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ABSTRACT

Causal inference across multiple data sources can improve the generalizability
and reproducibility of scientific findings. However, for time-to-event outcomes,
data integration methods remain underdeveloped, especially when populations are
heterogeneous and privacy constraints prevent direct data pooling. We propose
a federated learning method for estimating target site-specific causal effects in
multi-source survival settings. Our approach dynamically re-weights source contri-
butions to correct for distributional shifts, while preserving privacy. Leveraging
semiparametric efficiency theory, data-adaptive weighting and flexible machine
learning, the method achieves both double robustness and efficiency improvement.
Through simulations and two real data applications: (i) multi-site randomized trials
of monoclonal antibodies for HIV-1 prevention among cisgender men and transgen-
der persons in the United States, Brazil, Peru, and Switzerland, as well as women
in sub-Saharan Africa, and (ii) an analysis of sex disparities across biomarker
groups for all-cause mortality using the “fichain” dataset, we demonstrate the va-
lidity, efficiency gains, and practical utility of the approach. Our findings highlight
the promise of federated methods for efficient, privacy-preserving causal survival
analysis under distribution shift.

1 INTRODUCTION

Data fusion is essential in many high-impact domains. For example, in medicine, clinicians assess
how long treatments delay progression or readmission; and in finance, analysts track the time until a
portfolio reaches a drawdown threshold. Across these settings, integrating survival data from multiple
sources can improve efficiency, especially for rare events, and support broader causal conclusions.
However, such integration (or data fusion) is challenging: distributional shifts in covariates, outcomes,
or censoring can invalidate naive pooling, and time-stamped event histories are considered identifiable
information under General Data Protection Regulation (GDPR) and Health Insurance Portability and
Accountability Act (HIPAA) regulations, limiting cross-institution data sharing. Federated learning
provides a practical alternative by enabling collaboration through aggregate-level statistics rather
than raw survival trajectories.

We consider multiple right-censored survival datasets each with two treatment groups, with restrictions
on data sharing, and possible heterogeneity in covariates, outcomes, and censoring. Our goal is to
estimate the survival function for a given target site while borrowing information from the additional
source sites in a federated learning-based approach.

Related work. A growing literature studies data fusion for causal inference (Yang & Ding| 2019}
I& Luedtke}, 2023} [Colnet et al.| [2024)), including recent advances in federated data fusion where full

data sharing across sites is not permitted [2025}; 2024}, 2023}, Xiong et al.} 2023}, [Khellaf
et alll 2025} [Li et all, 2023 Makhija et al., 2024}; [Almoddvar et al. [2024). Most of these works

focus on continuous, ordinal, or binary outcomes and do not address time-to-event data. |Archetti
(2023)) have begun examining federated survival settings but they focus on data generation and
simulation frameworks rather than estimation and inference.

Existing extensions to survival data often rely on restrictive assumptions. For example, the Cox

proportional hazards model imposes a log-linear hazard structure (Herndn} 2010}, [Han|, 2023}, [Nagpal
2023)), or common conditional outcome distribution (CCOD) assumption across sites (Lee et al.,
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2022} |Cao et al.| |2024; Wen et al.|2025)) may fail under heterogeneous data distributions. Violations
of these assumptions yield biased estimates and inference. Related meta-analysis approaches, which
aggregate site-specific estimators using inverse-variance weighting, possibly after density-ratio cor-
rection, also implicitly require such conditional homogeneity assumptions across sites (DerSimonian
& Laird, |1986; Marin-Martinez & Sanchez-Mecal [2010). In addition, privacy-preserving methods
avoiding sharing raw data across sites for survival outcomes remain scarce (Jia et al.,[2021)). Recent
work such as FedECA (Ogier du Terrail et al} [2025) develops federated external control arms for
single-arm trials, but this setting differs from the more general multi-source integration problem.

Regarding estimation, time-to-event data are typically analyzed within single-site studies using
nonparametric methods such as the Kaplan—-Meier estimator (Kaplan & Meier| |1958)). With covariate-
rich data, semiparametric extensions such as the Cox model (Cox}|1972;|Xie & Liu, |[2005; Bull &
Spiegelhalter, |1997), doubly robust estimators (Bai et al.l 2013) are standard. In addition, targeted
maximum likelihood estimation (TMLE) can improve the finite-sample performance of doubly robust
estimators (van der Laan & Rubin, 2006; |Diaz et al.| 2019), and the collaborative TMLE (C-TMLE)
further enhances robustness to model misspecification (Stitelman & van der Laan| 2010). More
recently, [Westling et al.|(2024) integrated double machine learning (Chernozhukov et al., 2018)) to
flexibly estimate nuisance functions in survival analysis (Wolock et al.,[2024; |Cui et al., 2023} |van der
Laan et al, 2007). However, these methods remain focused on single-study contexts and do not
address how to combine survival data across multiple sources.

Contributions. Recognizing that pooling is often infeasible and that CCOD may not hold, we
develop a federated estimator with adaptive site weighting that accommodates both continuous-
and discrete-time outcomes. Our approach leverages influence function theory to construct site-
specific estimators based only on local summary statistics, combined through a constrained convex
optimization that upweights informative sites and downweights or excludes biased ones. We establish
consistency, asymptotic normality, and conditions under which our method improves efficiency over
target-only analysis. By integrating cross-fitting (Chernozhukov et al.,[2018)) and ensemble learning
(Diaz et al.,2019; Diaz, 2020; Westling et al.||2024; |van der Laan et al.,|2007)), our estimator avoids
restrictive assumptions while retaining fast convergence rates.

We validate the method through extensive Monte Carlo simulation studies and two real applications:
(1) multi-site randomized trials of monoclonal antibodies for HIV-1 prevention among cisgender men
and transgender persons in the United States, Brazil, Peru, and Switzerland, as well as women in
sub-Saharan Africa, and (ii) an analysis of sex disparities in all-cause mortality using the f1chain
dataset in the survival R package, stratified into biomarker-defined groups. Together, these
examples highlight the potential of federated methods to enable efficient, privacy-preserving causal
inference for time-to-event outcomes in realistic multi-source settings.

2 METHODOLOGY

2.1 PROBLEM SETUP AND TARGET ESTIMAND

Observed data. Consider K studies, each of which may be randomized or observational. For each
participant, we observe baseline covariates X, a binary treatment A € {0, 1}, and right-censored
outcomes. Let T(®) and C(®) denote the potential event and censoring times under treatment
a € {0,1}. By the stable unit treatment value assumption (SUTVA) (Rosenbaum & Rubin,|1983), the
observed event and censoring times are 7' = AT + (1 — A)T©, C = ACW + (1 - A)C©,
With right censoring, however, we only observe Y = min(7,C) and A = (T < C).

Denote a copy of the independent and identically distributed (i.i.d.) data by O. The observed
data across all sites are then given by {O; = (X;, 4;,Y;,A;,R;) : ¢ = 1,...,n}, where R €
{0,1,..., K — 1} denotes the site, with R = 0 indicating the target siteand R = 1, ..., K — 1 the
external sources.

