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ABSTRACT

Causal inference across multiple data sources can improve the generalizability
and reproducibility of scientific findings. However, for time-to-event outcomes,
data integration methods remain underdeveloped, especially when populations are
heterogeneous and privacy constraints prevent direct data pooling. We propose
a federated learning method for estimating target site-specific causal effects in
multi-source survival settings. Our approach dynamically re-weights source contri-
butions to correct for distributional shifts, while preserving privacy. Leveraging
semiparametric efficiency theory, data-adaptive weighting and flexible machine
learning, the method achieves both double robustness and efficiency improvement.
Through simulations and two real data applications: (i) multi-site randomized trials
of monoclonal antibodies for HIV-1 prevention among cisgender men and transgen-
der persons in the United States, Brazil, Peru, and Switzerland, as well as women
in sub-Saharan Africa, and (ii) an analysis of sex disparities across biomarker
groups for all-cause mortality using the “fichain” dataset, we demonstrate the va-
lidity, efficiency gains, and practical utility of the approach. Our findings highlight
the promise of federated methods for efficient, privacy-preserving causal survival
analysis under distribution shift.

1 INTRODUCTION

Data fusion, or data integration, can substantially enhance the generalizability, transportability, and
replicability of scientific findings. By combining heterogeneous studies, researchers can gain larger
and more diverse samples, extend insights beyond single settings, and strengthen causal conclusions.
Yet, integration is challenging: distributional shifts in covariates, outcomes, or censoring can invalidate
naive pooling, while privacy regulations such as the General Data Protection Regulation (GDPR) in
Europe and the Health Insurance Portability and Accountability Act (HIPAA) in the United States
often preclude sharing individual-level data.

Limitations of existing work. Most existing causal data fusion methods focus on binary or
continuous outcomes (Han et al.| 2025}, 2024} |Yang & Dingl|[2019; [Liu et al.,|2024; [Han et al., 2023}
Li et al., 2023} [Makhija et al.| 2024} |Almodovar et al.,[2024), neglecting the timing of events that is
often crucial in biomedical and policy settings. Distinguishing between preventing versus delaying
hospitalization, for example, has markedly different implications.

Existing extensions to survival data rely on restrictive assumptions. For example, the Cox proportional
hazards (PH) model imposes a log-linear hazard structure (Hernanl, 2010; [Han, |2023; Nagpal et al.|
2023)), or the assumption of a common conditional outcome distribution (CCOD) across sites (Lee
et al., |2022; |Cao et al., |2024; |Wen et al.| [2025) may fail under heterogeneous data distributions.
Violations of these assumptions yield biased estimates and inference. In addition, privacy-preserving
methods avoiding sharing raw data across sites for survival outcomes remain scarce (Jia et al., 2021).

Time-to-event outcomes are typically analyzed within single-site studies using nonparametric survival
curves such as the Kaplan—Meier estimator (Kaplan & Meier, [1958). With covariate-rich data,
semiparametric extensions such as the Cox model (Cox} 1972} | Xie & Liu, 2005} Bull & Spiegelhalter}
1997) and doubly robust estimators (Bai et al., 2013) are standard. More recently, Westling et al.
(2024) integrated double machine learning (Chernozhukov et al.l | 2018) to flexibly estimate nuisance
functions in survival analysis (Wolock et al., [2024; |Cui et al., [2023; lvan der Laan et al., [2007).
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However, these methods remain focused on single-study contexts and do not address how to combine
survival data across multiple sources.

Contributions. Recognizing that pooling is often infeasible and that CCOD may not hold, we
develop a federated estimator with adaptive site weighting that accommodates both continuous-
and discrete-time outcomes. Our approach leverages influence function theory to construct site-
specific estimators based only on local summary statistics, combined through a constrained convex
optimization that upweights informative sites and downweights or excludes biased ones. We establish
consistency, asymptotic normality, and conditions under which our method improves efficiency over
target-only analysis. By integrating cross-fitting (Chernozhukov et al.| 2018) and ensemble learning
(Diaz et al.,|2019; Diaz}, |2020; Westling et al.|[2024; |van der Laan et al.,|2007)), our estimator avoids
restrictive assumptions while retaining fast convergence rates.

We validate the method through extensive Monte Carlo simulation studies and two real applications:
(i) multi-site randomized trials of monoclonal antibodies for HIV-1 prevention among cisgender men
and transgender persons in the United States, Brazil, Peru, and Switzerland, as well as women in
sub-Saharan Africa, and (ii) an analysis of sex disparities in all-cause mortality using the f1chain
dataset in the survival R package, stratified into biomarker-defined groups. Together, these
examples highlight the potential of federated methods to enable efficient, privacy-preserving causal
inference for time-to-event outcomes in realistic multi-source settings.

2 METHODOLOGY

2.1 PROBLEM SETUP AND TARGET ESTIMAND

Observed data. Consider K studies, each of which may be randomized or observational. For each
participant, we observe baseline covariates X, a binary treatment A € {0, 1}, and right-censored
outcomes. Let T(®) and C(®) denote the potential event and censoring times under treatment
a € {0,1}. By the stable unit treatment value assumption (SUTVA) (Rosenbaum & Rubin,|1983), the
observed event and censoring times are T = AT + (1 — A)T©, C = ACW + (1 - A)C©),
With right censoring, however, we only observe Y = min(7,C) and A = I(T < C).

Denote a copy of the independent and identically distributed (i.i.d.) data by O. The observed data
across all sites are then given by

{Oz = (XZJA’L7)/;7AZ7R’L) S 177”}7

where R € {0,1,..., K — 1} denotes the site, with R = 0 indicating the target site and R =
1,..., K — 1 the external sources.

Target estimand. Our goal is to estimate the treatment-specific survival function in the target
population over a finite horizon 7 < co:

0°(t,a) =P(T'“ >t | R=0), aec{0,1}, tel0,7].

This function gives the probability that a target-site individual on treatment a (e = 1 for treated,
a = 0 for control) survives beyond time ¢.

Conditional survival functions. For each site k, define the conditional survival function S* (¢ |
a,X)=P(T >t | A=a,X,R = k). To simultaneously accommodate continuous- and discrete-
time outcomes, we use the product integral representation (Gill & Johansen, [1990):

Skt a,X) = T {1 - A*(du | a,X)},
(0.1]

where A¥(t | a, X) is the conditional cumulative hazard function. This notation unifies both discrete
and continuous-time survival models, because in discrete time the product integral becomes the
standard discrete product [ ], and in continuous time it becomes exp{—A*(t | a, X)}.

We impose three standard assumptions for causal survival analysis:
Assumption 2.1 (Unconfoundedness). A 1L T(®) | X, Rand A 1. C®) | X, R.
Assumption 2.2 (Treatment-specific non-informative censoring). C(®) 1. T | A = a, X, R.
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Assumption 2.3 (Positivity). There exists 77 > 0 such that P(R = k) > 1/n, and for almost all X,
k k ok
X t]a,X)}>1 t]a,X .
pgnin (e X), GR(t]a, X)} = 1/n,  min S¥(t]a,X) >0
Here 7% (a | X) = P(A = a | X, R = k) is the site-specific propensity score for treatment A = a,
and G*(t | a,X) = P(C >t | A = a,X, R = k) the conditional survival function of censoring.
Each treatment and censoring mechanism has non-vanishing probability, and each site contributes a
non-negligible fraction of participants.

2.2  SINGLE-SITE ESTIMATION

Auxiliary process. For later use, define
(Y <t,A=1 Y Af(du | a,X
Hea(0: 5, 6% = X ) / (ulaX) =
SE(Y 1a,X)G*(Y |a,X) Jo Sku]a,X)G*(u|a,X)
where ¢t AY = min(¢,Y"). This functional plays a role as the inverse probability-weighted mean-zero
residual (part of an augmentation term) in doubly robust estimators for right-censored data.

Efficient influence function (EIF). When using only target-site data (R = 0), the nonparametric EIF
of 09(t,a) givent € [0,7] and a € {0, 1} is given by (Westling et al., 2024):

I(R=0) ]I(A a)
%0 0 A0 0 0
O;P) = 1- HeolO;57,G7) p S7(t] a,X) = 0°(¢,
o) = o= 1= S0 0876 L 5% 0.0 - 00
This representation highlights two components: (i) an anchor term that S°(¢ | a, X) — 6°(t, a), which
anchors estimation through the conditional survival function under an outcome model by using target
data; and (i) an augmentation term—the weighted part involving H; ,(O; S°, G°) and 7°(a | X),
which adjusts for censoring and treatment assignment.

Here, P in gp*o (O;P) indicates that the EIF depends on nuisance functions under the true data
distribution. In other words, ;% (O;P) = ©;%(0; S% G, 7). The same convention applies to
other EIFs specified later. Throughout, P,,[f (O )] = nil i, f(O;) denotes the empirical average.

Target-only estimator. Motivated by the EIF, we define §g(t, a) as the solution to the estimating
equation

0 =P,[3;%(0: P)],
where P denotes that nuisance functions are replaced by their sample estimates. Under regularity

conditions, §g(t7 a) is regular and asymptotically linear (RAL) and achieves the semiparametric
efficiency bound uniformly over ¢ € [0, 7] when only target-site data are available.

2.3 THE CCOD ASSUMPTION

When multiple data sources are available, precision can be improved by data fusion. A common
simplifying assumption is that conditional survival functions are identical across sites given covariates.

Assumption 2.4 (Common conditional outcome distribution). 7* 1L R | X fora € {0,1}.
Assumptionimplies that S¥(¢ | a,X) = S(t | a,X) =P(T > t | A = a, X) for all k, while still

allowing shifts in the covariate distribution X across sites, i.e., adjusted for covariates, the event-time
distribution no longer depends on the site.

