S̄(t | a,X) ≡ P(T > t | A = a,X) for all k, while still
allowing shifts in the covariate distribution X across sites, i.e., adjusted for covariates, the event-time
distribution no longer depends on the site.

Figure 1: Data structures under and without CCOD. (a) Under CCOD, site R and event time T are
conditionally independent given treatment A and covariates X. (b) When CCOD is possibly violated,
indicated by the red dashed arrow, R and T may not be conditionally independent.
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Figure 1 illustrates the data structure through a directed acyclic graph (DAG), depicting the relation-
ships among covariates X, treatment A, site indicator R, event time T , and censoring time C, and
compares scenarios with and without the CCOD assumption.

2.4 FEDERATED ESTIMATION UNDER DISTRIBUTION SHIFTS AND PRIVACY

Motivation. In many settings, pooling individual-level data across sites is infeasible due to privacy
constraints. At the same time, CCOD may fail, so naïve pooling is invalid. Still, some sites may
provide information that improves estimation for the target population. We propose a federated
method that adaptively re-weights source sites using only summary-level information.

2.4.1 LOCAL SITE-LEVEL ESTIMATION

For each source site k, we temporarily posit a working partial CCOD assumption, Sk(t | a,X) =
S0(t | a,X) almost surely, in order to derive an EIF. This assumption is used only for formulating
site-level estimators; violations will later be corrected by adaptive weighting in Section 2.4.2.

Theorem 2.5. For k ∈ {0, 1, . . . ,K − 1}, θ0(t, a) is a pathwise differentiable parameter given
t ∈ [0, τ ] and a ∈ {0, 1}. Under the working partial CCOD assumption, the semiparametric EIF is
given by φ∗k,0

t,a (O;P) =

I(R = 0)

P(R = 0)
{S0(t | a,X)− θ0(t, a)} − I(R = k)

P(R = k)
ωk,0(X)Sk(t | a,X)

I(A = a)

πk(a | X)
Ht,a(O;Sk, Gk),

where ωk,0(X) = P(X | R = 0)/P(X | R = k) is a density ratio comparing covariate distributions
between the target site and source site k.

Local estimator. Each site computes θ̂k,0n (t, a) by solving 0 = Pn[φ̂
∗k,0
t,a (O; P̂)]. The proof of

Theorem 2.5, along with regularity conditions and asymptotic properties of θ̂k,0n (t, a) are presented
in Appendix E.1.

Interpretation. (i) The first term (“anchor”) in the EIF uses target-site data (R = 0), while the second
term (“augmentation”) leverages site-k data (R = k), adjusted by the density ratio to re-weight
towards the target covariate distribution; (ii) Because ωk,0(X) can be estimated using coarse statistics
under flexible models (Han et al., 2025), individual-level covariates need not be shared; and (iii) For
Sk(t | a,X) in the augmentation term, we train a model on the target site and apply its predictions to
site k, since S0(t | a,X) and Sk(t | a,X) are exchangeable under partial CCOD. If partial CCOD is
violated, we can detect site heterogeneity by the difference between θ̂k,0n (t, a) and θ̂0n(t, a).

2.4.2 AGGREGATION ACROSS SITES

Data-adaptive weighting. We define the site-specific discrepancy measure χ̂k,0
n,t,a = θ̂k,0(t, a) −

θ̂0(t, a) and the weight vector ηt,a = (η0t,a, η
1
t,a, . . . , η

K−1
t,a ). To aggregate information, we solve an

ℓ1-penalized convex optimization problem: we minimize Q(ηt,a), where

Q(ηt,a) = Pn

{φ̂∗0
t,a(O; P̂)−

K−1∑
k=1

ηkt,aφ̂
∗k,0
t,a (O; P̂)

}2
+

1

n
λ

K−1∑
k=1

|ηkt,a|
(
χ̂k,0
n,t,a)

2, (2)

subject to ηkt,a ≥ 0 and
∑K−1

k=0 ηkt,a = 1; λ is a tuning parameter that controls the bias-variance
trade-off and is chosen by cross-validation.

Interpretation. The objective function balances two goals: aligning site-level EIFs with the target
distribution and excluding sites that would induce bias. The quadratic term ensures that sites well-
aligned with the target survival distribution contribute more to the estimation, while the ℓ1 penalty
induces sparsity by driving the weights of misaligned sites exactly to zero. This contrasts with an
ℓ2 penalty, which merely shrinks weights without fully removing them. As a result, the procedure
asymptotically includes only the informative sources.
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Federated estimator. The final estimator is obtained as a weighted average of the estimated local
survival curves:

θ̂fed
n (t, a) =

K−1∑
k=0

η̂kt,a θ̂
k,0
n (t, a).

The variance of θ̂fed
n (t, a) can be estimated from its influence function, with the explicit formula

given in Appendix E.2. Importantly, all steps require only summary-level transmission, never raw
participant data.

1𝜃1!(𝑡, 𝑎)

Target Site Source	Site 1 Source	Site 2 Source	Site 𝐾

1𝜃1
",!(𝑡, 𝑎)1𝜃1

#,!(𝑡, 𝑎) 1𝜃1
$,!(𝑡, 𝑎)

……	

1𝜃1&'((𝑡, 𝑎)

Leading	Analysis	Center	

6𝜼2,3 = argmin𝜼!,#𝑄 𝜼2,3

Figure 2: Flow of the Federated Estimation Algorithm. Each site first estimates its underlying survival
functions locally. The related summary-level information (EIFs) is then transmitted to a leading
analysis center, where it is aggregated and used to compute federated weights by minimizing the Q(·)
function. Finally, the federated estimate is obtained through weighted averaging.

Remark 2.6. We summarize the procedure of the federated method in Algorithm 1 and illustrate its
flow in Figure 2. Implementation details can be found in Appendix D, including for the cross-fitting
procedure for nuisance fitting. Figure 2 emphasizes that our approach follows a federated learning
paradigm, where raw data remain local and only summarized EIF-based quantities are transmitted
to a leading analysis center(McMahan et al., 2017), thereby preserving privacy. This contrasts with
fully decentralized learning (Lian et al., 2017), where there is no central aggregator and sites interact
directly to reach consensus. Our method also differs from meta-analysis (Borenstein et al., 2021),
which relies only on coarse population-level summaries; such information is insufficient in our setting.

2.4.3 THEORETICAL PROPERTIES

We now summarize the main asymptotic results and efficiency gain of the federated estimator; detailed
proofs are in Appendices E.1 and E.2.
Theorem 2.7 (Asymptotic distribution). If regularity conditions for local estimates (Conditions
E.1–E.3 in Appendix E.1) and the adaptive weights η̂t,a recover the oracle set of unbiased sources
(Appendix E.2), then θ̂fed

n (t, a), at each (t, a) ∈ [0, τ ]× {0, 1}, has asymptotic distribution√
n/V̂ fed

t,a

{
θ̂fed
n (t, a)− θ0(t, a)

}
→d N (0, 1).

where V̂ fed
t,a is an influence-function-based consistent estimator for the underlying asymptotic variance

of θ̂fed
n (t, a) (see Appendix E.2).

Corollary 2.8 (Asymptotic efficiency). The asymptotic variance V fed
t,a is no greater than that of the

target-only estimator θ̂0n(t, a). Further, if at least one source site provides a consistent estimate of
θ0(t, a), then θ̂fed

n (t, a) is strictly more efficient (strictly smaller asymptotic variance).
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Algorithm 1 Federated Learning for Multi-Source Causal Survival Analysis.

1: Input: Multi-source right-censored data {Oi = (Xi, Ai, Yi,∆i, Ri), i = 1, . . . , n}, a time
horizon τ > 0; a fine time grid {0, ϵ, 2ϵ, . . . , τ} for [0, τ ] with a small ϵ > 0; and the number of
disjoint folds into which the data are split, M .

2: Output: Estimated treatment-specific survival curves θ̂fed
n (t, a) and its estimated variance V̂ fed

t,a

for a ∈ {0, 1} and t ∈ {0, ϵ, 2ϵ, . . . , τ}.
3: for (t, a) ∈ {0, ϵ, 2ϵ, . . . , τ} × {0, 1} do
4: Estimate the EIFs via an M -fold cross-fitting (see full detail in Algorithm 2).
5: Obtain local estimates θ̂k,0n (t, a) as solutions of 0 = Pn

[
φ̂k,0
t,a (O; P̂)

]
, for k = 0, . . . ,K − 1.

6: Obtain the site-specific discrepancy measure (difference of the target and source estimators) as
χ̂k,0
n,t,a = Pn

[
φ̂k,0
t,a (O; P̂)− φ̂0

t,a(O; P̂)
]
, for k = 1, · · ·K − 1.

7: Solve for aggregation treatment- and time-specific weights η̂t,a = (η̂0t,a, η̂
1
t,a, . . . , η̂

K−1
t,a ) that

minimize

Q(ηt,a) = Pn

{φ̂∗0
t,a(O; P̂)−

K−1∑
k=1

ηkt,aφ̂
∗k,0
t,a (O; P̂)

}2
+

1

n
λ

K−1∑
k=1

|ηkt,a|(χ̂
k,0
n,t,a)

2,

subject to 0 ≤ ηkt,a ≤ 1, for all k ∈ {0, 1, . . . ,K − 1} and
∑K−1

k=0 ηkt,a = 1, and λ is a tuning
parameter chosen by cross-validation.

8: end for
9: Return:

θ̂fed
n (t, a) =

K−1∑
k=0

η̂kt,aθ̂
k,0
n (t, a), and V̂ fed†

t,a for (t, a) ∈ {0, ϵ, 2ϵ, . . . , τ} × {0, 1}.

†: V̂ fed
t,a is computed based on the influence function of θ̂fed

n (t, a) (see Remark E.6 in Appendix E.2).

Remark 2.9 (Regularity conditions). The three regularity conditions in Appendix E.1 serve distinct
roles. Condition E.1 requires local nuisance estimators to converge to general limiting functions.
Condition E.2 imposes positivity by bounding nuisance functions away from 0, 1, or infinity. Condi-
tion E.3 controls three product-type errors. Together, these ensure pointwise convergence of each
local estimator to a bounded and well-defined limit.
Remark 2.10 (Selection consistency). The asymptotic validity of θ̂fed

n (t, a) relies on selection consis-
tency with respect to the oracle set S∗

t,a (see below). This guarantees that post-selection inference
by the influence-function-based variance estimator V̂ fed

t,a remains valid, even in the presence of
heterogeneous or biased sources.
Remark 2.11 (Efficiency gains). To quantify the efficiency gain of θ̂fed

n (t, a), let S = {1, . . . ,K − 1}
denote the set of source sites, and define the oracle selection space for ηt,a as

S∗
t,a = {k ∈ S : θk(t, a) = θ0(t, a)},

and the corresponding weight space as

RS∗
t,a = {ηt,a ∈ RK−1 : ηjt,a = 0, ∀j ̸∈ S∗

t,a}.