Target estimand. Throughout, P denotes the population-level probability under the true data-
generating process, and with a subscript “n”, P,[f(O)] = n~' Y., f(O;) denotes the empirical
average. Our goal is to estimate the treatment-specific survival function in the target population over
a finite horizon 7 < oo:

0°(t,a) =P(T'“ >t | R=0), aec{0,1}, tel0,7].



Under review as a conference paper at ICLR 2026

This function gives the probability that a target-site individual on treatment a (¢ = 1 for treated,
a = 0 for control) survives beyond time t.

Conditional survival functions. For each site k, define the conditional survival function S*(¢ |
a,X)=P(T >t| A=a,X,R = k). To simultaneously accommodate continuous- and discrete-
time outcomes, we use the product integral representation (Gill & Johansen, [1990):

S*(t | a,X) = T {1 - A*(du | a,X)},
(0,¢]
where A¥(t | a, X) is the conditional cumulative hazard function. This notation unifies both discrete

and continuous-time survival models, because in discrete time the product integral becomes the
standard discrete product [ ], and in continuous time it becomes exp{—A* (¢ | a, X)}.

We impose three standard assumptions for causal survival analysis:

Assumption 2.1 (Unconfoundedness). A 1L T(®) | X, Rand A Il C® | X, R.

Assumption 2.2 (Treatment-specific non-informative censoring). C(®) 1. T | A = a,X, R.
Assumption 2.3 (Positivity). There exists 7 > 0 such that P(R = k) > 1/, and for almost all X,

k k > : k
k:O,...,K—l{ﬂ- (a| X), G*(t]a,X)} > 1/n, mkmS (t]a,X)>0.

Here 7% (a | X) = P(A = a | X, R = k) is the site-specific propensity score for treatment A = a,
and G¥(t | a,X) = P(C >t | A = a,X, R = k) the conditional survival function of censoring.
Each treatment and censoring mechanism has non-vanishing probability, and each site contributes
a non-negligible fraction of participants. These quantities are referred to as nuisance functions,

auxiliary components that are not of primary scientific interest but are essential for estimating the
target parameter 0° (¢, a).

2.2 SINGLE-SITE ESTIMATION

Auxiliary process. For later use, define
I(Y <t,A=1) Y AF(du | a,X)
SEY | a,X)GF(Y | a,X) Jo = Sk(u]a,X)Gk(u|a,X)’

where t AY = min(¢,Y"). This functional plays a role as the inverse probability-weighted mean-zero
residual (part of an augmentation term) in doubly robust estimators for right-censored data.

Hia(O; S%,GF) =

ey

Efficient influence function (EIF). When using only target-site data (R = 0), the nonparametric EIF
of §°(t,a) given t € [0, 7] and a € {0, 1} is given by (Westling et al., [2024):

einoim) = =0 - L= 0560 | 570100 - 00,0

Here, P in go*o (O;P) indicates that the EIF depends on nuisance functions under the true data

distribution. In other words, ¢}, ((9 P) = ¢;%(0;5° G, «°). Furthermore, we use P to denote the
EIF evaluated with estimated nuisance functions. This should not be confused with the empirical
average IP,, introduced earlier. The same convention applies to all other EIFs throughout the paper.

The EIF ;9 (O;P) highlights two components: (i) an anchor term that S°(t | a,X) — 0°(t,a),
which anchors estimation through the conditional survival function under an outcome model by
using target data; and (ii) an augmentation term—the weighted part involving H; ,(O; S°, GY) and
7%(a | X), which adjusts for censoring and treatment assignment. Furthermore, the weighting term
I(R = 0)/P(R = 0) selects target-site observations, and I(A = a)/7"(a | X) restricts to units with
treatment A = a while reweighting them to represent the full target population.

Target-only estimator. Motivated by the EIF, we define 52(75, a) as the solution to the estimating
equation
0 = P, [3;% (O P)).

Under regularity conditions, 60 D (t,a) is regular and asymptotically linear (RAL) and achieves the
semiparametric efficiency bound uniformly over ¢ € [0, 7] when only target-site data are available.
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2.3 THE CCOD ASSUMPTION

When multiple data sources are available, precision can be improved by data fusion. A common
simplifying assumption is that conditional survival functions are identical across sites given covariates.

Assumption 2.4 (Common conditional outcome distribution). 7(® 1L R | X fora € {0,1}.

Assumption 2.4]implies that S* (¢ | a,X) = S(t | a,X) = P(T > t | A = a,X) for all k, while still
allowing shifts in the covariate distribution X across sites, i.e., adjusted for covariates, the event-time
distribution no longer depends on the site.

Figure|[T]illustrates the data structure through a directed acyclic graph (DAG), depicting the relation-
ships among covariates X, treatment A, site indicator R, event time 7', and censoring time C, and
compares scenarios with and without the CCOD assumption.

(X (X)
FT O ORO5an OBGC

(a) CCOD holds (b) CCOD possibly violated

Figure 1: Data structures under and without CCOD. (a) Under CCOD, site R and event time 7" are
conditionally independent given treatment A and covariates X. (b) When CCOD is possibly violated,
indicated by the red dashed arrow, R and 7" may not be conditionally independent.

2.4 FEDERATED ESTIMATION UNDER DISTRIBUTION SHIFTS AND PRIVACY

Motivation. In many settings, pooling individual-level data across sites is infeasible due to privacy
constraints. At the same time, CCOD may fail, so naive pooling is invalid. Still, some sites may
provide information that improves estimation for the target population. We propose a federated
method that adaptively re-weights source sites using only summary-level information.

2.4.1 LOCAL SITE-LEVEL ESTIMATION

For each source k, we temporarily posit a working partial CCOD assumption, S*(t | a, X) = SO(t |
a, X) almost surely, in order to derive an EIF. This assumption is used only for formulating site-level
estimators; violations will later be detected and corrected by adaptive weighting in Section[2:4.2]

Theorem 2.5. For k € {0,1,..., K — 1}, 0%(t,a) is a pathwise differentiable parameter given
(t,a) € [0,7] x {0,1}. Under the working partial CCOD assumption, the semiparametric EIF is

given by g7 (O;P) =

I(R=0) , o 0 I(R=k) o k [(A=a) k ok
SY(t X)—0°(t — (X)ST(t X He o(O; 87, GY),
Pr=q) > t1aX) =0t a)} = e (X)SH(E | . X) Sy He )
Anchoring term using target data Augmented term using source data

where w*?(X) = P(X | R = 0)/P(X | R = k) is a density ratio comparing covariate distributions
between the target site and source site k.

We prove Theorem [2.5]is in Appendix [E.I] With the derived EIF, each site computes a source-site
estimator @fl’o(t, a) by solving 0 = PP, [@;";0(0, P)].

RAL property. A central result of this paper is the regular and asymptotically linear (RAL) property
of the local estimator @T‘;’O(t, a), stated in the following theorem. An estimator is RAL if it can
be written as an i.i.d. average of influence functions plus a negligible remainder. This property
allows the central limit theorem to be applied to obtain its asymptotic normal distribution. Below,
we use (7% wk0 G% Sk ) to denote the probability limits of the estimated nuisance functions
(7%, 5k, G*, S%) for estimating 6° gt, a) using data from source site k. These limits may differ from
the nuisance truths (7%, w*°, G*, S*).