< L N Lo
(a) CCOD holds (b) CCOD possibly violated
Figure 1: Data structures under and without CCOD. (a) Under CCOD, site R and event time 7" are

conditionally independent given treatment A and covariates X. (b) When CCOD is possibly violated,
indicated by the red dashed arrow, R and T' may not be conditionally independent.
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Figure [I]illustrates the data structure through a directed acyclic graph (DAG), depicting the relation-
ships among covariates X, treatment A, site indicator R, event time 7', and censoring time C', and
compares scenarios with and without the CCOD assumption.

2.4 FEDERATED ESTIMATION UNDER DISTRIBUTION SHIFTS AND PRIVACY

Motivation. In many settings, pooling individual-level data across sites is infeasible due to privacy
constraints. At the same time, CCOD may fail, so naive pooling is invalid. Still, some sites may
provide information that improves estimation for the target population. We propose a federated
method that adaptively re-weights source sites using only summary-level information.

2.4.1 LOCAL SITE-LEVEL ESTIMATION

For each source site k, we temporarily posit a working partial CCOD assumption, S*(t | a, X) =
SO(t | a, X) almost surely, in order to derive an EIF. This assumption is used only for formulating
site-level estimators; violations will later be corrected by adaptive weighting in Section[2.4.2]

Theorem 2.5. For k € {0,1,...,K — 1}, 0%(t,a) is a pathwise differentiable parameter given
t € [0,7]) and a € {0, 1}. Under the working partial CCOD assumption, the semiparametric EIF is

given by p;%°(O;P) =

I(R = 0)
P(R =0)

I(R = k)
P(R = k)

I(A = a)

WX S (t | a, X)W

{S°(t | a,X) — 0°(t,a)} — Hy.0(0; SF,G),

where wH0(X) =P(X | R = 0)/P(X | R = k) is a density ratio comparing covariate distributions
between the target site and source site k.

Local estimator. Each site computes @fl’o(t, a) by solving 0 = P,[5; IZO((’); I@)] The proof of

Theorem , along with regularity conditions and asymptotic properties of @f;o (t,a) are presented
in Appendix [E. ]

Interpretation. (i) The first term (“anchor”) in the EIF uses target-site data (R = 0), while the second
term (“augmentation”) leverages site-k data (R = k), adjusted by the density ratio to re-weight
towards the target covariate distribution; (ii) Because w*°(X) can be estimated using coarse statistics
under flexible models (Han et al., [2025), individual-level covariates need not be shared; and (iii) For
Sk(t | a,X) in the augmentation term, we train a model on the target site and apply its predictions to
site k, since S°(t | a, X) and S*¥(¢ | a, X) are exchangeable under partial CCOD. If partial CCOD is

violated, we can detect site heterogeneity by the difference between @f;o (t,a) and 52 (t,a).

2.4.2 AGGREGATION ACROSS SITES

Data-adaptive weighting. We define the site-specific discrepancy measure )?’fl(t)a = gk0 (t,a) —
0°(t, a) and the weight vector 1, , = (1 ., 14, - - - ,nt{(a_l). To aggregate information, we solve an
{1-penalized convex optimization problem: we minimize Q("h, ), Where

K-1 2 K-1
o~k o~k ]- ~
Q(nt,a) = P’n {%% O ]P) Z M a t’ZU O P)} + E)‘ Z |nzﬁa‘(XZ:?,a)2a (2)
k=1 k=1

subject to nt . > 0and Z Pl o nt o« = 1; A is a tuning parameter that controls the bias-variance
trade-off and is chosen by cross- -validation.

Interpretation. The objective function balances two goals: aligning site-level EIFs with the target
distribution and excluding sites that would induce bias. The quadratic term ensures that sites well-
aligned with the target survival distribution contribute more to the estimation, while the ¢; penalty
induces sparsity by driving the weights of misaligned sites exactly to zero. This contrasts with an
{5 penalty, which merely shrinks weights without fully removing them. As a result, the procedure
asymptotically includes only the informative sources.
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Federated estimator. The final estimator is obtained as a weighted average of the estimated local

survival curves:
K-1

O (t,a) = > iF, 050(t,a).
k=0

The variance of gffd (t,a) can be estimated from its influence function, with the explicit formula
given in Appendix [E.2] Importantly, all steps require only summary-level transmission, never raw
participant data.

i o L e

Target Site Source Site 1 Source Site 2 Source Site K

D, e s I

ih.

Leading Analysis Center

firq = argminm’aQ(nt,a) \\

Figure 2: Flow of the Federated Estimation Algorithm. Each site first estimates its underlying survival
functions locally. The related summary-level information (EIFs) is then transmitted to a leading
analysis center, where it is aggregated and used to compute federated weights by minimizing the Q(-)
function. Finally, the federated estimate is obtained through weighted averaging.

/
%

w

Remark 2.6. We summarize the procedure of the federated method in Algorithm[I]and illustrate its
flow in Figure 2] Implementation details can be found in Appendix [D] including for the cross-fitting
procedure for nuisance fitting. Figure [2]emphasizes that our approach follows a federated learning
paradigm, where raw data remain local and only summarized EIF-based quantities are transmitted
to a leading analysis center(McMahan et al, 2017), thereby preserving privacy. This contrasts with
fully decentralized learning (Lian et al., [2017), where there is no central aggregator and sites interact
directly to reach consensus. Our method also differs from meta-analysis (Borenstein et all,[2021)),
which relies only on coarse population-level summaries; such information is insufficient in our setting.

2.4.3 THEORETICAL PROPERTIES

We now summarize the main asymptotic results and efficiency gain of the federated estimator; detailed
proofs are in Appendices[E.T|and

Theorem 2.7 (Asymptotic distribution). If regularity conditions for local estimates (Conditions
in Appendix and the adaptive weights 1), , recover the oracle set of unbiased sources

(Appendix , then 8%(t,a), at each (t,a) € [0,7] x {0, 1}, has asymptotic distribution

N {@;fd(t, a) — oo(t,a)} —a N(0,1).

where 17{62 is an influence-function-based consistent estimator for the underlying asymptotic variance
of 0/%4(t, a) (see Appendix .
Corollary 2.8 (Asymptotic efficiency). The asymptotic variance V{ei is no greater than that of the

target-only estimator 02 (t, a). Further, if at least one source site provides a consistent estimate of
0°(t, a), then §¢(t, a) is strictly more efficient (strictly smaller asymptotic variance).
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Algorithm 1 Federated Learning for Multi-Source Causal Survival Analysis.

1: Input: Multi-source right-censored data {O; = (X, 4;,Y;, A, R;),i = 1,...,n}, a time
horizon 7 > 0; a fine time grid {0, ¢, 2¢, . .., 7} for [0, 7] with a small € > 0; and the number of
disjoint folds into which the data are split, M.

2: Output: Estimated treatment-specific survival curves @ed(t, a) and its estimated variance 9{62
fora € {0,1} and ¢ € {0,¢,2¢,...,7}.

3: for (t,a) € {0,¢,2¢,...,7} x {0,1} do
4:  Estimate the EIFs via an M -fold cross-fitting (see full detail in Algorithm [2)).
5:  Obtain local estimates @“ 0(¢, a) as solutions of 0 = PP, [@f (0; P)} Jfork=0,..., K — 1.
6:  Obtain the site-specific discrepancy measure (difference of the target and source estimators) as

Ueta = Pu [P0 (O:B) = B, (O:B)] for k=1, K — 1.
7: Solve for aggregation treatment- and time-specific weights 7, , = (710 . 1t 4 - - - ,7’7\{’(;1) that

minimize

K-1 2
o~k ~xk, ~ /\k
Q(Nya) =Pn {‘Pt% Uf,a tao O;]P’)} + AZ |77ta 5 2,
k=1

subject to 0 < 7f, < 1,forall k € {0,1,..., K — 1} and ;' ¥, = 1, and X is a tuning

parameter chosen by cross-validation.
8: end for
9: Return:

K—1
0 (t,a) = > G050t a), and VS for (t,a) € {0,¢,2,...,7} x {0,1}.
k=0

T: Vted is computed based on the influence function of @ed(t a) (see Remarkin Appendix .

Remark 2.9 (Regularity conditions). The three regularity conditions in Appendix [E.|serve distinct
roles. Condition requires local nuisance estimators to converge to general limiting functions.
Condition [E.2]imposes positivity by bounding nuisance functions away from 0, 1, or infinity. Condi-
tion [E.3] controls three product-type errors. Together, these ensure pointwise convergence of each
local estimator to a bounded and well-defined limit.

Remark 2.10 (Selection consistency). The asymptotic validity of é\,f,fd(t, a) relies on selection consis-
tency with respect to the oracle set Sy, (see below). This guarantees that post-selection inference

by the influence-function-based variance estimator erd remains valid, even in the presence of
heterogeneous or biased sources.