Appendix E.2 provides lemmata and conditions under which our federated estimator recovers the
following oracle-optimal weights:

η̄t,a = argmin
ηk
t,a=0, ∀k ̸∈S∗

t,a

V fed
t,a(ηt,a),

where V fed
t,a(ηt,a) denotes the asymptotic variance of the federated estimator under weight vector ηt,a.

The target-only estimator corresponds to the special case ηt,a = (1, 0, . . . , 0), so its variance is no
larger than that of any federated estimator. If the bias term χ̂k,0

n,t,a remains asymptotically non-zero,
then ηkt,a → 0, ensuring exclusion of biased sites. Proofs are adapted from Han et al. (2023; 2025).
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3 SIMULATION STUDY

We conducted simulation experiments to evaluate the performance of our federated estimator (FED)
relative to three competing approaches: target-only estimation (TGT), pooling (POOL), and inverse
variance weighting (IVW). The TGT method relies exclusively on target-site data (R = 0). POOL
aggregates data from all sites without adjustment, and IVW computes a weighted average of site-
specific estimators with weights proportional to the inverse of their estimated variances. This
comparison allows us to assess both the efficiency gains and robustness properties of FED under
varying degrees of site heterogeneity.

3.1 DATA GENERATING PROCESS

We conduct 500 independent Monte Carlo replications, with n =
∑K−1

k=0 nk observations distributed
across K = 5 sites. The target site (k = 0) was fixed at n0 = 300 observations, while source
sample sizes were varied as nk ∈ {300, 600, 1000} for k = 1, . . . , 4, representing small, moderate,
and large external data. Covariates, treatments, and outcomes were generated according to the
mechanisms described in Appendix B.1. The “truth” for each estimand was derived by averaging
survival outcomes over a super-population of size nsuper = 108 from the target distribution.

We modeled time-to-event outcomes over a one-year horizon (365 days), with administrative censor-
ing at day 200. Performance was evaluated at days 30, 60, and 90. To investigate robustness under
distribution shifts, we introduced five scenarios:

(i) Homogeneous: all sites follow identical processes;
(ii) Covariate Shift: covariate distributions vary across sites;

(iii) Outcome Shift: conditional outcome distributions differ;
(iv) Censoring Shift: censoring mechanisms vary; and
(v) All Shifts: simultaneous covariate, outcome, and censoring heterogeneity.

Figure 5 in Appendix B.1 depicts representative survival curves under outcome and covariate shifts,
illustrating how site-specific heterogeneity can affect target estimation.
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Figure 3: Simulation results at day 90 with n0 = 300 and nk = 600 (k = 1, 2, 3, 4). Panel (A): bias
across 500 replications. Panel (B): relative RMSE (RRMSE) compared to TGT.

3.2 PERFORMANCE METRICS AND RESULTS

We evaluated methods using three metrics: (i) Bias: assessed via boxplots of estimation error across
500 replications, (ii) Relative root mean square error (RRMSE): defined as the RMSE of a method
divided by that of TGT; values below 1 indicate efficiency gains, and (iii) Coverage probability
(CP%): the proportion of 95% Wald-type confidence intervals containing the truth. Values near 95%
indicate valid inference. More detailed definitions of these metrics are provided in Appendix B.2.
Full simulation results across all scenarios appear in Appendix B.3; here we summarize representative
findings at day 90 with nk = 600 for k ≥ 1.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Main findings. As shown in Panel (A) of Figure 3, FED consistently yields negligible bias across
all scenarios. In terms of efficiency, FED outperforms TGT in every heterogeneity setting: Panel
(B) demonstrates 5–16% reductions in RMSE, with efficiency gains exceeding 20% in some cases
(Appendix B.3). These results confirm that FED both preserves consistency and improves efficiency
relative to target-only estimation.

Inferential validity. Both FED and TGT maintain CP% close to the nominal 95% across scenarios,
validating our influence-function-based variance estimator. Further diagnostics, reported in Appendix
Figures 6 and 7, show that federated weights η̂t,a decrease systematically as site-specific bias
measures (χ̂k,0

n,t,a)
2 increase. Thus, FED adaptively upweights sites aligned with the target and

downweights or excludes biased ones; the target site receives higher weights under covariate or
outcome shifts, while contributions vary over time depending on alignment of survival functions.

Comparison with POOL and IVW. Although POOL and IVW exhibit lower variability (narrower
boxplots), they perform poorly under Covariate, Outcome, or All shifts: bias is substantial such that
RRMSE is elevated, and CP% drops far below 95%. The exception is under Censoring Shift, but this
arises because censoring is treated as a nuisance function and estimated separately within each site,
reducing sensitivity to between-site heterogeneity in censoring distributions.

4 REAL DATA ANALYSIS

We illustrate our framework through two real-world applications. The first involves two coordi-
nated randomized antibody-mediated prevention (AMP) trials, HVTN 704/HPTN 085 and HVTN
703/HPTN 081 (Corey et al., 2021; Ning et al., 2023), which enrolled 4,611 participants to evaluate
whether a broadly neutralizing monoclonal antibody (bnAb) reduces HIV-1 acquisition. The second
uses the “flchain” dataset from the survival R package, comprising 7,874 participants stratified
into three groups defined by biomarker information, to examine sex disparities in all-cause mortality.
For brevity, we focus here on the AMP trials and defer the flchain analysis to Appendix C.2.

4.1 AMP TRIAL DATA

The AMP trials considered HIV diagnosis by week 80 as the primary survival endpoint, a rare event
with only 3.77% incidence. Loss to follow-up was relatively low (less than 10% per treatment arm)
(Corey et al., 2021). We divided participants into four regional subsets: (i) SA: South Africa, (ii)
OA: other sub-Saharan African countries, (iii) BP: Brazil or Peru, and (iv) US: United States or
Switzerland. Participants in (i) and (ii) were women, while those in (iii) and (iv) were cisgender men
or transgender individuals, reflecting substantive population differences.

Because of event sparsity, we applied 2-fold cross-fitting. Conditional survival and censoring
functions were estimated via an ensemble of Kaplan-Meier, Cox proportional hazards regression,
and survival random forests, implemented in the survSuperLearner package (Westling et al.,
2024). Propensity scores and density ratios were estimated using ensembles of logistic regression
and LASSO via the Super Learner (van der Laan et al., 2007). Predictors included baseline age, a
standardized machine-learning-derived HIV risk score, and body weight.

4.2 RESULTS WITH SOUTH AFRICA AS TARGET SITE

We highlight results for the South Africa (SA) region as the target (Figure 4). Additional analyses
treating OA, BP, or US as the target, as well as direct comparisons of regional survival curves and
baseline covariates, appear in Appendix C. Table 1 shows that OA closely resembles SA, while BP
and US differ markedly in baseline risk score, weight, and HIV prevalence, consistent with covariate
and outcome shifts. This pattern is reflected in the federated weights: Panel (B) of Figure 4 shows
SA receiving the highest weights on average, followed by OA, US, and BP.

Efficiency and coverage. Panel (A) shows that FED and TGT produce nearly identical survival
curves, but FED offers narrower confidence intervals in some cases. In particular, TGT fails to yield
valid intervals at certain early time points due to unstable variance estimates, while FED is able to
recover narrower intervals by borrowing useful information from aligned sites. These efficiency
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gains mirror our simulation findings (Section 3), highlighting the ability of FED to improve inference
without introducing bias.

Comparison with POOL and IVW. Although POOL and IVW exhibit lower nominal variance
(smaller relative efficiency values), both methods deviate from the trends of TGT and FED when
targeting the SA population, suggesting bias under distributional shifts. Moreover, IVW fails to
return estimates at early times due to extreme weights (arising from inverses of small site-specific
variances), underscoring a practical limitation in survival applications.

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED (BOOT)

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

CCOD

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

TGT

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

IVW

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

POOL

(A) Estimated Treatment-specific Survival Curves (B) Time-specific Federated Weights

0.00

0.25

0.50

0.75

1.00

0 200 400 600
Time (day)

Fe
de

ra
te

d 
we

ig
ht

Region SA OA BP US

Treated group

Relative efficiency
Day   148       330     512
            0.51     0.80    0.97
            0.99     1.00    1.00 0.00

0.25

0.50

0.75

1.00

0 200 400 600
Time (day)

Fe
de

ra
te

d 
we

ig
ht

Region SA OA BP US

Control group

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED (BOOT)

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

CCOD

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

TGT

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

IVW

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

POOL

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED (BOOT)

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

CCOD

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

TGT

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

IVW

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

POOL

Relative efficiency
Day     148       330      512
              0.51     0.42    0.37
              0.34     0.36    0.38

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED (BOOT)

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

CCOD

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

TGT

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

IVW

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

POOL

Relative efficiency
Day     148       330      512
              0.60     0.46    0.45
              0.52     0.41    0.43

Figure 4: AMP trial results with SA as the target site. (A): Relative efficiency, defined as the ratio
of the estimated standard deviation to that of the TGT estimator, at 148, 330, and 512 days. (B):
Time-specific federated weights with locally weighted smoothing (Cleveland & Devlin, 1988).

5 DISCUSSION

We developed a federated learning framework for estimation and inference of treatment-specific
survival functions in a target population. By leveraging external data sources with potentially shifted
covariate and outcome distributions, while preserving privacy, our method achieves efficiency gains
under oracle selection and mild regularity conditions. The writing of this paper was supported by the
use of ChatGPT-5.0 for language polishing (see Appendix A).

Limitations and future directions. Several limitations suggest opportunities for future work. First,
although Theorem 2.7 and our simulations demonstrate efficiency gains, developing potentially
more efficient covariate-adaptive weighting schemes remains crucial. Second, when data sharing is
permitted but the CCOD assumption fails, it is unclear whether any method—including the pooled
estimator—can outperform the target-only semiparametric efficient estimator (TGT in our simulation)
and our federated approach. Third, while our time-specific weights provide flexibility, they may
yield non-smooth trajectories and incur computational costs in continuous-time settings; future work
should pursue smoothing strategies to capture temporal trends more efficiently. Finally, incorporating
time-varying covariates could further improve efficiency by leveraging post-baseline information.