Theorem 2.6. Under Conditions in Appendix with (wk wk0 GE Sk) =
(mF, wh0, GE, %), /n(050(t, a) — 0°(t,a) —a N(0,P[(7%°)?]), for (t,a) € [0,7] x {0, 1}.
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We prove Theorem [2.6]in Appendix [E-T] but summarize the regularity conditions here. Condition [EI|
requires nuisance estimators to converge to well-defined limits; Condition [E-2]bounds these limits and
their estimates from extreme values (0 or infinity); and Condition [E.3|controls product-type errors.

They ensure that 0 9(t, a) converges to some well-defined limits and is asymptotically normal.

Theoretical novelty. Theorem [2.6] establishes the semiparametric efficiency bound under the
pairwise partial CCOD assumption in[2.5] and the source-site estimators attain this bound under this
assumption. These results add theoretical novelty to prior work on continuous outcomes
[2025)). The interactions between the density ratio and the other nuisance functions also represent
previously unexplored theoretical components.

Remark 2.7 (Density ratio model). To estimate the density ratio while respecting data-sharing
constraints, a common approach is to adopt the exponential tilt model detailed in[Han et al| (2025):

wh0(X) = exp(v},1(X)), where -y, is the model parameter and v(-) is a set of basis functions of
the covariates. A simple choice is /(X)) = X for a linear component, and higher-order terms can be
added to capture non-linearities in estimating w"*°. To estimate each -+, via maximum likelihood,
only the target-site sample mean of ¢)(X) needs to be shared with the source sites. In addition to this
model, more flexible nonparametric or machine learning approaches may be used, but these typically
require sharing covariance matrices and/or other higher dimensional summaries. Thus, greater model
flexibility comes at the cost of sharing more information. Finally, while the w*® model may be
misspecified, this does not necessarily invalidate our framework or estimators. As noted in Theorem
our estimator is doubly robust: under Condition errors in estimating w"** influence the final
estimator only through a product-type term that enters the second-order remainder term.

Theorem 2.8 (Double robustness). For consistency o, @“ O(t,a), it is not necessary that
(mh Wk GE Sk ) = (wk, Wk 0 GF, S*) in Theorem 2.6\ must hold. Instead, at any single time
point t, Lfezther (i) the conditional survival model S*; or (ii) other nuisance functions G*, =% and
Wk 0 are correctly specified, H%n’o(t, a) is consistent.

A more technical version of Theorem [2.8](Remark [E.4) and its proof are presented in Appendix

2.4.2 AGGREGATION ACROSS SITES

Data-adaptive weighting. We define the site- spec1ﬁc discrepancy measure Xn ta = @“O(t, a) —

6°(t, a) and the weight vector Nia =00 ar s ,nt,a 1). To aggregate information, we solve an
¢1-penalized convex optimization problem: we minimize Q(n; ,), where

K-1 2 | K
~ ~ k 0 <k,0
Q) =P {cp’{‘l e Bra (05 P)} + oA al (nda)® @
k=1 k=1
subject to n,ﬁa > 0 and ZkK 01 nfa = 1; A is a tuning parameter that controls the bias-variance
trade-off and is chosen by cross- -validation.

Interpretation. The objective function balances two goals: aligning site-level EIFs with the target
distribution and excluding sites that would induce bias. The quadratic term ensures that sites well-
aligned with the target survival distribution contribute more to the estimation, while the ¢; penalty
induces sparsity by driving the weights of misaligned sites exactly to zero. This contrasts with an
{5 penalty, which merely shrinks weights without fully removing them. As a result, the procedure
asymptotically includes only the informative sources.

Federated estimator. The final estimator is obtained as a Weighted average of the estimated local

survival curves: 9 d(t,a) = 2(_01 e @fl O(t, a) The variance of 6%4(£, a) can be estimated from

its influence functlon with the exphclt formula given in Appendix @

Remark 2.9. We summarize the procedure of the federated method in Algorithm [T)and illustrate its
flow in Figure 2] Implementation details can be found in Appendix [D} including for the cross-fitting
procedure for nuisance fitting. Figure 2]emphasizes that our approach follows a federated learning
paradigm (McMahan et al.} 2017). Importantly, all steps require only summary-level transmission,
never raw participant data. Source sites receive only the target-site S° model parameters and summary
statistics for the density-ratio model, and the leading analysis center receives only EIFs. This contrasts
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Target-site S model parameters and summary statistics for estimating w*°

G- R,

Target Site Source Site 1 Source Site 2 Source Site K

N AT

=l w0 )
= |I1l

-—
Leading Analysns Center

ﬁL,a = argminr]m 77/. a

Figure 2: Algorithm flow. Target-site S° model parameters and summary statistics for estimating

wk0 are transmitted to source sites; each site estimates its survival functions locally; EIFs are sent

and aggregated in a leading analysis center to compute federated weights by minimizing the Q(-).

f

Algorithm 1 Federated Learning for Multi-Source Causal Survival Analysis.

1: Input: Multi-source right-censored data {O; = (X;, 4;,Y;, A, R;),i = 1,...,n}, a time
horizon 7 > 0; a fine time grid {0, €, 2¢, ..., 7} for [0, 7] with a small € > 0; and the number of
disjoint folds into which the data are split, M.

2: Output: Estimated treatment-specific survival curves gﬁfd (t,a) and its estimated variance erd
fora € {0,1} and t € {0,¢,2¢,...,7}.

3: for (t,a) € {0,¢,2€,...,7} x {0,1} do
4:  Estimate the EIFs via an M-fold local cross-fitting (see full detail in Algorithm[2).
5. Obtain local estimates 6%-°(¢, a) as solutions of 0 = [@ff((’) P)),fork=0,...,K — 1.
6:  Obtain the site-specific discrepancy measure (difference of the target and source estimators) as
Ueta =Pu [P0 (O:B) = B, (O:B)] for k=1, K — 1.
7: Solve for treatment- and time-specific weights 7, , = (704, .4 - - - ,ﬁfa_l) that minimizes
K-1 2 | K
o~k ~xk 0 s ~k,0
Q(T’t,a) = ]P)n {9015% nf,a t a 07[[1’)} + EA Z |nf,a‘(Xn t a)2
k=1 k=1
subject to 0 < nf, < 1,forall k € {0,1,..., K —1} and ZkK:_Ol nf, =1, and X is a tuning
parameter chosen by cross-validation centrally at the leading analysis center; no additional
communication between sites is required.
8: end for
9: Return:
K—1
0d(t,a) = Y k050t a), and VT for (t,a) € {0,€,2¢,...,7} x {0,1}.
k=0

i 9{ is computed based on the influence function of §fed (t,a) (see Remarkin Appendix .

with fully decentralized learning [2017), where there is no central aggregator and sites
interact directly to reach consensus. Our method also differs from mera-analysis
[2021), which relies only on coarse population-level summaries (such information is insufficient in
our setting) and often targets the pooled population.