Remark 2.11 (Efficiency gains). To quantify the efficiency gain of gfed(t, a),letS={1,...,K -1}
denote the set of source sites, and define the oracle selection space for 1, , as
S, ={keS:0%t,a) =0 a)},
and the corresponding weight space as
R ={n,, € RN, =0, Vj ¢ 5/, ).
Appendix [E.2] provides lemmata and conditions under which our federated estimator recovers the

following oracle-optimal weights:

- _ : fed
M= argmin = Vi%(n,,),
n¥ =0, VkgS; ,

where erd(nt o) denotes the asymptotic variance of the federated estimator under weight vector 7, ,.
The target-only estimator corresponds to the special case 7, , = (1,0,...,0), so its variance is no
larger than that of any federated estimator. If the bias term )A(ﬁ(za remains asymptotically non-zero,
then n,{f « — 0, ensuring exclusion of biased sites. Proofs are adapted from Han et al.| (2023} 2025).
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3 SIMULATION STUDY

We conducted simulation experiments to evaluate the performance of our federated estimator (FED)
relative to three competing approaches: target-only estimation (TGT), pooling (POOL), and inverse
variance weighting (IVW). The TGT method relies exclusively on target-site data (R = 0). POOL
aggregates data from all sites without adjustment, and IVW computes a weighted average of site-
specific estimators with weights proportional to the inverse of their estimated variances. This
comparison allows us to assess both the efficiency gains and robustness properties of FED under
varying degrees of site heterogeneity.

3.1 DATA GENERATING PROCESS

We conduct 500 independent Monte Carlo replications, with n = Zf:_ol ny, observations distributed
across K = 5 sites. The target site (k = 0) was fixed at ng = 300 observations, while source
sample sizes were varied as ny € {300,600, 1000} for k = 1,..., 4, representing small, moderate,
and large external data. Covariates, treatments, and outcomes were generated according to the
mechanisms described in Appendix [B.1] The “truth” for each estimand was derived by averaging
survival outcomes over a super-population of size ngper = 10° from the target distribution.

We modeled time-to-event outcomes over a one-year horizon (365 days), with administrative censor-
ing at day 200. Performance was evaluated at days 30, 60, and 90. To investigate robustness under
distribution shifts, we introduced five scenarios:

(i) Homogeneous: all sites follow identical processes;

(i) Covariate Shift: covariate distributions vary across sites;
(iii) Outcome Shift: conditional outcome distributions differ;
(iv) Censoring Shift: censoring mechanisms vary; and

(v) All Shifts: simultaneous covariate, outcome, and censoring heterogeneity.

Figure[5]in Appendix [B-T]depicts representative survival curves under outcome and covariate shifts,
illustrating how site-specific heterogeneity can affect target estimation.
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(A) Estimation Bias (B) RRMSE (relative to TGT) and CP (nominal level: 95%)
Figure 3: Simulation results at day 90 with ny = 300 and n;, = 600 (k = 1,2, 3,4). Panel (A): bias
across 500 replications. Panel (B): relative RMSE (RRMSE) compared to TGT.

3.2 PERFORMANCE METRICS AND RESULTS

We evaluated methods using three metrics: (i) Bias: assessed via boxplots of estimation error across
500 replications, (ii) Relative root mean square error (RRMSE): defined as the RMSE of a method
divided by that of TGT; values below 1 indicate efficiency gains, and (iii) Coverage probability
(CP%): the proportion of 95% Wald-type confidence intervals containing the truth. Values near 95%
indicate valid inference. More detailed definitions of these metrics are provided in Appendix [B.2]
Full simulation results across all scenarios appear in Appendix [B.3} here we summarize representative
findings at day 90 with nj;, = 600 for & > 1.
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Main findings. As shown in Panel (A) of Figure |3} FED consistently yields negligible bias across
all scenarios. In terms of efficiency, FED outperforms TGT in every heterogeneity setting: Panel
(B) demonstrates 5—-16% reductions in RMSE, with efficiency gains exceeding 20% in some cases
(Appendix [B.3). These results confirm that FED both preserves consistency and improves efficiency
relative to target-only estimation.

Inferential validity. Both FED and TGT maintain CP% close to the nominal 95% across scenarios,
validating our influence-function-based variance estimator. Further diagnostics, reported in Appendix
Figures E] and [7, show that federated weights 7, , decrease systematically as site-specific bias

measures ()22?&2 increase. Thus, FED adaptively upweights sites aligned with the target and
downweights or excludes biased ones; the target site receives higher weights under covariate or
outcome shifts, while contributions vary over time depending on alignment of survival functions.

Comparison with POOL and IVW. Although POOL and IVW exhibit lower variability (narrower
boxplots), they perform poorly under Covariate, Outcome, or All shifts: bias is substantial such that
RRMSE is elevated, and CP% drops far below 95%. The exception is under Censoring Shift, but this
arises because censoring is treated as a nuisance function and estimated separately within each site,
reducing sensitivity to between-site heterogeneity in censoring distributions.

4 REAL DATA ANALYSIS

We illustrate our framework through two real-world applications. The first involves two coordi-
nated randomized antibody-mediated prevention (AMP) trials, HVTN 704/HPTN 085 and HVTN
703/HPTN 081 (Corey et al.,2021;Ning et al., 2023)), which enrolled 4,611 participants to evaluate
whether a broadly neutralizing monoclonal antibody (bnAb) reduces HIV-1 acquisition. The second
uses the “fichain” dataset from the survival R package, comprising 7,874 participants stratified
into three groups defined by biomarker information, to examine sex disparities in all-cause mortality.
For brevity, we focus here on the AMP trials and defer the flchain analysis to Appendix[C.2]

4.1 AMP TRIAL DATA

The AMP trials considered HIV diagnosis by week 80 as the primary survival endpoint, a rare event
with only 3.77% incidence. Loss to follow-up was relatively low (less than 10% per treatment arm)
(Corey et al., 2021). We divided participants into four regional subsets: (i) SA: South Africa, (ii)
OA: other sub-Saharan African countries, (iii) BP: Brazil or Peru, and (iv) US: United States or
Switzerland. Participants in (i) and (ii) were women, while those in (iii) and (iv) were cisgender men
or transgender individuals, reflecting substantive population differences.

Because of event sparsity, we applied 2-fold cross-fitting. Conditional survival and censoring
functions were estimated via an ensemble of Kaplan-Meier, Cox proportional hazards regression,
and survival random forests, implemented in the survSuperLearner package (Westling et al.}
2024)). Propensity scores and density ratios were estimated using ensembles of logistic regression
and LASSO via the Super Learner (van der Laan et al.,[2007). Predictors included baseline age, a
standardized machine-learning-derived HIV risk score, and body weight.

4.2 RESULTS WITH SOUTH AFRICA AS TARGET SITE

We highlight results for the South Africa (SA) region as the target (Figure d)). Additional analyses
treating OA, BP, or US as the target, as well as direct comparisons of regional survival curves and
baseline covariates, appear in Appendix [C] Table[T|shows that OA closely resembles SA, while BP
and US differ markedly in baseline risk score, weight, and HIV prevalence, consistent with covariate
and outcome shifts. This pattern is reflected in the federated weights: Panel (B) of Figure 4] shows
SA receiving the highest weights on average, followed by OA, US, and BP.

Efficiency and coverage. Panel (A) shows that FED and TGT produce nearly identical survival
curves, but FED offers narrower confidence intervals in some cases. In particular, TGT fails to yield
valid intervals at certain early time points due to unstable variance estimates, while FED is able to
recover narrower intervals by borrowing useful information from aligned sites. These efficiency
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gains mirror our simulation findings (Section [3), highlighting the ability of FED to improve inference
without introducing bias.

Comparison with POOL and IVW. Although POOL and IVW exhibit lower nominal variance
(smaller relative efficiency values), both methods deviate from the trends of TGT and FED when
targeting the SA population, suggesting bias under distributional shifts. Moreover, IVW fails to
return estimates at early times due to extreme weights (arising from inverses of small site-specific
variances), underscoring a practical limitation in survival applications.
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Figure 4: AMP trial results with SA as the target site. (A): Relative efficiency, defined as the ratio
of the estimated standard deviation to that of the TGT estimator, at 148, 330, and 512 days. (B):
Time-specific federated weights with locally weighted smoothing (Cleveland & Devlin, [1988)).

5 DISCUSSION

We developed a federated learning framework for estimation and inference of treatment-specific
survival functions in a target population. By leveraging external data sources with potentially shifted
covariate and outcome distributions, while preserving privacy, our method achieves efficiency gains
under oracle selection and mild regularity conditions. The writing of this paper was supported by the
use of ChatGPT-5.0 for language polishing (see Appendix [A).

Limitations and future directions. Several limitations suggest opportunities for future work. First,
although Theorem and our simulations demonstrate efficiency gains, developing potentially
more efficient covariate-adaptive weighting schemes remains crucial. Second, when data sharing is
permitted but the CCOD assumption fails, it is unclear whether any method—including the pooled
estimator—can outperform the target-only semiparametric efficient estimator (TGT in our simulation)
and our federated approach. Third, while our time-specific weights provide flexibility, they may
yield non-smooth trajectories and incur computational costs in continuous-time settings; future work
should pursue smoothing strategies to capture temporal trends more efficiently. Finally, incorporating
time-varying covariates could further improve efficiency by leveraging post-baseline information.

Broader extensions. Our framework naturally connects to several active areas of research. Ex-
tensions include surrogate-assisted causal inference (Han et al.2022; (Gao et al., [2024al), dynamic
treatment regimes (Zhang et al., 2013)), and data-driven selection of external sources (Gao et al.|
2024b)). It also opens opportunities for constructing two-sided conformalized prediction intervals for
event times by leveraging the EIF-based conformal scores for survival outcomes developed (Farina
et al.,|2025) with federated learning for predicting missing outcomes (Liu et al.l 2024). Our approach
could be adapted to alternative estimands such as restricted mean survival time (Han, 2023)), and
under complex regimes such as competing risks (Lok et al.l [2018]) or left-truncation (Han, [2024;
Wang et al.| [2024)). These directions highlight the broader potential of federated methods for causal
survival analysis under distributional shift.
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All results are reported transparently, and code will be released to support reproducibility.