Broader extensions. Our framework naturally connects to several active areas of research. Ex-
tensions include surrogate-assisted causal inference (Han et al., 2022; Gao et al., 2024a), dynamic
treatment regimes (Zhang et al., 2013), and data-driven selection of external sources (Gao et al.,
2024b). It also opens opportunities for constructing two-sided conformalized prediction intervals for
event times by leveraging the EIF–based conformal scores for survival outcomes developed (Farina
et al., 2025) with federated learning for predicting missing outcomes (Liu et al., 2024). Our approach
could be adapted to alternative estimands such as restricted mean survival time (Han, 2023), and
under complex regimes such as competing risks (Lok et al., 2018) or left-truncation (Han, 2024;
Wang et al., 2024). These directions highlight the broader potential of federated methods for causal
survival analysis under distributional shift.
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acknowledge potential risks of misuse (e.g., unfair application, misinterpretation, or unintended
deployment beyond the intended research scope) and discuss limitations and safeguards in the paper.
All results are reported transparently, and code will be released to support reproducibility.

REPRODUCIBILITY STATEMENT

All simulation studies and real data analyses were performed using the statistical language R
(version 4.4.2). The dependent R packages include: CFsurvival, survSuperLearner,
superLearner (version 2.0.29), glmnet (version 4.1.8), caret (version 6.0.94) and
tidyverse (version 2.0.0). To enhance computational efficiency, parallel computing packages
foreach (version 1.5.2) and doParellel (version 1.0.17) were employed. The replication of
simulations was carried out using 200 CPU cores by a high performance computing cluster.

We provide an anonymous GitHub repository containing all code for our simulations and data
analysis: https://anonymous.4open.science/r/FuseSurvSubmission-3D16/
README.md. All source code and software (R package) will be made publicly available through the
author’s Github upon acceptance of the paper.

The two real datasets are publicly available. The AMP trial data can be found at https:
//atlas.scharp.org/project/HVTN%20Public%20Data/HVTN%20704%20HPTN%
20085%20and%20HVTN%20703%20HPTN%20081%20AMP/begin.view, and the “flchain”
data can be found at https://rdrr.io/cran/survival/man/flchain.html or by
typing command data(flchain) in R after loading the survival R package.
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A USE OF LLMS

We acknowledge the use of ChatGPT-5.0 exclusively for language polishing and grammatical correc-
tions. No large language models (LLMs) were used for any other aspects of this work. The research
ideas, conceptualization, methodology development, and all experiments are entirely original contri-
butions of the authors.

B SIMULATION DETAILS AND ADDITIONAL RESULTS

B.1 DETAILS OF DATA GENERATING PROCESS

Three covariates X1, X2, and X3 are sampled as transformations of Beta random variables with
site-specific parameters:

X1 ∼ 33 · Beta(1.1− 0.05γ(k), 1.1 + 0.2γ(k)) + 9 + 2γ(k),

X2 ∼ 52 · Beta(1.5 + (X1 + 0.5γ(k))/20, 4 + 2γ(k)) + 7 + 2γ(k),

X3 ∼ (4 + 2γ(k)) · Beta(1.5 + |X1 − 50 + 3γ(k)|/20, 3 + 0.1γ(k)),

where γ(k) represents some function of site k, specified later. We then generate the treatment
assignment probabilities π(X) using the logistic function:

logit(π(X)) = −1.05+log (1.3 + exp(−12 +X1/10) + exp(−2 +X2/12) + exp(−2 +X3/3)) ,

and treatments A are sampled as A ∼ Bernoulli(π(X)).

Next, we consider the mechanisms of event and censoring times. The hazard rates for event times
and censoring times are given by the following exp(ht) and exp(hc), respectively, where ht =
−5.02 + 0.1(X1 − 25) − 0.1(X2 − 25) + 0.05(X3 − 2) + DT (k) · 0.1(X2 − 25) + A · δT (k) ·
0.1(X1 +X2 +X3 − 50), and hc = −4.87 + 0.01(X1 − 25)− 0.02(X2 − 25) + 0.01(X3 − 2)−
DC(k) · 0.1(X2 − 25) +A · δC(k) · 0.1(X1 +X2 +X3 − 50).

Here, DT (k), DC(k), δT (k) and δC(k) are some site-specific indicators, specified later, for varying
the treatment effects and trends of survival curves for different sites. Then, event times and censoring
times are sampled as:

T =

(
− log(U1)

exp(ht) · λ

)1/ρ

, C =

(
− log(U2)

exp(hc) · λ

)1/ρ

,

with ρ = 1.2, λ = 0.6, and U1, U2 ∼ Uniform(0, 1). This technique follows Austin (2012). Thus,
the observed times and event indicators are Y = min(T,C),∆ = I(T ≤ C), respectively.

Under this data generating process (DGP), the event time is generated to mimic days in a year (365
days), and we truncate the censoring time at τ = 200 days to mimic the end of follow-up in survival
analysis. Our DGP allows the following scenarios based on site-specific distributional heterogeneity:

• Homogeneous: Homogeneous covariates and hazard rates across sites. We let γ(k) =
DT (k) = DC(k) = δT (k) = δC(k) = 0 for k = 0, 1, . . . , 4.

• Covariate Shift: Covariates X1, X2, and X3 vary across sites. We let γ(k) = k and
DT (k) = DC(k) = δT (k) = δC(k) = 0, for k = 0, 1, . . . , 4.

• Outcome Shift: Conditional outcome distribution varies across sites. We assign γ(k) = 0,
DT (k) = δT (k) = k, and DC(k) = δC(k) = 0 for k = 0, 1, . . . , 4.

• Censoring Shift: Censoring mechanism varies across sites. We let γ(k) = 0, DT (k) =
δT (k) = 0 and DC(k) = δC(k) = k, for k = 0, 1, . . . , 4.

• All Shift: Covariates and both event and censoring effects vary across sites. We let γ(k) =
DT (k) = DC(k) = δT (k) = δC(k) = k, for k = 0, 1, . . . , 4.

Figure 5 below plots the true treatment-specific survival curves under the Covariate Shift and Outcome
Shift scenarios, as defined by our designed DGPs, to illustrate the effect of site differences on survival
outcomes.
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Figure 5: Site- and treatment-specific survival curves, each based on a random sample of n = 104

from the true DGP of each site. The two dashed curves in each source site panel are the target site
survival functions for reference. Under covariate shift, curves preserve their shapes and trends but
differ in scale, whereas outcome shift produces marked changes in shape and treatment effects.

B.2 PERFORMANCE CRITERIA DEFINITIONS

The simulation performance criteria considered in Section 3.2 with an additional metric 95% confi-
dence interval (CI) width for the complete simulation results are defined as follows.

Let θ denote the true target parameter, and let θ̂i and σ̂i be the point and standard error estimates,
respectively, from the ith Monte Carlo replication of a competing method, i = 1, . . . , 500. Then:

• Estimation bias: θ̂i − θ, i = 1, . . . , 500, summarized via boxplots;
• RRMSE: the RMSE of a method relative to that of the TGT estimator, where RMSE =√

500−1
∑500

i=1(θ̂i − θ)2. By definition, the TGT estimator has RRMSE = 1. Smaller
RRMSE values indicate higher efficiency relative to TGT;

• CP%: the proportion of replications in which the Wald-type CI contains θ: 100% ×
500−1

∑500
i=1 I{θ ∈ [θ̂i − 1.96σ̂i, θ̂i + 1.96σ̂i]}. The closer CP% is to 95, the more reliable

the inference based on σ̂i; and
• 95% CI width: the average CI width across replications, where the CI from the ith

replication is θ̂i ± 1.96, σ̂i. Thus, CI width = 3.92× 500−1
∑500

i=1 σ̂i.
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Figure 6: Average federated weights of each site at different time point by site heterogeneity cases.
This figure uses the case where nk = 300 (k ≥ 1) as an illustration for weights.
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Figure 7: Scatter plots of site-specific federated weights vs. discrepancy measure (χ̂k
n,t,a)

2 values,
under 5 scenarios of site heterogeneity and 3 selected time points (days 30, 60 and 90). Sites 2–4
under Covariate Shift and All Shift have more larger (χ̂k

n,t,a)
2 values with clear trends of decreasing

weights. The pink dashed lines indicate weight = 1/5, i.e., one over five sites. This figure uses the
case where nk = 300 (k ≥ 1) as an illustration for weights.
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B.3 COMPLETE SIMULATION RESULTS
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Figure 8: Estimation bias (boxplots), relative root mean square error (RRMSE) compared to TGT,
coverage probability (CP%) with 95% nominal coverage level, and width of 95% CI under nk = 300
(k ≥ 1), evaluated at days 30, 60 and 90 in simulation.
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Figure 9: Estimation bias (boxplots), relative root mean square error (RRMSE) compared to TGT,
coverage probability (CP%) with 95% nominal coverage level, and width of 95% CI under nk = 600
(k ≥ 1), evaluated at days 30, 60 and 90 in simulation.
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Figure 10: Estimation bias (boxplots), relative root mean square error (RRMSE) compared to TGT,
coverage probability (CP%) with 95% nominal coverage level, and width of 95% CI under nk = 1000
(k ≥ 1), evaluated at days 30, 60 and 90 in simulation.
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C ADDITIONAL RESULTS FOR REAL DATA ANALYSIS

C.1 AMP TRIAL DATA

Table 1 presents summary statistics for baseline covariates and outcomes in the AMP trial data,
stratified by region and treatment group. Comparing the treatment groups—both overall and within
each region—we observe that the treated group consistently shows a lower average event proportion.
Additionally, some covariates appear to shift across regions; for example, among treated participants,
the standardized risk scores exhibit notably different means when comparing SA to BP and US.

Treated (bnAb) group
Total

(n = 3, 076)
SA

(n = 679)
OA

(n = 608)
BP

(n = 846)
US

(n = 943)

Age (year) at baseline 25.9 (4.60) 27.0 (5.19) 25.4 (4.59) 25.1 (3.70) 26.2 (4.68)
Standardized risk score 0.0 (1.00) -0.01 (1.00) 0.02 (1.00) 0.76 (0.67) -0.68 (0.71)
Weight at baseline (kg) 72.8 (15.64) 68.8 (14.24) 65.2 (12.63) 70.9 (12.42) 82.3 (16.43)

HIV diagnosis by week-80 107 (3.48%) 27 (3.98%) 20 (3.29%) 46 (5.44%) 14 (1.49%)

Control (placebo) group
Total

(n = 1, 535)
SA

(n = 340)
OA

(n = 297)
BP

(n = 428)
US

(n = 470)

Age (year) at baseline 25.9 (4.72) 26.6 (5.28) 25.4 (4.78) 25.2 (3.94) 26.1 (3.79)
Standardized risk score 0.0 (1.00) 0.02 (0.92) -0.02 (0.98) 0.75 (0.67) -0.68 (0.73)
Weight at baseline (kg) 72.5 (16.35) 67.6 (14.77) 65.1 (13.64) 71.1 (12.84) 81.8 (17.5)

HIV diagnosis by week-80 67 (4.36%) 16 (4.71%) 13 (4.38%) 29 (6.78%) 9 (1.91%)

Table 1: Summary statistics of AMP trial data by treatment group and region. The standardized risk
score is a baseline score built by machine learning models (Corey et al., 2021) that is predictive to the
time-to-event outcome. Age, standardized risk score and weight are summarized by mean (standard
deviation), while the HIV diagnosis by week-80 is summarized by count (percentage).

