

000 FEDERATED CAUSAL SURVIVAL ANALYSIS UNDER DIS- 001 TRIBUTION SHIFT 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 Causal inference across multiple data sources can improve the generalizability
010 and reproducibility of scientific findings. However, for time-to-event outcomes,
011 data integration methods remain underdeveloped, especially when populations are
012 heterogeneous and privacy constraints prevent direct data pooling. We propose
013 a federated learning method for estimating target site-specific causal effects in
014 multi-source survival settings. Our approach dynamically re-weights source contrib-
015 utions to correct for distributional shifts, while preserving privacy. Leveraging
016 semiparametric efficiency theory, data-adaptive weighting and flexible machine
017 learning, the method achieves both double robustness and efficiency improvement.
018 Through simulations and two real data applications: (i) multi-site randomized trials
019 of monoclonal antibodies for HIV-1 prevention among cisgender men and transgen-
020 der persons in the United States, Brazil, Peru, and Switzerland, as well as women
021 in sub-Saharan Africa, and (ii) an analysis of sex disparities across biomarker
022 groups for all-cause mortality using the “flchain” dataset, we demonstrate the val-
023 idity, efficiency gains, and practical utility of the approach. Our findings highlight
024 the promise of federated methods for efficient, privacy-preserving causal survival
025 analysis under distribution shift.
026

027 1 INTRODUCTION 028

029 Data fusion is essential in many high-impact domains. For example, in medicine, clinicians assess
030 how long treatments delay progression or readmission; and in finance, analysts track the time until a
031 portfolio reaches a drawdown threshold. Across these settings, integrating survival data from multiple
032 sources can improve efficiency, especially for rare events, and support broader causal conclusions.
033 However, such integration (or data fusion) is challenging: distributional shifts in covariates, outcomes,
034 or censoring can invalidate naïve pooling, and time-stamped event histories are considered identifiable
035 information under General Data Protection Regulation (GDPR) and Health Insurance Portability and
036 Accountability Act (HIPAA) regulations, limiting cross-institution data sharing. Federated learning
037 provides a practical alternative by enabling collaboration through aggregate-level statistics rather
038 than raw survival trajectories.
039

040 We consider multiple right-censored survival datasets each with two treatment groups, with restrictions
041 on data sharing, and possible heterogeneity in covariates, outcomes, and censoring. Our goal is to
042 estimate the survival function for a given target site while borrowing information from the additional
043 source sites in a federated learning-based approach.
044

045 **Related work.** A growing literature studies data fusion for causal inference (Yang & Ding, 2019; Li
046 & Luedtke, 2023; Colnet et al., 2024), including recent advances in federated data fusion where full
047 data sharing across sites is not permitted (Han et al., 2025; 2024; 2023; Xiong et al., 2023; Khellaf
048 et al., 2025; Li et al., 2023; Makhija et al., 2024; Almodóvar et al., 2024). Most of these works
049 focus on continuous, ordinal, or binary outcomes and do not address time-to-event data. Archetti
050 et al. (2023) have begun examining federated survival settings but they focus on data generation and
051 simulation frameworks rather than estimation and inference.

052 Existing extensions to survival data often rely on restrictive assumptions. For example, the Cox
053 proportional hazards model imposes a log-linear hazard structure (Hernán, 2010; Han, 2023; Nagpal
et al., 2023), or common conditional outcome distribution (CCOD) assumption across sites (Lee et al.,

054 2022; Cao et al., 2024; Wen et al., 2025) may fail under heterogeneous data distributions. Violations
 055 of these assumptions yield biased estimates and inference. Related meta-analysis approaches, which
 056 aggregate site-specific estimators using inverse-variance weighting, possibly after density-ratio cor-
 057 rection, also implicitly require such conditional homogeneity assumptions across sites (DerSimonian
 058 & Laird, 1986; Marín-Martínez & Sánchez-Meca, 2010). In addition, privacy-preserving methods
 059 avoiding sharing raw data across sites for survival outcomes remain scarce (Jia et al., 2021). Recent
 060 work such as FedECA (Ogier du Terrail et al., 2025) develops federated external control arms for
 061 single-arm trials, but this setting differs from the more general multi-source integration problem.

062 **Regarding estimation**, time-to-event data are typically analyzed within single-site studies using
 063 nonparametric methods such as the Kaplan–Meier estimator (Kaplan & Meier, 1958). With covariate-
 064 rich data, semiparametric extensions such as the Cox model (Cox, 1972; Xie & Liu, 2005; Bull &
 065 Spiegelhalter, 1997), doubly robust estimators (Bai et al., 2013) are standard. In addition, targeted
 066 maximum likelihood estimation (TMLE) can improve the finite-sample performance of doubly robust
 067 estimators (van der Laan & Rubin, 2006; Díaz et al., 2019), and the collaborative TMLE (C-TMLE)
 068 further enhances robustness to model misspecification (Stitelman & van der Laan, 2010). More
 069 recently, Westling et al. (2024) integrated double machine learning (Chernozhukov et al., 2018) to
 070 flexibly estimate nuisance functions in survival analysis (Wolock et al., 2024; Cui et al., 2023; van der
 071 Laan et al., 2007). However, these methods remain focused on single-study contexts and do not
 072 address how to combine survival data across multiple sources.
 073

074 **Contributions.** Recognizing that pooling is often infeasible and that CCOD may not hold, we
 075 develop a federated estimator with adaptive site weighting that accommodates both continuous-
 076 and discrete-time outcomes. Our approach leverages influence function theory to construct site-
 077 specific estimators based only on local summary statistics, combined through a constrained convex
 078 optimization that upweights informative sites and downweights or excludes biased ones. We establish
 079 consistency, asymptotic normality, and conditions under which our method improves efficiency over
 080 target-only analysis. By integrating cross-fitting (Chernozhukov et al., 2018) and ensemble learning
 081 (Díaz et al., 2019; Díaz, 2020; Westling et al., 2024; van der Laan et al., 2007), our estimator avoids
 082 restrictive assumptions while retaining fast convergence rates.

083 We validate the method through extensive Monte Carlo simulation studies and two real applications:
 084 (i) multi-site randomized trials of monoclonal antibodies for HIV-1 prevention among cisgender men
 085 and transgender persons in the United States, Brazil, Peru, and Switzerland, as well as women in
 086 sub-Saharan Africa, and (ii) an analysis of sex disparities in all-cause mortality using the `flchain`
 087 dataset in the `survival` R package, stratified into biomarker-defined groups. Together, these
 088 examples highlight the potential of federated methods to enable efficient, privacy-preserving causal
 089 inference for time-to-event outcomes in realistic multi-source settings.

090 2 METHODOLOGY

091 2.1 PROBLEM SETUP AND TARGET ESTIMAND

092 **Observed data.** Consider K studies, each of which may be randomized or observational. For each
 093 participant, we observe baseline covariates \mathbf{X} , a binary treatment $A \in \{0, 1\}$, and right-censored
 094 outcomes. Let $T^{(a)}$ and $C^{(a)}$ denote the potential event and censoring times under treatment
 095 $a \in \{0, 1\}$. By the stable unit treatment value assumption (SUTVA) (Rosenbaum & Rubin, 1983), the
 096 observed event and censoring times are $T = AT^{(1)} + (1 - A)T^{(0)}$, $C = AC^{(1)} + (1 - A)C^{(0)}$.
 097 With right censoring, however, we only observe $Y = \min(T, C)$ and $\Delta = \mathbb{I}(T \leq C)$.
 098

099 Denote a copy of the independent and identically distributed (i.i.d.) data by \mathcal{O} . The observed
 100 data across all sites are then given by $\{\mathcal{O}_i = (\mathbf{X}_i, A_i, Y_i, \Delta_i, R_i) : i = 1, \dots, n\}$, where $R \in$
 101 $\{0, 1, \dots, K - 1\}$ denotes the site, with $R = 0$ indicating the target site and $R = 1, \dots, K - 1$ the
 102 external sources.
 103

104 **Target estimand.** Throughout, \mathbb{P} denotes the population-level probability under the true data-
 105 generating process, and with a subscript “ n ”, $\mathbb{P}_n[f(\mathcal{O})] = n^{-1} \sum_{i=1}^n f(\mathcal{O}_i)$ denotes the empirical
 106 average. Our goal is to estimate the treatment-specific survival function in the target population over
 107 a finite horizon $\tau < \infty$:

$$\theta^0(t, a) = \mathbb{P}(T^{(a)} > t \mid R = 0), \quad a \in \{0, 1\}, t \in [0, \tau].$$

108 This function gives the probability that a target-site individual on treatment a ($a = 1$ for treated,
 109 $a = 0$ for control) survives beyond time t .

110 **Conditional survival functions.** For each site k , define the conditional survival function $S^k(t |$
 111 $a, \mathbf{X}) = \mathbb{P}(T > t | A = a, \mathbf{X}, R = k)$. To simultaneously accommodate continuous- and discrete-
 112 time outcomes, we use the product integral representation (Gill & Johansen, 1990):
 113

$$114 \quad S^k(t | a, \mathbf{X}) = \prod_{(0,t]} \{1 - \Lambda^k(du | a, \mathbf{X})\},$$

$$115$$

116 where $\Lambda^k(t | a, \mathbf{X})$ is the conditional cumulative hazard function. This notation unifies both discrete
 117 and continuous-time survival models, because in discrete time the product integral becomes the
 118 standard discrete product \prod , and in continuous time it becomes $\exp\{-\Lambda^k(t | a, \mathbf{X})\}$.
 119

120 We impose three standard assumptions for causal survival analysis:

121 **Assumption 2.1** (Unconfoundedness). $A \perp\!\!\!\perp T^{(a)} | \mathbf{X}, R$ and $A \perp\!\!\!\perp C^{(a)} | \mathbf{X}, R$.

122 **Assumption 2.2** (Treatment-specific non-informative censoring). $C^{(a)} \perp\!\!\!\perp T^{(a)} | A = a, \mathbf{X}, R$.

123 **Assumption 2.3** (Positivity). There exists $\eta > 0$ such that $\mathbb{P}(R = k) \geq 1/\eta$, and for almost all \mathbf{X} ,

$$124 \quad \min_{k=0,\dots,K-1} \{\pi^k(a | \mathbf{X}), G^k(t | a, \mathbf{X})\} \geq 1/\eta, \quad \min_k S^k(t | a, \mathbf{X}) > 0.$$

$$125$$

$$126$$

127 Here $\pi^k(a | \mathbf{X}) = \mathbb{P}(A = a | \mathbf{X}, R = k)$ is the site-specific propensity score for treatment $A = a$,
 128 and $G^k(t | a, \mathbf{X}) = \mathbb{P}(C > t | A = a, \mathbf{X}, R = k)$ the conditional survival function of censoring.
 129 Each treatment and censoring mechanism has non-vanishing probability, and each site contributes
 130 a non-negligible fraction of participants. **These quantities are referred to as nuisance functions,**
 131 **auxiliary components that are not of primary scientific interest but are essential for estimating the**
 132 **target parameter $\theta^0(t, a)$.**
 133

134 2.2 SINGLE-SITE ESTIMATION

135 **Auxiliary process.** For later use, define

$$136 \quad \mathcal{H}_{t,a}(\mathcal{O}; S^k, G^k) = \frac{\mathbb{I}(Y \leq t, \Delta = 1)}{S^k(Y | a, \mathbf{X})G^k(Y | a, \mathbf{X})} - \int_0^{t \wedge Y} \frac{\Lambda^k(du | a, \mathbf{X})}{S^k(u | a, \mathbf{X})G^k(u | a, \mathbf{X})}, \quad (1)$$

$$137$$

$$138$$

$$139$$

140 where $t \wedge Y = \min(t, Y)$. This functional plays a role as the inverse probability-weighted mean-zero
 141 residual (part of an augmentation term) in doubly robust estimators for right-censored data.
 142

143 **Efficient influence function (EIF).** When using only target-site data ($R = 0$), the nonparametric EIF
 144 of $\theta^0(t, a)$ given $t \in [0, \tau]$ and $a \in \{0, 1\}$ is given by (Westling et al., 2024):
 145

$$146 \quad \varphi_{t,a}^{*0}(\mathcal{O}; \mathbb{P}) = \frac{\mathbb{I}(R = 0)}{\mathbb{P}(R = 0)} \left[\left\{ 1 - \frac{\mathbb{I}(A = a)}{\pi^0(a | \mathbf{X})} \mathcal{H}_{t,a}(\mathcal{O}; S^0, G^0) \right\} S^0(t | a, \mathbf{X}) - \theta^0(t, a) \right].$$

$$147$$

$$148$$

$$149$$

150 Here, \mathbb{P} in $\varphi_{t,a}^{*0}(\mathcal{O}; \mathbb{P})$ indicates that the EIF depends on nuisance functions under the true data
 151 distribution. In other words, $\varphi_{t,a}^{*0}(\mathcal{O}; \mathbb{P}) = \varphi_{t,a}^{*0}(\mathcal{O}; S^0, G^0, \pi^0)$. Furthermore, we use $\widehat{\mathbb{P}}$ to denote the
 152 **EIF evaluated with estimated nuisance functions. This should not be confused with the empirical**
 153 **average \mathbb{P}_n introduced earlier. The same convention applies to all other EIFs throughout the paper.**
 154

155 The EIF $\varphi_{t,a}^{*0}(\mathcal{O}; \mathbb{P})$ highlights two components: (i) an *anchor term* that $S^0(t | a, \mathbf{X}) - \theta^0(t, a)$,
 156 which anchors estimation through the conditional survival function under an outcome model by
 157 using target data; and (ii) an *augmentation term*—the weighted part involving $\mathcal{H}_{t,a}(\mathcal{O}; S^0, G^0)$ and
 158 $\pi^0(a | \mathbf{X})$, which adjusts for censoring and treatment assignment. Furthermore, the weighting term
 159 $\mathbb{I}(R = 0)/\mathbb{P}(R = 0)$ selects target-site observations, and $\mathbb{I}(A = a)/\pi^0(a | \mathbf{X})$ restricts to units with
 160 treatment $A = a$ while reweighting them to represent the full target population.

161 **Target-only estimator.** Motivated by the EIF, we define $\widehat{\theta}_n^0(t, a)$ as the solution to the estimating
 162 equation

$$163 \quad 0 = \mathbb{P}_n[\widehat{\varphi}_{t,a}^{*0}(\mathcal{O}; \widehat{\mathbb{P}})].$$

$$164$$

$$165$$

166 Under regularity conditions, $\widehat{\theta}_n^0(t, a)$ is regular and asymptotically linear (RAL) and achieves the
 167 semiparametric efficiency bound uniformly over $t \in [0, \tau]$ when only target-site data are available.

162 2.3 THE CCOD ASSUMPTION
163164 When multiple data sources are available, precision can be improved by data fusion. A common
165 simplifying assumption is that conditional survival functions are identical across sites given covariates.
166167 **Assumption 2.4** (Common conditional outcome distribution). $T^{(a)} \perp\!\!\!\perp R \mid \mathbf{X}$ for $a \in \{0, 1\}$.
168169 Assumption 2.4 implies that $S^k(t \mid a, \mathbf{X}) = \bar{S}(t \mid a, \mathbf{X}) \equiv \mathbb{P}(T > t \mid A = a, \mathbf{X})$ for all k , while still
170 allowing shifts in the covariate distribution \mathbf{X} across sites, i.e., adjusted for covariates, the event-time
171 distribution no longer depends on the site.
172173 Figure 1 illustrates the data structure through a directed acyclic graph (DAG), depicting the relation-
174 ships among covariates \mathbf{X} , treatment A , site indicator R , event time T , and censoring time C , and
175 compares scenarios with and without the CCOD assumption.
176177
178 Figure 1: Data structures under and without CCOD. (a) Under CCOD, site R and event time T are
179 conditionally independent given treatment A and covariates \mathbf{X} . (b) When CCOD is possibly violated,
180 indicated by the red dashed arrow, R and T may not be conditionally independent.
181182 2.4 FEDERATED ESTIMATION UNDER DISTRIBUTION SHIFTS AND PRIVACY
183184 **Motivation.** In many settings, pooling individual-level data across sites is infeasible due to privacy
185 constraints. At the same time, CCOD may fail, so naïve pooling is invalid. Still, some sites may
186 provide information that improves estimation for the target population. We propose a federated
187 method that adaptively re-weights source sites using only summary-level information.
188189 2.4.1 LOCAL SITE-LEVEL ESTIMATION
190191 For each source k , we temporarily posit a working partial CCOD assumption, $S^k(t \mid a, \mathbf{X}) = S^0(t \mid
192 a, \mathbf{X})$ almost surely, in order to derive an EIF. This assumption is used only for formulating site-level
193 estimators; violations will later be detected and corrected by adaptive weighting in Section 2.4.2.
194195 **Theorem 2.5.** For $k \in \{0, 1, \dots, K-1\}$, $\theta^0(t, a)$ is a pathwise differentiable parameter given
196 $(t, a) \in [0, \tau] \times \{0, 1\}$. Under the working partial CCOD assumption, the semiparametric EIF is
197 given by $\varphi_{t,a}^{*k,0}(\mathcal{O}; \mathbb{P}) =$
198

$$\underbrace{\frac{\mathbb{I}(R=0)}{\mathbb{P}(R=0)} \{S^0(t \mid a, \mathbf{X}) - \theta^0(t, a)\}}_{\text{Anchoring term using target data}} - \underbrace{\frac{\mathbb{I}(R=k)}{\mathbb{P}(R=k)} \omega^{k,0}(\mathbf{X}) S^k(t \mid a, \mathbf{X}) \frac{\mathbb{I}(A=a)}{\pi^k(a \mid \mathbf{X})} \mathcal{H}_{t,a}(\mathcal{O}; S^k, G^k)}_{\text{Augmented term using source data}},$$

200 where $\omega^{k,0}(\mathbf{X}) = \mathbb{P}(\mathbf{X} \mid R=0) / \mathbb{P}(\mathbf{X} \mid R=k)$ is a density ratio comparing covariate distributions
201 between the target site and source site k .
202203 We prove Theorem 2.5 is in Appendix E.1. With the derived EIF, each site computes a source-site
204 estimator $\hat{\theta}_n^{k,0}(t, a)$ by solving $0 = \mathbb{P}_n[\varphi_{t,a}^{*k,0}(\mathcal{O}; \hat{\mathbb{P}})]$.
205206 **RAL property.** A central result of this paper is the regular and asymptotically linear (RAL) property
207 of the local estimator $\hat{\theta}_n^{k,0}(t, a)$, stated in the following theorem. An estimator is RAL if it can
208 be written as an i.i.d. average of influence functions plus a negligible remainder. This property
209 allows the central limit theorem to be applied to obtain its asymptotic normal distribution. Below,
210 we use $(\pi_\infty^k, \omega_\infty^{k,0}, G_\infty^k, S_\infty^k)$ to denote the probability limits of the estimated nuisance functions
211 $(\hat{\pi}^k, \hat{\omega}^{k,0}, \hat{G}^k, \hat{S}^k)$ for estimating $\theta^0(t, a)$ using data from source site k . These limits may differ from
212 the nuisance truths $(\pi^k, \omega^{k,0}, G^k, S^k)$.
213214 **Theorem 2.6.** Under Conditions E.1–E.3 in Appendix E.1 with $(\pi_\infty^k, \omega_\infty^{k,0}, G_\infty^k, S_\infty^k) =$
215 $(\pi^k, \omega^{k,0}, G^k, S^k)$, $\sqrt{n}(\hat{\theta}_n^{k,0}(t, a) - \theta^0(t, a)) \rightarrow_d \mathcal{N}(0, \mathbb{P}[(\varphi_{t,a}^{*k,0})^2])$, for $(t, a) \in [0, \tau] \times \{0, 1\}$.
216

We prove Theorem 2.6 in Appendix E.1, but summarize the regularity conditions here. Condition E.1 requires nuisance estimators to converge to well-defined limits; Condition E.2 bounds these limits and their estimates from extreme values (0 or infinity); and Condition E.3 controls product-type errors. They ensure that $\widehat{\theta}_n^{k,0}(t, a)$ converges to some well-defined limits and is asymptotically normal.

Theoretical novelty. Theorem 2.6 establishes the semiparametric efficiency bound under the pairwise partial CCOD assumption in 2.5, and the source-site estimators attain this bound under this assumption. These results add theoretical novelty to prior work on continuous outcomes (Han et al., 2025). The interactions between the density ratio and the other nuisance functions also represent previously unexplored theoretical components.

Remark 2.7 (Density ratio model). To estimate the density ratio while respecting data-sharing constraints, a common approach is to adopt the exponential tilt model detailed in Han et al. (2025): $\omega^{k,0}(\mathbf{X}) = \exp(\gamma'_k \psi(\mathbf{X}))$, where γ_k is the model parameter and $\psi(\cdot)$ is a set of basis functions of the covariates. A simple choice is $\psi(\mathbf{X}) = \mathbf{X}$ for a linear component, and higher-order terms can be added to capture non-linearities in estimating $\omega^{k,0}$. To estimate each γ_k via maximum likelihood, only the target-site sample mean of $\psi(\mathbf{X})$ needs to be shared with the source sites. In addition to this model, more flexible nonparametric or machine learning approaches may be used, but these typically require sharing covariance matrices and/or other higher dimensional summaries. Thus, greater model flexibility comes at the cost of sharing more information. Finally, while the $\omega^{k,0}$ model may be misspecified, this does not necessarily invalidate our framework or estimators. As noted in Theorem 2.8, our estimator is doubly robust: under Condition E.3, errors in estimating $\omega^{k,0}$ influence the final estimator only through a product-type term that enters the second-order remainder term.

Theorem 2.8 (Double robustness). *For consistency of $\widehat{\theta}_n^{k,0}(t, a)$, it is not necessary that $(\pi_\infty^k, \omega_\infty^{k,0}, G_\infty^k, S_\infty^k) = (\pi^k, \omega^{k,0}, G^k, S^k)$ in Theorem 2.6 must hold. Instead, at any single time point t , if either (i) the conditional survival model S^k ; or (ii) other nuisance functions G^k , π^k and $\omega^{k,0}$ are correctly specified, $\widehat{\theta}_n^{k,0}(t, a)$ is consistent.*

A more technical version of Theorem 2.8 (Remark E.4) and its proof are presented in Appendix E.1.

2.4.2 AGGREGATION ACROSS SITES

Data-adaptive weighting. We define the site-specific discrepancy measure $\widehat{\chi}_{n,t,a}^{k,0} = \widehat{\theta}^{k,0}(t, a) - \widehat{\theta}^0(t, a)$ and the weight vector $\boldsymbol{\eta}_{t,a} = (\eta_{t,a}^0, \eta_{t,a}^1, \dots, \eta_{t,a}^{K-1})$. To aggregate information, we solve an ℓ_1 -penalized convex optimization problem: we minimize $Q(\boldsymbol{\eta}_{t,a})$, where

$$Q(\boldsymbol{\eta}_{t,a}) = \mathbb{P}_n \left[\left\{ \widehat{\varphi}_{t,a}^{*0}(\mathcal{O}; \widehat{\mathbb{P}}) - \sum_{k=1}^{K-1} \eta_{t,a}^k \widehat{\varphi}_{t,a}^{*k,0}(\mathcal{O}; \widehat{\mathbb{P}}) \right\}^2 \right] + \frac{1}{n} \lambda \sum_{k=1}^{K-1} |\eta_{t,a}^k| (\widehat{\chi}_{n,t,a}^{k,0})^2, \quad (2)$$

subject to $\eta_{t,a}^k \geq 0$ and $\sum_{k=0}^{K-1} \eta_{t,a}^k = 1$; λ is a tuning parameter that controls the bias-variance trade-off and is chosen by cross-validation.