REPRODUCIBILITY STATEMENT

All simulation studies and real data analyses were performed using the statistical language R
(version 4.4.2). The dependent R packages include: CFsurvival, survSuperLearner,
superLearner (version 2.0.29), glmnet (version 4.1.8), caret (version 6.0.94) and
tidyverse (version 2.0.0). To enhance computational efficiency, parallel computing packages
foreach (version 1.5.2) and doParellel (version 1.0.17) were employed. The replication of
simulations was carried out using 200 CPU cores by a high performance computing cluster.

We provide an anonymous GitHub repository containing all code for our simulations and data
analysis: |https://anonymous.4open.science/r/FuseSurvSubmission—-3D16/
README . md. All source code and software (R package) will be made publicly available through the
author’s Github upon acceptance of the paper.

The two real datasets are publicly available. The AMP trial data can be found at https:
//atlas.scharp.org/project /HVIN%$20Public%20Data/HVIN%$20704%20HPTN%
20085%20and%20HVTN%$20703%20HPTN%20081%20AMP /begin.view, and the “flichain”
data can be found at https://rdrr.io/cran/survival/man/flchain.html or by
typing command data (f1lchain) in R after loading the survival R package.
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A USE OF LLMs

We acknowledge the use of ChatGPT-5.0 exclusively for language polishing and grammatical correc-
tions. No large language models (LLMs) were used for any other aspects of this work. The research
ideas, conceptualization, methodology development, and all experiments are entirely original contri-
butions of the authors.

B SIMULATION DETAILS AND ADDITIONAL RESULTS

B.1 DETAILS OF DATA GENERATING PROCESS

Three covariates X, X, and X3 are sampled as transformations of Beta random variables with
site-specific parameters:

X1 ~ 33-Beta(1.1 — 0.057(k), 1.1 + 0.2y(k)) + 9 + 2y(k),
Xy ~ 52 Beta(1.5 + (X7 + 0.5v(k)) /20,4 + 2v(k)) + 7 + 2v(k),
X5 ~ (44 2v(k)) - Beta(1.5 4+ | X7 — 50 + 3v(k)|/20,3 4+ 0.1v(k)),

where (k) represents some function of site k, specified later. We then generate the treatment
assignment probabilities 7(X) using the logistic function:

logit(7(X)) = —1.05+log (1.3 + exp(—12 + X7 /10) + exp(—2 + X2/12) + exp(—2 + X3/3)),
and treatments A are sampled as A ~ Bernoulli(7(X)).

Next, we consider the mechanisms of event and censoring times. The hazard rates for event times
and censoring times are given by the following exp(h;) and exp(h.), respectively, where h; =
—5.02 4+ 0.1(X; — 25) — 0.1(X5 — 25) + 0.05(X3 — 2) + Dr(k) - 0.1(X3 — 25) + A - o (k) -
0.1(X; + X2 + X3 — 50), and h, = —4.87 + 0.01(X; — 25) — 0.02(X2 — 25) + 0.01(X3 — 2) —
De(k)-0.1(Xy —25) + A- (k) - 0.1(X; + Xo + X3 — 50).

Here, D7 (k), Dc(k), 01 (k) and ¢ (k) are some site-specific indicators, specified later, for varying
the treatment effects and trends of survival curves for different sites. Then, event times and censoring
times are sampled as:

po (o) NP log(Uy) \"
o\ exp(he)-A) T exp(he) X))
with p = 1.2, A = 0.6, and Uy, Uy ~ Uniform(0, 1). This technique follows |Austinl (2012). Thus,
the observed times and event indicators are Y = min(7, C'), A = I(T < (), respectively.

Under this data generating process (DGP), the event time is generated to mimic days in a year (365
days), and we truncate the censoring time at 7 = 200 days to mimic the end of follow-up in survival
analysis. Our DGP allows the following scenarios based on site-specific distributional heterogeneity:

» Homogeneous: Homogeneous covariates and hazard rates across sites. We let v(k) =
Dy (k) = Do(k) = or(k) =dc(k) =0fork =0,1,...,4.

 Covariate Shift: Covariates X;, X5, and X3 vary across sites. We let v(k) = k and
Dr(k) = Do (k) = or(k) = dc(k) =0,fork=0,1,...,4.

* Outcome Shift: Conditional outcome distribution varies across sites. We assign (k) = 0,
Dr(k) = 0r(k) = k,and Deo(k) = 0c(k) =0fork=0,1,...,4.

* Censoring Shift: Censoring mechanism varies across sites. We let v(k) = 0, Dr(k) =
Or(k) =0and De(k) = o0¢c(k) =k, fork=0,1,...,4.

« All Shift: Covariates and both event and censoring effects vary across sites. We let y(k) =
Dy (k) = Do(k) = (k) =o0c(k) =k, fork=0,1,...,4.

Figure[5|below plots the true treatment-specific survival curves under the Covariate Shift and Outcome
Shift scenarios, as defined by our designed DGPs, to illustrate the effect of site differences on survival
outcomes.
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Figure 5: Site- and treatment-specific survival curves, each based on a random sample of n = 10*
from the true DGP of each site. The two dashed curves in each source site panel are the target site
survival functions for reference. Under covariate shift, curves preserve their shapes and trends but
differ in scale, whereas outcome shift produces marked changes in shape and treatment effects.

B.2 PERFORMANCE CRITERIA DEFINITIONS

The simulation performance criteria considered in Section [3.2] with an additional metric 95% confi-
dence interval (CI) width for the complete simulation results are defined as follows.

Let 6 denote the true target parameter, and let @ and 7; be the point and standard error estimates,
respectively, from the ¢th Monte Carlo replication of a competing method, 7 = 1,...,500. Then:

¢ Estimation bias: @ —0,i=1,...,500, summarized via boxplots;

RRMSE: the RMSE of a method relative to that of the TGT estimator, where RMSE =

\/ 500-1 2% (6; — 0)2. By definition, the TGT estimator has RRMSE = 1. Smaller
RRMSE values indicate higher efficiency relative to TGT;

e CP%: the proportion of replications in which the Wald-type CI contains 6: 100% x

50071 Y22% 1{6 € [6; — 1.965;, ; + 1.965;]}. The closer CP% is to 95, the more reliable
the inference based on &;; and

replication is 0; + 1.96,;. Thus, CI width = 3.92 x 500~ 27 5,.
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Figure 6: Average federated weights of each site at different time point by site heterogeneity cases.
This figure uses the case where n; = 300 (k > 1) as an illustration for weights.
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Figure 7: Scatter plots of site-specific federated weights vs. discrepancy measure ()?ﬁt 2)? values,
under 5 scenarios of site heterogeneity and 3 selected time points (days 30, 60 and 90). Sites 2—4
under Covariate Shift and All Shift have more larger (5{7’27,5,@)2 values with clear trends of decreasing
weights. The pink dashed lines indicate weight = 1/5, i.e., one over five sites. This figure uses the
case where n; = 300 (k > 1) as an illustration for weights.
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B.3 COMPLETE SIMULATION RESULTS
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Figure 8: Estimation bias (boxplots), relative root mean square error (RRMSE) compared to TGT,

coverage probability (CP%) with 95% nominal coverage level, and width of 95% CI under n;, = 300
(k > 1), evaluated at days 30, 60 and 90 in simulation.
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Figure 9: Estimation bias (boxplots), relative root mean square error (RRMSE) compared to TGT,
coverage probability (CP%) with 95% nominal coverage level, and width of 95% CI under n; = 600
(k > 1), evaluated at days 30, 60 and 90 in simulation.
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Figure 10: Estimation bias (boxplots), relative root mean square error (RRMSE) compared to TGT,
coverage probability (CP%) with 95% nominal coverage level, and width of 95% CI under n; = 1000
(k > 1), evaluated at days 30, 60 and 90 in simulation.
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C ADDITIONAL RESULTS FOR REAL DATA ANALYSIS

C.1 AMP TRIAL DATA

Table [T] presents summary statistics for baseline covariates and outcomes in the AMP trial data,
stratified by region and treatment group. Comparing the treatment groups—both overall and within
each region—we observe that the treated group consistently shows a lower average event proportion.
Additionally, some covariates appear to shift across regions; for example, among treated participants,
the standardized risk scores exhibit notably different means when comparing SA to BP and US.

Treated (bnAb) group
Total SA OA BP UsS
(n=3,076) (n =679 (n = 608) (n = 846) (n = 943)

Age (year) at baseline 259 (4.60)  27.0(5.19)  254(459) 25.1(3.70)  26.2 (4.68)
Standardized risk score 0.0 (1.00)  -0.01 (1.00)  0.02(1.00)  0.76 (0.67)  -0.68 (0.71)
Weight at baseline (kg)  72.8 (15.64)  68.8 (14.24)  65.2(12.63) 70.9 (12.42) 82.3 (16.43)

HIV diagnosis by week-80 107 (3.48%) 27 (3.98%)  20(3.29%) 46 (5.44%) 14 (1.49%)

Control (placebo) group
Total SA OA BP usS
(n=1,535) (n = 340) (n = 297) (n = 428) (n = 470)

Age (year) at baseline 259 (4.72)  26.6(5.28)  254(478) 252(3.94)  26.1(3.79)
Standardized risk score 0.0 (1.00)  0.02(0.92)  -0.02(0.98)  0.75(0.67)  -0.68 (0.73)
Weight at baseline (kg) ~ 72.5 (16.35)  67.6 (14.77)  65.1 (13.64) 71.1(12.84)  81.8 (17.5)

HIV diagnosis by week-80 67 (4.36%) 16 (4.71%) 13 (4.38%) 29 (6.78%) 9 (1.91%)

Table 1: Summary statistics of AMP trial data by treatment group and region. The standardized risk
score is a baseline score built by machine learning models (Corey et al.,[2021)) that is predictive to the
time-to-event outcome. Age, standardized risk score and weight are summarized by mean (standard
deviation), while the HIV diagnosis by week-80 is summarized by count (percentage).