In Figure 11, we plot the region-specific survival curves of all the 4 regions we considered (SA,
OA, BP and US) for a direct comparison on region heterogeneity, using their target-site-only (TGT)
estimators, to showcase the heterogeneous effects of the bnAb antibody treatment on different target
populations.
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Figure 11: Estimated region-specific survival curves of the HVTN 704/HPTN 085 and HVTN
703/HPTN 081 trials. SA (our target region in the main text) and OA exhibit relatively similar
curves, indicating less heterogeneity of these two regions. In contrast, both BP and US regions
show significant differences to SA, which also confirms why they often have small or zero federated
weights in Panel (B) of Figure 4 in the main text. The BP and US also show a substantial difference
on their curves.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

OA (Other Sub-Saharan African Countries)

0.00

0.25

0.50

0.75

1.00

0 200 400 600
Time (day)

Fe
de

ra
te

d 
we

ig
ht

Region SA OA BP US

Control group

0.00

0.25

0.50

0.75

1.00

0 200 400 600
Time (day)

Fe
de

ra
te

d 
we

ig
ht

Region SA OA BP US

Treated group

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED (BOOT)

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

CCOD

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

TGT

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

IVW

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

POOL

BP (Brazil or Peru)

US (The United States or Switzerland)

Estimated survival curves Federated weights

0.00

0.25

0.50

0.75

1.00

0 200 400 600
Time (day)

Fe
de

ra
te

d 
we

ig
ht

Region SA OA BP US

Control group

0.00

0.25

0.50

0.75

1.00

0 200 400 600
Time (day)

Fe
de

ra
te

d 
we

ig
ht

Region SA OA BP US

Treated group

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED (BOOT)

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

CCOD

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

TGT

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

IVW

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

POOL

Estimated survival curves

0.00

0.25

0.50

0.75

1.00

0 200 400 600
Time (day)

Fe
de

ra
te

d 
we

ig
ht

Region SA OA BP US

Control group

0.00

0.25

0.50

0.75

1.00

0 200 400 600
Time (day)

Fe
de

ra
te

d 
we

ig
ht

Region SA OA BP US

Treated group

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED (BOOT)

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

CCOD

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

TGT

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

IVW

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

POOL

Estimated survival curves

Federated weights

Federated weights

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED (BOOT)

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

CCOD

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

TGT

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

IVW

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

POOL

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED (BOOT)

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

CCOD

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

TGT

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

IVW

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

POOL

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED (BOOT)

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y
Group

Control

Treated

CCOD

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

TGT

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

IVW

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

POOL

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED (BOOT)

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

CCOD

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

TGT

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

IVW

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

POOL

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED (BOOT)

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

CCOD

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

TGT

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

IVW

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

POOL

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

FED (BOOT)

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

CCOD

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

TGT

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

IVW

0.92

0.94

0.96

0.98

1.00

0 200 400 600
Time (day)

Su
rv

iva
l P

ro
ba

bi
lit

y

Group
Control

Treated

POOL

Figure 12: Additional data analysis results when treating the other three regions (OA, BP and US) as
the target site.
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Furthermore, in Figure 12, we present the results—including survival curve estimations and federated
weights—using three regions other than SA as the target population. For the federated weights,
similar to Figure 4 in the main text, we applied locally weighted regression (Cleveland & Devlin,
1988) to smooth the observed weights over the study period, providing a clearer visualization of
temporal trends in this specific example.

From Figure 12, we observe that for each region, the FED method yields results similar to the
TGT estimator, while also recovering some interval estimations at earlier time points. This finding
is consistent with the observations made in Figure 4. In contrast, the IVW and POOL methods
deviate noticeably from the TGT and FED results—especially for the BP and US regions—indicating
potential biases introduced by site heterogeneity.

Finally, regarding federated weights, the results for the OA region resemble those of SA in Figure 4.
However, for the BP and US regions, the federated weights are nearly 1 for the target site and 0 for
all other sites. This pattern suggests that when targeting the survival curves of BP or US, other sites
contribute substantial biases—an observation that corroborates our findings in Figure 11.

C.2 “FLCHAIN” DATASET FROM R PACKAGE SURVIVAL

The “flchain” dataset, obtained from the Mayo Clinic Study of Serum Free Light Chain (FLC) and
Mortality, comprises data on 7,874 individuals followed between 1995 and 2009 to investigate the
prognostic value of serum free light chains for survival (Dispenzieri et al., 2012; Kyle et al., 2006).
This dataset is freely available in R package survival.

This dataset does not contain a natural treatment variable, but to illustrate and extend the use of our
framework, we investigate the sex difference in mortality. Since sex (female vs. male) is assigned
at birth, it can be viewed as a “treatment” variable for methodological purposes, as it precedes the
occurrence of any outcomes. While not manipulable in the conventional sense, causal inference
methods allow us to frame sex as an exposure to quantify disparities in survival outcomes, rather
than as an intervention subject to policy or clinical decision-making. Similar approaches have been
employed to assess disparities associated with non-manipulable variables such as race (Li & Li, 2023;
Liu et al., 2025).

Male
Total

(n = 3, 524)
Group A
(n = 972)

Group B
(n = 1, 429)

Group C
(n = 1, 123)

Age (year) at baseline 63.1 (9.62) 60.1 (7.80) 62.6 (9.25) 66.4 (10.5)
MGUS 0.01 (0.11) 0.04 (0.20) 0.00 (0.05) 0.00 (0.00)

Sample year 1996.9 (1.84) 1996.7 (1.72) 1996.9 (1.87) 1996.9 (1.90)
Concentration of κ light chain 1.5 (1.01) 0.9 (0.34) 1.4 (0.45) 2.2 (1.44)
Concentration of λ light chain 1.8 (1.19) 1.1 (0.35) 1.6 (0.47) 2.5 (1.77)

Mortality 1,004 (28.5%) 159 (16.4%) 372 (26.0%) 473 (42.1%)

Female
Total

(n = 4, 350)
Group A

(n = 1, 399)
Group B

(n = 1, 771)
Group C

(n = 1, 180)

Age (year) at baseline 65.2 (11.01) 62.2 (9.57) 65.0 (10.8) 69.1 (11.8)
MGUS 0.02 (0.12) 0.05 (0.21) 0.00 (0.05) 0.0 (0.00)

Sample year 1996.7 (1.70) 1996.6 (1.55) 1996.7 (1.68) 1996.9 (1.87)
Concentration of κ light chain 1.4 (0.78) 0.9 (0.34) 1.3 (0.43) 2.1 (1.03)
Concentration of λ light chain 1.6 (0.88) 1.1 (0.35) 1.6 (0.46) 2.4 (1.22)

Mortality 1,165 (26.8%) 231 (16.5%) 455 (25.7%) 479 (40.6%)

Table 2: Summary statistics of “flchain” data by sex group and the site variable we defined. All
baseline covariates are summarized by mean (standard deviation), while the mortality is summarized
by count (percentage).
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We include age, the presence of monoclonal gammopathy of undetermined significance (MGUS) and
sample year as baseline covariates for nuisance models. The primary outcome consists of follow-up
time in days and an event indicator for all-causes death (mortality).

A categorical variable (flc.grp, taking values 1, 2, . . . , 10) related to κ and λ concentration levels
is available in the data. We construct the “site” variable (R in our notation) based on flc.grp
as follows: (i) Group A for flc.grp ∈ {1, 2, 5}; (ii) Group B for flc.grp ∈ {3, 4, 6, 9}; and
(iii) Group C for flc.grp ∈ {7, 8, 10}. Several categories were merged in this way to ensure a
sufficient sample size within each group, allowing 5-fold cross-fitting to train different nuisance
functions reliably. In addition, we allow the groups to share nearby values of flc.grp (e.g., 5 in
Group A, 6 in Group B, and 7 in Group C) so that each site retains comparable information, enabling
borrowing across groups. We emphasize that this grouping method is adopted solely for illustrative
purposes in demonstrating our framework.

Table 2 presents the summary statistics of baseline covariates and mortality for the “flchain” data.
Across Groups A, B, and C, we observe clear covariate shifts, accompanied by differences in the
marginal death rates. In contrast, when comparing the two “treatment” (sex) groups, the distributions
of baseline covariates and mortality appear overall similar.

We analyzed the sex-specific survival curves over the first 10 years for the three groups in Figure
13. We used a 5-fold cross-fitting, and estimated conditional survival for both event and censoring
processes by an ensemble of Kaplan–Meier, Cox regression and survival random forest models via
the survSuperLearner package (Westling et al., 2024). The propensity score and density ratio
(used in federated method) models were fitted by the ensemble of logistic regression and LASSO
using the Super Learner (van der Laan et al., 2007).

Overall, the FED method yields point estimates that closely track those of the TGT estimator, while
producing slightly narrower confidence bands. By calculations, the efficiency gain (by estimated
standard error of FED to that of TGT) can achieve 3%–10%, consistent with the findings from both
our simulation studies and the AMP trial data. By contrast, the IVW and POOL estimators exhibit
noticeably different survival curve patterns relative to TGT and FED when Groups A and C are
regarded as targets, suggesting potential biases.

D IMPLEMENTATION DETAILS

In the following Algorithm 2, we detail the double machine learning procedure for fitting and
predicting nuisance functions in Algorithm 1.

Remark D.1. To ensure the monotonicity of the estimated survival curves, we invoke isotonic
regression techniques (Westling et al., 2020), which enforce a non-increasing constraint on the site-
specific survival and censoring estimates Ŝk and Ĝk, for k = 0, 1, . . . ,K − 1, thereby maintaining
their logical consistency over time.

E TECHNICAL PROOFS

We adopt the following notation throughout this appendix: (i) P∞ denotes a general probability limit,
and the nuisance functions under P∞ are denoted with subscript ∞, e.g., S0

∞ for the limit of Ŝ0; (ii)
P̂ means the corresponding nuisance functions are replaced by their estimates, and P̂ may converge
to a general limit P∞; (iii) Pm

n [f(O)] = |Vm|−1
∑

i∈Im
f(Oi) to denote the empirical average on

the m-th validation set Vm by cross-fitting, m = 1, . . . ,M .