2.4.3 THEORETICAL PROPERTIES

We now summarize the main asymptotic results and efficiency gain of the federated estimator; detailed
proofs are in Appendices[E-T]and [E2]



Under review as a conference paper at ICLR 2026

Theorem 2.10 (Asymptotic distribution). If regularity conditions for local estimates (Conditions
in Appendix and the adaptive weights 1), , recover the oracle set of unbiased sources

(Appendix, then 8%(t,a), at each (t,a) € [0,7] x {0, 1}, has asymptotic distribution

VLB a) = () } =4 N (0, 1).

where V{eg is an influence-function-based consistent estimator for the underlying asymptotic variance
of ¥¢(t, a) (see Appendix .

Corollary 2.11 (Asymptotic efficiency). The asymptotic variance V{ez is no greater than that of the
target-only estimator 92 (t,a). Further, if at least one source site provides a consistent estimate of
0°(t, a), then ¥¢(t, a) is strictly more efficient (strictly smaller asymptotic variance).

Remark 2.12 (Selection consistency). The asymptotic validity of gffd(t, a) relies on selection
consistency with respect to the oracle set Sy’ ,. This guarantees that post-selection inference by our

variance estimator 1}

Remark 2.13 (Efficiency gains). To quantify the efficiency gain of é\f,f’d(t, a),letS={1,..., K—1}
denote the set of source sites, and define the oracle selection space for n, , as Sy, = {k € S :

remains valid, even in the presence of heterogeneous or biased sources.

0%(t,a) = 6°(t,a)}, and the corresponding weight space as R« = {n, , € RE-1 .yl =
0, Vj ¢ St*a} Under the mild regularity conditions stated in Appendix namely compact
covariate support, bounded density ratios, and finite variance—covariance matrices of the EIFs across
sites, we show that our federated estimator recovers the following oracle-optimal weights:

_ _ . fed
nt,a - arg min Vt,a(nt,a)7
nf,a:(l ngs;:a,

where V{fg(nt’a) denotes the asymptotic variance of the federated estimator under weight vector 7, .
The target-only estimator corresponds to the special case 7, , = (1,0,...,0), so its variance is no

larger than that of any federated estimator. If the bias term )?Z?a remains asymptotically non-zero,
then nﬁ « — 0, ensuring exclusion of biased sites. Proofs are adapted from Han et al.| (2023} 2025).

We note from Corollary 2.TT|that strict efficiency gains rely on the consistency of at least some source
estimators. To preserve robustness while borrowing information, our methodology anchors each
source estimator to the target-site estimate and incorporates source data only through the augmented
term of the EIF in Theorem [2.3] In the federation stage, we solve a global optimization problem that
determines each site’s contribution to the final estimator. While this resembles one-shot aggregation,
the optimization operates over all source summaries and explicitly targets variance reduction while
preserving the target estimand.

Although the framework allows both randomized and observational sites, many survival-data applica-
tions involve randomized treatment assignment, in which case the propensity score 7 is known and
the target-site estimator is consistent. For observational studies, it is common to have larger sample
sizes that enable flexible nonparametric and machine learning methods to estimate nuisance functions
with greater robustness to model misspecification.

3 SIMULATION STUDY

We conducted simulations to assess the performance of our federated estimator (FED) to four
competing approaches: target-only (TGT), pooling (POOL), inverse variance weighting IVW) and
a meta-analytic IVW (META-IVW) estimators. TGT uses only target-site data (R = 0), POOL
aggregates data from all sites without adjustment, IVW combines site-specific estimators using
inverse-variance weights, and META-IVW applies additional covariate density—ratio correction to
IVW. We refer to it as “meta-analysis™ as it parallels classical [IVW meta-analytic pooling, augmented
to correct for covariate shift. This comparison allows us to assess both the efficiency gains and
robustness properties of FED under varying degrees of site heterogeneity and against several baselines.
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3.1 DATA GENERATING PROCESS

Under a given data generating process (DGP), we generate 500 independent datasets, with n =

Z,f;(} ny, observations distributed across K = 5 sites. The target site (k = 0) was fixed at ng = 300
observations, while source sample sizes were varied as n; € {300, 600,1000} for k = 1,...,4,
representing small, moderate, and large external data. Covariates, treatments, and outcomes were
generated according to the mechanisms described in Appendix[B.1] The estimand truth was derived by
averaging survival outcomes over a super-population of size Ngyper = 108 from the target distribution.
Our main DGP reflects nearly randomized studies that are more common in practice, where each site
k has the propensity score 7" (a | X) weakly associated with X and good overlap. We also include
a scenario with ny = 300 (k = 1,2, 3,4) where the target-site propensity score 7"(a | X) is more
dependent on X (“limited overlap”) to highlight a regime with larger efficiency gains.

We modeled time-to-event outcomes over a one-year horizon, with administrative censoring at day
200. Performance was evaluated at days 30, 60, and 90. To investigate robustness under distribution
shifts, we introduced five cases: (i) Homogeneous: all sites follow identical DGP; (ii) Covariate
Shift: covariate distributions vary; (iii) Outcome Shift: conditional outcome distributions vary; (iv)
Censoring Shift: censoring mechanisms vary; and (v) All Shifts: simultaneous covariate, outcome,
and censoring heterogeneity across sites. Figure [5]in Appendix [B-T]depicts survival curves under
outcome and covariate shifts, illustrating how site-specific heterogeneity can affect target estimation.

3.2 PERFORMANCE METRICS AND RESULTS

We evaluated methods using three metrics: (i) Bias: assessed via boxplots of estimation bias across
500 replications, (ii) Relative root mean square error (RRMSE): defined as the RMSE of a method
divided by that of TGT; values below 1 indicate efficiency gains, and (iii) Coverage probability
(CP%): the proportion of 95% Wald-type confidence intervals containing the truth. Values near 95
indicate better inference. Details of these metrics are provided in Appendix [B.2] Simulation results
for all scenarios appear in Appendix here we summarize representative findings in Figure [3]
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Figure 3: Simulation results for the target-site treated-arm (A = 1) survival function at day 30 with
no = 300 and n;, = 300 (k = 1, 2, 3, 4) under good and limited target-site propensity score overlaps.

From Figure 3{A), FED exhibits negligible bias across all scenarios. META-IVW shows small biases
under Homogeneous, Covariate Shift, and Censoring Shift, but becomes substantially biased under
Outcome Shift and All Shifts. In terms of efficiency, FED consistently outperforms TGT: Panel
(B) shows up to 59% reductions in RMSE by FED across all settings, especially under the limited
overlap scenarios. META-IVW is more efficient when the outcome does not shift, but its efficiency
drops sharply under Outcome Shift. These confirm that FED preserves consistency compared to
META-IVW and consistently improves efficiency relative to TGT. Across all scenarios in Appendix
[B:3] FED achieves larger efficiency gains at earlier time points, when site-specific survival curves
more closely resemble the target (see Figure[5) and the source-site EIFs align better with the target.
Under limited target-site propensity score overlap, FED also attains higher efficiency, likely because
the improved overlaps at the source data help stabilize the source-site estimators.