In Figure [TT} we plot the region-specific survival curves of all the 4 regions we considered (SA,
OA, BP and US) for a direct comparison on region heterogeneity, using their target-site-only (TGT)
estimators, to showcase the heterogeneous effects of the bnAb antibody treatment on different target
populations.
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Figure 11: Estimated region-specific survival curves of the HVTN 704/HPTN 085 and HVTN
703/HPTN 081 trials. SA (our target region in the main text) and OA exhibit relatively similar
curves, indicating less heterogeneity of these two regions. In contrast, both BP and US regions
show significant differences to SA, which also confirms why they often have small or zero federated
weights in Panel (B) of Figure [d]in the main text. The BP and US also show a substantial difference
on their curves.
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Figure 12: Additional data analysis results when treating the other three regions (OA, BP and US) as
the target site.
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Furthermore, in Figure[T2] we present the results—including survival curve estimations and federated
weights—using three regions other than SA as the target population. For the federated weights,
similar to Figure ] in the main text, we applied locally weighted regression (Cleveland & Devlin,
1988) to smooth the observed weights over the study period, providing a clearer visualization of
temporal trends in this specific example.

From Figure [[2] we observe that for each region, the FED method yields results similar to the
TGT estimator, while also recovering some interval estimations at earlier time points. This finding
is consistent with the observations made in Figure In contrast, the IVW and POOL methods
deviate noticeably from the TGT and FED results—especially for the BP and US regions—indicating
potential biases introduced by site heterogeneity.

Finally, regarding federated weights, the results for the OA region resemble those of SA in Figure ]
However, for the BP and US regions, the federated weights are nearly 1 for the target site and O for
all other sites. This pattern suggests that when targeting the survival curves of BP or US, other sites
contribute substantial biases—an observation that corroborates our findings in Figure

C.2 “FLCHAIN” DATASET FROM R PACKAGE SURVIVAL

The “fichain” dataset, obtained from the Mayo Clinic Study of Serum Free Light Chain (FLC) and
Mortality, comprises data on 7,874 individuals followed between 1995 and 2009 to investigate the
prognostic value of serum free light chains for survival (Dispenzieri et al.,[2012} Kyle et al.| |2006)).
This dataset is freely available in R package survival.

This dataset does not contain a natural treatment variable, but to illustrate and extend the use of our
framework, we investigate the sex difference in mortality. Since sex (female vs. male) is assigned
at birth, it can be viewed as a “treatment” variable for methodological purposes, as it precedes the
occurrence of any outcomes. While not manipulable in the conventional sense, causal inference
methods allow us to frame sex as an exposure to quantify disparities in survival outcomes, rather
than as an intervention subject to policy or clinical decision-making. Similar approaches have been
employed to assess disparities associated with non-manipulable variables such as race (Li & Li, [2023}
Liu et al., [2025]).

Male
Total Group A Group B Group C
(n = 3,524) (n =972) (n=1,429) (n=1,123)

Age (year) at baseline 63.1 (9.62) 60.1 (7.80) 62.6 (9.25) 66.4 (10.5)
MGUS 0.01 (0.11) 0.04 (0.20) 0.00 (0.05) 0.00 (0.00)
Sample year  1996.9 (1.84) 1996.7 (1.72) 1996.9 (1.87) 1996.9 (1.90)
Concentration of « light chain 1.5 (1.01) 0.9 (0.34) 1.4 (0.45) 2.2 (1.44)
Concentration of A light chain 1.8 (1.19) 1.1 (0.35) 1.6 (0.47) 2.5(1.77)

Mortality 1,004 (28.5%) 159 (16.4%) 372 (26.0%) 473 (42.1%)

Female
Total Group A Group B Group C
n=4,3500 ®=1,399) n=1771) (n=1,180)

Age (year) at baseline ~ 65.2 (11.01) 62.2 (9.57) 65.0 (10.8) 69.1 (11.8)
MGUS 0.02 (0.12) 0.05 (0.21) 0.00 (0.05) 0.0 (0.00)
Sample year  1996.7 (1.70)  1996.6 (1.55) 1996.7 (1.68) 1996.9 (1.87)
Concentration of « light chain 1.4 (0.78) 0.9 (0.34) 1.3(0.43) 2.1 (1.03)
Concentration of A light chain 1.6 (0.88) 1.1 (0.35) 1.6 (0.46) 2.4(1.22)

Mortality 1,165 (26.8%) 231 (16.5%)  455(25.7%) 479 (40.6%)

Table 2: Summary statistics of “flchain” data by sex group and the site variable we defined. All
baseline covariates are summarized by mean (standard deviation), while the mortality is summarized
by count (percentage).
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We include age, the presence of monoclonal gammopathy of undetermined significance (MGUS) and
sample year as baseline covariates for nuisance models. The primary outcome consists of follow-up
time in days and an event indicator for all-causes death (mortality).

A categorical variable (f1c.grp, taking values 1,2, ..., 10) related to x and A concentration levels
is available in the data. We construct the “site” variable (R in our notation) based on f1c.grp
as follows: (i) Group A for f1c.grp € {1,2,5}; (ii) Group B for f1c.grp € {3,4,6,9}; and
(iii) Group C for £1c.grp € {7,8,10}. Several categories were merged in this way to ensure a
sufficient sample size within each group, allowing 5-fold cross-fitting to train different nuisance
functions reliably. In addition, we allow the groups to share nearby values of f1c.grp (e.g., 5 in
Group A, 6 in Group B, and 7 in Group C) so that each site retains comparable information, enabling
borrowing across groups. We emphasize that this grouping method is adopted solely for illustrative
purposes in demonstrating our framework.

Table 2] presents the summary statistics of baseline covariates and mortality for the “fichain” data.
Across Groups A, B, and C, we observe clear covariate shifts, accompanied by differences in the
marginal death rates. In contrast, when comparing the two “treatment” (sex) groups, the distributions
of baseline covariates and mortality appear overall similar.

We analyzed the sex-specific survival curves over the first 10 years for the three groups in Figure
[I3] We used a 5-fold cross-fitting, and estimated conditional survival for both event and censoring
processes by an ensemble of Kaplan—Meier, Cox regression and survival random forest models via
the survSuperLearner package (Westling et al.,|2024)). The propensity score and density ratio
(used in federated method) models were fitted by the ensemble of logistic regression and LASSO
using the Super Learner (van der Laan et al.l 2007).

Overall, the FED method yields point estimates that closely track those of the TGT estimator, while
producing slightly narrower confidence bands. By calculations, the efficiency gain (by estimated
standard error of FED to that of TGT) can achieve 3%—10%, consistent with the findings from both
our simulation studies and the AMP trial data. By contrast, the IVW and POOL estimators exhibit
noticeably different survival curve patterns relative to TGT and FED when Groups A and C are
regarded as targets, suggesting potential biases.

D IMPLEMENTATION DETAILS

In the following Algorithm [2] we detail the double machine learning procedure for fitting and
predicting nuisance functions in Algorithm [T}

Remark D.1. To ensure the monotonicity of the estimated survival curves, we invoke isotonic
regression techniques (Westling et al.,[2020), which enforce a non-increasing constraint on the site-

specific survival and censoring estimates S* and G*, for k = 0,1,..., K — 1, thereby maintaining
their logical consistency over time.

E TECHNICAL PROOFS

We adopt the following notation throughout this appendix: (i) P, denotes a general probability limit,
and the nuisance functions under P, are denoted with subscript 0o, e.g., SO for the limit of S0, (i1)
P means the corresponding nuisance functions are replaced by their estimates, and P may converge
to a general limit Po; (iii) P [f(O)] = [Vin| ™" 22,2, f(O;) to denote the empirical average on
the m-th validation set V,, by cross-fitting, m = 1,..., M

Furthermore, we distinguish notation P(f) and Ep( f = [ f(O)dP denotes an integral over a
new observation O ~ P, treating f, which p0551bly depends on tralnmg data (e.g., some estimated
parameters for nuisance functions), as fixed. In contrast, Ep( f) is the usual mathematical expectation
of random variable/element f under distribution P, a fixed value without randomness.
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Figure 13: “fichain” data analysis results. Estimated sex-specific survival curves and federated

weights for sites (Groups A, B and C defined by £1c . grp variable).
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Algorithm 2 Double/debiased machine learning algorithm for nuisance function estimations and
influence function calculations in Algorithm[I]at a given time point and treatment.