Interpretation. The objective function balances two goals: aligning site-level EIFs with the target distribution and excluding sites that would induce bias. The quadratic term ensures that sites well-aligned with the target survival distribution contribute more to the estimation, while the ℓ_1 penalty induces sparsity by driving the weights of misaligned sites exactly to zero. This contrasts with an ℓ_2 penalty, which merely shrinks weights without fully removing them. As a result, the procedure asymptotically includes only the informative sources.

Federated estimator. The final estimator is obtained as a weighted average of the estimated local survival curves: $\widehat{\theta}_n^{\text{fed}}(t, a) = \sum_{k=0}^{K-1} \eta_{t,a}^k \widehat{\theta}_n^{k,0}(t, a)$. The variance of $\widehat{\theta}_n^{\text{fed}}(t, a)$ can be estimated from its influence function, with the explicit formula given in Appendix E.2.

Remark 2.9. We summarize the procedure of the federated method in Algorithm 1 and illustrate its flow in Figure 2. Implementation details can be found in Appendix D, including for the cross-fitting procedure for nuisance fitting. Figure 2 emphasizes that our approach follows a *federated learning* paradigm (McMahan et al., 2017). Importantly, all steps require only summary-level transmission, never raw participant data. Source sites receive only the target-site S^0 model parameters and summary statistics for the density-ratio model, and the leading analysis center receives only EIFs. This contrasts

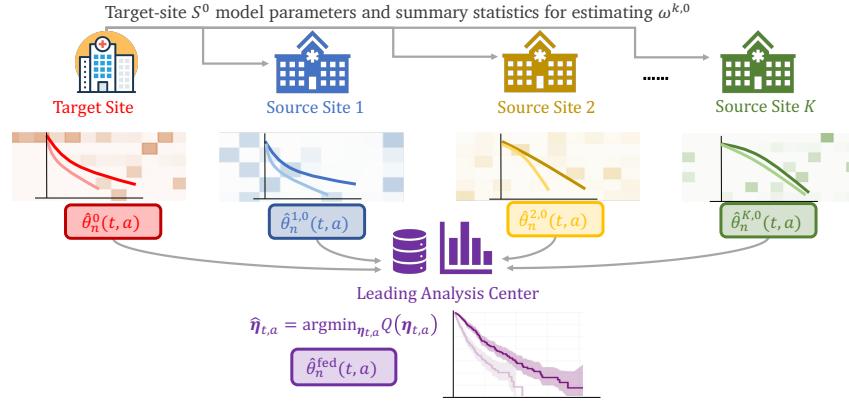


Figure 2: **Algorithm flow.** Target-site S^0 model parameters and summary statistics for estimating $\omega^{k,0}$ are transmitted to source sites; each site estimates its survival functions locally; EIFs are sent and aggregated in a leading analysis center to compute federated weights by minimizing the $Q(\cdot)$.

Algorithm 1 Federated Learning for Multi-Source Causal Survival Analysis.

1: **Input:** Multi-source right-censored data $\{\mathcal{O}_i = (\mathbf{X}_i, A_i, Y_i, \Delta_i, R_i), i = 1, \dots, n\}$, a time horizon $\tau > 0$; a fine time grid $\{0, \epsilon, 2\epsilon, \dots, \tau\}$ for $[0, \tau]$ with a small $\epsilon > 0$; and the number of disjoint folds into which the data are split, M .
2: **Output:** Estimated treatment-specific survival curves $\hat{\theta}_n^{fed}(t, a)$ and its estimated variance $\hat{\mathcal{V}}_{t,a}^{fed}$ for $a \in \{0, 1\}$ and $t \in \{0, \epsilon, 2\epsilon, \dots, \tau\}$.
3: **for** $(t, a) \in \{0, \epsilon, 2\epsilon, \dots, \tau\} \times \{0, 1\}$ **do**
4: Estimate the EIFs via an M -fold **local** cross-fitting (see full detail in Algorithm 2).
5: Obtain local estimates $\hat{\theta}_n^{k,0}(t, a)$ as solutions of $0 = \mathbb{P}_n[\hat{\varphi}_{t,a}^{k,0}(\mathcal{O}; \hat{\mathbb{P}})]$, for $k = 0, \dots, K - 1$.
6: Obtain the site-specific discrepancy measure (difference of the target and source estimators) as $\hat{\chi}_{n,t,a}^{k,0} = \mathbb{P}_n[\hat{\varphi}_{t,a}^{k,0}(\mathcal{O}; \hat{\mathbb{P}}) - \hat{\varphi}_{t,a}^0(\mathcal{O}; \hat{\mathbb{P}})]$, for $k = 1, \dots, K - 1$.
7: Solve for treatment- and time-specific weights $\hat{\eta}_{t,a} = (\hat{\eta}_{t,a}^0, \hat{\eta}_{t,a}^1, \dots, \hat{\eta}_{t,a}^{K-1})$ that minimizes

$$Q(\eta_{t,a}) = \mathbb{P}_n \left[\left\{ \hat{\varphi}_{t,a}^{*0}(\mathcal{O}; \hat{\mathbb{P}}) - \sum_{k=1}^{K-1} \eta_{t,a}^k \hat{\varphi}_{t,a}^{*k,0}(\mathcal{O}; \hat{\mathbb{P}}) \right\}^2 \right] + \frac{1}{n} \lambda \sum_{k=1}^{K-1} |\eta_{t,a}^k| (\hat{\chi}_{n,t,a}^{k,0})^2,$$
subject to $0 \leq \eta_{t,a}^k \leq 1$, for all $k \in \{0, 1, \dots, K - 1\}$ and $\sum_{k=0}^{K-1} \eta_{t,a}^k = 1$, and λ is a tuning parameter chosen by cross-validation **centrally at the leading analysis center**; no additional communication between sites is required.
8: **end for**
9: **Return:**

$$\hat{\theta}_n^{fed}(t, a) = \sum_{k=0}^{K-1} \hat{\eta}_{t,a}^k \hat{\theta}_n^{k,0}(t, a), \text{ and } \hat{\mathcal{V}}_{t,a}^{fed\dagger} \text{ for } (t, a) \in \{0, \epsilon, 2\epsilon, \dots, \tau\} \times \{0, 1\}.$$

†: $\hat{\mathcal{V}}_{t,a}^{fed}$ is computed based on the influence function of $\hat{\theta}_n^{fed}(t, a)$ (see Remark E.5 in Appendix E.2).

316 with *fully decentralized learning* (Lian et al., 2017), where there is no central aggregator and sites
317 interact directly to reach consensus. Our method also differs from *meta-analysis* (Borenstein et al.,
318 2021), which relies only on coarse population-level summaries (such information is insufficient in
319 our setting) and often targets the pooled population.

321 2.4.3 THEORETICAL PROPERTIES

322 We now summarize the main asymptotic results and efficiency gain of the federated estimator; detailed
323 proofs are in Appendices E.1 and E.2.

324 **Theorem 2.10** (Asymptotic distribution). *If regularity conditions for local estimates (Conditions*
 325 *E.1–E.3 in Appendix E.1) and the adaptive weights $\hat{\eta}_{t,a}$ recover the oracle set of unbiased sources*
 326 *(Appendix E.2), then $\hat{\theta}_n^{\text{fed}}(t, a)$, at each $(t, a) \in [0, \tau] \times \{0, 1\}$, has asymptotic distribution*

$$328 \quad \sqrt{n/\hat{\mathcal{V}}_{t,a}^{\text{fed}}} \left\{ \hat{\theta}_n^{\text{fed}}(t, a) - \theta^0(t, a) \right\} \rightarrow_d \mathcal{N}(0, 1).$$

330 *where $\hat{\mathcal{V}}_{t,a}^{\text{fed}}$ is an influence-function-based consistent estimator for the underlying asymptotic variance*
 331 *of $\hat{\theta}_n^{\text{fed}}(t, a)$ (see Appendix E.2).*

333 **Corollary 2.11** (Asymptotic efficiency). *The asymptotic variance $\mathcal{V}_{t,a}^{\text{fed}}$ is no greater than that of the*
 334 *target-only estimator $\hat{\theta}_n^0(t, a)$. Further, if at least one source site provides a consistent estimate of*
 335 *$\theta^0(t, a)$, then $\hat{\theta}_n^{\text{fed}}(t, a)$ is strictly more efficient (strictly smaller asymptotic variance).*

337 **Remark 2.12** (Selection consistency). The asymptotic validity of $\hat{\theta}_n^{\text{fed}}(t, a)$ relies on selection
 338 consistency with respect to the oracle set $\mathcal{S}_{t,a}^*$. This guarantees that post-selection inference by our
 339 variance estimator $\hat{\mathcal{V}}_{t,a}^{\text{fed}}$ remains valid, even in the presence of heterogeneous or biased sources.

341 **Remark 2.13** (Efficiency gains). To quantify the efficiency gain of $\hat{\theta}_n^{\text{fed}}(t, a)$, let $\mathcal{S} = \{1, \dots, K-1\}$
 342 denote the set of source sites, and define the oracle selection space for $\eta_{t,a}$ as $\mathcal{S}_{t,a}^* = \{k \in \mathcal{S} : \theta^k(t, a) = \theta^0(t, a)\}$, and the corresponding weight space as $\mathbb{R}^{S_{t,a}^*} = \{\eta_{t,a} \in \mathbb{R}^{K-1} : \eta_{t,a}^j = 0, \forall j \notin \mathcal{S}_{t,a}^*\}$. Under the mild regularity conditions stated in Appendix E.2, namely compact
 343 covariate support, bounded density ratios, and finite variance–covariance matrices of the EIFs across
 344 sites, we show that our federated estimator recovers the following oracle-optimal weights:

$$348 \quad \bar{\eta}_{t,a} = \arg \min_{\eta_{t,a}^k = 0, \forall k \notin \mathcal{S}_{t,a}^*} \mathcal{V}_{t,a}^{\text{fed}}(\eta_{t,a}),$$

350 where $\mathcal{V}_{t,a}^{\text{fed}}(\eta_{t,a})$ denotes the asymptotic variance of the federated estimator under weight vector $\eta_{t,a}$.
 351 The target-only estimator corresponds to the special case $\eta_{t,a} = (1, 0, \dots, 0)$, so its variance is no
 352 larger than that of any federated estimator. If the bias term $\hat{\chi}_{n,t,a}^{k,0}$ remains asymptotically non-zero,
 353 then $\eta_{t,a}^k \rightarrow 0$, ensuring exclusion of biased sites. Proofs are adapted from Han et al. (2023; 2025).

356 We note from Corollary 2.11 that strict efficiency gains rely on the consistency of at least some source
 357 estimators. To preserve robustness while borrowing information, our methodology anchors each
 358 source estimator to the target-site estimate and incorporates source data only through the augmented
 359 term of the EIF in Theorem 2.5. In the federation stage, we solve a global optimization problem that
 360 determines each site’s contribution to the final estimator. While this resembles one-shot aggregation,
 361 the optimization operates over all source summaries and explicitly targets variance reduction while
 362 preserving the target estimand.

363 Although the framework allows both randomized and observational sites, many survival-data applica-
 364 tions involve randomized treatment assignment, in which case the propensity score π^0 is known and
 365 the target-site estimator is consistent. For observational studies, it is common to have larger sample
 366 sizes that enable flexible nonparametric and machine learning methods to estimate nuisance functions
 367 with greater robustness to model misspecification.

369 3 SIMULATION STUDY

371 We conducted simulations to assess the performance of our federated estimator (FED) to four
 372 competing approaches: target-only (TGT), pooling (POOL), inverse variance weighting (IVW) and
 373 a meta-analytic IVW (META-IVW) estimators. TGT uses only target-site data ($R = 0$), POOL
 374 aggregates data from all sites without adjustment, IVW combines site-specific estimators using
 375 inverse-variance weights, and META-IVW applies additional covariate density–ratio correction to
 376 IVW. We refer to it as “meta-analysis” as it parallels classical IVW meta-analytic pooling, augmented
 377 to correct for covariate shift. This comparison allows us to assess both the efficiency gains and
 robustness properties of FED under varying degrees of site heterogeneity and against several baselines.

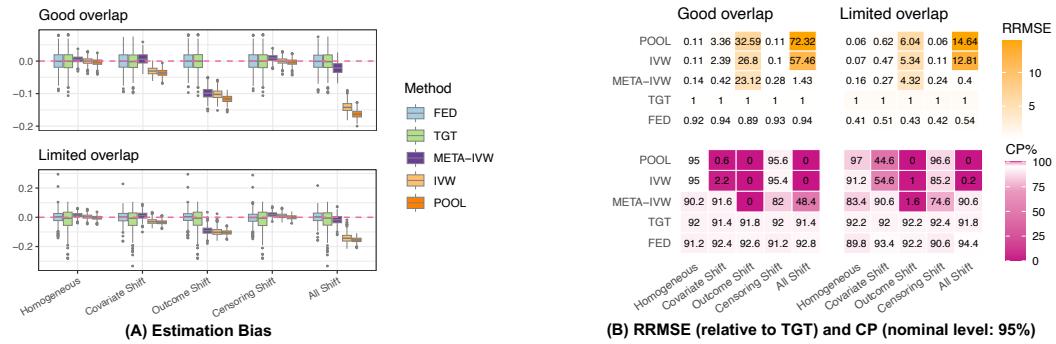
378 3.1 DATA GENERATING PROCESS
379

380 Under a given data generating process (DGP), we generate 500 independent datasets, with $n =$
381 $\sum_{k=0}^{K-1} n_k$ observations distributed across $K = 5$ sites. The target site ($k = 0$) was fixed at $n_0 = 300$
382 observations, while source sample sizes were varied as $n_k \in \{300, 600, 1000\}$ for $k = 1, \dots, 4$,
383 representing small, moderate, and large external data. Covariates, treatments, and outcomes were
384 generated according to the mechanisms described in Appendix B.1. The estimand truth was derived by
385 averaging survival outcomes over a super-population of size $n_{\text{super}} = 10^8$ from the target distribution.
386 Our main DGP reflects nearly randomized studies that are more common in practice, where each site
387 k has the propensity score $\pi^k(a | \mathbf{X})$ weakly associated with \mathbf{X} and good overlap. We also include
388 a scenario with $n_k = 300$ ($k = 1, 2, 3, 4$) where the target-site propensity score $\pi^0(a | \mathbf{X})$ is more
389 dependent on \mathbf{X} (“limited overlap”) to highlight a regime with larger efficiency gains.
390

390 We modeled time-to-event outcomes over a one-year horizon, with administrative censoring at day
391 200. Performance was evaluated at days 30, 60, and 90. To investigate robustness under distribution
392 shifts, we introduced **five** cases: (i) Homogeneous: all sites follow identical DGP; (ii) Covariate
393 Shift: covariate distributions vary; (iii) Outcome Shift: conditional outcome distributions vary;
394 (iv) Censoring Shift: censoring mechanisms vary; and (v) All Shifts: simultaneous covariate, outcome,
395 and censoring heterogeneity across sites. Figure 5 in Appendix B.1 depicts survival curves under
396 outcome and covariate shifts, illustrating how site-specific heterogeneity can affect target estimation.
397

398 3.2 PERFORMANCE METRICS AND RESULTS

399 We evaluated methods using three metrics: (i) **Bias**: assessed via boxplots of estimation bias across
400 500 replications, (ii) **Relative root mean square error (RRMSE)**: defined as the RMSE of a method
401 divided by that of TGT; values below 1 indicate efficiency gains, and (iii) **Coverage probability (CP%)**:
402 the proportion of 95% Wald-type confidence intervals containing the truth. Values near 95
403 indicate better inference. Details of these metrics are provided in Appendix B.2. Simulation results
404 for all scenarios appear in Appendix B.3; here we summarize representative findings in Figure 3.



417 Figure 3: Simulation results for the target-site treated-arm ($A = 1$) survival function at day 30 with
418 $n_0 = 300$ and $n_k = 300$ ($k = 1, 2, 3, 4$) under good and limited target-site propensity score overlaps.
419

420 From Figure 3(A), FED exhibits negligible bias across all scenarios. META-IVW shows small biases
421 under Homogeneous, Covariate Shift, and Censoring Shift, but becomes substantially biased under
422 Outcome Shift and All Shifts. In terms of efficiency, FED consistently outperforms TGT: Panel
423 (B) shows up to 59% reductions in RMSE by FED across all settings, especially under the limited
424 overlap scenarios. META-IVW is more efficient when the outcome does not shift, but its efficiency
425 drops sharply under Outcome Shift. These confirm that FED preserves consistency compared to
426 META-IVW and consistently improves efficiency relative to TGT. Across all scenarios in Appendix
427 B.3, FED achieves larger efficiency gains at earlier time points, when site-specific survival curves
428 more closely resemble the target (see Figure 5) and the source-site EIFs align better with the target.
429 Under limited target-site propensity score overlap, FED also attains higher efficiency, likely because
430 the improved overlaps at the source data help stabilize the source-site estimators.

431 In terms of inferential validity, both FED and TGT maintain CP% closer to 95% across scenarios,
432 validating the influence-function-based variance estimator. Further diagnostics, reported in Figures

6 and 7, show that federated weights $\hat{\eta}_{t,a}$ decrease systematically as site-specific bias measures $(\hat{\chi}_{n,t,a}^{k,0})^2$ increase. Thus, FED adaptively upweights sites aligned with the target and downweights or excludes biased ones; the target site receives higher weights under covariate or outcome shifts, while contributions vary over time depending on alignment of survival functions.

Although POOL and IVW exhibit lower variability (narrower boxplots), they perform poorly under Covariate, Outcome, or All shifts: bias is substantial such that RRMSE is elevated, and CP% drops far below 95%. The exception is under Censoring Shift, but this arises because censoring is treated as a nuisance function and estimated separately within each site, reducing sensitivity to between-site heterogeneity in censoring distributions.

4 REAL DATA ANALYSIS

We illustrate our method with two applications. The first analyzes the coordinated antibody-mediated prevention (AMP) trials (Corey et al., 2021; Ning et al., 2023), which enrolled 4,611 participants to assess whether a bnAb reduces HIV-1 acquisition. The second uses the `flchain` dataset (7,874 participants across three biomarker-defined groups) to study sex differences in all-cause mortality. For brevity, we focus on the AMP trials and present the `flchain` results in Appendix C.2.

The AMP trials considered HIV diagnosis by week-80 as the primary endpoint, a rare event with only 3.77% incidence. Loss to follow-up was relatively low (less than 10% per treatment arm) (Corey et al., 2021). The participants were from four regions (sites): (i) **SA**: South Africa, (ii) **OA**: other sub-Saharan African countries, (iii) **BP**: Brazil or Peru, and (iv) **US**: United States or Switzerland. Participants in (i) and (ii) were women, while those in (iii) and (iv) were cisgender men or transgender individuals, reflecting population differences. Because of event sparsity, we applied a 2-fold cross-fitting. Conditional survival and censoring functions were estimated via an ensemble of Kaplan-Meier, Cox proportional hazards regression, and survival random forests from the `survSuperLearner` package (Westling et al., 2024). Propensity scores and density ratios were estimated using ensembles of logistic regression and LASSO via `SuperLearner` (van der Laan et al., 2007). Predictors included baseline age, a standardized machine-learning-derived HIV risk score, and body weight.

Results with South Africa as target site. We highlight main results in Figure 4. Additional analyses treating OA, BP, or US as the target, as well as comparisons of regional survival curves and baseline covariates, appear in Appendix C. Table 1 shows that OA closely resembles SA, while BP and US differ markedly in baseline risk score, weight, and HIV prevalence, consistent with covariate and outcome shifts. This pattern is reflected in the federated weights: Figure 4(B) shows SA receiving the highest weights on average, followed by OA, US, and BP.

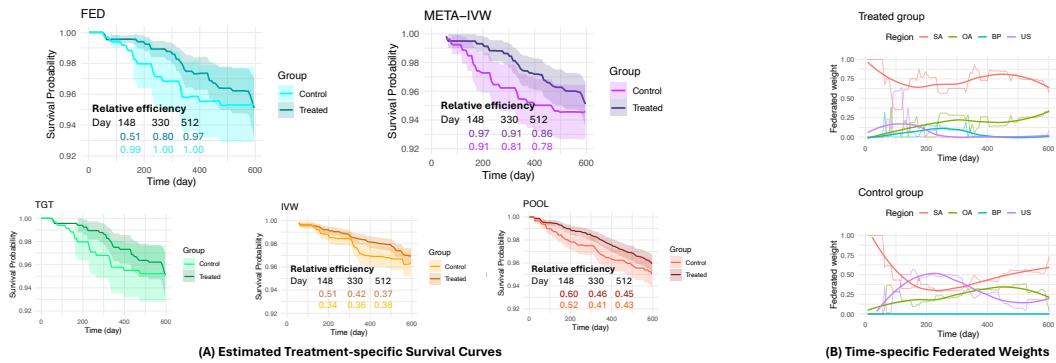


Figure 4: AMP results with SA as the target site. (A): Relative efficiency is the ratio of the estimated standard deviation to that of the TGT estimator, at 148, 330, and 512 days. (B): Federated weights with locally weighted smoothing (only a representation tool; see Cleveland & Devlin (1988)).

Figure 4(A) shows that FED, META-IVW and TGT produce similar survival curves, although META-IVW does not provide point estimates at earlier time points arising from inverses of small site-specific variances. Compared to TGT, FED offers narrower confidence intervals in some cases. In particular,

486 TGT fails to yield valid intervals at certain early time points due to unstable or unavailable variance
 487 estimates, driven by the insufficient effective sample size individuals who experience the event at
 488 those times, while FED can recover intervals by borrowing information from aligned sites. These
 489 efficiency gains mirror our simulation findings, highlighting the ability of FED to improve inference
 490 without introducing bias.

491 Although POOL and IVW exhibit lower variance (smaller relative efficiency), they deviate from the
 492 trends of TGT and FED, suggesting bias under distribution shifts. Moreover, same as META-IVW,
 493 IVW fails to return estimates at early times due to extreme weights, underscoring a practical limitation
 494 in survival applications.

496 5 DISCUSSION

497 We developed a federated learning framework for estimating treatment-specific survival functions in
 498 a target population. By leveraging external sources with potentially shifted covariate and outcome
 499 distributions, while preserving privacy, our method achieves efficiency gains under oracle selection
 500 and mild regularity conditions. In the absence of timing and censoring, our estimator reduces to the
 501 FACE estimator of Han et al. (2025) when the survival outcome is replaced by the binary indicator
 502 $\mathbb{I}(T^{(a)} > \tau)$. With censoring (i.e., missingness in this binary outcome), FACE would require
 503 modification to incorporate inverse-probability weights under a missing-at-random assumption. Our
 504 method also extends to multiple non-mergeable target sites by anchoring each one separately and
 505 solving a target-specific federated aggregation problem. When target sites are comparable (e.g.,
 506 satisfy CCOD), transfer learning may be leveraged to further improve nuisance estimation

507 **Limitations and future directions.** Several limitations suggest opportunities for future work. First,
 508 although Theorem 2.10 and our simulations demonstrate efficiency gains, developing potentially
 509 more efficient covariate-adaptive weighting schemes remains crucial. In addition, when data sharing
 510 is permitted but the CCOD assumption fails, it is unclear whether any method—including the pooled
 511 estimator—can outperform the target-only semiparametric efficient estimator (TGT in our simulation)
 512 and our federated approach. Furthermore, while our time-specific weights provide flexibility, they
 513 may yield non-smooth trajectories and incur computational costs in continuous-time settings. For
 514 a discrete evaluation time grid of size n_τ , site k transmits an $n_k \times n_\tau$ matrix of subject-level EIF
 515 evaluations. Therefore, the total communication complexity is $O(n \cdot n_\tau)$, where $n = \sum_{i=0}^{K=1} n_k$.
 516 Future work should pursue smoothing strategies to capture temporal trends more efficiently to reduce
 517 such complexity to a lower level. Moreover, we did not incorporate time-varying covariates in
 518 our current framework due to the additional challenges they pose in continuous-time settings, but
 519 extending the method to leverage post-baseline information is an important direction for future work.