Furthermore, we distinguish notation P(f) and EP(f): P(f) =
∫
f(O)dP denotes an integral over a

new observation O ∼ P, treating f , which possibly depends on training data (e.g., some estimated
parameters for nuisance functions), as fixed. In contrast, EP(f) is the usual mathematical expectation
of random variable/element f under distribution P, a fixed value without randomness.
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Figure 13: “flchain” data analysis results. Estimated sex-specific survival curves and federated
weights for sites (Groups A, B and C defined by flc.grp variable).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Algorithm 2 Double/debiased machine learning algorithm for nuisance function estimations and
influence function calculations in Algorithm 1 at a given time point and treatment.

1: Input: Observed multi-source right-censored data O = {Oi = (Xi, Ai, Yi,∆i, Ri), i =
1, . . . , n} = O0 ∪ O1 ∪ · · · ∪ OK−1, where Ri ∈ {0, 1, . . . ,K − 1} and Ok represents
the data for site R = k; Given treatment group A = a and a specific time point t; The num-
ber of disjoint folds into which the data are split, M , where M ∈ {2, 3, . . . , ⌊n∗/2⌋} with
n∗ = min{n, n1, . . . , nK−1}.

2: Output: Estimated influence functions for each individual.
3: Partition O0 into M approximately equal-sized, disjoint validation folds V0

1 , . . . ,V0
M , allowing a

size difference of at most ±1 between folds.
4: for m = 1, . . . ,M do
5: Define the training set T 0

m = O0\V0
m;

6: Fit nuisance functions S0, G0, π0 on T 0
m, using some methods ensemble from

survSuperLearner and SuperLearner;
7: Predict nuisance functions on V0

m as Ŝ0
m, Ĝ0

m and π̂0
m.

8: end for
9: Train a model of S0 by the entire data of the target site O0, denoted as S0,full, using chosen

methods ensemble from survSuperLearner.
10: for k = 1, . . . ,K − 1 do
11: Partition Ok into M approximately equal-sized, disjoint validation folds Vk

1 , . . . ,Vk
M , allowing

a size difference of at most ±1 between folds.
12: for m = 1, . . . ,M do
13: Define the training set T k

m = Ok\Vk
m;

14: Fit the density ratio ωk,0 using only covariate data of T 0
m ∪ T k

m, or by just passing through
some coarsening level summary statistics;

15: Fit nuisance functions Gk, πk on T k
m, using chosen methods ensembles from

survSuperLearner and SuperLearner;
16: Predict above nuisance functions on Vk

m as Ĝk
m, ω̂k,0

m and π̂k
m;

17: Predict nuisance function Sk on Vk
m using the pre-trained S0,full model, and denote the

predicted value by Ŝk
m.

18: end for
19: Aggregate all predicted nuisance functions over M folds as Ŝk, Ĝk, ω̂k,0 and π̂k;
20: end for
21: Return: The estimated EIFs, by plugging-in their predicted nuisance function values,

φ̂∗k,0
t,a (O; P̂) = φ̂∗k,0

t,a (O; Ŝk, Ŝ0, Ĝk, π̂k, ω̂k,0), for all k ∈ {0, 1, . . . ,K − 1}.
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E.1 THEORY OF THE LOCAL ESTIMATOR

E.1.1 PROOF OF THEOREM 2.5

Recall that a mean zero, finite variance function φ∗0
t,a(O;P) is called an influence function of the target

estimand (a functional) θ0(t, a) = θ0(t, a;P) at P if, for any one-dimensional regular parametric
submodel {Pϵ : ϵ ∈ [0, 1)} through P ≡ P0,

∂

∂ϵ
θ0(t, a;Pϵ)

∣∣∣∣
ϵ=0

= EP[φ
∗0
t,a(O;P)ℓ̇(O)],

where ℓ̇(O) is the score function of the submodel at ϵ = 0 (i.e., typically, ℓ̇(O) =
∂ log {pϵ(O)}/∂ϵ |ϵ=0), where pϵ(·) denotes the probability density (likelihood) function under
submodel Pϵ (Bickel et al., 1993).

Recall the partial CCOD assumption made in Theorem 2.5, S0(t | a,X) = S0(t | a,X) almost
surely. To find the EIF, we begin by writing the following equation:

0 =
∂

∂ϵ
θ0(t, a)

∣∣∣∣
ϵ=0

=
∂

∂ϵ
E{S0

ϵ (t | a,X) | R = 0}
∣∣∣∣
ϵ=0

= E{[S0(t | a,X)− θ0(t, a)]ℓ̇X|R=0 | R = 0}+ E
{∫

∂

∂ϵ
S0
ϵ (t | a,x)

∣∣∣∣
ϵ=0

µ(dx)

∣∣∣∣ R = 0

}
= E{[S0(t | a,X)− θ0(t, a)]ℓ̇X|R=0 | R = 0}+ E

{∫
∂

∂ϵ
Sk
ϵ (t | a,x)

∣∣∣∣
ϵ=0

µ(dx)

∣∣∣∣ R = 0

}
,

(3)

where µ(·) denotes the distribution of X induced by P and, for any sets of variables V and W , ℓ̇V |W
denotes the conditional score function of V given W , i.e., typically ∂ log {pϵ(V | W )}/∂ϵ |ϵ=0—note
that such scores always satisfy EP(ℓ̇V |W | W ) = 0 (Bickel et al., 1993).

For the derivative of Sk
ϵ with respect to ϵ, by the chain rule, we decompose it as (∂Sk

ϵ /∂Λ
k
ϵ ) ×

(∂Λk
ϵ /∂ϵ). For the first part ∂Sk

ϵ /∂Λ
k
ϵ , we leverage Theorem 8 in Gill & Johansen (1990). Specifically,

the mapping H 7→ Sk(t;H) := P(0,t]{1 +H(du)} is Hadamard differentiable at H relative to the
supremum norm with derivative

α 7→ Sk(t;H)

∫ t

0

Sk(u−;H)

Sk(u;H)
α(du).

Thus, by letting H(t) = Λk
ϵ (t | a,x) and the chain rule, the integrand in the second term becomes

∂

∂ϵ R
(0,t]

{1− Λk
ϵ (du | a,x)}

∣∣∣∣
ϵ=0

= −Sk(t | a,x)
∫ t

0

Sk(u− | a,x)
Sk(u | a,x)

∂

∂ϵ
Λk
ϵ (du | a,x)

∣∣∣∣
ϵ=0

.

Furthermore, recall that

Λk(t | a,X) =

∫ t

0

Nk
1 (du | a,X)

Dk(u | a,X)
,

where Nk
1 (t | a,X) = P(Y ≤ t,∆ = 1 | A = a,X, R = k) and Dk(t | a,X) = P(Y ≥ t | A =

a,X, R = k). Hence,

∂

∂ϵ
Λk
ϵ (du | a,x)

∣∣∣∣
ϵ=0

=
∂
∂ϵN

k
1,ϵ(du | a,x) |ϵ=0

Dk(u | a,x)
−

∂
∂ϵD

k
ϵ (u | a,x) |ϵ=0 Nk

1,ϵ(du | a,x)
Dk(u | a,x)2

.
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In addition,

∂

∂ϵ
Nk

1,ϵ(du | a,x)
∣∣∣∣
ϵ=0

=
∂

∂ϵ
Pϵ(Y ≤ u,∆ = 1 | A = a,X = x, R = k)

∣∣∣∣
ϵ=0

=
∂

∂ϵ

∫∫
I(y ≤ u, δ = 1)Pϵ(dy, dδ | a,x, k)

∣∣∣∣
ϵ=0

=

∫∫
I(y ≤ u, δ = 1)ℓ̇(y, δ | a,x)P(dy, dδ | a,x, k)

=

∫
δ

I(δ = 1)ℓ̇(u, δ | a,x)P(du, dδ | a,x, k),

and

∂

∂ϵ
Dk

ϵ (u | a,x)
∣∣∣∣
ϵ=0

=
∂

∂ϵ
Pϵ(Y ≥ u | A = a,X = x, R = k)

∣∣∣∣
ϵ=0

=
∂

∂ϵ

∫∫
I(y ≥ u)Pϵ(dy, dδ | a,x, k)

∣∣∣∣
ϵ=0

=

∫∫
I(y ≤ u)ℓ̇(y, δ | a,x)P(dy, dδ | a,x, k).

We can then express the integrand of (3) as

∂

∂ϵ

∫∫
R
(0,t]

{1− Λk
ϵ (du | a,x)}µ(dx)

∣∣∣∣
ϵ=0

=

∫∫∫
−I(y ≤ t, δ = 1)

Sk(t | a,x)Sk(y− | a,x)
Sk(y | a,x)Dk(y | x)

ℓ̇(y, δ | a,x, k)P(dy, dδ | a,x, k)µ(dx)

+

∫∫∫∫
I(u ≤ t, u ≤ y)

Sk(t | a,x)Sk(u− | a,x)
Sk(u | a,x)Dk(u | x)

× ℓ̇(y, δ | a,x, k)P(dy, dδ | a,x, k)Nk
1 (du | a,x)µ(dx)

=

∫∫∫
−I(y ≤ t, δ = 1)

Sk(t | a,x)Sk(y− | a,x)
Sk(y | a,x)Dk(y | x)

ℓ̇(y, δ | a,x, k)P(dy, dδ | a,x, k)µ(dx)

+

∫∫∫
Sk(t | a,x)

∫ t∧y

0

Sk(u− | a,x)
Sk(u | a,x)Dk(u | x)2

Nk
1 (du | a,x)

× ℓ̇(y, δ | a,x, k)P(dy, dδ | a,x, k)µ(dx)

= E
[
Sk(t | a,X)

I(A = a)

πk(a | X)

{
Hk(t ∧ Y, a,X)− I(Y ≤ t,∆ = 1)Sk(Y− | a,X)

Sk(Y | a,X)Dk(Y | a,X)

}
× ℓ̇(Y,∆ | a,X, R = k)

]
,

where

Hk(t, a,x) =

∫ t

0

Sk(u− | a,x)Nk
1 (du | a,x)

Sk(u | a,x)Dk(u | a,x)2
.

Now, we note that

E
[
I(Y ≤ t,∆ = 1)Sk(Y− | A,X)

Sk(Y | A,X)Dk(Y | A,X)

∣∣∣∣ A = a,X = x, R = k

]
=

∫ t

0

Sk(y− | a,x)Nk
1 (dy | a,x)

Sk(y | a,x)Dk(y | a,x)
,
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and
E{Hk(t ∧ Y,A,X) | A = a,X = x, R = k}

=

∫∫ t

I(u ≤ y)
Sk(u− | a,x)Nk

1 (du | a,x)
Sk(u | a,x)Dk(u | a,x)2

P(dy | a,x, k)

=

∫ t

0

P(Y ≥ u | A = a,X = x, R = k)
Sk(u− | a,x)Nk

1 (du | a,x)
Sk(u | a,x)Dk(u | a,x)2

P(dy | a,x, k)

=

∫ t

0

Sk(u− | a,x)Nk
1 (du | a,x)

Sk(u | a,x)Dk(u | a,x)
.