1:

(2]

10:
11:

12:
13:
14:

15:

16:
17:

18:
19:
20:
21:

Input: Observed multi-source right-censored data O = {O0; = (X;, A;,Y;, A4, Ry),i =
I,...,n} = O°UO'U---UOK~L where R; € {0,1,...,K — 1} and O* represents
the data for site R = k; Given treatment group A = a and a specific time point ¢; The num-
ber of disjoint folds into which the data are split, M, where M € {2,3,...,|n*/2]} with
n* =min{n,ny,...,nK_1}.
Output: Estimated influence functions for each individual.
Partition OV into M approximately equal-sized, disjoint validation folds V0, ..., V9, allowing a
size difference of at most =1 between folds.
form=1,...,M do
Define the training set 7,0 = O%\V9;
Fit nuisance functions S° G° 7° on 79, using some methods ensemble from
survSuperLearner and SuperLAearAner;
Predict nuisance functions on V9, as SY . GY and 70, .
end for
Train a model of S by the entire data of the target site O°, denoted as S
methods ensemble from survSuperLearner.
fork=1,...,K —1do
Partition O" into M approximately equal-sized, disjoint validation folds V| . . ., V]’Q, allowing
a size difference of at most &1 between folds.
form=1,...,M do
Define the training set 7,F = OF\V* ;
Fit the density ratio w*? using only covariate data of 7,2 U T,*, or by just passing through
some coarsening level summary statistics;
Fit nuisance functions G, 7% on T%, using chosen methods ensembles from
survSuperLearner and SuperLearner;
Predict above nuisance functions on V¥ as G , k.0 i
Predict nuisance function S* on V¥ using the pre-trained S*™!! model, and denote the
predicted value by S¥ .
end for A
Aggregate all predicted nuisance functions over M folds as S*, G¥, %0 and 7¥;
end for
Return: The estimated EIFs, by plugging-in their predicted nuisance function values,

Gi0(0:P) = 3;0(0; S, 80, G 7, 5M0), forall k € {0,1,..., K — 1}.

O.full “ysing chosen
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E.1 THEORY OF THE LOCAL ESTIMATOR
E.1.1 PROOF OF THEOREM[2.3]
Recall that a mean zero, finite variance function gp*o (O;P) is called an influence function of the target

estimand (a functional) 0°(t, a) = 6°(¢, a; P) at IP if, for any one-dimensional regular parametric
submodel {P, : € € [0,1)} through P = Py,

0
590(75,&;1?2) Ez (075 (O; P)I(O)],
€ e=0
where ((©) is the score function of the submodel at ¢ = 0 (ie., typically, ((Q) =

0log {p.(0)}/0€ |c=o), where p.(-) denotes the probability density (likelihood) function under
submodel P, (Bickel et al., [1993).

Recall the partial CCOD assumption made in Theorem [2.5] S°(t | a,X) = S°(¢ | a,X) almost
surely. To find the EIF, we begin by writing the following equation:

a 0 _ 8 0 _
0= 5" 00) =5 B0 X) | R=0)
—B(S"(¢ | %) - (. aliina | R=0) 4+ B{ [ 2282 0| ulax) | R=0]
e=0
=E{[S°(t | a,X) — 6°(t,a)]fx|p=0 | R = 0}+]E{/8 SE(t]a,x)|  p(dx) RZO}7
e=0

3)

where ((+) denotes the distribution of X induced by P and, for any sets of variables V and W/, éV‘W
denotes the conditional score function of V' given W, i.e., typically 0 log {p.(V | W)}/0¢ |c=o—note
that such scores always satisfy Ep(¢y |y | W) = 0 (Bickel et al., |1993).

For the derivative of S* with respect to €, by the chain rule, we decompose it as (3S*/OAF) x
(OAF/ 86) For the first part 9S* /OA¥, we leverage Theorem 8 in|Gill & Johansen|(1990). Spec1ﬁcally,
the mapping H +— S*(t; H) := T O,t]{l + H(du)} is Hadamard differentiable at H relative to the
supremum norm with derivative

t Gk
S 7H)oz(du).

k(.
a— S¥(t; H) . St H)

Thus, by letting H (t) = A*(¢ | a,x) and the chain rule, the integrand in the second term becomes

b Sk (u— | a,x) 0
— 1—A*du| a,x) =St |a,x) | "2 —AF(du| a,x)
ZE]{ e, o Slan el o]
Furthermore, recall that
ARt | a,X) = " Nf(du | o, X)

o DF(ula,X)’

where NF(t | a,X) =P(Y <t,A=1|A=a,X,R=k)and D*(t | a,X) =P(Y >t | A=
a, X, R = k). Hence,

gAk(du | a X) _ %Nﬁe(du | G/,X) |e:0 . %Df(u | a,x) |6:O le’e(du | CL,X)
Je € [ DF(u | a,x) DF(u | a,x)?
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In addition,

9
Oe

gIF’(Y<u A=1|A=a¢,X=x,R=k)

// (v 0,6 = )Py 0 |0, )|
=0
= // I(y < u,d =1)l(y,6 | a,x)P(dy, dd | a,x, k)

= /]I((S = 1)é(u,6 | a,x)P(du,dd | a,x, k),
5

N{“ﬁﬁ(du | a, X)

e=0

and

9
&D (u|a7x)

gP(Y>u|A—aX—xR k)

// (y > u)P dy,d5|axk)
=0

= // Iy < u)l(y,d | a,x)P(dy, do | a,x,k).

e=0

We can then express the integrand of (3) as

e // JUAL - Ak (du ] a,%)bu(dx)

(0,1]

g a,x)S* a,X
:/// A<t ”Ss(f(y ’a,)f)gwx)) (.6 | a,x, F)P(dy, b | 0., k)p(dx)

Sk(t ] a,x)S*(u— | a,x)
* ////H(“ < B S ) Gk Ty x) DR [ )
x £y, | a,x, k)P(dy, dd | a, %, k)N{ (du | a,x)p(dx)

i a,X k a,X
=[] st )SS(:(yaa)f)Dk(Mx)) (4,9 | @ x, K)P(dy, dd | a,x, k)pu(dx)

k o SHu—|a,x) !
+///S(t|a,x)/0 Sk(u|a,X)D’f(u|x)2N1(du|a’X)
x 0y, 8 | a,x, k)P(dy, dd | a,x, k)u(dx)

(A =a)
*a | X)

e=0

ZEFWHQX)

{Hk(tAYa X)— H(Y<t,A:1)sk(y—|a,X)}

SE(Y | a,X)D¥(Y | a,X)

xé(KMa,X,R—k)}

where

b SF(u— | a,x)Nf(du | a,x)

H*(¢ = i
102 = ) Sk @) D | a,%)?

Now, we note that

(Y <t,A=1)S*(Yy—-| A X
Sk(Y | A, X)DR(Y | A,X)

¢ Sk(y_ | a,X)le(dy | a,x)
o S*(y|a,x)Dk(y | a,x)

)

)‘Aza,xzx,Rzk} =

27



Under review as a conference paper at ICLR 2026

and
E{H*(tAY,A,X)|A=a,X=x,R =k}
t k k
S*(u— | a,x)Ni(du | a,x)
= <
S 10 S P 0
t k() _ k
:/ B(Y >u|A=aX=x R =k [a0N(du]ox)
0

P
Sk(u | a,x)DF(u | a,x)? (dy | a,x, k)
B /t Sk(u— | a,x)N¥(du | a,x)
Jo S*u|a,x)DF(u|a,x)

Therefore,

(Y <t,A=1)S*Y—| A,X)
E{ (EAY A,X) SK(Y | A, X)D*(Y | 4,X) AX =k =0

almost surely. By properties of score functions and the tower property, the above implies that
0
o [ T = Ak axputan

]

(O,t e=0

) I(R=Fk) I(A=a)
]E{Sk(ﬂa,X)P(R:Mx) m™(a | X)
x {Hk(tAYA X) - Iy <t, A=1)S*(Y-| A X)

S i x| O
Combining these results with the facts that Nf(du | a,x)/D*(u | a,x) = A¥(du | a,x) and

D*(u | a,x) = S*(u— | x)G*(u | a,x), we can rewrite (3) at the beginning as follows:
0

—0%(t,a)
e =0
_E [I];((Z: ?))> 5% (t | 0, X) — 6%(t, a)]i(O) — M]E{Sk(t la, X)m
I(A=a) Iy <t A=1) iny A¥(du | a, X) :
Ei o A Erih veimrs vl M verme SRR
_E [;(éi%)) (SH(t | a,X) — 691, a)}é(O)} - E[&Zig iggf : f() S5(t] a.X)
IA=a) [ Y <tA=1)
Tl X) {Sk

thy A+ (du | a, X .
Tt Mo e
Therefore, an EIF of §°(¢, a) at IP is found as
01’ (O;P)
m{So(t 0, X) - 6%(t,a)} — ]Hpgi’;;[;((ﬁ = || };) S(t | a,X)
I(A = a) (Y <t,A=1) Y AF(du | a,X)
m™(a [ X) | SF(Y | a,X)GF(Y | a,X) _/0 Sk ( ]

u | a,X)G*(u | a,X)
Observe that, by Bayes’s rule,

P(R=0]|X) PX|R=0) P(R=0)
P(R=k|X) PX|R=k) P(R=k)’
N———

wh0(X)

where w*?(X) is a covariates density ratio function. We then find that the EIF form in Theorem
I(R=0) I(R=k)
*k,0 0 0 k,0 k
(O P) = ——+ t]a,X)—0"(t ———w (X t]a,X
cpt,a (O’ ) P(RZO){S ( |CL, ) ( 3a)} ]P(R:k)w ( )S ( |a7 )
(Y <t,A=1) B /W AF(du | a,X)
SE(Y | a, X)GF(Y | a,X) Jo  SFu]|a,X)GF(u]|a,X)|"

[(A=a)
* T X)
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E.1.2 REGULARITY CONDITIONS AND THE RAL PROPERTY OF THE LOCAL ESTIMATOR
For site R = k, we denote 7%, G, w*:?, A* and S* the truths of nuisance functions. We use 7% ,
wk0 Gk AF and S% to denote some general probability limits for nuisance function estimators.
Condition E.1. There exist 7%, wk0, G%_, AX and S* such that

1 1

2
(@) maxk [%Ma %) ha] X>] 0

(b) maxP [@,k,;o(X) — wfc’,o(X)]Z —p 0

m

2
] —p 0;

~ 2
k X k X
(d) maxP l sup Smtla,X)  Sw(t|a X) H —, 0.