520 Additionally, violations of the positivity assumption can render target estimand unidentifiable, e.g.,
 521 when the two treatment groups in some sites differ systematically in their covariate distributions,
 522 or when certain participants are ineligible for specific treatments. Future work should investigate
 523 or leverage techniques to address such violations in our framework (Cheng et al., 2022; Xue et al.,
 524 2024). Furthermore, future work should consider settings where covariates differ across sites or have
 525 limited overlap; in such cases, density ratio estimation becomes difficult and requires additional
 526 sensitivity analysis. Finally, although our density-ratio weighting effectively addresses covariate shift,
 527 investigating alternative weighting strategies, such as extending the collaborative propensity score
 528 weighting (Guo et al., 2024) to survival data, is left for future work.

529 Our framework also connects to several other extensions, including incorporating alternative estima-
 530 tors such as TMLE and C-TMLE (van der Laan & Rubin, 2006; Stitelman & van der Laan, 2010;
 531 van der Laan & Gruber, 2010), adapting to external controls settings such as FedECA (Ogier du Ter-
 532 rail et al., 2025) as well as extending their inverse probability weighted-Cox approach to incorporate
 533 EIF and ensemble learning, surrogate-assisted causal inference (Han et al., 2022; Gao et al., 2024a),
 534 dynamic treatment regimes (Zhang et al., 2013), and data-driven selection of external sources (Gao
 535 et al., 2024b). It also opens opportunities for constructing two-sided conformalized prediction inter-
 536 vals for event times by leveraging the EIF-based conformal scores for survival outcomes developed
 537 (Farina et al., 2025) with federated learning for predicting missing outcomes (Liu et al., 2024). Our
 538 approach could be adapted to other estimands such as restricted mean survival time (Han, 2023),
 539 competing risks (Lok et al., 2018) or left-truncation (Han, 2024; Wang et al., 2024).

540
541 ETHICS STATEMENT

542 This work complies with the ICLR Code of Ethics. We used only publicly available datasets with
 543 appropriate licenses and did not involve human subjects or sensitive personal information. We
 544 acknowledge potential risks of misuse (e.g., unfair application, misinterpretation, or unintended
 545 deployment beyond the intended research scope) and discuss limitations and safeguards in the paper.
 546 All results are reported transparently, and code will be released to support reproducibility.

547
548 REPRODUCIBILITY STATEMENT
549

550 All simulation studies and real data analyses were performed using the statistical language R
 551 (version 4.4.2). The dependent R packages include: `CFsurvival`, `survSuperLearner`,
 552 `superLearner` (version 2.0.29), `glmnet` (version 4.1.8), `caret` (version 6.0.94) and
 553 `tidyverse` (version 2.0.0). To enhance computational efficiency, parallel computing packages
 554 `foreach` (version 1.5.2) and `doParallel` (version 1.0.17) were employed. The replication of
 555 simulations was carried out using 200 CPU cores by a high performance computing cluster.

556 We provide an anonymous GitHub repository containing all code for our simulations and data
 557 analysis: <https://anonymous.4open.science/r/FuseSurvSubmission-3D16/README.md>. All source code and software (R package) will be made publicly available through the
 558 author's Github upon acceptance of the paper.

559 The two real datasets are publicly available. The AMP trial data can be found at <https://atlas.scharp.org/project/HVTN%20Public%20Data/HVTN%20704%20HPTN%20085%20and%20HVTN%20703%20HPTN%20081%20AMP/begin.view>, and the “flchain”
 560 data can be found at <https://rdrr.io/cran/survival/man/flchain.html> or by
 561 typing command `data(flchain)` in R after loading the `survival` R package.

562
563 REFERENCES

564 Alejandro Almodóvar, Juan Parras, and Santiago Zazo. Propensity weighted federated learning for
 565 treatment effect estimation in distributed imbalanced environments. *Computers in Biology and
 566 Medicine*, 178:108779, 2024.

567 Alberto Archetti, Eugenio Lomurno, Francesco Lattari, André Martin, and Matteo Matteucci. Hetero-
 568 geneous datasets for federated survival analysis simulation. In *Companion of the 2023 ACM/SPEC
 569 International Conference on Performance Engineering*, pp. 173–180, 2023.

570 Peter C Austin. Generating survival times to simulate cox proportional hazards models with time-
 571 varying covariates. *Statistics in medicine*, 31(29):3946–3958, 2012.

572 Xiaofei Bai, Anastasios A Tsiatis, and Sean M O’Brien. Doubly-robust estimators of treatment-
 573 specific survival distributions in observational studies with stratified sampling. *Biometrics*, 69(4):
 574 830–839, 2013.

575 Peter J Bickel, Chris AJ Klaassen, Peter J Bickel, Ya’acov Ritov, J Klaassen, Jon A Wellner, and
 576 YA’Acov Ritov. *Efficient and adaptive estimation for semiparametric models*, volume 4. Springer,
 577 1993.

578 Michael Borenstein, Larry V Hedges, Julian PT Higgins, and Hannah R Rothstein. *Introduction to
 579 meta-analysis*. John wiley & sons, 2021.

580 Kate Bull and David J Spiegelhalter. Tutorial in biostatistics survival analysis in observational studies.
 581 *Statistics in medicine*, 16(9):1041–1074, 1997.

582 Zhiqiang Cao, Youngjoo Cho, and Fan Li. Transporting randomized trial results to estimate counter-
 583 factual survival functions in target populations. *Pharmaceutical Statistics*, 2024.

584 Chao Cheng, Fan Li, Laine E Thomas, and Fan Li. Addressing extreme propensity scores in estimating
 585 counterfactual survival functions via the overlap weights. *American journal of epidemiology*, 191
 586 (6):1140–1151, 2022.

594 Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whit-
 595 ney Newey, and James Robins. Double/debiased machine learning for treatment and structural
 596 parameters. *The Econometrics Journal*, 2018.

597

598 William S Cleveland and Susan J Devlin. Locally weighted regression: an approach to regression
 599 analysis by local fitting. *Journal of the American statistical association*, 83(403):596–610, 1988.

600 Bénédicte Colnet, Imke Mayer, Guanhua Chen, Awa Dieng, Ruohong Li, Gaël Varoquaux, Jean-
 601 Philippe Vert, Julie Josse, and Shu Yang. Causal inference methods for combining randomized
 602 trials and observational studies: a review. *Statistical science*, 39(1):165–191, 2024.

603

604 Lawrence Corey, Peter B Gilbert, Michal Juraska, David C Montefiori, Lynn Morris, Shelly T Karuna,
 605 Srilatha Edupuganti, Nyaradzo M Mgodi, Allan C Decamp, Erika Rudnicki, et al. Two randomized
 606 trials of neutralizing antibodies to prevent hiv-1 acquisition. *New England Journal of Medicine*,
 607 384(11):1003–1014, 2021.

608

609 David R Cox. Regression models and life-tables. *Journal of the Royal Statistical Society: Series B*
 (Methodological), 34(2):187–202, 1972.

610

611 Yifan Cui, Michael R Kosorok, Erik Sverdrup, Stefan Wager, and Ruojing Zhu. Estimating heteroge-
 612 neous treatment effects with right-censored data via causal survival forests. *Journal of the Royal*
 613 *Statistical Society Series B: Statistical Methodology*, 85(2):179–211, 2023.

614

615 Rebecca DerSimonian and Nan Laird. Meta-analysis in clinical trials. *Controlled clinical trials*, 7(3):
 177–188, 1986.

616

617 Iván Díaz. *survtmleRCT: Efficiency guarantees for covariate adjustment in RCTs with survival out-
 618 comes*, 2020. URL <https://github.com/idiatzst/survtmleRCT>. R package version
 619 1.0.0.

620

621 Iván Díaz, Elizabeth Colantuoni, Daniel F Hanley, and Michael Rosenblum. Improved precision in
 622 the analysis of randomized trials with survival outcomes, without assuming proportional hazards.
Lifetime data analysis, 25:439–468, 2019.

623

624 Angela Dispenzieri, Jerry A Katzmann, Robert A Kyle, Dirk R Larson, Terry M Therneau, Colin L
 625 Colby, Raynell J Clark, Graham P Mead, Shaji Kumar, L Joseph Melton III, et al. Use of nonclonal
 626 serum immunoglobulin free light chains to predict overall survival in the general population. In
Mayo Clinic Proceedings, volume 87, pp. 517–523. Elsevier, 2012.

627

628 Xianqiu Fan, Jun Cheng, Hailing Wang, Bin Zhang, and Zhenzhen Chen. A fast trans-lasso algorithm
 629 with penalized weighted score function. *Computational Statistics & Data Analysis*, 192:107899,
 630 2024.

631

632 Rebecca Farina, Eric J Tchetgen Tchetgen, and Arun Kumar Kuchibhotla. Doubly robust and
 633 efficient calibration of prediction sets for censored time-to-event outcomes. *arXiv preprint*
 634 *arXiv:2501.04615*, 2025.

635

636 Chenyin Gao, Peter B Gilbert, and Larry Han. On the role of surrogates in conformal inference of
 637 individual causal effects. *arXiv preprint arXiv:2412.12365*, 2024a.

638

639 Chenyin Gao, Shu Yang, Mingyang Shan, Wenyu YE, Ilya Lipkovich, and Douglas Faries. Improving
 640 randomized controlled trial analysis via data-adaptive borrowing. *Biometrika*, pp. asae069, 2024b.

641

642 Richard D Gill and Soren Johansen. A survey of product-integration with a view toward application
 643 in survival analysis. *The annals of statistics*, 18(4):1501–1555, 1990.

644

645 Tianyu Guo, Sai Praneeth Karimireddy, and Michael I Jordan. Collaborative heterogeneous causal
 646 inference beyond meta-analysis. *arXiv preprint arXiv:2404.15746*, 2024.

647

648 Larry Han. Breaking free from the hazard ratio: Embracing the restricted mean survival time in
 649 clinical trials, 2023.

650

651 Larry Han. Truncated, not forgotten—handling left truncation in time-to-event studies, 2024.

648 Larry Han, Xuan Wang, and Tianxi Cai. Identifying surrogate markers in real-world comparative
 649 effectiveness research. *Statistics in Medicine*, 41(26):5290–5304, 2022.
 650

651 Larry Han, Zhu Shen, and Jose Zubizarreta. Multiply robust federated estimation of targeted average
 652 treatment effects. *Advances in Neural Information Processing Systems*, 36:70453–70482, 2023.
 653

654 Larry Han, Yige Li, Bijan Niknam, and José R Zubizarreta. Privacy-preserving, communication-
 655 efficient, and target-flexible hospital quality measurement. *The Annals of Applied Statistics*, 18(2):
 656 1337–1359, 2024.
 657

658 Larry Han, Jue Hou, Kelly Cho, Rui Duan, and Tianxi Cai. Federated adaptive causal estimation
 659 (face) of target treatment effects. *Journal of the American Statistical Association*, (just-accepted):
 660 1–25, 2025.
 661

662 Miguel A Hernán. The hazards of hazard ratios. *Epidemiology*, 21(1):13–15, 2010.
 663

664 Beilin Jia, Donglin Zeng, Jason JZ Liao, Guanghan F Liu, Xianming Tan, Guoqing Diao, and
 665 Joseph G Ibrahim. Inferring latent heterogeneity using many feature variables supervised by
 666 survival outcome. *Statistics in medicine*, 40(13):3181–3195, 2021.
 667

668 Edward L Kaplan and Paul Meier. Nonparametric estimation from incomplete observations. *Journal
 669 of the American statistical association*, 53(282):457–481, 1958.
 670

671 Rémi Khellaf, Aurélien Bellet, and Julie Josse. Federated causal inference from multi-site observa-
 672 tional data via propensity score aggregation. 2025.
 673

674 Robert A Kyle, Terry M Therneau, S Vincent Rajkumar, Dirk R Larson, Matthew F Plevak, Janice R
 675 Offord, Angela Dispenzieri, Jerry A Katzmann, and L Joseph Melton III. Prevalence of monoclonal
 676 gammopathy of undetermined significance. *New England Journal of Medicine*, 354(13):1362–1369,
 677 2006.
 678

679 Dasom Lee, Shu Yang, and Xiaofei Wang. Doubly robust estimators for generalizing treatment
 680 effects on survival outcomes from randomized controlled trials to a target population. *Journal of
 681 Causal Inference*, 10(1):415–440, 2022.
 682

683 Fan Li and Fan Li. Using propensity scores for racial disparities analysis. *Observational Studies*, 9
 684 (1):59–68, 2023.
 685

686 Sai Li, Tianxi Cai, and Rui Duan. Targeting underrepresented populations in precision medicine: A
 687 federated transfer learning approach. *The Annals of Applied Statistics*, 17(4):2970–2992, 2023.
 688

689 Sijia Li and Alex Luedtke. Efficient estimation under data fusion. *Biometrika*, 110(4):1041–1054,
 690 2023.
 691

692 Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
 693 algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
 694 gradient descent. *Advances in neural information processing systems*, 30, 2017.
 695

696 Jiajun Liu, Yi Liu, Yunji Zhou, and Roland A Matsouaka. Assessing racial disparities in healthcare
 697 expenditure using generalized propensity score weighting. *BMC Medical Research Methodology*,
 698 25(1):64, 2025.
 699

700 Yi Liu, Alexander W Levis, Sharon-Lise Normand, and Larry Han. Multi-source conformal inference
 701 under distribution shift. *Proceedings of machine learning research*, 235:31344–31382, 2024.
 702

703 Judith J Lok, Shu Yang, Brian Sharkey, and Michael D Hughes. Estimation of the cumulative
 704 incidence function under multiple dependent and independent censoring mechanisms. *Lifetime
 705 data analysis*, 24:201–223, 2018.
 706

707 Disha Makhija, Joydeep Ghosh, and Yejin Kim. Federated learning for estimating heterogeneous
 708 treatment effects. *arXiv preprint arXiv:2402.17705*, 2024.
 709

710 Fulgencio Marín-Martínez and Julio Sánchez-Meca. Weighting by inverse variance or by sample
 711 size in random-effects meta-analysis. *Educational and Psychological Measurement*, 70(1):56–73,
 712 2010.

702 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 703 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, pp. 1273–1282. PMLR, 2017.
 704

705 Chirag Nagpal, Vedant Sanil, and Artur Dubrawski. Recovering sparse and interpretable subgroups
 706 with heterogeneous treatment effects with censored time-to-event outcomes. *arXiv preprint arXiv:2302.12504*, 2023.
 707

708 Xi Ning, Yinghao Pan, Yanqing Sun, and Peter B Gilbert. A semiparametric cox–aalen transformation
 709 model with censored data. *Biometrics*, 79(4):3111–3125, 2023.
 710

711 Jean Ogier du Terrail, Quentin Klopfenstein, Honghao Li, Imke Mayer, Nicolas Loiseau, Mohammad
 712 Hallal, Michael Debouver, Thibault Camalon, Thibault Fouqueray, Jorge Arellano Castro, et al.
 713 Fedeca: federated external control arms for causal inference with time-to-event data in distributed
 714 settings. *Nature Communications*, 16(1):7496, 2025.
 715

716 Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational
 717 studies for causal effects. *Biometrika*, 70(1):41–55, 1983.
 718

719 Ori M Stitelman and Mark J van der Laan. Collaborative targeted maximum likelihood for time to
 720 event data. 6(1):1–46, 2010.
 721

722 Mark J van der Laan and Susan Gruber. Collaborative double robust targeted maximum likelihood
 723 estimation. *The International Journal of Biostatistics*, 6(1):1–71, 2010.
 724

725 Mark J van der Laan and Daniel Rubin. Targeted maximum likelihood learning. *The International
 Journal of Biostatistics*, 2(1), 2006.
 726

727 Mark J van der Laan, Eric C Polley, and Alan E Hubbard. Super learner. *Statistical applications in
 genetics and molecular biology*, 6(1):1–21, 2007.
 728

729 AW Van der Vaart and JA Wellner. *Weak Convergence and Empirical Processes*. Springer & Verlag
 730 New York, 1996.
 731

732 Yuyao Wang, Andrew Ying, and Ronghui Xu. Doubly robust estimation under covariate-induced
 733 dependent left truncation. *Biometrika*, pp. asae005, 2024.
 734

735 Lan Wen, Jon A Steingrimsson, Sarah E Robertson, and Issa J Dahabreh. Multi-source analyses of
 736 average treatment effects with failure time outcomes. *Lifetime Data Analysis*, pp. 1–29, 2025.
 737

738 Ted Westling, Mark J van der Laan, and Marco Carone. Correcting an estimator of a multivariate
 739 monotone function with isotonic regression. *Electronic journal of statistics*, 14(2):3032, 2020.
 740

741 Ted Westling, Alex Luedtke, Peter B Gilbert, and Marco Carone. Inference for treatment-specific
 742 survival curves using machine learning. *Journal of the American Statistical Association*, 119(546):
 743 1541–1553, 2024.
 744

745 Charles J Wolock, Peter B Gilbert, Noah Simon, and Marco Carone. A framework for leveraging
 746 machine learning tools to estimate personalized survival curves. *Journal of Computational and
 747 Graphical Statistics*, pp. 1–11, 2024.
 748

749 Jun Xie and Chaofeng Liu. Adjusted kaplan–meier estimator and log-rank test with inverse probability
 750 of treatment weighting for survival data. *Statistics in medicine*, 24(20):3089–3110, 2005.
 751

752 Ruoxuan Xiong, Allison Koenecke, Michael Powell, Zhu Shen, Joshua T Vogelstein, and Susan
 753 Athey. Federated causal inference in heterogeneous observational data. *Statistics in Medicine*, 42
 754 (24):4418–4439, 2023.
 755

756 Wu Xue, Xiaoke Zhang, Kwun Chuen Gary Chan, and Raymond KW Wong. Rkhs-based covariate
 757 balancing for survival causal effect estimation. *Lifetime Data Analysis*, 30(1):34–58, 2024.
 758

759 Shu Yang and Peng Ding. Combining multiple observational data sources to estimate causal effects.
 760 *Journal of the American Statistical Association*, 2019.

756 Baqun Zhang, Anastasios A Tsiatis, Eric B Laber, and Marie Davidian. Robust estimation of optimal
757 dynamic treatment regimes for sequential treatment decisions. *Biometrika*, 100(3):681–694, 2013.
758

759 Hui Zou. The adaptive lasso and its oracle properties. *Journal of the American statistical association*,
760 101(476):1418–1429, 2006.

761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 **A USE OF LLMs**
 811

812 We acknowledge the use of ChatGPT-5.0 exclusively for language polishing and grammatical correc-
 813 tions. No large language models (LLMs) were used for any other aspects of this work. The research
 814 ideas, conceptualization, methodology development, and all experiments are entirely original contrib-
 815 utions of the authors.

817 **B SIMULATION DETAILS AND ADDITIONAL RESULTS**
 818

819 **B.1 DETAILS OF DATA GENERATING PROCESS**
 820

821 Three covariates X_1 , X_2 , and X_3 are sampled as transformations of Beta random variables with
 822 site-specific parameters:

823
$$X_1 \sim 33 \cdot \text{Beta}(1.1 - 0.05\gamma(k), 1.1 + 0.2\gamma(k)) + 9 + 2\gamma(k),$$

 824
$$X_2 \sim 52 \cdot \text{Beta}(1.5 + (X_1 + 0.5\gamma(k))/20, 4 + 2\gamma(k)) + 7 + 2\gamma(k),$$

 825
$$X_3 \sim (4 + 2\gamma(k)) \cdot \text{Beta}(1.5 + |X_1 - 50 + 3\gamma(k)|/20, 3 + 0.1\gamma(k)),$$

826 where $\gamma(k)$ represents some function of site k , specified later. We then generate the treatment
 827 assignment probabilities $\pi(\mathbf{X})$ using the logistic function:

828
$$\text{logit}(\pi(\mathbf{X})) = -1.05 + \log(1.3 + \exp(-12 + X_1/10) + \exp(-2 + X_2/3) + \exp(-2 + X_3/12))$$

829 and treatments A are sampled as $A \sim \text{Bernoulli}(\pi(\mathbf{X}))$. For the scenario with limited propensity
 830 score overlap in the target site, we modify the target-site propensity score model $\pi(\mathbf{X})$ to such that

831
$$\text{logit}(\pi(\mathbf{X})) = -1.05 + \log(0.3 + \exp(-120 + X_1) + \exp(-6 + X_2) + \exp(-6 + X_3/4)),$$

832 and generate $A \sim \text{Bernoulli}(\pi(\mathbf{X}))$ accordingly for target-site samples only. This increases the
 833 dependence of A on \mathbf{X} and induces reduced overlap.

834 Next, we consider the mechanisms of event and censoring times. The hazard rates for event times
 835 and censoring times are given by the following $\exp(h_t)$ and $\exp(h_c)$, respectively, where $h_t =$
 836 $-5.02 + 0.1(X_1 - 25) - 0.1(X_2 - 25) + 0.05(X_3 - 2) + D_T(k) \cdot 0.1(X_2 - 25) + A \cdot \delta_T(k) \cdot$
 837 $0.1(X_1 + X_2 + X_3 - 50)$, and $h_c = -4.87 + 0.01(X_1 - 25) - 0.02(X_2 - 25) + 0.01(X_3 - 2) -$
 838 $D_C(k) \cdot 0.1(X_2 - 25) + A \cdot \delta_C(k) \cdot 0.1(X_1 + X_2 + X_3 - 50)$.

839 Here, $D_T(k)$, $D_C(k)$, $\delta_T(k)$ and $\delta_C(k)$ are some site-specific indicators, specified later, for varying
 840 the treatment effects and trends of survival curves for different sites. Then, event times and censoring
 841 times are sampled as:

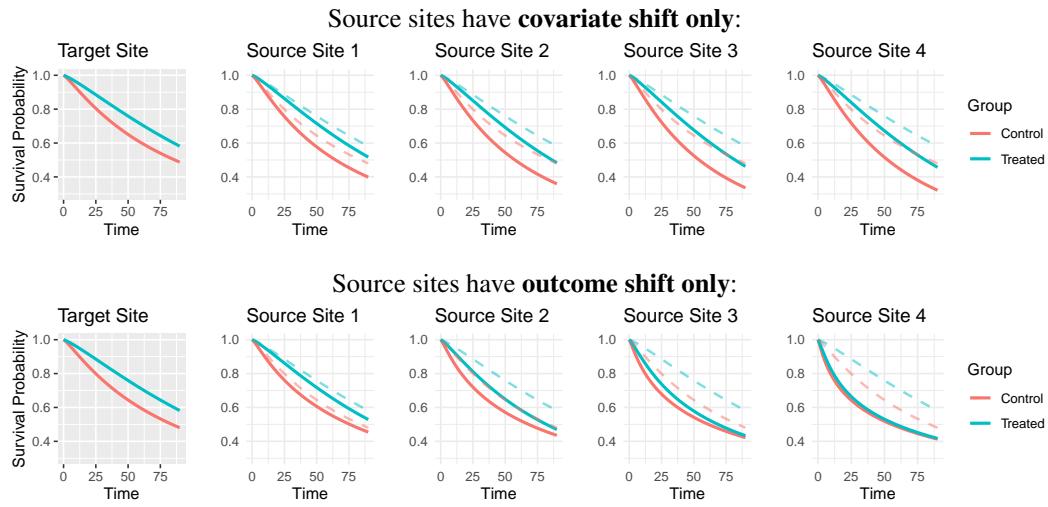
842
$$T = \left(-\frac{\log(U_1)}{\exp(h_t) \cdot \lambda} \right)^{1/\rho}, \quad C = \left(-\frac{\log(U_2)}{\exp(h_c) \cdot \lambda} \right)^{1/\rho},$$

843 with $\rho = 1.2$, $\lambda = 0.6$, and $U_1, U_2 \sim \text{Uniform}(0, 1)$. This technique follows Austin (2012). Thus,
 844 the observed times and event indicators are $Y = \min(T, C)$, $\Delta = \mathbb{I}(T \leq C)$, respectively.