Therefore,

E
[
Hk(t ∧ Y,A,X)− I(Y ≤ t,∆ = 1)Sk(Y− | A,X)

Sk(Y | A,X)Dk(Y | A,X)

∣∣∣∣ A,X, R = k

]
= 0

almost surely. By properties of score functions and the tower property, the above implies that
∂

∂ϵ

∫∫
R
(0,t]

{1− Λk
ϵ (du | a,x)}µ(dx)

∣∣∣∣
ϵ=0

= E
[
Sk(t | a,X)

I(R = k)

P(R = k | X)

I(A = a)

πk(a | X)

×
{
Hk(t ∧ Y,A,X)− I(Y ≤ t,∆ = 1)Sk(Y− | A,X)

Sk(Y | A,X)Dk(Y | A,X)

}
ℓ̇(O)

]
.

Combining these results with the facts that Nk
1 (du | a,x)/Dk(u | a,x) = Λk(du | a,x) and

Dk(u | a,x) = Sk(u− | x)Gk(u | a,x), we can rewrite (3) at the beginning as follows:
∂

∂ϵ
θ0(t, a)

∣∣∣∣
ϵ=0

= E
[
I(R = 0)

P(R = 0)
[Sk(t | a,X)− θ0(t, a)]ℓ̇(O)− I(R = 0)

P(R = 0)
E
{
Sk(t | a,X)

I(R = k)

P(R = k | X)

× I(A = a)

πk(a | X)

{
I(Y ≤ t,∆ = 1)

Sk(y | X)Gk(y | a,X)
−
∫ t∧y

0

Λk(du | a,X)

Sk(u | X)Gk(u | a,X)

}
ℓ̇(O)

∣∣∣∣X}]
= E

[
I(R = 0)

P(R = 0)
{Sk(t | a,X)− θ0(t, a)}ℓ̇(O)

]
− E

[
I(R = k)

P(R = 0)

P(R = 0 | X)

P(R = k | X)
Sk(t | a,X)

× I(A = a)

πk(a | X)

{
I(Y ≤ t,∆ = 1)

Sk(y | X)Gk(y | a,X)
−
∫ t∧y

0

Λk(du | a,X)

Sk(u | X)Gk(u | a,X)

}
ℓ̇(O)

]
.

Therefore, an EIF of θ0(t, a) at P is found as

φ∗k,0
t,a (O;P)

=
I(R = 0)

P(R = 0)
{S0(t | a,X)− θ0(t, a)} − I(R = k)P(R = 0 | X)

P(R = 0)P(R = k | X)
Sk(t | a,X)

× I(A = a)

πk(a | X)

[
I(Y ≤ t,∆ = 1)

Sk(Y | a,X)Gk(Y | a,X)
−
∫ t∧Y

0

Λk(du | a,X)

Sk(u | a,X)Gk(u | a,X)

]
.

Observe that, by Bayes’s rule,
P(R = 0 | X)

P(R = k | X)
=

P(X | R = 0)

P(X | R = k)︸ ︷︷ ︸
ωk,0(X)

·P(R = 0)

P(R = k)
,

where ωk,0(X) is a covariates density ratio function. We then find that the EIF form in Theorem 2.5:

φ∗k,0
t,a (O;P) =

I(R = 0)

P(R = 0)
{S0(t | a,X)− θ0(t, a)} − I(R = k)

P(R = k)
ωk,0(X)Sk(t | a,X)

× I(A = a)

πk(a | X)

[
I(Y ≤ t,∆ = 1)

Sk(Y | a,X)Gk(Y | a,X)
−
∫ t∧Y

0

Λk(du | a,X)

Sk(u | a,X)Gk(u | a,X)

]
.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E.1.2 REGULARITY CONDITIONS AND THE RAL PROPERTY OF THE LOCAL ESTIMATOR

For site R = k, we denote πk, Gk, ωk,0, Λk and Sk the truths of nuisance functions. We use πk
∞,

ωk,0
∞ , Gk

∞, Λk
∞ and Sk

∞ to denote some general probability limits for nuisance function estimators.

Condition E.1. There exist πk
∞, ωk,0

∞ , Gk
∞, Λk

∞ and Sk
∞ such that

(a) max
m

P
[

1

π̂k
m(a | X)

− 1

πk
∞(a | X)

]2
→p 0;

(b) max
m

P
[
ω̂k,0
m (X)− ωk,0

∞ (X)
]2 →p 0;

(c) max
m

P

[
sup

u∈[0,t]

∣∣∣∣∣ 1

Ĝk
m(u | a,X)

− 1

Gk
∞(u | a,X)

∣∣∣∣∣
]2

→p 0;

(d) max
m

P

[
sup

u∈[0,t]

∣∣∣∣∣ Ŝk
m(t | a,X)

Ŝk
m(u | a,X)

− Sk
∞(t | a,X)

Sk
∞(u | a,X)

∣∣∣∣∣
]2

→p 0.

Condition E.2. There exists an η ∈ (0,∞) such that for P-almost all x, π̂k
m(a | x) ≥ 1/η,

πk
∞(a | x) ≥ 1/η, ω̂k,0

m (x) ≤ η, ωk,0
∞ (x) ≤ η, Ĝk

m(t | a,x) ≥ 1/η, and Gk
∞(t | a,x) ≥ 1/η with

probability tending to 1.

Condition E.3. Define

rkn,t,a,1 = max
m

P
∣∣∣{π̂k

m(a | X)− πk(a | X)}{Ŝk
m(t | a,X)− Sk(t | a,X)}

∣∣∣ ,
rkn,t,a,2 = max

m
P
∣∣∣{ω̂k,0

m (X)− ωk,0(X)}{Ŝk
m(t | a,X)− Sk(t | a,X)}

∣∣∣ , and

rkn,t,a,3 = max
m

P

∣∣∣∣∣Ŝk
m(t | a,X)

∫ t

0

{
Gk(u | a,X)

Ĝk
m(u | a,X)

− 1

}(
Sk

Ŝk
m

− 1

)
(du | a,X)

∣∣∣∣∣ .
Then, it holds that rkn,t,a,1 = op(n

−1/2), rkn,t,a,2 = op(n
−1/2) and rkn,t,a,3 = op(n

−1/2).

The following theorem formally establishes the RAL property of the local estimator. For simplicity of
notation, we write an EIF φ(O;P) as φ, omitting its dependence on O and P without loss of clarity.

Theorem E.1. If Conditions E.1–E.3 hold, with πk
∞ = πk, ωk,0

∞ = ωk,0, Gk
∞ = Gk, and Sk

∞ = Sk,
then θ̂k,0n (t, a) = θ0(t, a)+Pn(φ

∗k,0
t,a )+ op(n

−1/2). In particular, for each t ∈ [0, τ ] and a ∈ {0, 1},

n1/2(θ̂k,0n (t, a)− θ0(t, a)) →d N (0, σ2), where σ2 = P[(φ∗k,0
t,a )2].

To prove Theorem E.1, we first introduce some useful results and lemmata in the next section.

E.1.3 USEFUL LEMMATA FOR THE LOCAL ESTIMATOR

We start by examining the difference θ̂k,0n (t, a) − θ0(t, a). Recall Pm
n is the empirical distribution

corresponding to the m-th validation set Vm from the entire data O, and denote Gm
n the corresponding

empirical process. A result exactly following Westling et al. (2024) is that

θ̂k,0n (t, a)− θ0(t, a) = Pn[φ
∗k,0
∞,t,a] +

1

M

M∑
m=1

Mn
1/2
m

n
Gm

n

[
φ̂k,0
n,m,t,a − φk,0

∞,t,a

]
+

1

M

M∑
m=1

Mnm

n
P
[
φ̂k,0
t,a − θ0(t, a)

]
. (4)

We then establish the L2(P) norm distance (bound) between the estimated EIF and its underlying
limit for the local estimator by the following lemma.
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Lemma E.2. Under Condition E.2, there exists a universal constant C = C(η) such that for each k,
m, n, t, and a,

P[φ̂k,0
t,a − φk,0

∞,t,a]
2 ≤ C(η)

6∑
j=1

Ak
j,n,m,t,a,

where

Ak
1,n,m,t,a = P

[
1

Pm
n (R = 0)

− 1

P(R = 0)

]2
,

Ak
2,n,m,t,a = P

[
1

Pm
n (R = k)

− 1

P(R = k)

]2
,

Ak
3,n,m,t,a = P

[
ω̂k,0
m (a | X)− ωk,0

∞ (a | X)
]2

,

Ak
4,n,m,t,a = P

[
1

π̂k
m(a | X)

− 1

πk
∞(a | X)

]2
,

Ak
5,n,m,t,a = P

[
sup

u∈[0,t]

∣∣∣∣∣ 1

Ĝk
m(u | a,X)

− 1

Gk
∞(u | a,X)

∣∣∣∣∣
]2

,

Ak
6,n,m,t,a = P

[
sup

u∈[0,t]

∣∣∣∣∣ Ŝk
m(t | a,X)

Ŝk
m(u | a,X)

− Sk
∞(t | a,X)

Sk
∞(u | a,X)

∣∣∣∣∣
]2

.

Proof. We first denote

Bk(Vm) =
I(A = a)

πk(a | X)
Sk(t | a,X)

×

[
I(Y ≤ t,∆ = 1)

Sk(Y | a,X)Gk(Y | a,X)
−
∫ t∧Y

0

Λk(du | a,X)

Sk(u | a,X)Gk(u | a,X)

]
,

Ck(Vm) = Bk(Vm)ωk,0(X).

Then, we first have the following decomposition:

φ̂k,0
t,a − φk,0

∞,t,a =

4∑
j=1

Uk
j,n,m,t,a,

where

Uk
1,n,m,t,a =

[
I(R = 0)

Pm
n (R = 0)

− I(R = 0)

P(R = 0)

]
Ŝ0
m(t | a,x),

Uk
2,n,m,t,a =

I(R = 0)

P(R = 0)

[
Ŝ0
m(t | a,x)− S0

∞(t | a,x)
]
,

Uk
3,n,m,t,a =

[
I(R = k)

Pm
n (R = k)

− I(R = k)

P(R = k)

]
Ĉk

m(Vm),

Uk
4,n,m,t,a =

I(R = k)

P(R = k)

[
Ĉk

m(Vm)− Ck
∞(Vm)

]
.