In terms of inferential validity, both FED and TGT maintain CP% closer to 95% across scenarios,
validating the influence-function-based variance estimator. Further diagnostics, reported in Figures
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@ and [7} show that federated weights 7, , decrease systematically as site-specific bias measures

()?f;(t)a)2 increase. Thus, FED adaptively upweights sites aligned with the target and downweights or
excludes biased ones; the target site receives higher weights under covariate or outcome shifts, while
contributions vary over time depending on alignment of survival functions.

Although POOL and IVW exhibit lower variability (narrower boxplots), they perform poorly under
Covariate, Outcome, or All shifts: bias is substantial such that RRMSE is elevated, and CP% drops
far below 95%. The exception is under Censoring Shift, but this arises because censoring is treated as
a nuisance function and estimated separately within each site, reducing sensitivity to between-site
heterogeneity in censoring distributions.

4 REAL DATA ANALYSIS

We illustrate our method with two applications. The first analyzes the coordinated antibody-mediated
prevention (AMP) trials (Corey et al., |2021; Ning et al., [2023), which enrolled 4,611 participants
to assess whether a bnAb reduces HIV-1 acquisition. The second uses the £1chain dataset (7,874
participants across three biomarker-defined groups) to study sex differences in all-cause mortality.
For brevity, we focus on the AMP trials and present the £1chain results in Appendix

The AMP trials considered HIV diagnosis by week-80 as the primary endpoint, a rare event with
only 3.77% incidence. Loss to follow-up was relatively low (less than 10% per treatment arm)
(Corey et al) 2021). The participants were from four regions (sites): (i) SA: South Africa, (ii)
OA: other sub-Saharan African countries, (iii) BP: Brazil or Peru, and (iv) US: United States or
Switzerland. Participants in (i) and (ii) were women, while those in (iii) and (iv) were cisgender
men or transgender individuals, reflecting population differences. Because of event sparsity, we
applied a 2-fold cross-fitting. Conditional survival and censoring functions were estimated via an
ensemble of Kaplan-Meier, Cox proportional hazards regression, and survival random forests from
the survSuperLearner package (Westling et al.| 2024). Propensity scores and density ratios
were estimated using ensembles of logistic regression and LASSO via SuperLearner (van der
Laan et al.|[2007). Predictors included baseline age, a standardized machine-learning-derived HIV
risk score, and body weight.

Results with South Africa as target site. 'We highlight main results in Figure |4, Additional
analyses treating OA, BP, or US as the target, as well as comparisons of regional survival curves and
baseline covariates, appear in Appendix [C] Table[T|shows that OA closely resembles SA, while BP
and US differ markedly in baseline risk score, weight, and HIV prevalence, consistent with covariate
and outcome shifts. This pattern is reflected in the federated weights: Figured[(B) shows SA receiving
the highest weights on average, followed by OA, US, and BP.
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Figure 4: AMP results with SA as the target site. (A): Relative efficiency is the ratio of the estimated
standard deviation to that of the TGT estimator, at 148, 330, and 512 days. (B): Federated weights
with locally weighted smoothing (only a representation tool; see|Cleveland & Devlin|(1988)).

Figure[d(A) shows that FED, META-IVW and TGT produce similar survival curves, although META-
IVW does not provide point estimates at earlier time points arising from inverses of small site-specific
variances. Compared to TGT, FED offers narrower confidence intervals in some cases. In particular,
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TGT fails to yield valid intervals at certain early time points due to unstable or unavailable variance
estimates, driven by the insufficient effective sample size individuals who experience the event at
those times, while FED can recover intervals by borrowing information from aligned sites. These
efficiency gains mirror our simulation findings, highlighting the ability of FED to improve inference
without introducing bias.

Although POOL and IVW exhibit lower variance (smaller relative efficiency), they deviate from the
trends of TGT and FED, suggesting bias under distribution shifts. Moreover, same as META-IVW,
IVW fails to return estimates at early times due to extreme weights, underscoring a practical limitation
in survival applications.

5 DISCUSSION

We developed a federated learning framework for estimating treatment-specific survival functions in
a target population. By leveraging external sources with potentially shifted covariate and outcome
distributions, while preserving privacy, our method achieves efficiency gains under oracle selection
and mild regularity conditions. In the absence of timing and censoring, our estimator reduces to the
FACE estimator of (2025) when the survival outcome is replaced by the binary indicator
I(T® > 7). With censoring (i.e., missingness in this binary outcome), FACE would require
modification to incorporate inverse-probability weights under a missing-at-random assumption. Our
method also extends to multiple non-mergeable target sites by anchoring each one separately and
solving a target-specific federated aggregation problem. When target sites are comparable (e.g.,
satisfy CCOD), transfer learning may be leveraged to further improve nuisance estimation

Limitations and future directions. Several limitations suggest opportunities for future work. First,
although Theorem [2.10| and our simulations demonstrate efficiency gains, developing potentially
more efficient covariate-adaptive weighting schemes remains crucial. In addition, when data sharing
is permitted but the CCOD assumption fails, it is unclear whether any method—including the pooled
estimator—can outperform the target-only semiparametric efficient estimator (TGT in our simulation)
and our federated approach. Furthermore, while our time-specific weights provide flexibility, they
may yield non-smooth trajectories and incur computational costs in continuous-time settings. For
a discrete evaluation time grid of size n., site k transmits an nj X n., matrix of subject-level EIF
evaluations. Therefore, the total communication complexity is O(n - n.), where n = Zle .
Future work should pursue smoothing strategies to capture temporal trends more efficiently to reduce
such complexity to a lower level. Moreover, we did not incorporate time-varying covariates in
our current framework due to the additional challenges they pose in continuous-time settings, but
extending the method to leverage post-baseline information is an important direction for future work.

Additionally, violations of the positivity assumption can render target estimand unidentifiable, e.g.,
when the two treatment groups in some sites differ systematically in their covariate distributions,
or when certain participants are ineligible for specific treatments. Future work should investigate
or leverage techniques to address such violations in our framework (Cheng et al.,[2022}; Xue et al]
[2024). Furthermore, future work should consider settings where covariates differ across sites or have
limited overlap; in such cases, density ratio estimation becomes difficult and requires additional
sensitivity analysis. Finally, although our density-ratio weighting effectively addresses covariate shift,
investigating alternative weighting strategies, such as extending the collaborative propensity score

weighting 2024) to survival data, is left for future work.