1 1
(c) maxP | sup |—= —
m Le[o,ﬂ Gk (u]a,X) GE(ula,X)

m e | Sk (u] a, X)) SE(ula,X)

Condition E.2. There exists an n € (0,00) such that for P-almost all x, 7% (a | x) > 1/,
7k (a|x) > 1/n GR0(x) <n, wk0(x) <n, GE(t|a,x) > 1/n, and GE(t | a,x) > 1/n with
probability tending to 1.
Condition E.3. Define

T e = max P {78 (a| X) = 7%(a | X)HSE(t | a,X) — S¥(t | a,X)}],
_ ~k,0 k0 ok _ ak
2 — 9 ) )
Tnt.a, max P {@5°(X) — " (X)HS(t] a,X) — S%(t | a,X)}|, and
N t k X k
k.= maxP Sf,‘z(t|a,X)/ %—1 f——l (du | a,X)].
o m o | Gk (u]a,X) Sk

Then, it holds that % , , | = o, (n=/2), vk | o =o0,(n=V2) andrk , , 3 =0,(n="/?).

The following theorem formally establishes the RAL property of the local estimator. For simplicity of
notation, we write an EIF ¢(O; P) as ¢, omitting its dependence on O and P without loss of clarity.
Theorem E.1. If Conditions hold, with k= 7%, Wk0 = WkO G* = G*, and Sk, = SF,
then @fl*o(t, a) = 0°(t,a) + Pn(gofﬁ’o) +0,(n~2). In particular, for each t € [0, 7] and a € {0,1},

nl/Q(aﬁ’O(t, a) —0°(t,a)) —q N(0,0%), where 0% = IP’[(@;FZ’O)Q].
To prove Theorem [E.T] we first introduce some useful results and lemmata in the next section.

E.1.3 USEFUL LEMMATA FOR THE LOCAL ESTIMATOR

We start by examining the difference é};o(t, a) — 0°(t,a). Recall P™ is the empirical distribution
corresponding to the m-th validation set V,,, from the entire data O, and denote G]* the corresponding
empirical process. A result exactly following |Westling et al.| (2024)) is that

M 1/2

—~ 1 Mn
xk,0 ~k,0 k,0
9210(t7 a) - eo(ta (l) = Pn[gooo,/t,a] + M Z nm G:zn [‘Pn,m,t,a - ono,t,a
=1

1 v
T

m=1

m
m

P [@j:;g — 90, a)} . @

We then establish the Lo (PP) norm distance (bound) between the estimated EIF and its underlying
limit for the local estimator by the following lemma.
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Lemma E.2. Under Condition there exists a universal constant C = C(n) such that for each k,
m, n, t, and a,

P[@fz(z) (poota ZAJnmta’
where
_ 1 1 2
Ak =P -
Ln,m.t,a |[PP(R=0) PR= O)} 7
_ 1 1 12

A =P -
Bt Pr(R=k) PR=k)] "

- 2
Al?fnmfa:]P)[ fn (a’|X)7wk0(a|X)} )

12

1 1
Ak =P -
bt |7h(a|X)  7h(a]| X))’
- 2
1 1
Aknm o=P| sup |[= - )
St welo | GE (u | a, X) G’;o(ula,X)]

Algnmta:]P) sup

£
SEtax)  Shtlax)|]
Sk(ula,X) Shula,X)

Proof. We first denote

[(A=a)
wk(a|X)S( &%)

(Y <t,A=1) /MY AF(du | a,X)
) Jo ( ’

B (V) =

SE(Y | a,X)GE(Y | a,X) Fu | a,X)G*(u | a,X)
Ok(vm) = Bk(vm)wkyo(x)'

Then, we first have the following decomposition:

~k,0 k,0 _ 2 : k
‘pt,a <poo,t,a - Uj,n,m,t,aa

Jj=1
where
I(R=0) I(R=0)
Uk = — SY (¢
1,n,mt,a _]P)W R — 0) ]P)(R — 0):| m( | a,x),
I(R=0) [4
k _ 0 _ QO
U2,n,m,t,a - ]P;(R — 0) |: m(t | a,x) Soo(t | G,X):| )
[IR=k I(R=k] A
k _ _ k
U3,n,m,t,a - _]P)W R _ k’) ]P(R — k) Cm(vm)7

I(R =k
k —
U4,n,m,t,a - ]P;(R —k

Now, for U¥ . .., ., we further decompose it as

I(R=k)
k _ k
Uf nomita = m Z Vi mitar

where

‘/QITn,nL,t,a L/L\ano(X) |:§7€L(Vm) - Bégc(vm):| .
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The expression of E,’“,L(Vm) — BX (V) is exactly the same as the Lemma 3 in Westling et al.
(2024), while we only need to replace the corresponding nuisance functions by the site-k ver-

sion here, so the detail is omitted. By the triangle inequality, we have ]P’[(pt = golgoot JF <

{Z; APIUE, mta) ]}1/2} . Therefore, under Assumption and Condition , there ex-

ists a universal constant C' = C'(n) such that the result in the statement holds.

Furthermore, we need to bound the empirical process term G* [@Z’,?n,w - ‘P];é(,)t,ao} by 0,(n"1/2).
This is formally shown below in Lemma[E3]

Lemma E.3. If Conditions hold, M= S"M_ n=1MmY2Gm H 0 e — @, ao] -
op(n=1/2).
Proof. We follow notation in Lemma[E-2] First, we note that

Mn?  M(|nm — n/M|+n/M)!/?
n n
M0y, —n/M|Y2 + M|n/M|/?

<M>1/2 M
J— _|_7,
n n

for all m since |n,, — n/M| < 1 by assumption on n,,. Then, we have that

M 1/2
1 Mn,,
M Z " sup

IN

~k,0 k,0
(G’ |:()0n m,t,a ano,t,a:|

m—1 u€|0,t]
1 M
_ ~k,0 k,0
< O(n UZ)M sup G:Ln {wn,m,t,a - @oo,t,a} )
m—1 w€[0,¢]

since K = O(1).

Therefore, we turn to show M1 Zf\le ‘G;’? [gﬁﬁ?n ta galgoot a} = 0p(1). Using conditional

argument, we write
E’Gﬁ [@Z?nta (plgé?t,a} =E [E’GZL {@Z?nta (Poota]

where T,,, = O\V,, is the m-th training set. Note that the randomness in the inner expectation of the
right-hand-side above, by conditioning on the training set, is only induced from G by averaging
over the observations on the validation set. Therefore,

E{E’Gn {@flgnta cpootai| ‘7;":| *P‘Gm @fl?”nfa wﬁoota) .

T

Defining Fr0

. . ~k,0 E,0
n.m.t,q as the singleton class of functions &, ; , — @0 4 - We further have

=P| sup  |G(f)
ferk

mAkO k,0
’G @nmtu Sooota)

n,m,t,a

By Theorem 2.1.14 in|Van der Vaart & Wellner|(1996)), the covering number of ]-'n is 1 for all g,

so the uniform entropy integral J(1, }'ff 21 +.a) is 1 relative to the natural envelope |<pn’m7t u cpoo tal

Therefore, there is a universal constant C’ such that

m,t,a

N V2 6
P Sup |Gnm(f)‘ SCI{ (@Z?nta Qolocoota } ZA n,m,t,as
feFk? =

m,t,a
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following definition  of  Aj,mta terms in  Lemma so  that

MM ‘Gm [@Z?n ta— P2 a} ’ is bounded up to C" 26_1 E[maxy, (A n,m.t.q)]
for some constant C"”. Tt is straightforward that by Conditions|E. I - and- IE.2} this upper bound tends to
Z€ro, SO M ! Zm 1 ‘Gm {@Z Er)n t,a <poo7t,a:| - Op(l)‘ D

Finally, the only difference we have not characterized in (@) is P cpt 9(0;Ps)] — 0°(t, a), which we
show it below.

Lemma E.4. Consider some general nuisancefunctions under P, denoted by Sgo, S’oco, G’éo, 7k
and w0 (equals 1 if k = 0). Then, P[(pt Y(0;Po)] — 0°(t, a) equals

LX) 'Sy |0, X)
E{ pr=0"~12% | ST

Oy [0 X)T @ 1K)\ b akg
X{w X Gy | @, ) (a | X) 1}<A°° ANy | a. X))

=

Proof. By direct calculations, P[@f”f (O;P)] — 09(t, a) equals

]E[H(R:(())){Sgo(tla,X) St | a, X)Hﬂ (X)S(t ] a. X)

LS*(y—1a,X)G*(y | a,X)

x (AR — AF)(d a,X}
o SE(TaX)CE(y] a.x) " A0 X)
0 0 k,0 k
7’ (X) 0 0 (X) w’(X) ok (a | X)
=E|——— t]a,X)—S5"(t]a,X t]a,X
g (5% 10,X) = 8% 0,30} + T S s a3 TS
L SH(y— | a,X)G¥(y | a,X)
’ LAk — AF)(d a,X}
) SE(y] )Gk (y| a,X) =~ @] eX)
In the second “E” after “=", we used the following relationship:
0
C(X) _ ko PR =0)
=w"(X
F®) " NBE=)
by Bayes’s rule. Furthermore, by Duhamel equation in|Gill & Johansen| (1990),
Plet (03 P)] - 6°(t,a)
0 t gk
X)) S*(y—|a, X)
REErR R A
wi(X)G*(y | a, X)7*(a | X) k k
S berea s e RGN LTS G
O

E.1.4 PROOF OF THEOREMI[E.I]
By @) with 7%, = 7F, wk0 = k0 GE = GF, and Sk, = S*,

5 1 & Mnl?
G0t a) = 0°(t ) = Puligih ) + o2 > =G @k 00— o

m=1
1 M
32
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By Conditio and|E , the second summand on the right-hand-side is op(n_l/ 2) by Lemma
E

By Lemma @ff] 6°(t, a) equals
0 tGk(y_
P(R = ) 0 m(y | a X)

~k,0 Gk X X N

% Y ( ) (y\a ) (CL| ) -1 (Aﬁl—Ak)(dy\a,X) .
WHO(X)G (y | a, X)7E, (a | X)

By Duhamel equation in [Gill & Johansen|(1990) and Condition [E.3] we find that the above bias term

can be bounded by n*{rf , ., + 7%, .o+ 1k, 3} over m. Since M ! Zm ntMn,, <2,we
have

S 2772 {Tz,t,a,l + rfL,t,a,2 + rﬁ,t,aﬁ} = Op(n71/2)7

5 3 Mo [0 - (o)

by Condition This established the pointwise RAL property: 850 (¢, a) = 6°(t, a) + Py, (o] IZO) +

0p(n=1/2). Since ;% is uniformly bounded, P{(¢;"%")?} < co and since P{¢;""} = 0, then

n PPy (B1") —a N (0,P{(7%°)%}).