845 Under this data generating process (DGP), the event time is generated to mimic days in a year (365
 846 days), and we truncate the censoring time at $\tau = 200$ days to mimic the end of follow-up in survival
 847 analysis. Our DGP allows the following scenarios based on site-specific distributional heterogeneity:

- 848 • **Homogeneous:** Homogeneous covariates and hazard rates across sites. We let $\gamma(k) =$
 $849 D_T(k) = D_C(k) = \delta_T(k) = \delta_C(k) = 0$ for $k = 0, 1, \dots, 4$.
- 850 • **Covariate Shift:** Covariates X_1 , X_2 , and X_3 vary across sites. We let $\gamma(k) = k$ and
 $851 D_T(k) = D_C(k) = \delta_T(k) = \delta_C(k) = 0$, for $k = 0, 1, \dots, 4$.
- 852 • **Outcome Shift:** Conditional outcome distribution varies across sites. We assign $\gamma(k) = 0$,
 $853 D_T(k) = \delta_T(k) = k$, and $D_C(k) = \delta_C(k) = 0$ for $k = 0, 1, \dots, 4$.
- 854 • **Censoring Shift:** Censoring mechanism varies across sites. We let $\gamma(k) = 0$, $D_T(k) =$
 $855 \delta_T(k) = 0$ and $D_C(k) = \delta_C(k) = k$, for $k = 0, 1, \dots, 4$.
- 856 • **All Shift:** Covariates and both event and censoring effects vary across sites. We let $\gamma(k) =$
 $857 D_T(k) = D_C(k) = \delta_T(k) = \delta_C(k) = k$, for $k = 0, 1, \dots, 4$.

864
 865 Figure 5 below plots the true treatment-specific survival curves under the Covariate Shift and Outcome
 866 Shift scenarios, as defined by our designed DGPs, to illustrate the effect of site differences on survival
 867 outcomes.



885 Figure 5: Site- and treatment-specific survival curves, each based on a random sample of $n = 10^4$
 886 from the true DGP of each site. The two dashed curves in each source site panel are the target site
 887 survival functions for reference. Under covariate shift, curves preserve their shapes and trends but
 888 differ in scale, whereas outcome shift produces marked changes in shape and treatment effects.

891 B.2 PERFORMANCE CRITERIA DEFINITIONS

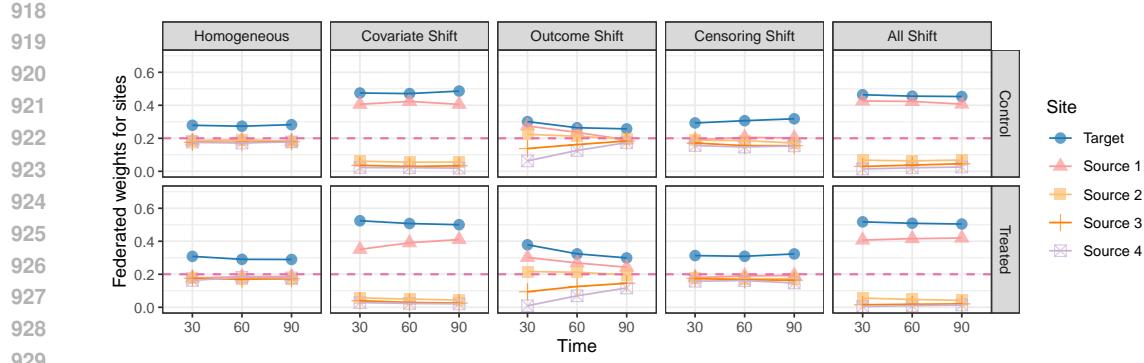
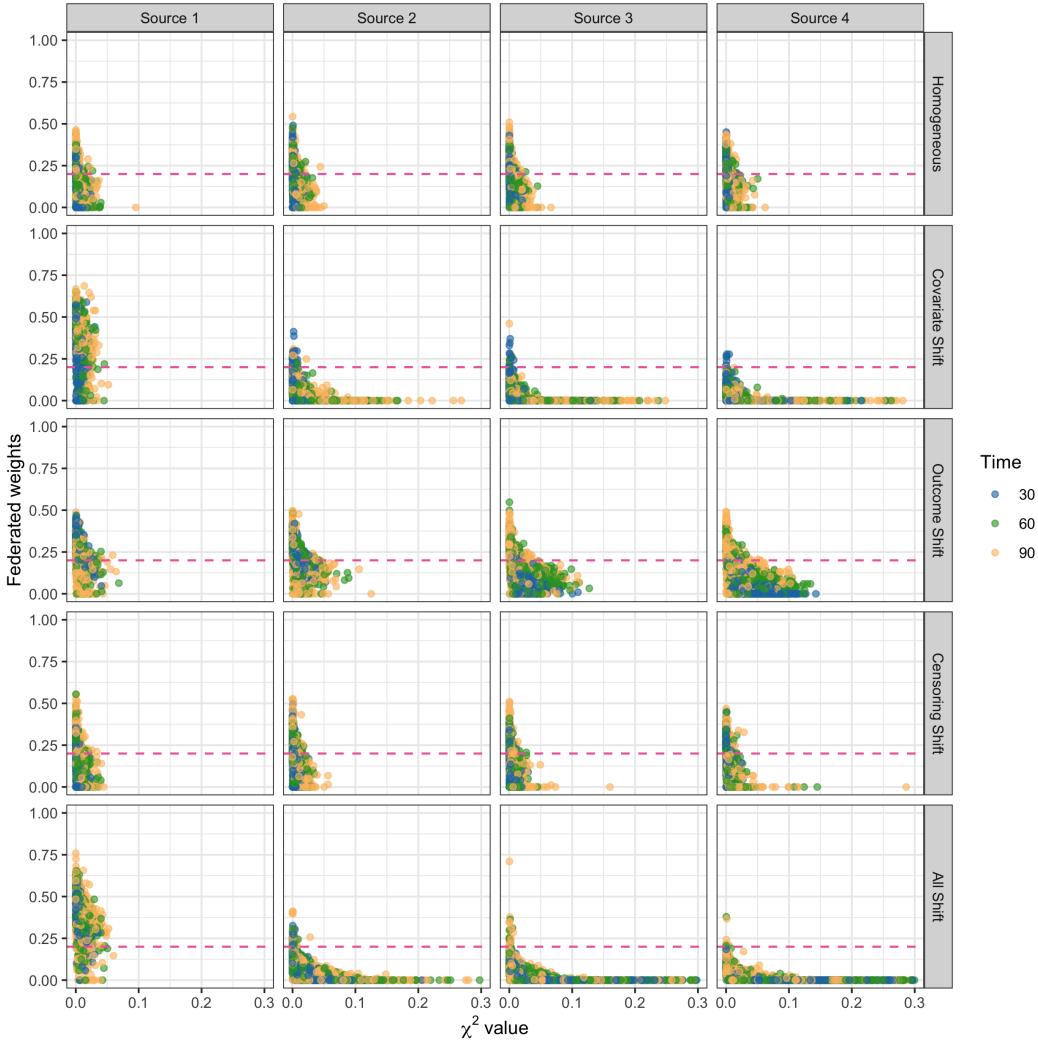
893 The simulation performance criteria considered in Section 3.2 with an additional metric 95% confidence
 894 interval (CI) width for the complete simulation results are defined as follows.

895 Let θ denote the true target parameter, and let $\hat{\theta}_i$ and $\hat{\sigma}_i$ be the point and standard error estimates,
 896 respectively, from the i th Monte Carlo replication of a competing method, $i = 1, \dots, 500$. Then:

- 897 • **Estimation bias:** $\hat{\theta}_i - \theta$, $i = 1, \dots, 500$, summarized via boxplots;
- 900 • **RRMSE:** the RMSE of a method relative to that of the TGT estimator, where $\text{RMSE} = \sqrt{500^{-1} \sum_{i=1}^{500} (\hat{\theta}_i - \theta)^2}$. By definition, the TGT estimator has $\text{RRMSE} = 1$. Smaller RRMSE values indicate higher efficiency relative to TGT;
- 904 • **CP%:** the proportion of replications in which the Wald-type CI contains θ : $100\% \times 500^{-1} \sum_{i=1}^{500} \mathbb{I}\{\theta \in [\hat{\theta}_i - 1.96\hat{\sigma}_i, \hat{\theta}_i + 1.96\hat{\sigma}_i]\}$. The closer CP% is to 95, the more reliable the inference based on $\hat{\sigma}_i$; and
- 908 • **95% CI width:** the average CI width across replications, where the CI from the i th replication is $\hat{\theta}_i \pm 1.96, \hat{\sigma}_i$. Thus, CI width = $3.92 \times 500^{-1} \sum_{i=1}^{500} \hat{\sigma}_i$.

912 B.3 COMPLETE SIMULATION RESULTS

914 Figures 6–7 summarize the results comparing the federated and source-site shifts, as well as the
 915 corresponding discrepancy values ($\hat{\chi}_{n,t,a}^k$)². Figures 8–9 report the full simulation results under
 916 good target-site propensity score overlap for varying source sample sizes. Figure 11 shows the
 917 corresponding results under limited target-site overlap, where FED consistently achieves higher
 918 relative efficiency compared with TGT.



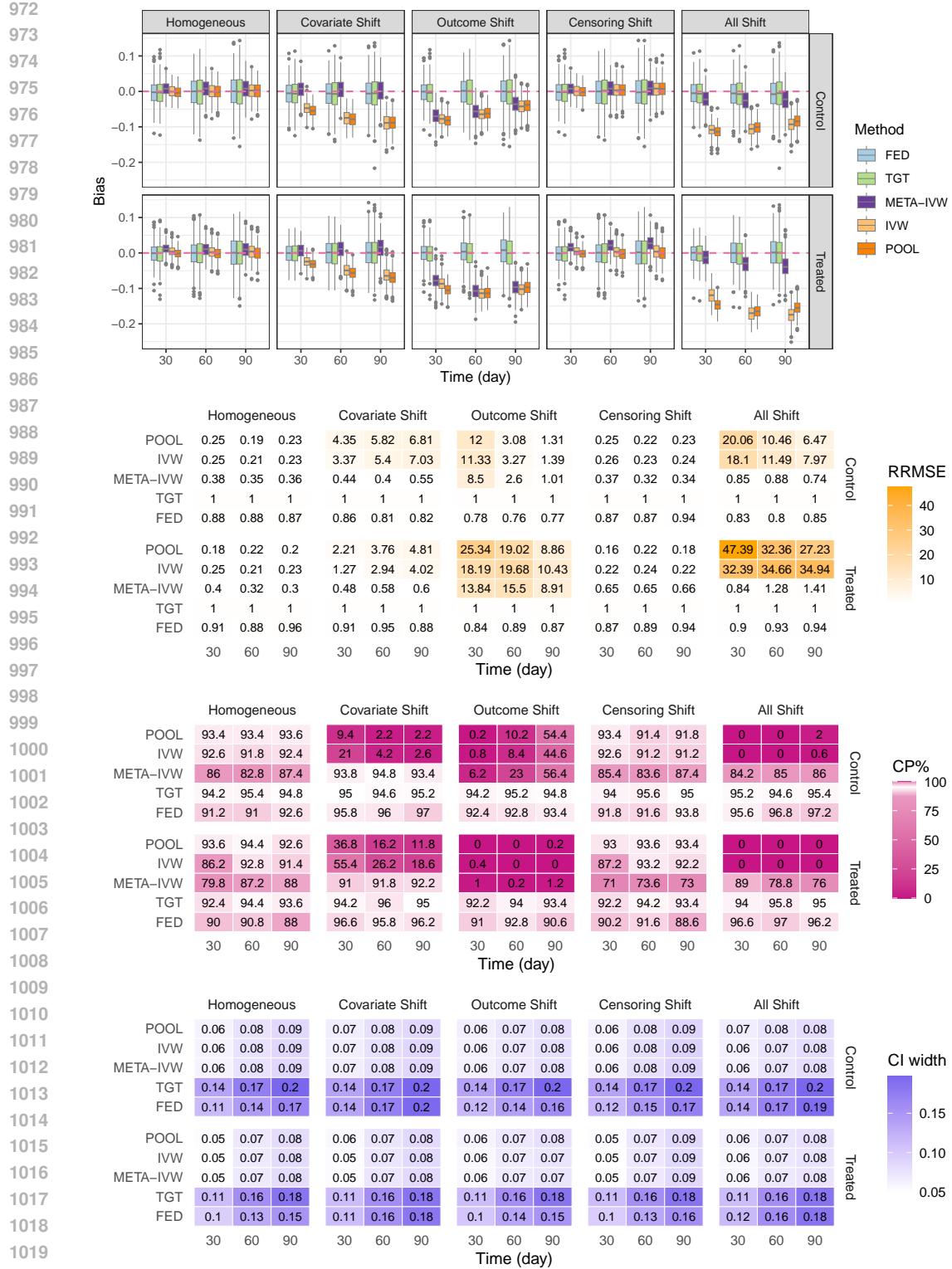


Figure 8: Estimation bias (boxplots), relative root mean square error (RRMSE) compared to TGT, coverage probability (CP%) with 95% nominal coverage level, and width of 95% CI under $n_k = 300$ ($k = 1, 2, 3, 4$), with good propensity score overlap in the target site, evaluated at days 30, 60 and 90 in simulation.

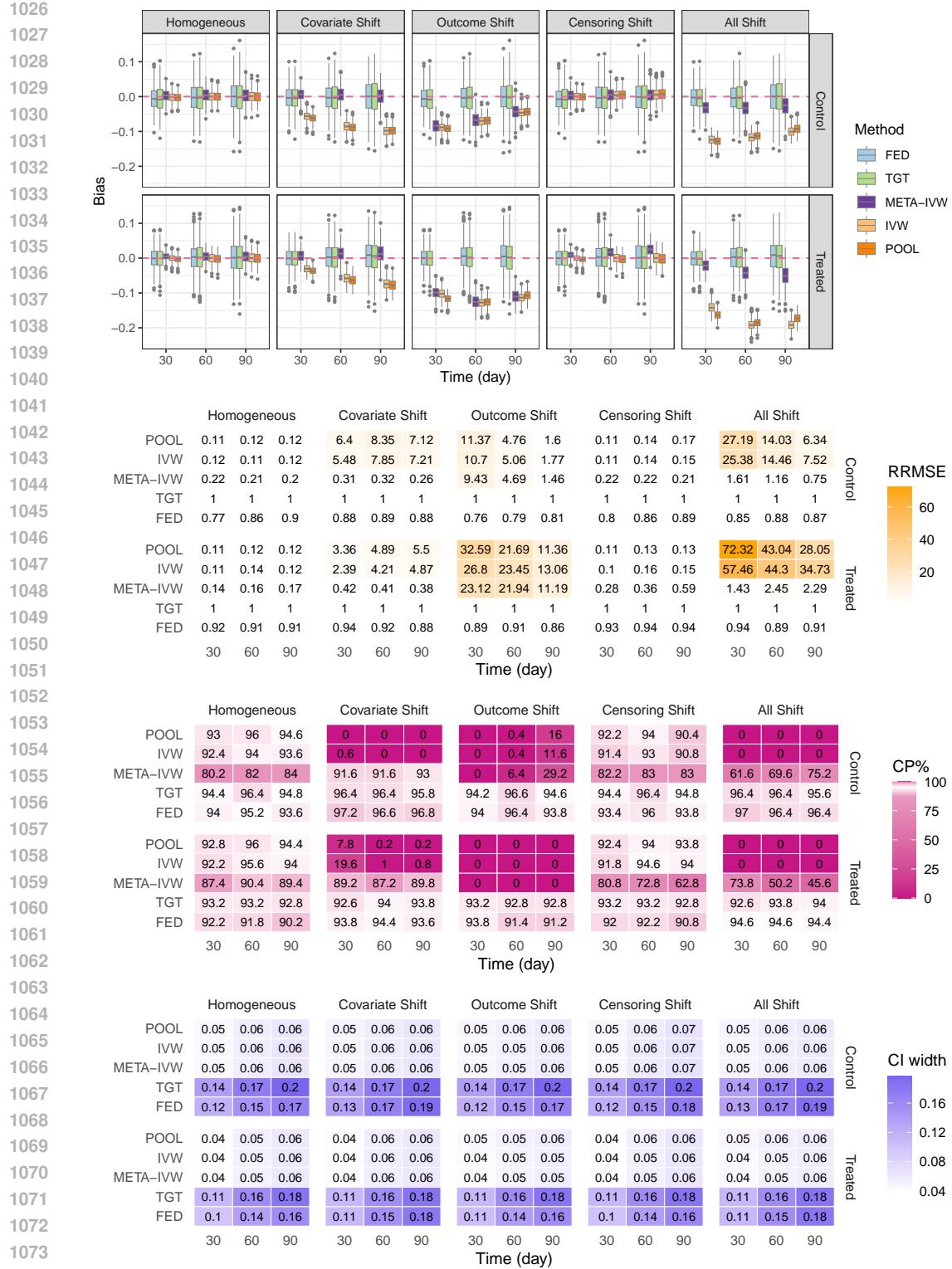


Figure 9: Estimation bias (boxplots), relative root mean square error (RRMSE) compared to TGT, coverage probability (CP%) with 95% nominal coverage level, and width of 95% CI under $n_k = 600$ ($k = 1, 2, 3, 4$), with good propensity score overlap in the target site, evaluated at days 30, 60 and 90 in simulation.

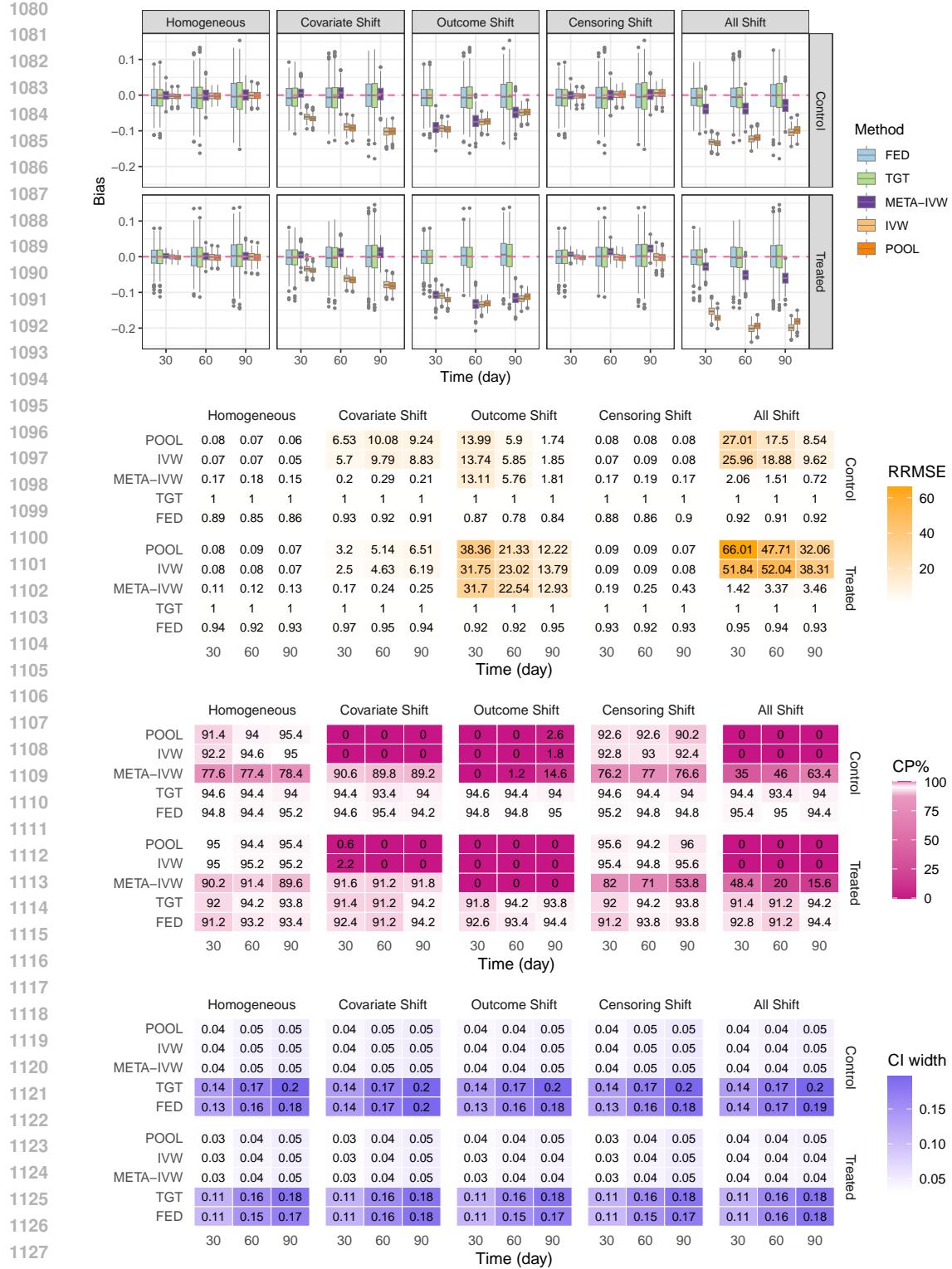


Figure 10: Estimation bias (boxplots), relative root mean square error (RRMSE) compared to TGT, coverage probability (CP%) with 95% nominal coverage level, and width of 95% CI under $n_k = 1000$ ($k = 1, 2, 3, 4$), with good propensity score overlap in the target site, evaluated at days 30, 60 and 90 in simulation.