Our framework also connects to several other extensions, including incorporating alternative estima-
tors such as TMLE and C-TMLE (van der Laan & Rubin| 2006} [Stitelman & van der Laan| [2010;
van der Laan & Gruber} [2010), adapting to external controls settings such as FedECA (Ogier du Ter}
rail et al.,[2025) as well as extending their inverse probability weighted-Cox approach to incorporate
EIF and ensemble learning, surrogate-assisted causal inference (Han et al., 2022} [Gao et al.| 2024a)),
dynamic treatment regimes (Zhang et al., 2013), and data-driven selection of external sources
2024b). It also opens opportunities for constructing two-sided conformalized prediction inter-
vals for event times by leveraging the EIF-based conformal scores for survival outcomes developed

(Farina et al| 2025)) with federated learning for predicting missing outcomes (Liu et al., 2024). Our
approach could be adapted to other estimands such as restricted mean survival time 2023),

competing risks (Lok et al., [2018)) or left-truncation (Han), 2024} [Wang et al.| [2024).

10
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ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. We used only publicly available datasets with
appropriate licenses and did not involve human subjects or sensitive personal information. We
acknowledge potential risks of misuse (e.g., unfair application, misinterpretation, or unintended
deployment beyond the intended research scope) and discuss limitations and safeguards in the paper.
All results are reported transparently, and code will be released to support reproducibility.

REPRODUCIBILITY STATEMENT

All simulation studies and real data analyses were performed using the statistical language R
(version 4.4.2). The dependent R packages include: CFsurvival, survSuperLearner,
superLearner (version 2.0.29), glmnet (version 4.1.8), caret (version 6.0.94) and
tidyverse (version 2.0.0). To enhance computational efficiency, parallel computing packages
foreach (version 1.5.2) and doParellel (version 1.0.17) were employed. The replication of
simulations was carried out using 200 CPU cores by a high performance computing cluster.

We provide an anonymous GitHub repository containing all code for our simulations and data
analysis: https://anonymous.4open.science/r/FuseSurvSubmission-3D16/
README . md. All source code and software (R package) will be made publicly available through the
author’s Github upon acceptance of the paper.

The two real datasets are publicly available. The AMP trial data can be found at https:
//atlas.scharp.org/project /HVIN$20Public%20Data/HVIN%$20704%20HPTNS

20085%20and%20HVTN%20703%20HPTN%$20081%20AMP /begin.view, and the “fichain”
data can be found at https://rdrr.io/cran/survival/man/flchain.html|or by
typing command data (f1lchain) in R after loading the survival R package.
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A USE OF LLMs

We acknowledge the use of ChatGPT-5.0 exclusively for language polishing and grammatical correc-
tions. No large language models (LLMs) were used for any other aspects of this work. The research
ideas, conceptualization, methodology development, and all experiments are entirely original contri-
butions of the authors.

B SIMULATION DETAILS AND ADDITIONAL RESULTS

B.1 DETAILS OF DATA GENERATING PROCESS

Three covariates X, X5, and X3 are sampled as transformations of Beta random variables with
site-specific parameters:

X1 ~ 33 Beta(1.1 — 0.05v(k), 1.1 4+ 0.2v(k)) + 9 + 2v(k),

Xo ~ 52 Beta(1.5 + (X1 4+ 0.5v(k))/20,4 + 2v(k)) + 7+ 2v(k),

X3 ~ (4+ 2v(k)) - Beta(1.5 + | X7 — 50 + 3v(k)|/20,3 + 0.1v(k)),

where (k) represents some function of site k, specified later. We then generate the treatment
assignment probabilities 7(X) using the logistic function:

logit(m (X)) = —1.05+1og (1.3 + exp(—12 4+ X1/10) + exp(—2 + X3/3) + exp(—2 + X3/12))

and treatments A are sampled as A ~ Bernoulli(7(X)). For the scenario with limited propensity
score overlap in the target site, we modify the target-site propensity score model 7(X) to such that

logit(m(X)) = —1.05 + log (0.3 + exp(—120 + X1) + exp(—6 + X2) + exp(—6 + X3/4)),

and generate A ~ Bernoulli(7m(X)) accordingly for target-site samples only. This increases the
dependence of A on X and induces reduced overlap.

Next, we consider the mechanisms of event and censoring times. The hazard rates for event times
and censoring times are given by the following exp(h;) and exp(h.), respectively, where h; =
—5.02 4+ 0.1(X; — 25) — 0.1(X2 — 25) + 0.05(X35 — 2) + Dr(k) - 0.1(Xs — 25) + A - 6p(k) -
0.1(X; + X2 + X3 — 50), and h, = —4.87 4+ 0.01(X; — 25) — 0.02(X2 — 25) + 0.01(X3 — 2) —
De(k)-0.1(Xy —25) + A- (k) - 0.1(X1 + Xo + X3 — 50).

Here, Dy (k), Do (k), 07 (k) and 6¢ (k) are some site-specific indicators, specified later, for varying
the treatment effects and trends of survival curves for different sites. Then, event times and censoring
times are sampled as:

. log(Uy) e o log(Us) e
U exp(hy) - A ’ U exp(he) - A ’
with p = 1.2, A = 0.6, and Uy, Uy ~ Uniform(0, 1). This technique follows |Austinl (2012). Thus,
the observed times and event indicators are Y = min(7, C'), A = I(T' < (), respectively.

Under this data generating process (DGP), the event time is generated to mimic days in a year (365
days), and we truncate the censoring time at 7 = 200 days to mimic the end of follow-up in survival
analysis. Our DGP allows the following scenarios based on site-specific distributional heterogeneity:

* Homogeneous: Homogeneous covariates and hazard rates across sites. We let y(k) =
Dy(k) = Do (k) = 0p(k) =dc(k) =0fork=0,1,...,4.

 Covariate Shift: Covariates X7, X5, and X3 vary across sites. We let v(k) = k and
Dr(k) = Do (k) = 6r(k) = dc(k) =0, fork =0,1,...,4.

* Outcome Shift: Conditional outcome distribution varies across sites. We assign (k) = 0,
Dr(k) = o0r(k) = k,and Do (k) = 0c(k) =0fork=0,1,...,4.

* Censoring Shift: Censoring mechanism varies across sites. We let v(k) = 0, Dr(k) =
or(k) =0and De(k) = 0c(k) =k, fork=0,1,...,4.

+ All Shift: Covariates and both event and censoring effects vary across sites. We let y(k) =
Dr(k) = Do (k) = or(k) = dc(k) = k,fork =0,1,...,4.
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Figure[5]below plots the true treatment-specific survival curves under the Covariate Shift and Outcome
Shift scenarios, as defined by our designed DGPs, to illustrate the effect of site differences on survival
outcomes.

Source sites have covariate shift only:
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Source sites have outcome shift only:
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Figure 5: Site- and treatment-specific survival curves, each based on a random sample of n = 10*
from the true DGP of each site. The two dashed curves in each source site panel are the target site
survival functions for reference. Under covariate shift, curves preserve their shapes and trends but
differ in scale, whereas outcome shift produces marked changes in shape and treatment effects.

B.2 PERFORMANCE CRITERIA DEFINITIONS

The simulation performance criteria considered in Section [3:2] with an additional metric 95% confi-
dence interval (CI) width for the complete simulation results are defined as follows.