Now, for Uk
4,n,m,t,a, we further decompose it as

Uk
4,n,m,t,a =

I(R = k)

P(R = k)

2∑
j=1

V k
j,n,m,t,a,

where

V k
1,n,m,t,a = Bk

∞(Vm)
[
ω̂k,0
m (X)− ωk,0

m (X)
]
,

V k
2,n,m,t,a = ω̂k,0

m (X)
[
B̂k

m(Vm)−Bk
∞(Vm)

]
.
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The expression of B̂k
m(Vm) − Bk

∞(Vm) is exactly the same as the Lemma 3 in Westling et al.
(2024), while we only need to replace the corresponding nuisance functions by the site-k ver-
sion here, so the detail is omitted. By the triangle inequality, we have P[φ̂k,0

t,a − φk,0
∞,t,a]

2 ≤{∑4
j=1{P[(Uk

j,n,m,t,a)
2]}1/2

}2

. Therefore, under Assumption 2.3 and Condition E.2, there ex-
ists a universal constant C = C(η) such that the result in the statement holds.

Furthermore, we need to bound the empirical process term Gm
n

[
φ̂k,0
n,m,t,a − φk,0

∞,t,a0

]
by op(n

−1/2).
This is formally shown below in Lemma E.3.

Lemma E.3. If Conditions E.1–E.2 hold, M−1
∑M

m=1 n
−1Mn

1/2
m Gm

n

[
φ̂k,0
n,m,t,a − φk,0

∞,t,a0

]
=

op(n
−1/2).

Proof. We follow notation in Lemma E.2. First, we note that

Mn
1/2
m

n
≤ M(|nm − n/M |+ n/M)1/2

n

≤ M |nm − n/M |1/2 +M |n/M |1/2

n

≤
(
M

n

)1/2

+
M

n
,

for all m since |nm − n/M | ≤ 1 by assumption on nm. Then, we have that

1

M

M∑
m=1

Mn
1/2
m

n
sup

u∈[0,t]

∣∣∣Gm
n

[
φ̂k,0
n,m,t,a − φk,0

∞,t,a

]∣∣∣
≤ O(n−1/2)

1

M

M∑
m=1

sup
u∈[0,t]

∣∣∣Gm
n

[
φ̂k,0
n,m,t,a − φk,0

∞,t,a

]∣∣∣ ,
since K = O(1).

Therefore, we turn to show M−1
∑M

m=1

∣∣∣Gm
n

[
φ̂k,0
n,m,t,a − φk,0

∞,t,a

]∣∣∣ = op(1). Using conditional
argument, we write

E
∣∣∣Gm

n

[
φ̂k,0
n,m,t,a − φk,0

∞,t,a

]∣∣∣ = E
[
E
∣∣∣Gm

n

[
φ̂k,0
n,m,t,a − φk,0

∞,t,a

]∣∣∣ | Tm] ,
where Tm = O\Vm is the m-th training set. Note that the randomness in the inner expectation of the
right-hand-side above, by conditioning on the training set, is only induced from Gm

n by averaging
over the observations on the validation set. Therefore,

E
[
E
∣∣∣Gm

n

[
φ̂k,0
n,m,t,a − φk,0

∞,t,a

]∣∣∣ | Tm] = P
∣∣∣Gm

n (φ̂k,0
n,m,t,a − φk,0

∞,t,a)
∣∣∣ .

Defining Fk,0
n,m,t,a as the singleton class of functions φ̂k,0

n,m,t,a − φk,0
∞,t,a, we further have

P
∣∣∣Gm

n (φ̂k,0
n,m,t,a − φk,0

∞,t,a)
∣∣∣ = P

 sup
f∈Fk,0

n,m,t,a

|Gm
n (f)|

 .

By Theorem 2.1.14 in Van der Vaart & Wellner (1996), the covering number of Fk,0
n,m,t,a is 1 for all ε,

so the uniform entropy integral J(1,Fk,0
n,m,t,a) is 1 relative to the natural envelope |φ̂k,0

n,m,t,a−φk,0
∞,t,a|.

Therefore, there is a universal constant C ′ such that

P

 sup
f∈Fk,0

n,m,t,a

|Gm
n (f)|

 ≤ C ′
{
P(φ̂k,0

n,m,t,a − φk,0
∞,t,a)

2
}1/2

≤ C ′′
6∑

j=1

Āj,n,m,t,a,
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following definition of Āj,n,m,t,a terms in Lemma E.2, so that

M−1
∑M

m=1 E
∣∣∣Gm

n

[
φ̂k,0
n,m,t,a − φk,0

∞,t,a

]∣∣∣ is bounded up to C ′′′∑6
j=1 E[maxm(Āj,n,m,t,a)]

for some constant C ′′′. It is straightforward that by Conditions E.1 and E.2, this upper bound tends to
zero, so M−1

∑M
m=1

∣∣∣Gm
n

[
φ̂k,0
n,m,t,a − φk,0

∞,t,a

]∣∣∣ = op(1).

Finally, the only difference we have not characterized in (4) is P[φk,0
t,a (O;P∞)]− θ0(t, a), which we

show it below.

Lemma E.4. Consider some general nuisance functions under P∞, denoted by S0
∞, Sk

∞, Gk
∞, πk

∞,
and ωk,0

∞ (equals 1 if k = 0). Then, P[φk,0
t,a (O;P∞)]− θ0(t, a) equals

E
[

q0(X)

P(R = 0)
Sk
∞(t | a,X)

∫ t

0

Sk(y− | a,X)

Sk
∞(y | a,X)

×
{

ωk,0
∞ (X)Gk(y | a,X)πk(a | X)

ωk,0(X)Gk
∞(y | a,X)πk

∞(a | X)
− 1

}
(Λk

∞ − Λk)(dy | a,X)

]
.

Proof. By direct calculations, P[φk,0
t,a (O;P∞)]− θ0(t, a) equals

E
[
I(R = 0)

P(R = 0)
{S0

∞(t | a,X)− S0(t | a,X)}+ qk(X)

P(R = k)
ωk,0
∞ (X)Sk

∞(t | a,X)
πk(a | X)

πk
∞(a | X)

×
∫ t

0

Sk(y− | a,X)Gk(y | a,X)

Sk
∞(y | a,X)Gk

∞(y | a,X)
(Λk

∞ − Λk)(dy | a,X)

]
= E

[
q0(X)

P(R = 0)
{S0

∞(t | a,X)− S0(t | a,X)}+ q0(X)

P(R = 0)

ωk,0
∞ (X)

ωk,0(X)
Sk
∞(t | a,X)

πk(a | X)

πk
∞(a | X)

×
∫ t

0

Sk(y− | a,X)Gk(y | a,X)

Sk
∞(y | a,X)Gk

∞(y | a,X)
(Λk

∞ − Λk)(dy | a,X)

]
.

In the second “E” after “=”, we used the following relationship:

q0(X)

qk(X)
= ωk,0(X)

P(R = 0)

P(R = k)

by Bayes’s rule. Furthermore, by Duhamel equation in Gill & Johansen (1990),

P[φk,0
t,a (O;P∞)]− θ0(t, a)

= E
[

q0(X)

P(R = 0)
Sk
∞(t | a,X)

∫ t

0

Sk(y− | a,X)

Sk
∞(y | a,X)

×
{

ωk,0
∞ (X)Gk(y | a,X)πk(a | X)

ωk,0(X)Gk
∞(y | a,X)πk

∞(a | X)
− 1

}
(Λk

∞ − Λk)(dy | a,X)

]
. (5)

E.1.4 PROOF OF THEOREM E.1

By (4) with πk
∞ = πk, ωk,0

∞ = ωk,0, Gk
∞ = Gk, and Sk

∞ = Sk,

θ̂k,0n (t, a)− θ0(t, a) = Pn[φ
∗k,0
t,a ] +

1

M

M∑
m=1

Mn
1/2
m

n
Gm

n

[
φ̂k,0
n,m,t,a − φk,0

t,a

]
+

1

M

M∑
m=1

Mnm

n
P
[
φ̂k,0
t,a − θ0(t, a)

]
.
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By Conditions E.1 and E.2, the second summand on the right-hand-side is op(n−1/2) by Lemma E.3.
By Lemma E.4, P[φ̂k,0

t,a ]− θ0(t, a) equals

E
[

q0(X)

P(R = 0)
Ŝk
m(t | a,X)

∫ t

0

Sk(y− | a,X)

Ŝk
m(y | a,X)

×

{
ω̂k,0
m (X)Gk(y | a,X)πk(a | X)

ωk,0(X)Ĝk
m(y | a,X)π̂k

m(a | X)
− 1

}
(Λ̂k

m − Λk)(dy | a,X)

]
.

By Duhamel equation in Gill & Johansen (1990) and Condition E.3, we find that the above bias term
can be bounded by η2{rkn,t,a,1 + rkn,t,a,2 + rkn,t,a,3} over m. Since M−1

∑M
m=1 n

−1Mnm ≤ 2, we
have ∣∣∣∣∣ 1M

M∑
m=1

Mnm

n
P
[
φ̂k,0
t,a − θ0(t, a)

]∣∣∣∣∣ ≤ 2η2
{
rkn,t,a,1 + rkn,t,a,2 + rkn,t,a,3

}
= op(n

−1/2),

by Condition E.3. This established the pointwise RAL property: θ̂k,0n (t, a) = θ0(t, a) + Pn(φ
∗k,0
t,a ) +

op(n
−1/2). Since φ∗k,0

t,a is uniformly bounded, P{(φ∗k,0
t,a )2} < ∞ and since P{φ∗k,0

t,a } = 0, then

n1/2Pn(φ̂
∗k,0
t,a ) →d N (0,P{(φ∗k,0

t,a )2}).

Remark E.5 (Double robustness of the local estimator). If we only need the consistency of θ̂kn(t, a),
then condition πk

∞ = πk, ωk,0
∞ = ωk,0, Gk

∞ = Gk, and Sk
∞ = Sk can be replaced by the following

statement: For P-almost all X, there exist measurable sets Sk
x ,Gk

x ⊆ [0, t] such that Sk
x ∪ Gk

x = [0, t]
and Λk(u | a,X) = Λk

∞(u | a,X) for all u ∈ Sk
x and G(u | a,X) = Gk

∞(u | a,X) for all u ∈ Gk
x .

In addition, if Sk
x is a strict subset of [0, t], then πk(a | X) = πk

∞(a | X) and ωk,0(X) = ωk,0
∞ (X) as

well. Then, θ̂kn(t, a) is consistent if Conditions E.1 and E.2 hold. This statement could be interpreted
as that at a given time t, if either (i) the conditional survival model Sk; or (ii) all other nuisance
functions Gk, πk and ωk,0 are correctly specified (with other conditions above), θ̂kn(t, a) is consistent.