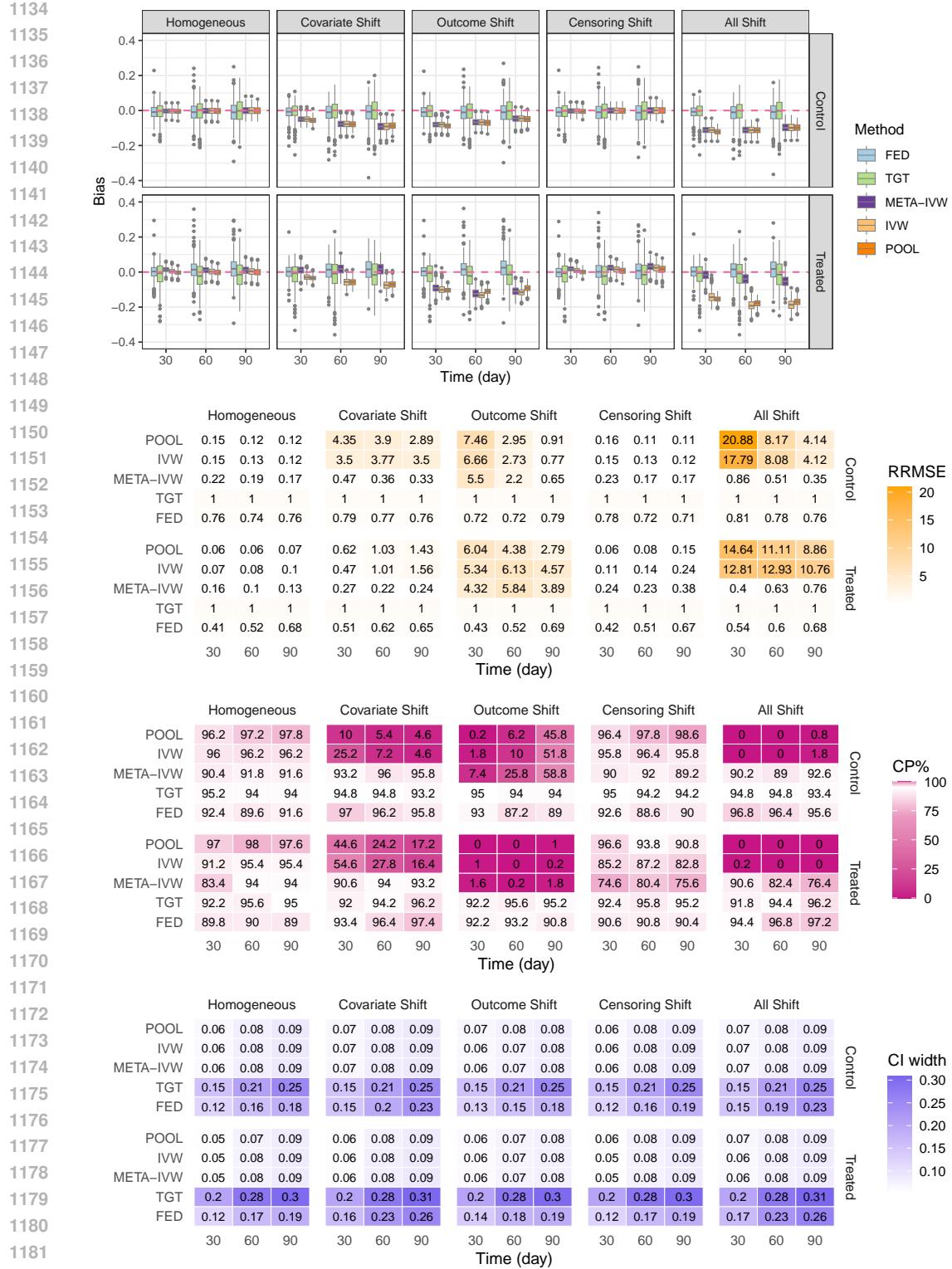


Figure 11: **Estimation bias** (boxplots), **relative root mean square error** (RRMSE) compared to TGT, **coverage probability** (CP%) with 95% nominal coverage level, and **width of 95% CI** under $n_k = 300$ ($k = 1, 2, 3, 4$), with limited propensity score overlap in the target site, evaluated at days 30, 60 and 90 in simulation.

1188 C ADDITIONAL RESULTS FOR REAL DATA ANALYSIS

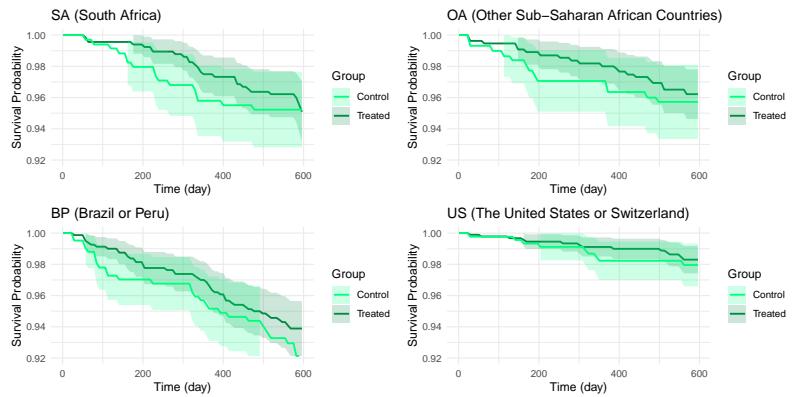
1190 C.1 AMP TRIAL DATA

1192 Table 1 presents summary statistics for baseline covariates and outcomes in the AMP trial data,
 1193 stratified by region and treatment group. Comparing the treatment groups—both overall and within
 1194 each region—we observe that the treated group consistently shows a lower average event proportion.
 1195 Additionally, some covariates appear to shift across regions; for example, among treated participants,
 1196 the standardized risk scores exhibit notably different means when comparing SA to BP and US.

	Treated (bnAb) group				
	Total (n = 3,076)	SA (n = 679)	OA (n = 608)	BP (n = 846)	US (n = 943)
Age (year) at baseline	25.9 (4.60)	27.0 (5.19)	25.4 (4.59)	25.1 (3.70)	26.2 (4.68)
Standardized risk score	0.0 (1.00)	-0.01 (1.00)	0.02 (1.00)	0.76 (0.67)	-0.68 (0.71)
Weight at baseline (kg)	72.8 (15.64)	68.8 (14.24)	65.2 (12.63)	70.9 (12.42)	82.3 (16.43)
HIV diagnosis by week-80	107 (3.48%)	27 (3.98%)	20 (3.29%)	46 (5.44%)	14 (1.49%)
	Control (placebo) group				
	Total (n = 1,535)	SA (n = 340)	OA (n = 297)	BP (n = 428)	US (n = 470)
Age (year) at baseline	25.9 (4.72)	26.6 (5.28)	25.4 (4.78)	25.2 (3.94)	26.1 (3.79)
Standardized risk score	0.0 (1.00)	0.02 (0.92)	-0.02 (0.98)	0.75 (0.67)	-0.68 (0.73)
Weight at baseline (kg)	72.5 (16.35)	67.6 (14.77)	65.1 (13.64)	71.1 (12.84)	81.8 (17.5)
HIV diagnosis by week-80	67 (4.36%)	16 (4.71%)	13 (4.38%)	29 (6.78%)	9 (1.91%)

1213 Table 1: Summary statistics of AMP trial data by treatment group and region. The standardized risk
 1214 score is a baseline score built by machine learning models (Corey et al., 2021) that is predictive to the
 1215 time-to-event outcome. Age, standardized risk score and weight are summarized by mean (standard
 1216 deviation), while the HIV diagnosis by week-80 is summarized by count (percentage).

1217
 1218 In Figure 12, we plot the region-specific survival curves of all the 4 regions we considered (SA,
 1219 OA, BP and US) for a direct comparison on region heterogeneity, using their target-site-only (TGT)
 1220 estimators, to showcase the heterogeneous effects of the bnAb antibody treatment on different target
 1221 populations.



1223
 1224 Figure 12: Estimated region-specific survival curves of the HVTN 704/HPTN 085 and HVTN
 1225 703/HPTN 081 trials. SA (our target region in the main text) and OA exhibit relatively similar
 1226 curves, indicating less heterogeneity of these two regions. In contrast, both BP and US regions
 1227 show significant differences to SA, which also confirms why they often have small or zero federated
 1228 weights in Panel (B) of Figure 4 in the main text. The BP and US also show a substantial difference
 1229 on their curves.

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

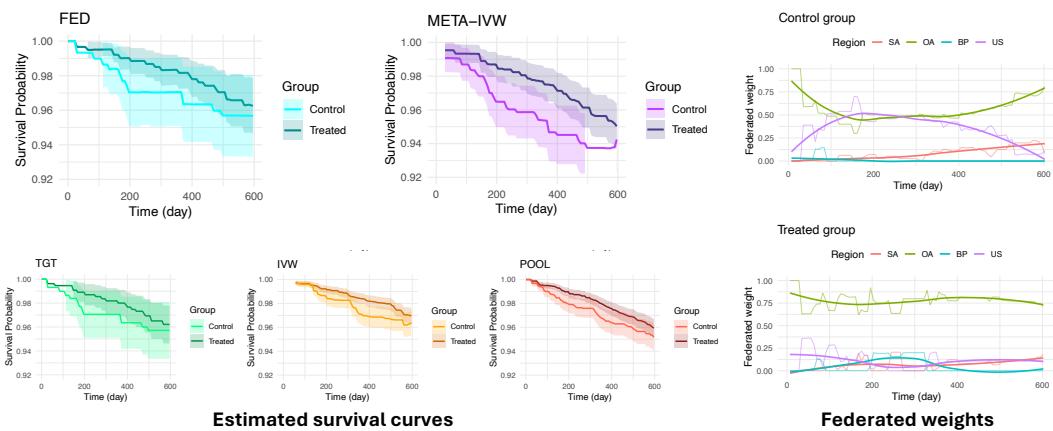
1292

1293

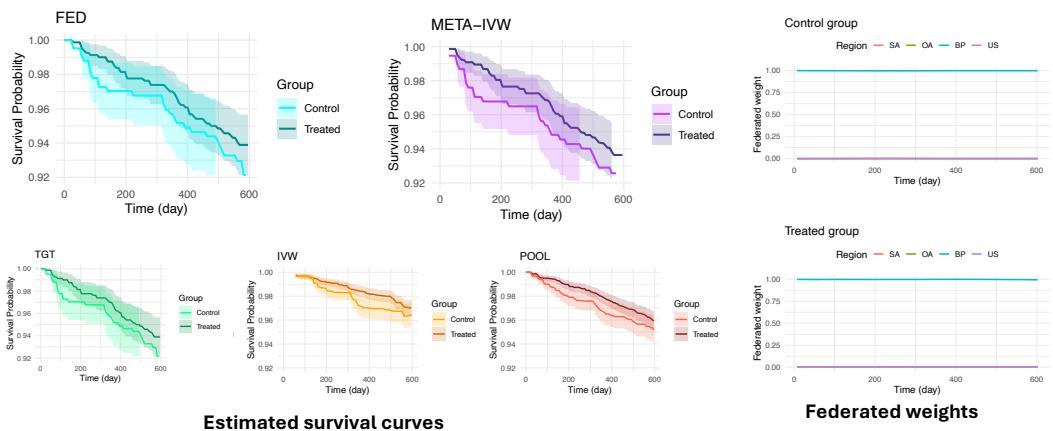
1294

1295

OA (Other Sub-Saharan African Countries)



BP (Brazil or Peru)



US (The United States or Switzerland)

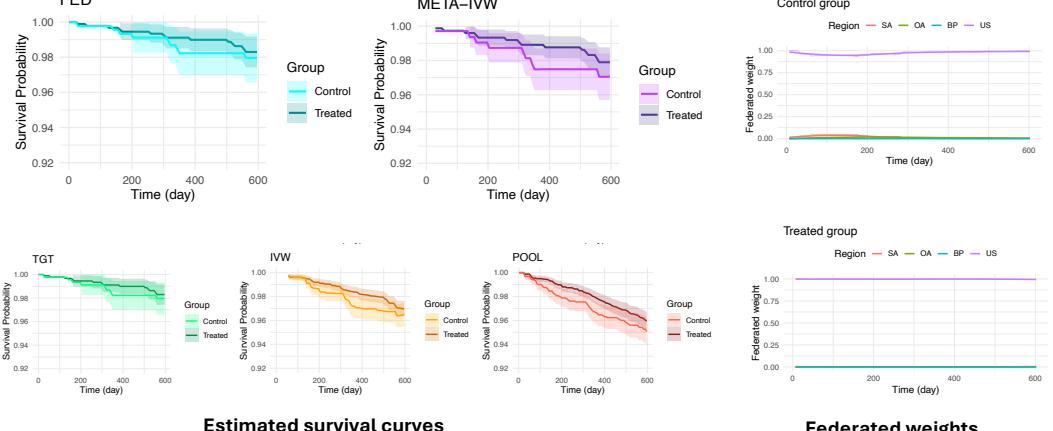


Figure 13: Additional data analysis results when treating the other three regions (OA, BP and US) as the target site. **Time-specific federated weights with locally weighted smoothing (only a representation tool; Cleveland & Devlin (1988)).**

Furthermore, in Figure 13, we present the results—including survival curve estimations and federated weights—using three regions other than SA as the target population. For the federated weights, similar to Figure 4 in the main text, we applied locally weighted regression (Cleveland & Devlin, 1988) to smooth the observed weights over the study period, providing a clearer visualization of temporal trends in this specific example.

From Figure 13, we observe that for each region, the FED method yields results similar to the TGT estimator, while also recovering some interval estimations at earlier time points. This finding is consistent with the observations made in Figure 4. In contrast, the IVW and POOL methods deviate noticeably from the TGT and FED results—especially for the BP and US regions—indicating potential biases introduced by site heterogeneity.

Finally, regarding federated weights, the results for the OA region resemble those of SA in Figure 4. However, for the BP and US regions, the federated weights are nearly 1 for the target site and 0 for all other sites. This pattern suggests that when targeting the survival curves of BP or US, other sites contribute substantial biases—an observation that corroborates our findings in Figure 12.

C.2 “FLCHAIN” DATASET FROM R PACKAGE SURVIVAL

The “flchain” dataset, obtained from the Mayo Clinic Study of Serum Free Light Chain (FLC) and Mortality, comprises data on 7,874 individuals followed between 1995 and 2009 to investigate the prognostic value of serum free light chains for survival (Dispenzieri et al., 2012; Kyle et al., 2006). This dataset is freely available in R package `survival`.

This dataset does not contain a natural treatment variable, but to illustrate and extend the use of our framework, we investigate the sex difference in mortality. Since sex (female vs. male) is assigned at birth, it can be viewed as a “treatment” variable for methodological purposes, as it precedes the occurrence of any outcomes. While not manipulable in the conventional sense, causal inference methods allow us to frame sex as an exposure to quantify disparities in survival outcomes, rather than as an intervention subject to policy or clinical decision-making. Similar approaches have been employed to assess disparities associated with non-manipulable variables such as race (Li & Li, 2023; Liu et al., 2025).

Male				
	Total (n = 3,524)	Group A (n = 972)	Group B (n = 1,429)	Group C (n = 1,123)
Age (year) at baseline	63.1 (9.62)	60.1 (7.80)	62.6 (9.25)	66.4 (10.5)
MGUS	0.01 (0.11)	0.04 (0.20)	0.00 (0.05)	0.00 (0.00)
Sample year	1996.9 (1.84)	1996.7 (1.72)	1996.9 (1.87)	1996.9 (1.90)
Concentration of κ light chain	1.5 (1.01)	0.9 (0.34)	1.4 (0.45)	2.2 (1.44)
Concentration of λ light chain	1.8 (1.19)	1.1 (0.35)	1.6 (0.47)	2.5 (1.77)
Mortality	1,004 (28.5%)	159 (16.4%)	372 (26.0%)	473 (42.1%)

Female				
	Total (n = 4,350)	Group A (n = 1,399)	Group B (n = 1,771)	Group C (n = 1,180)
Age (year) at baseline	65.2 (11.01)	62.2 (9.57)	65.0 (10.8)	69.1 (11.8)
MGUS	0.02 (0.12)	0.05 (0.21)	0.00 (0.05)	0.0 (0.00)
Sample year	1996.7 (1.70)	1996.6 (1.55)	1996.7 (1.68)	1996.9 (1.87)
Concentration of κ light chain	1.4 (0.78)	0.9 (0.34)	1.3 (0.43)	2.1 (1.03)
Concentration of λ light chain	1.6 (0.88)	1.1 (0.35)	1.6 (0.46)	2.4 (1.22)
Mortality	1,165 (26.8%)	231 (16.5%)	455 (25.7%)	479 (40.6%)

Table 2: Summary statistics of “flchain” data by sex group and the site variable we defined. All baseline covariates are summarized by mean (standard deviation), while the mortality is summarized by count (percentage).

1350
 1351 We include age, the presence of monoclonal gammopathy of undetermined significance (MGUS) and
 1352 sample year as baseline covariates for nuisance models. The primary outcome consists of follow-up
 1353 time in days and an event indicator for all-causes death (mortality).

1354 A categorical variable (`flc.grp`, taking values $1, 2, \dots, 10$) related to κ and λ concentration levels
 1355 is available in the data. We construct the “site” variable (R in our notation) based on `flc.grp`
 1356 as follows: (i) Group A for $\text{flc.grp} \in \{1, 2, 5\}$; (ii) Group B for $\text{flc.grp} \in \{3, 4, 6, 9\}$; and
 1357 (iii) Group C for $\text{flc.grp} \in \{7, 8, 10\}$. Several categories were merged in this way to ensure a
 1358 sufficient sample size within each group, allowing 5-fold cross-fitting to train different nuisance
 1359 functions reliably. In addition, we allow the groups to share nearby values of `flc.grp` (e.g., 5 in
 1360 Group A, 6 in Group B, and 7 in Group C) so that each site retains comparable information, enabling
 1361 borrowing across groups. We emphasize that this grouping method is adopted solely for illustrative
 1362 purposes in demonstrating our framework.

1363 Table 2 presents the summary statistics of baseline covariates and mortality for the “flchain” data.
 1364 Across Groups A, B, and C, we observe clear covariate shifts, accompanied by differences in the
 1365 marginal death rates. In contrast, when comparing the two “treatment” (sex) groups, the distributions
 1366 of baseline covariates and mortality appear overall similar.

1367 We analyzed the sex-specific survival curves over the first 10 years for the three groups in Figure
 1368 14. We used a 5-fold cross-fitting, and estimated conditional survival for both event and censoring
 1369 processes by an ensemble of Kaplan–Meier, Cox regression and survival random forest models via
 1370 the `survSuperLearner` package (Westling et al., 2024). The propensity score and density ratio
 1371 (used in federated method) models were fitted by the ensemble of logistic regression and LASSO
 1372 using the Super Learner (van der Laan et al., 2007).

1373 Overall, the FED method yields point estimates that closely track those of the TGT estimator, while
 1374 producing slightly narrower confidence bands. By calculations, the efficiency gain (by estimated
 1375 standard error of FED to that of TGT) can achieve 3%–10%, consistent with the findings from both
 1376 our simulation studies and the AMP trial data. The IVW and POOL estimators exhibit noticeably
 1377 different survival curve patterns relative to TGT and FED when Groups A and C are regarded as
 1378 targets, suggesting potential biases. The META-IVW method yields similar but slightly different
 1379 curves compared to TGT and FED.

D IMPLEMENTATION DETAILS

1380 In the following Algorithm 2, we detail the double machine learning procedure for fitting and
 1381 predicting nuisance functions in Algorithm 1.

1382 **Remark D.1.** To ensure the monotonicity of the estimated survival curves, we invoke isotonic
 1383 regression techniques (Westling et al., 2020), which enforce a non-increasing constraint on the site-
 1384 specific survival and censoring estimates \widehat{S}^k and \widehat{G}^k , for $k = 0, 1, \dots, K - 1$, thereby maintaining
 1385 their logical consistency over time.

E TECHNICAL PROOFS

1386 We begin by recalling notation for probability, expectation, and variance. Throughout, \mathbb{P} denotes
 1387 the true probability under the data-generating distribution, \mathbb{P}_n the empirical average, and $\widehat{\mathbb{P}}$ the
 1388 evaluation with estimated nuisance functions (as introduced in the main text). In addition, \mathbb{E} denotes
 1389 the population expectation, \mathbb{V} the population variance, and Cov the population covariance.

1390 We further adopt the following notation throughout this appendix: (i) \mathbb{P}_∞ denotes a general probability
 1391 limit, and the nuisance functions under \mathbb{P}_∞ are denoted with subscript ∞ , e.g., S_∞^0 for the limit of
 1392 \widehat{S}^0 ; (ii) $\widehat{\mathbb{P}}$ means the corresponding nuisance functions are replaced by their estimates, and $\widehat{\mathbb{P}}$ may
 1393 converge to a general limit \mathbb{P}_∞ ; (iii) $\mathbb{P}_n^m[f(\mathcal{O})] = |\mathcal{V}_m|^{-1} \sum_{i \in \mathcal{I}_m} f(\mathcal{O}_i)$ to denote the empirical
 1394 average on the m -th validation set \mathcal{V}_m by cross-fitting, $m = 1, \dots, M$.

1395 Furthermore, we distinguish notation $\mathbb{P}(f)$ and $\mathbb{E}_{\mathbb{P}}(f)$: $\mathbb{P}(f) = \int f(\mathcal{O}) d\mathbb{P}$ denotes an integral over a
 1396 new observation $\mathcal{O} \sim \mathbb{P}$, treating f , which possibly depends on training data (e.g., some estimated

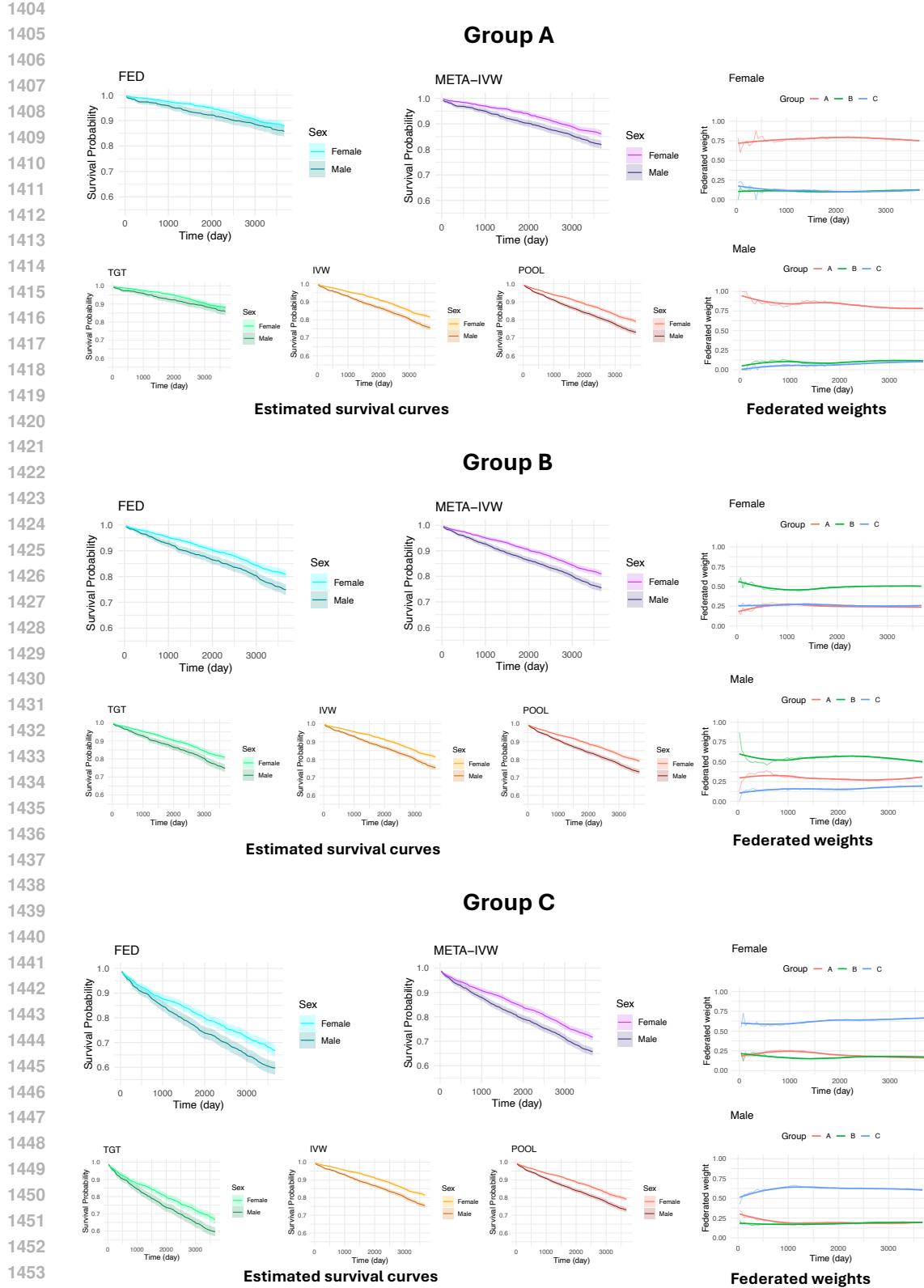


Figure 14: “flchain” data analysis results. Estimated sex-specific survival curves and federated weights for sites (Groups A, B and C defined by `f1c.grp` variable) Time-specific federated weights with locally weighted smoothing (only a representation tool; Cleveland & Devlin (1988)).