Let 0 denote the true target parameter, and let 51 and 0; be the point and standard error estimates,
respectively, from the ith Monte Carlo replication of a competing method, ¢ = 1, ..., 500. Then:

~

« Estimation bias: 0; — 0,7 = 1,...,500, summarized via boxplots;

* RRMSE: the RMSE of a method relative to that of the TGT estimator, where RMSE =

\/ 500-1 2% (6; — 0)2. By definition, the TGT estimator has RRMSE = 1. Smaller
RRMSE values indicate higher efficiency relative to TGT;

e CP%: the proportion of replications in which the Wald-type CI contains 6: 100% x
5001 ngq I{6 € [0; — 1.965;, 0; + 1.965;]}. The closer CP% is to 95, the more reliable

1
the inference based on 7;; and

* 95% CI width: the average CI width across replications, where the CI from the ith
replication is 8; + 1.96, ;. Thus, CI width = 3.92 x 50071 579 5,.

B.3 COMPLETE SIMULATION RESULTS

Figures [6H7] summarize the results comparing the federated and source-site shifts, as well as the
corresponding discrepancy values (?ﬁ,t,a)Q- Figures report the full simulation results under
good target-site propensity score overlap for varying source sample sizes. Figure [IT] shows the
corresponding results under limited target-site overlap, where FED consistently achieves higher
relative efficiency compared with TGT.
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Figure 6: Average federated weights of each site at different time point by site heterogeneity cases.
This figure uses the case where n;, = 300 (k > 1) as an illustration for weights.
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Figure 7: Scatter plots of site-specific federated weights vs. discrepancy measure ()?ﬁ’t’af values,
under 5 scenarios of site heterogeneity and 3 selected time points (days 30, 60 and 90). Sites 2—4
under Covariate Shift and All Shift have more larger ()A(ﬁt )2 values with clear trends of decreasing
weights. The pink dashed lines indicate weight = 1/5, i.e., one over five sites. This figure uses the
case where n; = 300 (k > 1) as an illustration for weights.
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Figure 8: Estimation bias (boxplots), relative root mean square error (RRMSE) compared to TGT,
coverage probability (CP%) with 95% nominal coverage level, and width of 95% CI under n; = 300
(k =1,2,3,4), with good propensity score overlap in the target site, evaluated at days 30, 60 and 90
in simulation.
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Figure 9: Estimation bias (boxplots), relative root mean square error (RRMSE) compared to TGT,
coverage probability (CP%) with 95% nominal coverage level, and width of 95% CI under n; = 600
(k =1,2,3,4), with good propensity score overlap in the target site, evaluated at days 30, 60 and 90
in simulation.
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Figure 10: Estimation bias (boxplots), relative root mean square error (RRMSE) compared to TGT,
coverage probability (CP%) with 95% nominal coverage level, and width of 95% CI under n; = 1000
(k =1,2,3,4), with good propensity score overlap in the target site, evaluated at days 30, 60 and 90
in simulation.
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Figure 11: Estimation bias (boxplots), relative root mean square error (RRMSE) compared to TGT,
coverage probability (CP%) with 95% nominal coverage level, and width of 95% CI under n;, = 300
(k =1,2,3,4), with limited propensity score overlap in the target site, evaluated at days 30, 60 and
90 in simulation.
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C ADDITIONAL RESULTS FOR REAL DATA ANALYSIS

C.1 AMP TRIAL DATA

Table [T] presents summary statistics for baseline covariates and outcomes in the AMP trial data,
stratified by region and treatment group. Comparing the treatment groups—both overall and within
each region—we observe that the treated group consistently shows a lower average event proportion.
Additionally, some covariates appear to shift across regions; for example, among treated participants,
the standardized risk scores exhibit notably different means when comparing SA to BP and US.

Treated (bnAb) group
Total SA OA BP UsS
(n=3,076) (n =679 (n = 608) (n = 846) (n = 943)

Age (year) at baseline 259 (4.60)  27.0(5.19)  254(459) 25.1(3.70)  26.2 (4.68)
Standardized risk score 0.0 (1.00)  -0.01 (1.00)  0.02(1.00)  0.76 (0.67)  -0.68 (0.71)
Weight at baseline (kg)  72.8 (15.64)  68.8 (14.24)  65.2(12.63) 70.9 (12.42) 82.3 (16.43)

HIV diagnosis by week-80 107 (3.48%) 27 (3.98%)  20(3.29%) 46 (5.44%) 14 (1.49%)

Control (placebo) group
Total SA OA BP usS
(n=1,535) (n = 340) (n = 297) (n = 428) (n = 470)

Age (year) at baseline 259 (4.72)  26.6(5.28)  254(478) 252(3.94)  26.1(3.79)
Standardized risk score 0.0 (1.00)  0.02(0.92)  -0.02(0.98)  0.75(0.67)  -0.68 (0.73)
Weight at baseline (kg) ~ 72.5 (16.35)  67.6 (14.77)  65.1 (13.64) 71.1(12.84)  81.8 (17.5)

HIV diagnosis by week-80 67 (4.36%) 16 (4.71%) 13 (4.38%) 29 (6.78%) 9 (1.91%)

Table 1: Summary statistics of AMP trial data by treatment group and region. The standardized risk
score is a baseline score built by machine learning models (Corey et al.,[2021)) that is predictive to the
time-to-event outcome. Age, standardized risk score and weight are summarized by mean (standard
deviation), while the HIV diagnosis by week-80 is summarized by count (percentage).

In Figure [12] we plot the region-specific survival curves of all the 4 regions we considered (SA,
OA, BP and US) for a direct comparison on region heterogeneity, using their target-site-only (TGT)
estimators, to showcase the heterogeneous effects of the bnAb antibody treatment on different target
populations.
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Figure 12: Estimated region-specific survival curves of the HVTN 704/HPTN 085 and HVTN
703/HPTN 081 trials. SA (our target region in the main text) and OA exhibit relatively similar
curves, indicating less heterogeneity of these two regions. In contrast, both BP and US regions
show significant differences to SA, which also confirms why they often have small or zero federated
weights in Panel (B) of Figure [d]in the main text. The BP and US also show a substantial difference
on their curves.
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Figure 13: Additional data analysis results when treating the other three regions (OA, BP and
US) as the target site. Time-specific federated weights with locally weighted smoothing (only a
representation tool; [Cleveland & Devlin| (1988)).
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Furthermore, in Figure[T3] we present the results—including survival curve estimations and federated
weights—using three regions other than SA as the target population. For the federated weights,
similar to Figure ] in the main text, we applied locally weighted regression (Cleveland & Devlin,
1988) to smooth the observed weights over the study period, providing a clearer visualization of
temporal trends in this specific example.

From Figure [[3] we observe that for each region, the FED method yields results similar to the
TGT estimator, while also recovering some interval estimations at earlier time points. This finding
is consistent with the observations made in Figure In contrast, the IVW and POOL methods
deviate noticeably from the TGT and FED results—especially for the BP and US regions—indicating
potential biases introduced by site heterogeneity.