E.2 THEORY FOR THE FEDERATED ESTIMATOR

In this section, we present the properties of the federated estimator. Given that our proposed weights,
ηt,a, are both time- and treatment-specific, we focus on the pointwise convergence properties.

Let the set of all source site indices be S = {1, . . . ,K − 1}. We then define the oracle selection
space for ηt,a, and the corresponding weight space as:

S∗
t,a = {k ∈ S : θk(t, a) = θ0(t, a)}, and RS∗

t,a = {ηt,a ∈ RK−1 : ηjt,a = 0,∀j ̸∈ S∗
t,a},

respectively.

The space S∗
t,a is both time- and treatment-varying, indicating that a source site may not consistently

be useful or unhelpful across different time points or treatments. However, it offers the advantage of
increased flexibility and adaptivity, allowing for more effective borrowing of information at different
points along the survival functions. Based on the theory presented in Section E.1, for k ∈ S∗

t,a, the
site-specific estimator θ̂k,0n (t, a) is consistent for θ0(t, a) for any given t ∈ [0, τ ] and a ∈ {0, 1}.

We begin by assuming fixed ηt,a = (η0t,a, η
1
t,a, . . . , η

K−1
t,a ). We invoke Lemmata 4 and 5 in Han

et al. (2025), which state that the proposed adaptive estimation for ηkt,a as shown in (2) allows
for (i) the recovery of the optimal ηkt,a by the estimator η̂kt,a, and (ii) the uncertainty induced by
η̂kt,a is negligible when estimating θ0(t, a). We require regularity Conditions E.1, E.2 and E.3 for
the pointwise convergence result in Theorem E.1 hold. Let us denote the federated estimator by
plugging-in the fixed ηt,a as

θ̂fed
n (t, a;ηt,a) =

(
1−

∑
k∈S

ηkt,a

)
θ̂0n(t, a) +

∑
k∈S

ηkt,aθ̂
k,0
n (t, a).
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Recall that notation Ht,a defined in (1):

Ht,a(O;S,G) =
I(Y ≤ t, δ = 1)

S(Y | a,X)G(Y | a,X)
−
∫ t∧Y

0

Λ(du | a,X)

S(u | a,X)G(u | a,X)
.

Let us then write

ξ0,(1)(O) = S0(t | a,X)
I(A = a)

π0(a | X)
Ht,a(O;S0,Λ0, G0),

ξk,0,(1)(O) = ωk,0(X)Sk(t | a,X)
I(A = a)

πk(a | X)
Ht,a(O;Sk,Λk, Gk),

ξ0,(2)(O) = S0(t | a,X)− θ0(t, a),

and nk =
∑n

i=1 I(Ri = k) for k = 0, 1, . . . ,K − 1.

Then,

θ̂fed
n (t, a;ηt,a)− θ0(t, a)

=

(
1−

∑
k∈S

ηkt,a

){
θ̂0n(t, a)− θ0(t, a)

}
+
∑
k∈S

ηkt,a

{
θ̂k,0n (t, a)− θ0(t, a)

}
=

(
1−

∑
k∈S

ηkt,a

)
1

n0

n∑
i=1

I(Ri = 0)
{
ξ̂0,(2)(Oi)− ξ̂0,(1)(Oi)

}
+
∑
k∈S

1

n0

n∑
i=1

I(Ri = 0)ηkt,aξ̂
0,(2)(Oi)−

∑
k∈S

1

nk

n∑
i=1

I(Ri = k)ηkt,aξ̂
k,0,(1)(Oi)

=
1

n

n∑
i=1

(
1−

∑
k∈S

ηkt,a

)
I(Ri = 0)

ξ̂0,(2)(Oi)− ξ̂0,(1)(Oi)

P̂(Ri = 0)

+
1

n

n∑
i=1

I(Ri = 0)

(∑
k∈S

ηkt,a

)
ξ̂0,(2)(Oi)

P̂(Ri = 0)
− 1

n

∑
k∈S

n∑
i=1

I(Ri = k)ηkt,a
ξ̂k,0,(1)(Oi)

P̂(Ri = k)
. (6)

The asymptotic variance of θ̂fed
n (t, a;ηt,a) equals the variance of the influence function of (6). Let us

denote it as V fed
t,a = V fed

t,a(ηt,a). We highlight its dependence to the federated weights vector ηt,a here
because in the below (8), we consider an optimization program for deriving the weights based on
minimizing the (estimated) asymptotic variance.

Under the assumption of i.i.d. participants within each site, we have

V fed
t,a =

(
1−

∑
k∈S

ηkt,a

)2
V{ξ0,(2)(Oi)− ξ0,(1)(Oi) | Ri = 0}

P(Ri = 0)

+

(∑
k∈S

ηkt,a

)2
V{ξ0,(2)(Oi) | Ri = 0}

P(Ri = 0)

+ 2

(
1−

∑
k∈S

ηkt,a

)(∑
k∈S

ηkt,a

)
Cov{ξ0,(2)(Oi)− ξ0,(1)(Oi), ξ

0,(2)(Oi) | Ri = 0}
P(Ri = 0)

+
∑
k∈S

(ηkt,a)
2V{ξk,0,(1)(Oi) | Ri = k}

P(Ri = k)
. (7)

With appropriate boundedness conditions on conditional variance and covariance terms above,
V fed
t,a < ∞ (see Lemma E.7). Consequently, the asymptotic distribution of θ̂fed

n (t, a;ηt,a) is given by

√
n
{
θ̂fed
n (t, a;ηt,a)− θ0(t, a)

}
→d N (0,V fed

t,a).
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Remark E.6. Based on the derivations in (6) and (7), an influence-function–based asymptotic variance
estimator of θ̂fed

n (t, a) (V̂ fed
t,a in Theorem 2.7), is obtained by replacing the population proportions,

variances, and covariances in (7) with their sample (empirical) counterparts and plugging in the
estimated weight vector η̂t,a.

We further define the optimal adaptive weights η̄t,a as follows:

η̄t,a = arg min
ηk
t,a=0,∀k ̸∈S∗

t,a

V fed
t,a(ηt,a). (8)

We adapt two lemmata from Han et al. (2025) for recovering the optimal weights η̄t,a with negligible
uncertainty for estimating θ0(t, a) if we estimate ηt,a using (2), akin to adaptive Lasso (Zou, 2006;
Fan et al., 2024).

Lemma E.7 (adapted from Lemma 4 in Han et al. (2025)). Under Conditions E.1—E.3, along with the
following mild conditions on covariates support and covariances: (i) The covariates X and density
ratio ωk,0(X) are in compact sets X ∈ [−B,B]p and ωk,0(X) ∈ [−B,B] for all k = 1, . . . ,K − 1
with probability 1; and (ii) The variance of ξk,0,(1)(O) ∈ [ε,M ], and the variance-covariance matrix
V
[
(ξ0,(1), ξ0,(2))′ | R = 0

]
has eigenvalues in [ε,B] for some positive constants ε and B. Then, it

holds that

lim
n→∞

P(η̂t,a ∈ RS∗
t,a) = 1, ∥η̂t,a − η̄t,a∥ = Op(n

−1/2),

for all (t, a) ∈ [0, τ ]× {0, 1}.

Lemma E.8 (adapted from Lemma 5 in Han et al. (2025)). Under conditions in Lemma E.7,

√
n
(
θ̂fed(t, a; η̂t,a)− θ0(t, a)

)
→d N

(
0,V fed

t,a(η̄t,a)
)
,

for all (t, a) ∈ [0, τ ]× {0, 1}.

The consistency of V̂ fed
t,a = V̂ fed

t,a(η̂t,a) follows when we can effectively approximate V fed
t,a(η̄t,a) with

V̂ fed
t,a. Thus,

√
n/V̂ fed

t,a

{
θ̂fed
n (t, a)− θ0(t, a)

}
→d N (0, 1).

We now analyze the efficiency gain resulting from the federation process. The estimator relies only on
the target data is denoted as θ̂0n(t, a) = θ̂fed

n (t, a;η0
t,a), where η0

t,a assigns all weights to the target and
none to the source. In contrast, the estimator that leverages the proposed adaptive ensemble approach
is denoted as θ̂fed

n (t, a; η̂t,a). Here η̂t,a can recover the optimal weights η̄t,a that are associated with
the minimum asymptotic variance. Consequently, the variance of θ̂fed

n (t, a; η̂t,a) is no larger than that
of the estimator relying solely on the target data since η0

t,a is generally not the variance minimizer.

To establish that the asymptotic variance of θ̂fed
n (t, a; η̂t,a) is strictly smaller than that of the estimator

based solely on the target data θ̂0n(t, a), we adopt Proposition 1 in Han et al. (2025) with a modified
informative source condition (modified Assumption 3(b) in Han et al. (2025)).

Specifically, for each source site s ∈ S∗
t,a, we define θ̂fed

n (t, a; ηst,a) a federated estimator where ηst,a
is the optimal ensemble weight of site s if we only consider target site and this source site s for the
federation. Then, the modified informative source condition is given as∣∣∣Cov

[√
nθ̂0n(t, a),

√
n
{
θ̂fed
n (t, a; ηst,a)− θ̂0n(t, a)

}]∣∣∣ ≥ ε,
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for some ε > 0, where θ̂fed
n (t, a; ηst,a)− θ̂0n(t, a) can be expressed as

θ̂fed
n (t, a; ηst,a)− θ̂0n(t, a)

=
{
θ̂fed
n (t, a; ηst,a)− θ0(t, a)

}
−
{
θ̂0n(t, a)− θ0(t, a)

}
=

1

n

n∑
i=1

I(Ri = 0)(1− ηst,a)
ξ̂0,(2)(Oi)− ξ̂0,(1)(Oi)

P̂(Ri = 0)
+

1

n

n∑
i=1

I(Ri = 0)ηst,a
ξ̂0,(2)(Oi)

P̂(Ri = 0)

− 1

n

n∑
i=1

I(Ri = s)ηst,a
ξ̂s,0,(1)(Oi)

P̂(Ri = s)
− 1

n

n∑
i=1

I(Ri = 0)
ξ̂0,(2)(Oi)− ξ̂0,(1)(Oi)

P̂(Ri = 0)

=
1

n

n∑
i=1

I(Ri = 0)ηst,a
ξ̂0,(1)(Oi)

P̂(Ri = 0)
− 1

n

n∑
i=1

I(Ri = s)ηst,a
ξ̂s,0,(1)(Oi)

P̂(Ri = s)
.

Therefore, it is straightforward to see that the modified condition can be achieved if ηst,a > 0.
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