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468

Algorithm 2 Double/debiased machine learning algorithm for nuisance function estimations and influence function calculations in Algorithm 1 at a given time point and treatment.

1471 1: **Input:** Observed multi-source right-censored data $\mathcal{O} = \{\mathcal{O}_i = (\mathbf{X}_i, A_i, Y_i, \Delta_i, R_i), i = 1, \dots, n\} = \mathcal{O}^0 \cup \mathcal{O}^1 \cup \dots \cup \mathcal{O}^{K-1}$, where $R_i \in \{0, 1, \dots, K-1\}$ and \mathcal{O}^k represents the data for site $R = k$; Given treatment group $A = a$ and a specific time point t ; The number of disjoint folds into which the data are split, M , where $M \in \{2, 3, \dots, \lfloor n^*/2 \rfloor\}$ with $n^* = \min\{n, n_1, \dots, n_{K-1}\}$.
 1472 2: **Output:** Estimated influence functions for each individual.
 1473 3: Partition \mathcal{O}^0 into M approximately equal-sized, disjoint validation folds $\mathcal{V}_1^0, \dots, \mathcal{V}_M^0$, allowing a size difference of at most ± 1 between folds.
 1474 4: **for** $m = 1, \dots, M$ **do**
 1475 5: Define the training set $\mathcal{T}_m^0 = \mathcal{O}^0 \setminus \mathcal{V}_m^0$;
 1476 6: Fit nuisance functions S^0, G^0, π^0 on \mathcal{T}_m^0 , using some methods ensemble from survSuperLearner and SuperLearner;
 1477 7: Predict nuisance functions on \mathcal{V}_m^0 as \hat{S}_m^0, \hat{G}_m^0 and $\hat{\pi}_m^0$.
 1478 8: **end for**
 1479 9: Train a model of S^0 by the entire data of the target site \mathcal{O}^0 , denoted as $S^{0,\text{full}}$, using chosen methods ensemble from survSuperLearner.
 1480 10: **for** $k = 1, \dots, K-1$ **do**
 1481 11: Partition \mathcal{O}^k into M approximately equal-sized, disjoint validation folds $\mathcal{V}_1^k, \dots, \mathcal{V}_M^k$, allowing a size difference of at most ± 1 between folds.
 1482 12: **for** $m = 1, \dots, M$ **do**
 1483 13: Define the training set $\mathcal{T}_m^k = \mathcal{O}^k \setminus \mathcal{V}_m^k$;
 1484 14: Fit the density ratio $\omega^{k,0}$ using only covariate data of $\mathcal{T}_m^0 \cup \mathcal{T}_m^k$, or by just passing through some coarsening level summary statistics;
 1485 15: Fit nuisance functions G^k, π^k on \mathcal{T}_m^k , using chosen methods ensembles from survSuperLearner and SuperLearner;
 1486 16: Predict above nuisance functions on \mathcal{V}_m^k as $\hat{G}_m^k, \hat{\omega}_m^{k,0}$ and $\hat{\pi}_m^k$;
 1487 17: Predict nuisance function S^k on \mathcal{V}_m^k using the pre-trained $S^{0,\text{full}}$ model, and denote the predicted value by \hat{S}_m^k .
 1488 18: **end for**
 1489 19: Aggregate all predicted nuisance functions over M folds as $\hat{S}^k, \hat{G}^k, \hat{\omega}^{k,0}$ and $\hat{\pi}^k$;
 1490 20: **end for**
 1491 21: **Return:** The estimated EIFs, by plugging-in their predicted nuisance function values, $\hat{\varphi}_{t,a}^{*k,0}(\mathcal{O}; \hat{\mathbb{P}}) = \hat{\varphi}_{t,a}^{*k,0}(\mathcal{O}; \hat{S}^k, \hat{S}^0, \hat{G}^k, \hat{\pi}^k, \hat{\omega}^{k,0})$, for all $k \in \{0, 1, \dots, K-1\}$.

1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

parameters for nuisance functions), as fixed. In contrast, $\mathbb{E}_{\mathbb{P}}(f)$ is the usual mathematical expectation of random variable/element f under distribution \mathbb{P} , a fixed value without randomness.

E.1 THEORY OF THE LOCAL ESTIMATOR

E.1.1 PROOF OF THEOREM 2.5

Recall that a mean zero, finite variance function $\varphi_{t,a}^{*0}(\mathcal{O}; \mathbb{P})$ is called an *influence function* of the target estimand (a functional) $\theta^0(t, a) = \theta^0(t, a; \mathbb{P})$ at \mathbb{P} if, for any one-dimensional regular parametric submodel $\{\mathbb{P}_\epsilon : \epsilon \in [0, 1]\}$ through $\mathbb{P} \equiv \mathbb{P}_0$,

$$\frac{\partial}{\partial \epsilon} \theta^0(t, a; \mathbb{P}_\epsilon) \Big|_{\epsilon=0} = \mathbb{E}_{\mathbb{P}}[\varphi_{t,a}^{*0}(\mathcal{O}; \mathbb{P}) \dot{\ell}(\mathcal{O})],$$

where $\dot{\ell}(\mathcal{O})$ is the score function of the submodel at $\epsilon = 0$ (i.e., typically, $\dot{\ell}(\mathcal{O}) = \partial \log \{p_\epsilon(\mathcal{O})\} / \partial \epsilon|_{\epsilon=0}$), where $p_\epsilon(\cdot)$ denotes the probability density (likelihood) function under submodel \mathbb{P}_ϵ (Bickel et al., 1993).

Recall the partial CCOD assumption made in Theorem 2.5, $S^0(t | a, \mathbf{X}) = S^0(t | a, \mathbf{X})$ almost surely. To find the EIF, we begin by writing the following equation:

$$\begin{aligned} 0 &= \frac{\partial}{\partial \epsilon} \theta^0(t, a) \Big|_{\epsilon=0} = \frac{\partial}{\partial \epsilon} \mathbb{E}\{S_\epsilon^0(t | a, \mathbf{X}) | R = 0\} \Big|_{\epsilon=0} \\ &= \mathbb{E}\{[S^0(t | a, \mathbf{X}) - \theta^0(t, a)] \dot{\ell}_{\mathbf{X}|R=0} | R = 0\} + \mathbb{E}\left\{\int \frac{\partial}{\partial \epsilon} S_\epsilon^0(t | a, \mathbf{x}) \Big|_{\epsilon=0} \mu(d\mathbf{x}) \Big| R = 0\right\} \\ &= \mathbb{E}\{[S^0(t | a, \mathbf{X}) - \theta^0(t, a)] \dot{\ell}_{\mathbf{X}|R=0} | R = 0\} + \mathbb{E}\left\{\int \frac{\partial}{\partial \epsilon} S_\epsilon^k(t | a, \mathbf{x}) \Big|_{\epsilon=0} \mu(d\mathbf{x}) \Big| R = 0\right\}, \end{aligned} \tag{3}$$

where $\mu(\cdot)$ denotes the distribution of \mathbf{X} induced by \mathbb{P} and, for any sets of variables V and W , $\dot{\ell}_{V|W}$ denotes the conditional score function of V given W , i.e., typically $\partial \log \{p_\epsilon(V | W)\} / \partial \epsilon|_{\epsilon=0}$ —note that such scores always satisfy $\mathbb{E}_{\mathbb{P}}(\dot{\ell}_{V|W} | W) = 0$ (Bickel et al., 1993).

For the derivative of S_ϵ^k with respect to ϵ , by the chain rule, we decompose it as $(\partial S_\epsilon^k / \partial \Lambda_\epsilon^k) \times (\partial \Lambda_\epsilon^k / \partial \epsilon)$. For the first part $\partial S_\epsilon^k / \partial \Lambda_\epsilon^k$, we leverage Theorem 8 in Gill & Johansen (1990). Specifically, the mapping $H \mapsto S^k(t; H) := \prod_{(0,t]} \{1 + H(du)\}$ is Hadamard differentiable at H relative to the supremum norm with derivative

$$\alpha \mapsto S^k(t; H) \int_0^t \frac{S^k(u-; H)}{S^k(u; H)} \alpha(du).$$

Thus, by letting $H(t) = \Lambda_\epsilon^k(t | a, \mathbf{x})$ and the chain rule, the integrand in the second term becomes

$$\frac{\partial}{\partial \epsilon} \prod_{(0,t]} \{1 - \Lambda_\epsilon^k(du | a, \mathbf{x})\} \Big|_{\epsilon=0} = -S^k(t | a, \mathbf{x}) \int_0^t \frac{S^k(u- | a, \mathbf{x})}{S^k(u | a, \mathbf{x})} \frac{\partial}{\partial \epsilon} \Lambda_\epsilon^k(du | a, \mathbf{x}) \Big|_{\epsilon=0}.$$

Furthermore, recall that

$$\Lambda^k(t | a, \mathbf{X}) = \int_0^t \frac{N_1^k(du | a, \mathbf{X})}{D^k(u | a, \mathbf{X})},$$

where $N_1^k(t | a, \mathbf{X}) = \mathbb{P}(Y \leq t, \Delta = 1 | A = a, \mathbf{X}, R = k)$ and $D^k(t | a, \mathbf{X}) = \mathbb{P}(Y \geq t | A = a, \mathbf{X}, R = k)$. Hence,

$$\frac{\partial}{\partial \epsilon} \Lambda_\epsilon^k(du | a, \mathbf{x}) \Big|_{\epsilon=0} = \frac{\frac{\partial}{\partial \epsilon} N_{1,\epsilon}^k(du | a, \mathbf{x})|_{\epsilon=0}}{D^k(u | a, \mathbf{x})} - \frac{\frac{\partial}{\partial \epsilon} D_\epsilon^k(u | a, \mathbf{x})|_{\epsilon=0}}{D^k(u | a, \mathbf{x})^2} N_{1,\epsilon}^k(du | a, \mathbf{x}).$$

1566 In addition,

$$\begin{aligned}
 \frac{\partial}{\partial \epsilon} N_{1,\epsilon}^k(du \mid a, \mathbf{x}) \Big|_{\epsilon=0} &= \frac{\partial}{\partial \epsilon} \mathbb{P}_\epsilon(Y \leq u, \Delta = 1 \mid A = a, \mathbf{X} = \mathbf{x}, R = k) \Big|_{\epsilon=0} \\
 &= \frac{\partial}{\partial \epsilon} \iint \mathbb{I}(y \leq u, \delta = 1) \mathbb{P}_\epsilon(dy, d\delta \mid a, \mathbf{x}, k) \Big|_{\epsilon=0} \\
 &= \iint \mathbb{I}(y \leq u, \delta = 1) \dot{\ell}(y, \delta \mid a, \mathbf{x}) \mathbb{P}(dy, d\delta \mid a, \mathbf{x}, k) \\
 &= \int_{\delta} \mathbb{I}(\delta = 1) \dot{\ell}(u, \delta \mid a, \mathbf{x}) \mathbb{P}(du, d\delta \mid a, \mathbf{x}, k),
 \end{aligned}$$

1578 and

$$\begin{aligned}
 \frac{\partial}{\partial \epsilon} D_\epsilon^k(u \mid a, \mathbf{x}) \Big|_{\epsilon=0} &= \frac{\partial}{\partial \epsilon} \mathbb{P}_\epsilon(Y \geq u \mid A = a, \mathbf{X} = \mathbf{x}, R = k) \Big|_{\epsilon=0} \\
 &= \frac{\partial}{\partial \epsilon} \iint \mathbb{I}(y \geq u) \mathbb{P}_\epsilon(dy, d\delta \mid a, \mathbf{x}, k) \Big|_{\epsilon=0} \\
 &= \iint \mathbb{I}(y \leq u) \dot{\ell}(y, \delta \mid a, \mathbf{x}) \mathbb{P}(dy, d\delta \mid a, \mathbf{x}, k).
 \end{aligned}$$

1588 We can then express the integrand of (3) as

$$\begin{aligned}
 &\frac{\partial}{\partial \epsilon} \iint \prod_{(0,t]} \{1 - \Lambda_\epsilon^k(du \mid a, \mathbf{x})\} \mu(d\mathbf{x}) \Big|_{\epsilon=0} \\
 &= \iiint -\mathbb{I}(y \leq t, \delta = 1) \frac{S^k(t \mid a, \mathbf{x}) S^k(y- \mid a, \mathbf{x})}{S^k(y \mid a, \mathbf{x}) D^k(y \mid \mathbf{x})} \dot{\ell}(y, \delta \mid a, \mathbf{x}, k) \mathbb{P}(dy, d\delta \mid a, \mathbf{x}, k) \mu(d\mathbf{x}) \\
 &\quad + \iiint \mathbb{I}(u \leq t, u \leq y) \frac{S^k(t \mid a, \mathbf{x}) S^k(u- \mid a, \mathbf{x})}{S^k(u \mid a, \mathbf{x}) D^k(u \mid \mathbf{x})} \\
 &\quad \times \dot{\ell}(y, \delta \mid a, \mathbf{x}, k) \mathbb{P}(dy, d\delta \mid a, \mathbf{x}, k) N_1^k(du \mid a, \mathbf{x}) \mu(d\mathbf{x}) \\
 &= \iiint -\mathbb{I}(y \leq t, \delta = 1) \frac{S^k(t \mid a, \mathbf{x}) S^k(y- \mid a, \mathbf{x})}{S^k(y \mid a, \mathbf{x}) D^k(y \mid \mathbf{x})} \dot{\ell}(y, \delta \mid a, \mathbf{x}, k) \mathbb{P}(dy, d\delta \mid a, \mathbf{x}, k) \mu(d\mathbf{x}) \\
 &\quad + \iiint S^k(t \mid a, \mathbf{x}) \int_0^{t \wedge y} \frac{S^k(u- \mid a, \mathbf{x})}{S^k(u \mid a, \mathbf{x}) D^k(u \mid \mathbf{x})^2} N_1^k(du \mid a, \mathbf{x}) \\
 &\quad \times \dot{\ell}(y, \delta \mid a, \mathbf{x}, k) \mathbb{P}(dy, d\delta \mid a, \mathbf{x}, k) \mu(d\mathbf{x}) \\
 &= \mathbb{E} \left[S^k(t \mid a, \mathbf{X}) \frac{\mathbb{I}(A = a)}{\pi^k(a \mid \mathbf{X})} \left\{ H^k(t \wedge Y, a, \mathbf{X}) - \frac{\mathbb{I}(Y \leq t, \Delta = 1) S^k(Y- \mid a, \mathbf{X})}{S^k(Y \mid a, \mathbf{X}) D^k(Y \mid a, \mathbf{X})} \right\} \right. \\
 &\quad \left. \times \dot{\ell}(Y, \Delta \mid a, \mathbf{X}, R = k) \right],
 \end{aligned}$$

1611 where

$$H^k(t, a, \mathbf{x}) = \int_0^t \frac{S^k(u- \mid a, \mathbf{x}) N_1^k(du \mid a, \mathbf{x})}{S^k(u \mid a, \mathbf{x}) D^k(u \mid a, \mathbf{x})^2}.$$

1616 Now, we note that

$$\mathbb{E} \left[\frac{\mathbb{I}(Y \leq t, \Delta = 1) S^k(Y- \mid A, \mathbf{X})}{S^k(Y \mid A, \mathbf{X}) D^k(Y \mid A, \mathbf{X})} \mid A = a, \mathbf{X} = \mathbf{x}, R = k \right] = \int_0^t \frac{S^k(y- \mid a, \mathbf{x}) N_1^k(dy \mid a, \mathbf{x})}{S^k(y \mid a, \mathbf{x}) D^k(y \mid a, \mathbf{x})},$$

1620

and

$$\begin{aligned}
 & \mathbb{E}\{H^k(t \wedge Y, A, \mathbf{X}) \mid A = a, \mathbf{X} = \mathbf{x}, R = k\} \\
 &= \iint \mathbb{I}(u \leq y) \frac{S^k(u \mid a, \mathbf{x}) N_1^k(du \mid a, \mathbf{x})}{S^k(u \mid a, \mathbf{x}) D^k(u \mid a, \mathbf{x})^2} \mathbb{P}(dy \mid a, \mathbf{x}, k) \\
 &= \int_0^t \mathbb{P}(Y \geq u \mid A = a, \mathbf{X} = \mathbf{x}, R = k) \frac{S^k(u \mid a, \mathbf{x}) N_1^k(du \mid a, \mathbf{x})}{S^k(u \mid a, \mathbf{x}) D^k(u \mid a, \mathbf{x})^2} \mathbb{P}(dy \mid a, \mathbf{x}, k) \\
 &= \int_0^t \frac{S^k(u \mid a, \mathbf{x}) N_1^k(du \mid a, \mathbf{x})}{S^k(u \mid a, \mathbf{x}) D^k(u \mid a, \mathbf{x})}.
 \end{aligned}$$

1630 Therefore,

$$\mathbb{E} \left[H^k(t \wedge Y, A, \mathbf{X}) - \frac{\mathbb{I}(Y \leq t, \Delta = 1) S^k(Y \mid A, \mathbf{X})}{S^k(Y \mid A, \mathbf{X}) D^k(Y \mid A, \mathbf{X})} \mid A, \mathbf{X}, R = k \right] = 0$$

1633 almost surely. By properties of score functions and the tower property, the above implies that

$$\begin{aligned}
 & \frac{\partial}{\partial \epsilon} \iint \prod_{(0,t]} \{1 - \Lambda_\epsilon^k(du \mid a, \mathbf{x})\} \mu(d\mathbf{x}) \Big|_{\epsilon=0} \\
 &= \mathbb{E} \left[S^k(t \mid a, \mathbf{X}) \frac{\mathbb{I}(R = k)}{\mathbb{P}(R = k \mid \mathbf{X})} \frac{\mathbb{I}(A = a)}{\pi^k(a \mid \mathbf{X})} \right. \\
 & \quad \times \left. \left\{ H^k(t \wedge Y, A, \mathbf{X}) - \frac{\mathbb{I}(Y \leq t, \Delta = 1) S^k(Y \mid A, \mathbf{X})}{S^k(Y \mid A, \mathbf{X}) D^k(Y \mid A, \mathbf{X})} \right\} \dot{\ell}(\mathcal{O}) \right].
 \end{aligned}$$

1642 Combining these results with the facts that $N_1^k(du \mid a, \mathbf{x})/D^k(u \mid a, \mathbf{x}) = \Lambda^k(du \mid a, \mathbf{x})$ and
1643 $D^k(u \mid a, \mathbf{x}) = S^k(u \mid \mathbf{x}) G^k(u \mid a, \mathbf{x})$, we can rewrite (3) at the beginning as follows:

$$\begin{aligned}
 & \frac{\partial}{\partial \epsilon} \theta^0(t, a) \Big|_{\epsilon=0} \\
 &= \mathbb{E} \left[\frac{\mathbb{I}(R = 0)}{\mathbb{P}(R = 0)} [S^k(t \mid a, \mathbf{X}) - \theta^0(t, a)] \dot{\ell}(\mathcal{O}) - \frac{\mathbb{I}(R = 0)}{\mathbb{P}(R = 0)} \mathbb{E} \left\{ S^k(t \mid a, \mathbf{X}) \frac{\mathbb{I}(R = k)}{\mathbb{P}(R = k \mid \mathbf{X})} \right. \right. \\
 & \quad \times \frac{\mathbb{I}(A = a)}{\pi^k(a \mid \mathbf{X})} \left\{ \frac{\mathbb{I}(Y \leq t, \Delta = 1)}{S^k(y \mid \mathbf{X}) G^k(y \mid a, \mathbf{X})} - \int_0^{t \wedge y} \frac{\Lambda^k(du \mid a, \mathbf{X})}{S^k(u \mid \mathbf{X}) G^k(u \mid a, \mathbf{X})} \right\} \dot{\ell}(\mathcal{O}) \Big| \mathbf{X} \Big\} \Big] \\
 &= \mathbb{E} \left[\frac{\mathbb{I}(R = 0)}{\mathbb{P}(R = 0)} \{S^k(t \mid a, \mathbf{X}) - \theta^0(t, a)\} \dot{\ell}(\mathcal{O}) \right] - \mathbb{E} \left[\frac{\mathbb{I}(R = k)}{\mathbb{P}(R = 0)} \frac{\mathbb{P}(R = 0 \mid \mathbf{X})}{\mathbb{P}(R = k \mid \mathbf{X})} S^k(t \mid a, \mathbf{X}) \right. \\
 & \quad \times \left. \frac{\mathbb{I}(A = a)}{\pi^k(a \mid \mathbf{X})} \left\{ \frac{\mathbb{I}(Y \leq t, \Delta = 1)}{S^k(y \mid \mathbf{X}) G^k(y \mid a, \mathbf{X})} - \int_0^{t \wedge y} \frac{\Lambda^k(du \mid a, \mathbf{X})}{S^k(u \mid \mathbf{X}) G^k(u \mid a, \mathbf{X})} \right\} \dot{\ell}(\mathcal{O}) \right].
 \end{aligned}$$

1656 Therefore, an EIF of $\theta^0(t, a)$ at \mathbb{P} is found as

$$\begin{aligned}
 & \varphi_{t,a}^{*k,0}(\mathcal{O}; \mathbb{P}) \\
 &= \frac{\mathbb{I}(R = 0)}{\mathbb{P}(R = 0)} \{S^0(t \mid a, \mathbf{X}) - \theta^0(t, a)\} - \frac{\mathbb{I}(R = k) \mathbb{P}(R = 0 \mid \mathbf{X})}{\mathbb{P}(R = 0) \mathbb{P}(R = k \mid \mathbf{X})} S^k(t \mid a, \mathbf{X}) \\
 & \quad \times \frac{\mathbb{I}(A = a)}{\pi^k(a \mid \mathbf{X})} \left[\frac{\mathbb{I}(Y \leq t, \Delta = 1)}{S^k(Y \mid a, \mathbf{X}) G^k(Y \mid a, \mathbf{X})} - \int_0^{t \wedge Y} \frac{\Lambda^k(du \mid a, \mathbf{X})}{S^k(u \mid a, \mathbf{X}) G^k(u \mid a, \mathbf{X})} \right].
 \end{aligned}$$

1664 Observe that, by Bayes's rule,

$$\frac{\mathbb{P}(R = 0 \mid \mathbf{X})}{\mathbb{P}(R = k \mid \mathbf{X})} = \underbrace{\frac{\mathbb{P}(\mathbf{X} \mid R = 0)}{\mathbb{P}(\mathbf{X} \mid R = k)}}_{\omega^{k,0}(\mathbf{X})} \cdot \frac{\mathbb{P}(R = 0)}{\mathbb{P}(R = k)},$$

1669 where $\omega^{k,0}(\mathbf{X})$ is a covariates density ratio function. We then find that the EIF form in Theorem 2.5:

$$\begin{aligned}
 & \varphi_{t,a}^{*k,0}(\mathcal{O}; \mathbb{P}) = \frac{\mathbb{I}(R = 0)}{\mathbb{P}(R = 0)} \{S^0(t \mid a, \mathbf{X}) - \theta^0(t, a)\} - \frac{\mathbb{I}(R = k)}{\mathbb{P}(R = k)} \omega^{k,0}(\mathbf{X}) S^k(t \mid a, \mathbf{X}) \\
 & \quad \times \frac{\mathbb{I}(A = a)}{\pi^k(a \mid \mathbf{X})} \left[\frac{\mathbb{I}(Y \leq t, \Delta = 1)}{S^k(Y \mid a, \mathbf{X}) G^k(Y \mid a, \mathbf{X})} - \int_0^{t \wedge Y} \frac{\Lambda^k(du \mid a, \mathbf{X})}{S^k(u \mid a, \mathbf{X}) G^k(u \mid a, \mathbf{X})} \right].
 \end{aligned}$$

1674 E.1.2 REGULARITY CONDITIONS FOR THEOREM 2.6
1675

1676 We now state regularity conditions for Theorem 2.6. For site $R = k$, we denote $\pi^k, G^k, \omega^{k,0}, \Lambda^k$
1677 and S^k the truths of nuisance functions. We use $\pi_\infty^k, \omega_\infty^{k,0}, G_\infty^k, \Lambda_\infty^k$ and S_∞^k to denote some general
1678 probability limits for nuisance function estimators.