Remark E.5 (Double robustness of the local estimator). If we only need the consistency of E)Z“L(t, a),
then condition 7%, = 7%, WE0 = WkO0 GF = G* and S5 = S* can be replaced by the following
statement: For P- almost all X there ex1st measurable sets S k , G kC 0 tL such that S kEy G k=10,1]
and A*(u | a,X) = Ak (u | @, X) for all u € S¥ andG(u \ a, X (u]a,X) for all u € gk
In addition, if Sk is a strict subset of [0, ], then 7T£< | X (a] X) and w" O(X) wk0(X) as
well. Then, @fl (t,a) is consistent if Conditions and hold. This statement could be interpreted
as that at a given time ¢, if either (i) the conditional survival model S¥; or (ii) all other nuisance

functions G¥, 7% and w*:* are correctly specified (with other conditions above), %(t, a) is consistent.

E.2 THEORY FOR THE FEDERATED ESTIMATOR

In this section, we present the properties of the federated estimator. Given that our proposed weights,
7¢,q» are both time- and treatment-specific, we focus on the pointwise convergence properties.

Let the set of all source site indices be S = {1,..., K — 1}. We then define the oracle selection
space for 7, ,, and the corresponding weight space as:

Sto=1{k€S:0"(t,a) =0°(t,a)}, and R%7w = {n, , e R""":pl  =0,¥j ¢ S/, },
respectively.

The space Sy, is both time- and treatment-varying, indicating that a source site may not consistently
be useful or unhelpful across different time points or treatments. However, it offers the advantage of
increased flexibility and adaptivity, allowing for more effective borrowing of information at different
points along the survival functions. Based on the theory presented in Section for k € S/, the

site-specific estimator @“ 0(¢, a) is consistent for #°(¢, a) for any given t € [0, 7] and a € {0, 1}.

We begin by assuming fixed 7, , = (77?7(1, 7),517&, e ,nf’(a_l). We invoke Lemmata 4 and 5 in [Han
et al.[ (2025), which state that the proposed adaptive estimation for nﬁa as shown in allows
for (i) the recovery of the optimal nt'a by the estimator ﬁt'a, and (ii) the uncertainty induced by

nt . is negligible when estimating 6°(¢, a). We require regularity CondmonsF ! and . for
the pointwise convergence result in Theorem [E-T]hold. Let us denote the federated estimator by

plugging-in the fixed 7, , as

i
H;d(ta a; 1y a -

(127715(1) ta+277tan (t, a).

keS keS
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Recall that notation H; , defined in (T):

_ tAY uwla
M. a(0;8,G) = IV <td=1) )_/0 ( A(du | a,X)

SY|a,X)GY | a,X Su|a,X)G(u|a,X)

Let us then write

I(A=a
0(0) = $°(t | 0 X) Zor o037, . 6°),

O (O) = Wk (X) S (¢ | a,X)mHt,a(o; kAR GRY,
@(0) = 5t | a,X) — 0°(t, a),

andny = . I(R; =k)fork=0,1,...,K — 1.

= (1 - Z%z) {0 =0ta)} + > nk, {050 a) = 0°(t.0)}
keS kES
- (1 - Z%) LS 1R =0) {200 - 20 (0)
kes 051
£ 3 LS MR = 0 2P (0) - Y - SR = Byl 00 (0)
kes 0 51 kes ki
1 < £2)(0;) — €2M(0;)
= 1— nka> I(R; = 0) ~
n ; < ,;s § IP’(R- =0)
1™ ¢ o . 57@ 0, (1)(01)
+ =S I(R; = 0) L2 S ©
"2 (Zs” )P(R ZSZ O B = b

The asymptotic variance of af"‘d(t a;n,,,) equals the variance of the influence function of (6)). Let us

denote it as Vi%d = Vil(n), ,). We highlight its dependence to the federated weights vector 7, , here
because in the below . we consider an optimization program for deriving the weights based on
minimizing the (estimated) asymptotic variance.

Under the assumption of i.i.d. participants within each site, we have

ppi = < _ZnﬁafV{e°’<2><oi>—f°’<l><oi>|Ri=0}

keS P(R; =0)
o R
+2 <1 —~ %n&) (}; Uf,a> Cov{¢*®(0;) — f;g&g)go’(z)(@) | Ri =0}
+ I;S(nf,a)ﬂ{fho’;() ](%Oi ;ji =2 @)

With appropriate boundedness conditions on conditional variance and covariance terms above,
Vit < oo (see Lemma . Consequently, the asymptotic distribution of 67 (¢, a; 7;4) is given by

Vi {O i aim, ) — 62t a) | —a N(O,VED).
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estimator of affd(t, a) (]7{53 in Theorem , is obtained by replacing the population proportions,
variances, and covariances in (7)) with their sample (empirical) counterparts and plugging in the
estimated weight vector 7), .

Remark E.6. Based on the derivations in nd (7, an influence-function-based asymptotic variance

We further define the optimal adaptive weights 7, , as follows:

My, =  argmin erd(nt 0 ®)
nfﬁa:O,VkQS a

We adapt two lemmata from Han et al. (2025) for recovering the optimal weights 7, , with negligible

uncertainty for estimating 6°(¢, a) if we estimate My,q USING (), akin to adaptive Lasso (Zoul [2006;
Fan et al., 2024]).

Lemma E.7 (adapted from Lemma 4 in[Han et al.| (2025)). Under Conditions[EIHE.3] along with the
following mild conditions on covariates support and covariances: (i) The covariates X and density
ratio w* (X)) are in compact sets X € [~B, B]P and w*°(X) € [-B, B] forallk =1,..., K — 1
with probability 1; and (ii) The variance of £*0(1) (0O) € [e, M), and the variance-covariance matrix

V[(ﬁo’(l), 0@y | R = 0] has eigenvalues in [e, B] for some positive constants € and B. Then, it
holds that

lim P(nt a € RSt a) = 1? ||ﬁt,a -1 s OP(nil/Z)v

n—oo

forall (t,a) € [0,7] x {0,1}.
Lemma E.8 (adapted from Lemma 5 in[Han et al.| (2025))). Under conditions in Lemmal[E.7]

Vi (89t a5 0) = 0°(t @) ) —a N (0, V().

forall (t,a) € [0,7] x {0,1}.

The consistency of 17{?" Vf"'d(nt o) follows when we can effectively approximate Vi (), ,) with
erd Thus,

\/n/Vked {éffd(t, a) — eo(t,a)} —a N(0,1).

We now analyze the efficiency gain resulting from the federation process. The estimator relies only on

the target data is denoted as 6° (¢, a) = 0%4(¢, a; ny ), where 0] , assigns all weights to the target and

none to the source. In contrast, the estimator that leverages the proposed adaptive ensemble approach
is denoted as 6°4(¢, a; 7;.,)- Here 1), , can recover the optimal weights 1), , that are associated with
the minimum asymptotic variance. Consequently, the variance of @fd(t, a; M, ,) is no larger than that

of the estimator relying solely on the target data since 77?,(1 is generally not the variance minimizer.

To establish that the asymptotic variance of affd (t,a;m; ,) is strictly smaller than that of the estimator

based solely on the target data 52 (t,a), we adopt Proposition 1 inHan et al.|(2025) with a modified
informative source condition (modified Assumption 3(b) in[Han et al.| (2025)).

Specifically, for each source site s € S/, we define @Ted(t a;n; ) a federated estimator where 7; ,
is the optimal ensemble weight of site s 1f we only consider target site and this source site s for the
federation. Then, the modified informative source condition is given as

[Cov [Vadh (¢, a), v/ {8t as ) — Bt ) }] | = <,
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for some & > 0, where (¢, a; M a) — 00 (t, a) can be expressed as
O (t02.0) = Or(t )

{éﬁd(tanm)fﬂ ta} { (t,a) Hota)}
+

1 E@(0,) —M0) 1~ €P(0))
Z]I nt,a) IP(R—O) n;H(Rl_O)nt,a@(‘RZ: )
1 ss°<l>< D I, E2P(0) = &W(0)
Z (R: = " P(R; = s) n;H(RPO) P(R; = 0)
I(R @’(1)((90 LS (R — o £&0M(0,)

Therefore, it is straightforward to see that the modified condition can be achieved if n; , > 0.
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