1679 **Condition E.1.** There exist $\pi_\infty^k, \omega_\infty^{k,0}, G_\infty^k, \Lambda_\infty^k$ and S_∞^k such that
1680

$$\begin{aligned} 1681 \quad (a) \quad & \max_m \mathbb{P} \left[\frac{1}{\widehat{\pi}_m^k(a \mid \mathbf{X})} - \frac{1}{\pi_\infty^k(a \mid \mathbf{X})} \right]^2 \rightarrow_p 0; \\ 1682 \\ 1683 \quad (b) \quad & \max_m \mathbb{P} [\widehat{\omega}_m^{k,0}(\mathbf{X}) - \omega_\infty^{k,0}(\mathbf{X})]^2 \rightarrow_p 0; \\ 1684 \\ 1685 \quad (c) \quad & \max_m \mathbb{P} \left[\sup_{u \in [0, t]} \left| \frac{1}{\widehat{G}_m^k(u \mid a, \mathbf{X})} - \frac{1}{G_\infty^k(u \mid a, \mathbf{X})} \right| \right]^2 \rightarrow_p 0; \\ 1686 \\ 1687 \quad (d) \quad & \max_m \mathbb{P} \left[\sup_{u \in [0, t]} \left| \frac{\widehat{S}_m^k(t \mid a, \mathbf{X})}{\widehat{S}_m^k(u \mid a, \mathbf{X})} - \frac{S_\infty^k(t \mid a, \mathbf{X})}{S_\infty^k(u \mid a, \mathbf{X})} \right| \right]^2 \rightarrow_p 0. \end{aligned}$$

1693 **Condition E.2.** There exists an $\eta \in (0, \infty)$ such that for \mathbb{P} -almost all \mathbf{x} , $\widehat{\pi}_m^k(a \mid \mathbf{x}) \geq 1/\eta$, $\pi_\infty^k(a \mid \mathbf{x}) \geq 1/\eta$, $1/\eta \leq \widehat{\omega}_m^{k,0}(\mathbf{x}) \leq \eta$, $1/\eta \leq \omega_\infty^{k,0}(\mathbf{x}) \leq \eta$, $\widehat{G}_m^k(t \mid a, \mathbf{x}) \geq 1/\eta$, and $G_\infty^k(t \mid a, \mathbf{x}) \geq 1/\eta$
1694 with probability tending to 1.
1695

1696 **Condition E.3.** Define
1697

$$\begin{aligned} 1698 \quad r_{n,t,a,1}^k &= \max_m \mathbb{P} \left| \{\widehat{\pi}_m^k(a \mid \mathbf{X}) - \pi^k(a \mid \mathbf{X})\} \{\widehat{S}_m^k(t \mid a, \mathbf{X}) - S^k(t \mid a, \mathbf{X})\} \right|, \\ 1699 \\ 1700 \quad r_{n,t,a,2}^k &= \max_m \mathbb{P} \left| \{\widehat{\omega}_m^{k,0}(\mathbf{X}) - \omega^{k,0}(\mathbf{X})\} \{\widehat{S}_m^k(t \mid a, \mathbf{X}) - S^k(t \mid a, \mathbf{X})\} \right|, \text{ and} \\ 1701 \\ 1702 \quad r_{n,t,a,3}^k &= \max_m \mathbb{P} \left| \widehat{S}_m^k(t \mid a, \mathbf{X}) \int_0^t \left\{ \frac{G^k(u \mid a, \mathbf{X})}{\widehat{G}_m^k(u \mid a, \mathbf{X})} - 1 \right\} \left(\frac{S^k}{\widehat{S}_m^k} - 1 \right) (du \mid a, \mathbf{X}) \right|. \end{aligned}$$

1705 Then, it holds that $r_{n,t,a,1}^k = o_p(n^{-1/2})$, $r_{n,t,a,2}^k = o_p(n^{-1/2})$ and $r_{n,t,a,3}^k = o_p(n^{-1/2})$.
1706

1707 Next, to prove Theorem 2.6, we first introduce some useful results and lemmata in the next section.
1708

1709 E.1.3 USEFUL LEMMATA FOR THE LOCAL ESTIMATOR
1710

1711 We start by examining the difference $\widehat{\theta}_n^{k,0}(t, a) - \theta^0(t, a)$. Recall \mathbb{P}_n^m is the empirical distribution
1712 corresponding to the m -th validation set \mathcal{V}_m from the entire data \mathcal{O} , and denote \mathbb{G}_n^m the corresponding
1713 empirical process. A result exactly following Westling et al. (2024) is that

$$\begin{aligned} 1715 \quad \widehat{\theta}_n^{k,0}(t, a) - \theta^0(t, a) &= \mathbb{P}_n[\varphi_{\infty,t,a}^{*k,0}] + \frac{1}{M} \sum_{m=1}^M \frac{Mn_m^{1/2}}{n} \mathbb{G}_n^m \left[\widehat{\varphi}_{n,m,t,a}^{k,0} - \varphi_{\infty,t,a}^{k,0} \right] \\ 1716 \\ 1717 \quad &+ \frac{1}{M} \sum_{m=1}^M \frac{Mn_m}{n} \mathbb{P} \left[\widehat{\varphi}_{t,a}^{k,0} - \theta^0(t, a) \right]. \end{aligned} \tag{4}$$

1721 We then establish the $L_2(\mathbb{P})$ norm distance (bound) between the estimated EIF and its underlying
1722 limit for the local estimator by the following lemma.

1723 **Lemma E.1.** Under Condition E.2, there exists a universal constant $C = C(\eta)$ such that for each k ,
1724 m , n , t , and a ,

$$1725 \quad \mathbb{P}[\widehat{\varphi}_{t,a}^{k,0} - \varphi_{\infty,t,a}^{k,0}]^2 \leq C(\eta) \sum_{j=1}^6 A_{j,n,m,t,a}^k,$$

1728 where

$$\begin{aligned}
 1729 \quad A_{1,n,m,t,a}^k &= \mathbb{P} \left[\frac{1}{\mathbb{P}_n^m(R=0)} - \frac{1}{\mathbb{P}(R=0)} \right]^2, \\
 1730 \quad A_{2,n,m,t,a}^k &= \mathbb{P} \left[\frac{1}{\mathbb{P}_n^m(R=k)} - \frac{1}{\mathbb{P}(R=k)} \right]^2, \\
 1731 \quad A_{3,n,m,t,a}^k &= \mathbb{P} [\widehat{\omega}_m^{k,0}(a | \mathbf{X}) - \omega_\infty^{k,0}(a | \mathbf{X})]^2, \\
 1732 \quad A_{4,n,m,t,a}^k &= \mathbb{P} \left[\frac{1}{\widehat{\pi}_m^k(a | \mathbf{X})} - \frac{1}{\pi_\infty^k(a | \mathbf{X})} \right]^2, \\
 1733 \quad A_{5,n,m,t,a}^k &= \mathbb{P} \left[\sup_{u \in [0,t]} \left| \frac{1}{\widehat{G}_m^k(u | a, \mathbf{X})} - \frac{1}{G_\infty^k(u | a, \mathbf{X})} \right| \right]^2, \\
 1734 \quad A_{6,n,m,t,a}^k &= \mathbb{P} \left[\sup_{u \in [0,t]} \left| \frac{\widehat{S}_m^k(t | a, \mathbf{X})}{\widehat{S}_m^k(u | a, \mathbf{X})} - \frac{S_\infty^k(t | a, \mathbf{X})}{S_\infty^k(u | a, \mathbf{X})} \right| \right]^2.
 \end{aligned}$$

1745 *Proof.* We first denote

$$\begin{aligned}
 1746 \quad B^k(\mathcal{V}_m) &= \frac{\mathbb{I}(A=a)}{\pi^k(a | \mathbf{X})} S^k(t | a, \mathbf{X}) \\
 1747 \quad &\times \left[\frac{\mathbb{I}(Y \leq t, \Delta=1)}{S^k(Y | a, \mathbf{X}) G^k(Y | a, \mathbf{X})} - \int_0^{t \wedge Y} \frac{\Lambda^k(du | a, \mathbf{X})}{S^k(u | a, \mathbf{X}) G^k(u | a, \mathbf{X})} \right], \\
 1748 \quad C^k(\mathcal{V}_m) &= B^k(\mathcal{V}_m) \omega^{k,0}(\mathbf{X}).
 \end{aligned}$$

1749 Then, we first have the following decomposition:

$$1750 \quad \widehat{\varphi}_{t,a}^{k,0} - \varphi_{\infty,t,a}^{k,0} = \sum_{j=1}^4 U_{j,n,m,t,a}^k,$$

1751 where

$$\begin{aligned}
 1752 \quad U_{1,n,m,t,a}^k &= \left[\frac{\mathbb{I}(R=0)}{\mathbb{P}_n^m(R=0)} - \frac{\mathbb{I}(R=0)}{\mathbb{P}(R=0)} \right] \widehat{S}_m^0(t | a, \mathbf{x}), \\
 1753 \quad U_{2,n,m,t,a}^k &= \frac{\mathbb{I}(R=0)}{\mathbb{P}(R=0)} \left[\widehat{S}_m^0(t | a, \mathbf{x}) - S_\infty^0(t | a, \mathbf{x}) \right], \\
 1754 \quad U_{3,n,m,t,a}^k &= \left[\frac{\mathbb{I}(R=k)}{\mathbb{P}_n^m(R=k)} - \frac{\mathbb{I}(R=k)}{\mathbb{P}(R=k)} \right] \widehat{C}_m^k(\mathcal{V}_m), \\
 1755 \quad U_{4,n,m,t,a}^k &= \frac{\mathbb{I}(R=k)}{\mathbb{P}(R=k)} \left[\widehat{C}_m^k(\mathcal{V}_m) - C_\infty^k(\mathcal{V}_m) \right].
 \end{aligned}$$

1756 Now, for $U_{4,n,m,t,a}^k$, we further decompose it as

$$1757 \quad U_{4,n,m,t,a}^k = \frac{\mathbb{I}(R=k)}{\mathbb{P}(R=k)} \sum_{j=1}^2 V_{j,n,m,t,a}^k,$$

1758 where

$$\begin{aligned}
 1759 \quad V_{1,n,m,t,a}^k &= B_\infty^k(\mathcal{V}_m) [\widehat{\omega}_m^{k,0}(\mathbf{X}) - \omega_m^{k,0}(\mathbf{X})], \\
 1760 \quad V_{2,n,m,t,a}^k &= \widehat{\omega}_m^{k,0}(\mathbf{X}) [\widehat{B}_m^k(\mathcal{V}_m) - B_\infty^k(\mathcal{V}_m)].
 \end{aligned}$$

1761 The expression of $\widehat{B}_m^k(\mathcal{V}_m) - B_\infty^k(\mathcal{V}_m)$ is exactly the same as the Lemma 3 in Westling et al. (2024), while we only need to replace the corresponding nuisance functions by the site- k version here, so the detail is omitted. By the triangle inequality, we have $\mathbb{P}[\widehat{\varphi}_{t,a}^{k,0} - \varphi_{\infty,t,a}^{k,0}]^2 \leq \left\{ \sum_{j=1}^4 \{\mathbb{P}[(U_{j,n,m,t,a}^k)^2]\}^{1/2} \right\}^2$. Therefore, under Assumption 2.3 and Condition E.2, there exists a universal constant $C = C(\eta)$ such that the result in the statement holds. \square

Furthermore, we need to bound the empirical process term $\mathbb{G}_n^m \left[\widehat{\varphi}_{n,m,t,a}^{k,0} - \varphi_{\infty,t,a_0}^{k,0} \right]$ by $o_p(n^{-1/2})$. This is formally shown below in Lemma E.2.

Lemma E.2. *If Conditions E.1–E.2 hold, $M^{-1} \sum_{m=1}^M n^{-1} M n_m^{1/2} \mathbb{G}_n^m \left[\widehat{\varphi}_{n,m,t,a}^{k,0} - \varphi_{\infty,t,a_0}^{k,0} \right] = o_p(n^{-1/2})$.*

Proof. We follow notation in Lemma E.1. First, we note that

$$\begin{aligned} \frac{M n_m^{1/2}}{n} &\leq \frac{M(|n_m - n/M| + n/M)^{1/2}}{n} \\ &\leq \frac{M|n_m - n/M|^{1/2} + M|n/M|^{1/2}}{n} \\ &\leq \left(\frac{M}{n} \right)^{1/2} + \frac{M}{n}, \end{aligned}$$

for all m since $|n_m - n/M| \leq 1$ by assumption on n_m . Then, we have that

$$\begin{aligned} \frac{1}{M} \sum_{m=1}^M \frac{M n_m^{1/2}}{n} \sup_{u \in [0,t]} \left| \mathbb{G}_n^m \left[\widehat{\varphi}_{n,m,t,a}^{k,0} - \varphi_{\infty,t,a}^{k,0} \right] \right| \\ \leq O(n^{-1/2}) \frac{1}{M} \sum_{m=1}^M \sup_{u \in [0,t]} \left| \mathbb{G}_n^m \left[\widehat{\varphi}_{n,m,t,a}^{k,0} - \varphi_{\infty,t,a}^{k,0} \right] \right|, \end{aligned}$$

since $K = O(1)$.

Therefore, we turn to show $M^{-1} \sum_{m=1}^M \left| \mathbb{G}_n^m \left[\widehat{\varphi}_{n,m,t,a}^{k,0} - \varphi_{\infty,t,a}^{k,0} \right] \right| = o_p(1)$. Using conditional argument, we write

$$\mathbb{E} \left| \mathbb{G}_n^m \left[\widehat{\varphi}_{n,m,t,a}^{k,0} - \varphi_{\infty,t,a}^{k,0} \right] \right| = \mathbb{E} \left[\mathbb{E} \left| \mathbb{G}_n^m \left[\widehat{\varphi}_{n,m,t,a}^{k,0} - \varphi_{\infty,t,a}^{k,0} \right] \right| \mid \mathcal{T}_m \right],$$

where $\mathcal{T}_m = \mathcal{O} \setminus \mathcal{V}_m$ is the m -th training set. Note that the randomness in the inner expectation of the right-hand-side above, by conditioning on the training set, is only induced from \mathbb{G}_n^m by averaging over the observations on the validation set. Therefore,

$$\mathbb{E} \left[\mathbb{E} \left| \mathbb{G}_n^m \left[\widehat{\varphi}_{n,m,t,a}^{k,0} - \varphi_{\infty,t,a}^{k,0} \right] \right| \mid \mathcal{T}_m \right] = \mathbb{P} \left| \mathbb{G}_n^m \left(\widehat{\varphi}_{n,m,t,a}^{k,0} - \varphi_{\infty,t,a}^{k,0} \right) \right|.$$

Defining $\mathcal{F}_{n,m,t,a}^{k,0}$ as the singleton class of functions $\widehat{\varphi}_{n,m,t,a}^{k,0} - \varphi_{\infty,t,a}^{k,0}$, we further have

$$\mathbb{P} \left| \mathbb{G}_n^m \left(\widehat{\varphi}_{n,m,t,a}^{k,0} - \varphi_{\infty,t,a}^{k,0} \right) \right| = \mathbb{P} \left[\sup_{f \in \mathcal{F}_{n,m,t,a}^{k,0}} |\mathbb{G}_n^m(f)| \right].$$

By Theorem 2.1.14 in Van der Vaart & Wellner (1996), the covering number of $\mathcal{F}_{n,m,t,a}^{k,0}$ is 1 for all ε , so the uniform entropy integral $J(1, \mathcal{F}_{n,m,t,a}^{k,0})$ is 1 relative to the natural envelope $|\widehat{\varphi}_{n,m,t,a}^{k,0} - \varphi_{\infty,t,a}^{k,0}|$. Therefore, there is a universal constant C' such that

$$\mathbb{P} \left[\sup_{f \in \mathcal{F}_{n,m,t,a}^{k,0}} |\mathbb{G}_n^m(f)| \right] \leq C' \left\{ \mathbb{P}(\widehat{\varphi}_{n,m,t,a}^{k,0} - \varphi_{\infty,t,a}^{k,0})^2 \right\}^{1/2} \leq C'' \sum_{j=1}^6 \bar{A}_{j,n,m,t,a},$$

following definition of $\bar{A}_{j,n,m,t,a}$ terms in Lemma E.1, so that $M^{-1} \sum_{m=1}^M \mathbb{E} \left| \mathbb{G}_n^m \left[\widehat{\varphi}_{n,m,t,a}^{k,0} - \varphi_{\infty,t,a}^{k,0} \right] \right|$ is bounded up to $C''' \sum_{j=1}^6 \mathbb{E}[\max_m(\bar{A}_{j,n,m,t,a})]$ for some constant C''' . It is straightforward that by Conditions E.1 and E.2, this upper bound tends to zero, so $M^{-1} \sum_{m=1}^M \left| \mathbb{G}_n^m \left[\widehat{\varphi}_{n,m,t,a}^{k,0} - \varphi_{\infty,t,a}^{k,0} \right] \right| = o_p(1)$. \square

Finally, the only difference we have not characterized in (4) is $\mathbb{P}[\varphi_{t,a}^{k,0}(\mathcal{O}; \mathbb{P}_\infty)] - \theta^0(t, a)$, which we show it below.

1836 **Lemma E.3.** Consider some general nuisance functions under \mathbb{P}_∞ , denoted by S_∞^0 , S_∞^k , G_∞^k , π_∞^k ,
 1837 and $\omega_\infty^{k,0}$ (equals 1 if $k = 0$). Then, $\mathbb{P}[\varphi_{t,a}^{k,0}(\mathcal{O}; \mathbb{P}_\infty)] - \theta^0(t, a)$ equals
 1838

$$\begin{aligned} 1839 \quad & \mathbb{E} \left[\frac{q^0(\mathbf{X})}{\mathbb{P}(R=0)} S_\infty^k(t | a, \mathbf{X}) \int_0^t \frac{S_\infty^k(y- | a, \mathbf{X})}{S_\infty^k(y | a, \mathbf{X})} \right. \\ 1840 \quad & \times \left. \left\{ \frac{\omega_\infty^{k,0}(\mathbf{X}) G_\infty^k(y | a, \mathbf{X}) \pi^k(a | \mathbf{X})}{\omega^{k,0}(\mathbf{X}) G_\infty^k(y | a, \mathbf{X}) \pi_\infty^k(a | \mathbf{X})} - 1 \right\} (\Lambda_\infty^k - \Lambda^k) (dy | a, \mathbf{X}) \right]. \\ 1841 \end{aligned}$$

1844 *Proof.* By direct calculations, $\mathbb{P}[\varphi_{t,a}^{k,0}(\mathcal{O}; \mathbb{P}_\infty)] - \theta^0(t, a)$ equals
 1845

$$\begin{aligned} 1846 \quad & \mathbb{E} \left[\frac{\mathbb{I}(R=0)}{\mathbb{P}(R=0)} \{S_\infty^0(t | a, \mathbf{X}) - S^0(t | a, \mathbf{X})\} + \frac{q^k(\mathbf{X})}{\mathbb{P}(R=k)} \omega_\infty^{k,0}(\mathbf{X}) S_\infty^k(t | a, \mathbf{X}) \frac{\pi^k(a | \mathbf{X})}{\pi_\infty^k(a | \mathbf{X})} \right. \\ 1847 \quad & \times \left. \int_0^t \frac{S_\infty^k(y- | a, \mathbf{X}) G_\infty^k(y | a, \mathbf{X})}{S_\infty^k(y | a, \mathbf{X}) G_\infty^k(y | a, \mathbf{X})} (\Lambda_\infty^k - \Lambda^k) (dy | a, \mathbf{X}) \right] \\ 1848 \quad = \mathbb{E} \left[\frac{q^0(\mathbf{X})}{\mathbb{P}(R=0)} \{S_\infty^0(t | a, \mathbf{X}) - S^0(t | a, \mathbf{X})\} + \frac{q^0(\mathbf{X})}{\mathbb{P}(R=0)} \frac{\omega_\infty^{k,0}(\mathbf{X})}{\omega^{k,0}(\mathbf{X})} S_\infty^k(t | a, \mathbf{X}) \frac{\pi^k(a | \mathbf{X})}{\pi_\infty^k(a | \mathbf{X})} \right. \\ 1849 \quad & \times \left. \int_0^t \frac{S_\infty^k(y- | a, \mathbf{X}) G_\infty^k(y | a, \mathbf{X})}{S_\infty^k(y | a, \mathbf{X}) G_\infty^k(y | a, \mathbf{X})} (\Lambda_\infty^k - \Lambda^k) (dy | a, \mathbf{X}) \right]. \\ 1850 \end{aligned}$$

1851 In the second “ \mathbb{E} ” after “ $=$ ”, we used the following relationship:
 1852

$$\frac{q^0(\mathbf{X})}{q^k(\mathbf{X})} = \omega^{k,0}(\mathbf{X}) \frac{\mathbb{P}(R=0)}{\mathbb{P}(R=k)}$$

1853 by Bayes’s rule. Furthermore, by Duhamel equation in Gill & Johansen (1990),
 1854

$$\begin{aligned} 1855 \quad & \mathbb{P}[\varphi_{t,a}^{k,0}(\mathcal{O}; \mathbb{P}_\infty)] - \theta^0(t, a) \\ 1856 \quad & = \mathbb{E} \left[\frac{q^0(\mathbf{X})}{\mathbb{P}(R=0)} S_\infty^k(t | a, \mathbf{X}) \int_0^t \frac{S_\infty^k(y- | a, \mathbf{X})}{S_\infty^k(y | a, \mathbf{X})} \right. \\ 1857 \quad & \times \left. \left\{ \frac{\omega_\infty^{k,0}(\mathbf{X}) G_\infty^k(y | a, \mathbf{X}) \pi^k(a | \mathbf{X})}{\omega^{k,0}(\mathbf{X}) G_\infty^k(y | a, \mathbf{X}) \pi_\infty^k(a | \mathbf{X})} - 1 \right\} (\Lambda_\infty^k - \Lambda^k) (dy | a, \mathbf{X}) \right]. \quad (5) \\ 1858 \end{aligned}$$

□

1859 E.1.4 PROOF OF THEOREM 2.6

1860 By (4) with $\pi_\infty^k = \pi^k$, $\omega_\infty^{k,0} = \omega^{k,0}$, $G_\infty^k = G^k$, and $S_\infty^k = S^k$,
 1861

$$\begin{aligned} 1862 \quad & \widehat{\theta}_n^{k,0}(t, a) - \theta^0(t, a) = \mathbb{P}_n[\varphi_{t,a}^{k,0}] + \frac{1}{M} \sum_{m=1}^M \frac{Mn_m^{1/2}}{n} \mathbb{G}_n^m \left[\widehat{\varphi}_{n,m,t,a}^{k,0} - \varphi_{t,a}^{k,0} \right] \\ 1863 \quad & + \frac{1}{M} \sum_{m=1}^M \frac{Mn_m}{n} \mathbb{P} \left[\widehat{\varphi}_{t,a}^{k,0} - \theta^0(t, a) \right]. \\ 1864 \end{aligned}$$

□

1865 By Conditions E.1 and E.2, the second summand on the right-hand-side is $o_p(n^{-1/2})$ by Lemma E.2.
 1866

1867 By Lemma E.3, $\mathbb{P}[\widehat{\varphi}_{t,a}^{k,0}] - \theta^0(t, a)$ equals
 1868

$$\begin{aligned} 1869 \quad & \mathbb{E} \left[\frac{q^0(\mathbf{X})}{\mathbb{P}(R=0)} \widehat{S}_m^k(t | a, \mathbf{X}) \int_0^t \frac{S_\infty^k(y- | a, \mathbf{X})}{\widehat{S}_m^k(y | a, \mathbf{X})} \right. \\ 1870 \quad & \times \left. \left\{ \frac{\widehat{\omega}_m^{k,0}(\mathbf{X}) G_\infty^k(y | a, \mathbf{X}) \pi^k(a | \mathbf{X})}{\omega^{k,0}(\mathbf{X}) \widehat{G}_m^k(y | a, \mathbf{X}) \widehat{\pi}_m^k(a | \mathbf{X})} - 1 \right\} (\widehat{\Lambda}_m^k - \Lambda^k) (dy | a, \mathbf{X}) \right]. \\ 1871 \end{aligned}$$

□

1872 By Duhamel equation in Gill & Johansen (1990) and Condition E.3, we find that the above bias term
 1873 can be bounded by $\eta^2 \{r_{n,t,a,1}^k + r_{n,t,a,2}^k + r_{n,t,a,3}^k\}$ over m . Since $M^{-1} \sum_{m=1}^M n^{-1} M n_m \leq 2$, we
 1874

1890 have

$$1892 \quad \left| \frac{1}{M} \sum_{m=1}^M \frac{Mn_m}{n} \mathbb{P} \left[\widehat{\varphi}_{t,a}^{k,0} - \theta^0(t, a) \right] \right| \leq 2\eta^2 \{ r_{n,t,a,1}^k + r_{n,t,a,2}^k + r_{n,t,a,3}^k \} = o_p(n^{-1/2}),$$

1894 by Condition E.3. This established the pointwise RAL property: $\widehat{\theta}_n^{k,0}(t, a) = \theta^0(t, a) + \mathbb{P}_n(\varphi_{t,a}^{k,0}) +$
1895 $o_p(n^{-1/2})$. Since $\varphi_{t,a}^{k,0}$ is uniformly bounded, $\mathbb{P}\{(\varphi_{t,a}^{k,0})^2\} < \infty$ and since $\mathbb{P}\{\varphi_{t,a}^{k,0}\} = 0$, then

$$1897 \quad n^{1/2} \mathbb{P}_n(\widehat{\varphi}_{t,a}^{k,0}) \rightarrow_d \mathcal{N}(0, \mathbb{P}\{(\varphi_{t,a}^{k,0})^2\}).$$

1899 **Remark E.4** (Technical version of Theorem 2.8). If we only need the consistency of $\widehat{\theta}_n^k(t, a)$, then
1900 condition $\pi_\infty^k = \pi^k$, $\omega_\infty^{k,0} = \omega^{k,0}$, $G_\infty^k = G^k$, and $S_\infty^k = S^k$ can be replaced by the following
1901 statement: For \mathbb{P} -almost all \mathbf{X} , there exist measurable sets $\mathcal{S}_x^k, \mathcal{G}_x^k \subseteq [0, t]$ such that $\mathcal{S}_x^k \cup \mathcal{G}_x^k = [0, t]$
1902 and $\Lambda^k(u | a, \mathbf{X}) = \Lambda_\infty^k(u | a, \mathbf{X})$ for all $u \in \mathcal{S}_x^k$ and $G(u | a, \mathbf{X}) = G_\infty^k(u | a, \mathbf{X})$ for all $u \in \mathcal{G}_x^k$.
1903 In addition, if \mathcal{S}_x^k is a strict subset of $[0, t]$, then $\pi^k(a | \mathbf{X}) = \pi_\infty^k(a | \mathbf{X})$ and $\omega^{k,0}(\mathbf{X}) = \omega_\infty^{k,0}(\mathbf{X})$
1904 as well. Then, $\widehat{\theta}_n^k(t, a)$ is consistent if Conditions E.1 and E.2 hold.

1905 To prove Remark E.4, we decompose the integral \int_0^t as $\int_{\mathcal{S}_x^k} + \int_{\mathcal{S}_x^{k,c}}$, where $\mathcal{S}_x^{k,c}$ is the complement
1906 of set \mathcal{S}_x^k , and $\mathcal{S}_x^{k,c} \subseteq \mathcal{G}_x^k$ by definition. Then, it is straightforward to verify that when the statement
1907 in Remark E.4 holds, the following integral

$$1909 \quad \int_0^t \frac{S^k(y- | a, \mathbf{X})}{S_\infty^k(y | a, \mathbf{X})} \left\{ \frac{G^k(y | a, \mathbf{X})\pi^k(a | \mathbf{X})}{G_\infty^k(y | a, \mathbf{X})\pi_\infty^k(a | \mathbf{X})} - 1 \right\} (\Lambda_\infty^k - \Lambda^k)(dy | a, \mathbf{X}) \\ 1910 \quad = \left(\int_{\mathcal{S}_x^k} + \int_{\mathcal{G}_x^k} \right) \frac{S^k(y- | a, \mathbf{X})}{S_\infty^k(y | a, \mathbf{X})} \left\{ \frac{G^k(y | a, \mathbf{X})\pi^k(a | \mathbf{X})}{G_\infty^k(y | a, \mathbf{X})\pi_\infty^k(a | \mathbf{X})} - 1 \right\} (\Lambda_\infty^k - \Lambda^k)(dy | a, \mathbf{X}) = 0,$$

1914 which further implies $\mathbb{P}[\varphi_{\infty,t,a}^{k,0}] = 0$.

1917 E.2 THEORY FOR THE FEDERATED ESTIMATOR

1918 In this section, we present the properties of the federated estimator. Given that our proposed weights,
1919 $\eta_{t,a}$, are both time- and treatment-specific, we focus on the pointwise convergence properties.

1921 Let the set of all source site indices be $\mathcal{S} = \{1, \dots, K-1\}$. We then define the oracle selection
1922 space for $\eta_{t,a}$, and the corresponding weight space as:

$$1923 \quad \mathcal{S}_{t,a}^* = \{k \in \mathcal{S} : \theta^k(t, a) = \theta^0(t, a)\}, \quad \text{and} \quad \mathbb{R}^{\mathcal{S}_{t,a}^*} = \{\eta_{t,a} \in \mathbb{R}^{K-1} : \eta_{t,a}^j = 0, \forall j \notin \mathcal{S}_{t,a}^*\},$$

1925 respectively.

1926 The space $\mathcal{S}_{t,a}^*$ is both time- and treatment-varying, indicating that a source site may not consistently
1927 be useful or unhelpful across different time points or treatments. However, it offers the advantage of
1928 increased flexibility and adaptivity, allowing for more effective borrowing of information at different
1929 points along the survival functions. Based on the theory presented in Section E.1, for $k \in \mathcal{S}_{t,a}^*$, the
1930 site-specific estimator $\widehat{\theta}_n^{k,0}(t, a)$ is consistent for $\theta^0(t, a)$ for any given $t \in [0, \tau]$ and $a \in \{0, 1\}$.

1931 We begin by assuming fixed $\eta_{t,a} = (\eta_{t,a}^0, \eta_{t,a}^1, \dots, \eta_{t,a}^{K-1})$. We invoke Lemmata 4 and 5 in Han
1932 et al. (2025), which state that the proposed adaptive estimation for $\eta_{t,a}^k$ as shown in (2) allows
1933 for (i) the recovery of the optimal $\eta_{t,a}^k$ by the estimator $\widehat{\eta}_{t,a}^k$, and (ii) the uncertainty induced by
1934 $\widehat{\eta}_{t,a}^k$ is negligible when estimating $\theta^0(t, a)$. We require regularity Conditions E.1, E.2 and E.3 for
1935 the pointwise convergence result in Theorem 2.6 hold. Let us denote the federated estimator by
1936 plugging-in the fixed $\eta_{t,a}$ as

$$1939 \quad \widehat{\theta}_n^{\text{fed}}(t, a; \eta_{t,a}) = \left(1 - \sum_{k \in \mathcal{S}} \eta_{t,a}^k \right) \widehat{\theta}_n^0(t, a) + \sum_{k \in \mathcal{S}} \eta_{t,a}^k \widehat{\theta}_n^{k,0}(t, a).$$

1941 Recall that notation $\mathcal{H}_{t,a}$ defined in (1):

$$1943 \quad \mathcal{H}_{t,a}(\mathcal{O}; S, G) = \frac{\mathbb{I}(Y \leq t, \delta = 1)}{S(Y | a, \mathbf{X})G(Y | a, \mathbf{X})} - \int_0^{t \wedge Y} \frac{\Lambda(du | a, \mathbf{X})}{S(u | a, \mathbf{X})G(u | a, \mathbf{X})}.$$

1944 Let us then write
 1945

$$\begin{aligned}\xi^{0,(1)}(\mathcal{O}) &= S^0(t | a, \mathbf{X}) \frac{\mathbb{I}(A = a)}{\pi^0(a | \mathbf{X})} \mathcal{H}_{t,a}(\mathcal{O}; S^0, \Lambda^0, G^0), \\ \xi^{k,0,(1)}(\mathcal{O}) &= \omega^{k,0}(\mathbf{X}) S^k(t | a, \mathbf{X}) \frac{\mathbb{I}(A = a)}{\pi^k(a | \mathbf{X})} \mathcal{H}_{t,a}(\mathcal{O}; S^k, \Lambda^k, G^k), \\ \xi^{0,(2)}(\mathcal{O}) &= S^0(t | a, \mathbf{X}) - \theta^0(t, a),\end{aligned}$$

1952 and $n_k = \sum_{i=1}^n \mathbb{I}(R_i = k)$ for $k = 0, 1, \dots, K - 1$.
 1953

1954 Then,

$$\begin{aligned}\widehat{\theta}_n^{\text{fed}}(t, a; \boldsymbol{\eta}_{t,a}) - \theta^0(t, a) &= \left(1 - \sum_{k \in \mathcal{S}} \eta_{t,a}^k\right) \left\{ \widehat{\theta}_n^0(t, a) - \theta^0(t, a) \right\} + \sum_{k \in \mathcal{S}} \eta_{t,a}^k \left\{ \widehat{\theta}_n^{k,0}(t, a) - \theta^0(t, a) \right\} \\ &= \left(1 - \sum_{k \in \mathcal{S}} \eta_{t,a}^k\right) \frac{1}{n_0} \sum_{i=1}^n \mathbb{I}(R_i = 0) \left\{ \widehat{\xi}^{0,(2)}(\mathcal{O}_i) - \widehat{\xi}^{0,(1)}(\mathcal{O}_i) \right\} \\ &\quad + \sum_{k \in \mathcal{S}} \frac{1}{n_0} \sum_{i=1}^n \mathbb{I}(R_i = 0) \eta_{t,a}^k \widehat{\xi}^{0,(2)}(\mathcal{O}_i) - \sum_{k \in \mathcal{S}} \frac{1}{n_k} \sum_{i=1}^n \mathbb{I}(R_i = k) \eta_{t,a}^k \widehat{\xi}^{k,0,(1)}(\mathcal{O}_i) \\ &= \frac{1}{n} \sum_{i=1}^n \left(1 - \sum_{k \in \mathcal{S}} \eta_{t,a}^k\right) \mathbb{I}(R_i = 0) \frac{\widehat{\xi}^{0,(2)}(\mathcal{O}_i) - \widehat{\xi}^{0,(1)}(\mathcal{O}_i)}{\widehat{\mathbb{P}}(R_i = 0)} \\ &\quad + \frac{1}{n} \sum_{i=1}^n \mathbb{I}(R_i = 0) \left(\sum_{k \in \mathcal{S}} \eta_{t,a}^k \right) \frac{\widehat{\xi}^{0,(2)}(\mathcal{O}_i)}{\widehat{\mathbb{P}}(R_i = 0)} - \frac{1}{n} \sum_{k \in \mathcal{S}} \sum_{i=1}^n \mathbb{I}(R_i = k) \eta_{t,a}^k \frac{\widehat{\xi}^{k,0,(1)}(\mathcal{O}_i)}{\widehat{\mathbb{P}}(R_i = k)}. \quad (6)\end{aligned}$$

1971 The asymptotic variance of $\widehat{\theta}_n^{\text{fed}}(t, a; \boldsymbol{\eta}_{t,a})$ equals the variance of the influence function of (6). Let us
 1972 denote it as $\mathcal{V}_{t,a}^{\text{fed}} = \mathcal{V}_{t,a}^{\text{fed}}(\boldsymbol{\eta}_{t,a})$. We highlight its dependence to the federated weights vector $\boldsymbol{\eta}_{t,a}$ here
 1973 because in the below (8), we consider an optimization program for deriving the weights based on
 1974 minimizing the (estimated) asymptotic variance.
 1975

1976 Under the assumption of i.i.d. participants within each site, we have

$$\begin{aligned}\mathcal{V}_{t,a}^{\text{fed}} &= \left(1 - \sum_{k \in \mathcal{S}} \eta_{t,a}^k\right)^2 \frac{\mathbb{V}\{\xi^{0,(2)}(\mathcal{O}_i) - \xi^{0,(1)}(\mathcal{O}_i) | R_i = 0\}}{\mathbb{P}(R_i = 0)} \\ &\quad + \left(\sum_{k \in \mathcal{S}} \eta_{t,a}^k\right)^2 \frac{\mathbb{V}\{\xi^{0,(2)}(\mathcal{O}_i) | R_i = 0\}}{\mathbb{P}(R_i = 0)} \\ &\quad + 2 \left(1 - \sum_{k \in \mathcal{S}} \eta_{t,a}^k\right) \left(\sum_{k \in \mathcal{S}} \eta_{t,a}^k\right) \frac{\text{Cov}\{\xi^{0,(2)}(\mathcal{O}_i) - \xi^{0,(1)}(\mathcal{O}_i), \xi^{0,(2)}(\mathcal{O}_i) | R_i = 0\}}{\mathbb{P}(R_i = 0)} \\ &\quad + \sum_{k \in \mathcal{S}} (\eta_{t,a}^k)^2 \frac{\mathbb{V}\{\xi^{k,0,(1)}(\mathcal{O}_i) | R_i = k\}}{\mathbb{P}(R_i = k)}. \quad (7)\end{aligned}$$

1990 With appropriate boundedness conditions on conditional variance and covariance terms above,
 1991 $\mathcal{V}_{t,a}^{\text{fed}} < \infty$ (see Lemma E.6). Consequently, the asymptotic distribution of $\widehat{\theta}_n^{\text{fed}}(t, a; \boldsymbol{\eta}_{t,a})$ is given by

$$\sqrt{n} \left\{ \widehat{\theta}_n^{\text{fed}}(t, a; \boldsymbol{\eta}_{t,a}) - \theta^0(t, a) \right\} \xrightarrow{d} \mathcal{N}(0, \mathcal{V}_{t,a}^{\text{fed}}).$$

1994 **Remark E.5.** Based on the derivations in (6) and (7), an influence-function-based asymptotic
 1995 variance estimator of $\widehat{\theta}_n^{\text{fed}}(t, a)$ ($\widehat{\mathcal{V}}_{t,a}^{\text{fed}}$ in Theorem 2.10), is obtained by replacing the population
 1996 proportions, variances, and covariances in (7) with their sample (empirical) counterparts and plugging
 1997 in the estimated weight vector $\widehat{\boldsymbol{\eta}}_{t,a}$.

1998

1999 We further define the optimal adaptive weights $\bar{\eta}_{t,a}$ as follows:

2000

2001
$$\bar{\eta}_{t,a} = \arg \min_{\eta_{t,a}^k = 0, \forall k \notin \mathcal{S}_{t,a}^*} \mathcal{V}_{t,a}^{\text{fed}}(\eta_{t,a}). \quad (8)$$

2002

2003 We adapt two lemmata from Han et al. (2025) for recovering the optimal weights $\bar{\eta}_{t,a}$ with negligible
2004 uncertainty for estimating $\theta^0(t, a)$ if we estimate $\eta_{t,a}$ using (2), akin to adaptive Lasso (Zou, 2006;
2005 Fan et al., 2024).

2006

2007 **Lemma E.6** (adapted from Lemma 4 in Han et al. (2025)). *Under Conditions E.1–E.3, along with the
2008 following mild conditions on covariates support and covariances: (i) The covariates \mathbf{X} and density
2009 ratio $\omega^{k,0}(\mathbf{X})$ are in compact sets $\mathbf{X} \in [-B, B]^p$ and $\omega^{k,0}(\mathbf{X}) \in [-B, B]$ for all $k = 1, \dots, K-1$
2010 with probability 1; and (ii) The variance of $\xi^{k,0,(1)}(\mathcal{O}) \in [\varepsilon, M]$, and the variance-covariance matrix
2011 $\mathcal{V}[(\xi^{0,(1)}, \xi^{0,(2)})' | R = 0]$ has eigenvalues in $[\varepsilon, B]$ for some positive constants ε and B . Then, it
2012 holds that*

2013

2014
$$\lim_{n \rightarrow \infty} \mathbb{P}(\hat{\eta}_{t,a} \in \mathbb{R}^{\mathcal{S}_{t,a}^*}) = 1, \quad \|\hat{\eta}_{t,a} - \bar{\eta}_{t,a}\| = O_p(n^{-1/2}),$$

2015

2016 for all $(t, a) \in [0, \tau] \times \{0, 1\}$.

2017

2018 **Lemma E.7** (adapted from Lemma 5 in Han et al. (2025)). *Under conditions in Lemma E.6,*

2019

2020
$$\sqrt{n} \left(\hat{\theta}_n^{\text{fed}}(t, a; \hat{\eta}_{t,a}) - \theta^0(t, a) \right) \rightarrow_d \mathcal{N}(0, \mathcal{V}_{t,a}^{\text{fed}}(\bar{\eta}_{t,a})),$$

2021

2022 for all $(t, a) \in [0, \tau] \times \{0, 1\}$.

2023

2024 The consistency of $\hat{\mathcal{V}}_{t,a}^{\text{fed}} = \hat{\mathcal{V}}_{t,a}^{\text{fed}}(\hat{\eta}_{t,a})$ follows when we can effectively approximate $\mathcal{V}_{t,a}^{\text{fed}}(\bar{\eta}_{t,a})$ with
2025 $\hat{\mathcal{V}}_{t,a}^{\text{fed}}$. Thus,

2026

2027
$$\sqrt{n/\hat{\mathcal{V}}_{t,a}^{\text{fed}}} \left\{ \hat{\theta}_n^{\text{fed}}(t, a) - \theta^0(t, a) \right\} \rightarrow_d \mathcal{N}(0, 1).$$

2028

2029 We now analyze the efficiency gain resulting from the federation process. The estimator relies only on
2030 the target data is denoted as $\hat{\theta}_n^0(t, a) = \hat{\theta}_n^{\text{fed}}(t, a; \eta_{t,a}^0)$, where $\eta_{t,a}^0$ assigns all weights to the target and
2031 none to the source. In contrast, the estimator that leverages the proposed adaptive ensemble approach
2032 is denoted as $\hat{\theta}_n^{\text{fed}}(t, a; \hat{\eta}_{t,a})$. Here $\hat{\eta}_{t,a}$ can recover the optimal weights $\bar{\eta}_{t,a}$ that are associated with
2033 the minimum asymptotic variance. Consequently, the variance of $\hat{\theta}_n^{\text{fed}}(t, a; \hat{\eta}_{t,a})$ is no larger than that
2034 of the estimator relying solely on the target data since $\eta_{t,a}^0$ is generally not the variance minimizer.

2035

2036 To establish that the asymptotic variance of $\hat{\theta}_n^{\text{fed}}(t, a; \hat{\eta}_{t,a})$ is strictly smaller than that of the estimator
2037 based solely on the target data $\hat{\theta}_n^0(t, a)$, we adopt Proposition 1 in Han et al. (2025) with a modified
2038 informative source condition (modified Assumption 3(b) in Han et al. (2025)).

2039

2040 Specifically, for each source site $s \in \mathcal{S}_{t,a}^*$, we define $\hat{\theta}_n^{\text{fed}}(t, a; \eta_{t,a}^s)$ a federated estimator where $\eta_{t,a}^s$
2041 is the optimal ensemble weight of site s if we only consider target site and this source site s for the
2042 federation. Then, the modified informative source condition is given as

2043

2044
$$\left| \text{Cov} \left[\sqrt{n} \hat{\theta}_n^0(t, a), \sqrt{n} \left\{ \hat{\theta}_n^{\text{fed}}(t, a; \eta_{t,a}^s) - \hat{\theta}_n^0(t, a) \right\} \right] \right| \geq \varepsilon,$$

2045

2046 for some $\varepsilon > 0$, where $\hat{\theta}_n^{\text{fed}}(t, a; \eta_{t,a}^s) - \hat{\theta}_n^0(t, a)$ can be expressed as

2047

2048
$$\begin{aligned} & \hat{\theta}_n^{\text{fed}}(t, a; \eta_{t,a}^s) - \hat{\theta}_n^0(t, a) \\ &= \left\{ \hat{\theta}_n^{\text{fed}}(t, a; \eta_{t,a}^s) - \theta^0(t, a) \right\} - \left\{ \hat{\theta}_n^0(t, a) - \theta^0(t, a) \right\} \\ &= \frac{1}{n} \sum_{i=1}^n \mathbb{I}(R_i = 0) (1 - \eta_{t,a}^s) \frac{\hat{\xi}^{0,(2)}(\mathcal{O}_i) - \hat{\xi}^{0,(1)}(\mathcal{O}_i)}{\hat{\mathbb{P}}(R_i = 0)} + \frac{1}{n} \sum_{i=1}^n \mathbb{I}(R_i = 0) \eta_{t,a}^s \frac{\hat{\xi}^{0,(2)}(\mathcal{O}_i)}{\hat{\mathbb{P}}(R_i = 0)} \\ &\quad - \frac{1}{n} \sum_{i=1}^n \mathbb{I}(R_i = s) \eta_{t,a}^s \frac{\hat{\xi}^{0,(1)}(\mathcal{O}_i)}{\hat{\mathbb{P}}(R_i = s)} - \frac{1}{n} \sum_{i=1}^n \mathbb{I}(R_i = 0) \frac{\hat{\xi}^{0,(2)}(\mathcal{O}_i) - \hat{\xi}^{0,(1)}(\mathcal{O}_i)}{\hat{\mathbb{P}}(R_i = 0)} \\ &= \frac{1}{n} \sum_{i=1}^n \mathbb{I}(R_i = 0) \eta_{t,a}^s \frac{\hat{\xi}^{0,(1)}(\mathcal{O}_i)}{\hat{\mathbb{P}}(R_i = 0)} - \frac{1}{n} \sum_{i=1}^n \mathbb{I}(R_i = s) \eta_{t,a}^s \frac{\hat{\xi}^{0,(1)}(\mathcal{O}_i)}{\hat{\mathbb{P}}(R_i = s)}. \end{aligned}$$

2049

2050 Therefore, it is straightforward to see that the modified condition can be achieved if $\eta_{t,a}^s > 0$.
2051