Finally, regarding federated weights, the results for the OA region resemble those of SA in Figure ]
However, for the BP and US regions, the federated weights are nearly 1 for the target site and O for
all other sites. This pattern suggests that when targeting the survival curves of BP or US, other sites
contribute substantial biases—an observation that corroborates our findings in Figure

C.2 “FLCHAIN” DATASET FROM R PACKAGE SURVIVAL

The “fichain” dataset, obtained from the Mayo Clinic Study of Serum Free Light Chain (FLC) and
Mortality, comprises data on 7,874 individuals followed between 1995 and 2009 to investigate the
prognostic value of serum free light chains for survival (Dispenzieri et al.,[2012} Kyle et al.| |2006)).
This dataset is freely available in R package survival.

This dataset does not contain a natural treatment variable, but to illustrate and extend the use of our
framework, we investigate the sex difference in mortality. Since sex (female vs. male) is assigned
at birth, it can be viewed as a “treatment” variable for methodological purposes, as it precedes the
occurrence of any outcomes. While not manipulable in the conventional sense, causal inference
methods allow us to frame sex as an exposure to quantify disparities in survival outcomes, rather
than as an intervention subject to policy or clinical decision-making. Similar approaches have been
employed to assess disparities associated with non-manipulable variables such as race (Li & Li, [2023}
Liu et al., [2025]).

Male
Total Group A Group B Group C
(n = 3,524) (n =972) (n=1,429) (n=1,123)

Age (year) at baseline 63.1 (9.62) 60.1 (7.80) 62.6 (9.25) 66.4 (10.5)
MGUS 0.01 (0.11) 0.04 (0.20) 0.00 (0.05) 0.00 (0.00)
Sample year  1996.9 (1.84) 1996.7 (1.72) 1996.9 (1.87) 1996.9 (1.90)
Concentration of « light chain 1.5 (1.01) 0.9 (0.34) 1.4 (0.45) 2.2 (1.44)
Concentration of A light chain 1.8 (1.19) 1.1 (0.35) 1.6 (0.47) 2.5(1.77)

Mortality 1,004 (28.5%) 159 (16.4%) 372 (26.0%) 473 (42.1%)

Female
Total Group A Group B Group C
n=4,3500 ®=1,399) n=1771) (n=1,180)

Age (year) at baseline ~ 65.2 (11.01) 62.2 (9.57) 65.0 (10.8) 69.1 (11.8)
MGUS 0.02 (0.12) 0.05 (0.21) 0.00 (0.05) 0.0 (0.00)
Sample year  1996.7 (1.70)  1996.6 (1.55) 1996.7 (1.68) 1996.9 (1.87)
Concentration of « light chain 1.4 (0.78) 0.9 (0.34) 1.3(0.43) 2.1 (1.03)
Concentration of A light chain 1.6 (0.88) 1.1 (0.35) 1.6 (0.46) 2.4(1.22)

Mortality 1,165 (26.8%) 231 (16.5%)  455(25.7%) 479 (40.6%)

Table 2: Summary statistics of “flchain” data by sex group and the site variable we defined. All
baseline covariates are summarized by mean (standard deviation), while the mortality is summarized
by count (percentage).
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We include age, the presence of monoclonal gammopathy of undetermined significance (MGUS) and
sample year as baseline covariates for nuisance models. The primary outcome consists of follow-up
time in days and an event indicator for all-causes death (mortality).

A categorical variable (f1c.grp, taking values 1,2, ..., 10) related to x and A concentration levels
is available in the data. We construct the “site” variable (R in our notation) based on f1c.grp
as follows: (i) Group A for f1c.grp € {1,2,5}; (ii) Group B for f1c.grp € {3,4,6,9}; and
(iii) Group C for £1c.grp € {7,8,10}. Several categories were merged in this way to ensure a
sufficient sample size within each group, allowing 5-fold cross-fitting to train different nuisance
functions reliably. In addition, we allow the groups to share nearby values of f1c.grp (e.g., 5 in
Group A, 6 in Group B, and 7 in Group C) so that each site retains comparable information, enabling
borrowing across groups. We emphasize that this grouping method is adopted solely for illustrative
purposes in demonstrating our framework.

Table 2] presents the summary statistics of baseline covariates and mortality for the “fichain” data.
Across Groups A, B, and C, we observe clear covariate shifts, accompanied by differences in the
marginal death rates. In contrast, when comparing the two “treatment” (sex) groups, the distributions
of baseline covariates and mortality appear overall similar.

We analyzed the sex-specific survival curves over the first 10 years for the three groups in Figure
[T4] We used a 5-fold cross-fitting, and estimated conditional survival for both event and censoring
processes by an ensemble of Kaplan—Meier, Cox regression and survival random forest models via
the survSuperLearner package (Westling et al.,|2024)). The propensity score and density ratio
(used in federated method) models were fitted by the ensemble of logistic regression and LASSO
using the Super Learner (van der Laan et al.l 2007).

Overall, the FED method yields point estimates that closely track those of the TGT estimator, while
producing slightly narrower confidence bands. By calculations, the efficiency gain (by estimated
standard error of FED to that of TGT) can achieve 3%—10%, consistent with the findings from both
our simulation studies and the AMP trial data. The IVW and POOL estimators exhibit noticeably
different survival curve patterns relative to TGT and FED when Groups A and C are regarded as
targets, suggesting potential biases. The META-IVW method yields similar but slightly different
curves compared to TGT and FED.

D IMPLEMENTATION DETAILS

In the following Algorithm [2] we detail the double machine learning procedure for fitting and
predicting nuisance functions in Algorithm

Remark D.1. To ensure the monotonicity of the estimated survival curves, we invoke isotonic
regression techniques (Westling et al.,[2020), which enforce a non-increasing constraint on the site-

specific survival and censoring estimates S* and G*, for k = 0,1,..., K — 1, thereby maintaining
their logical consistency over time.

E TECHNICAL PROOFS

We begin by recalling notation for probability, expectation, and variance. Throughout, P denotes

the true probability under the data-generating distribution, P,, the empirical average, and P the
evaluation with estimated nuisance functions (as introduced in the main text). In addition, [E denotes
the population expectation, V the population variance, and Cov the population covariance.

We further adopt the following notation throughout this appendix: (i) P, denotes a general probability
limit, and the nuisance functions under P, are denoted with subscript oo, e.g., Sgo for the limit of

S0, (i1) P means the corresponding nuisance functions are replaced by their estimates, and P may
converge to a general limit Poo; (iii) P [f(O)] = [Vin|™' 2o,z f(Os) to denote the empirical
average on the m-th validation set V,,, by cross-fitting, m = 1, ..., M.

Furthermore, we distinguish notation P(f) and Ep(f): P(f) = | f(O)dP denotes an integral over a
new observation O ~ P, treating f, which possibly depends on training data (e.g., some estimated
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Figure 14: “fichain” data analysis results. Estimated sex-specific survival curves and federated
weights for sites (Groups A, B and C defined by £1c . grp variable) Time-specific federated weights
with locally weighted smoothing (only a representation tool; Cleveland & Devlin| (1988)).
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Algorithm 2 Double/debiased machine learning algorithm for nuisance function estimations and
influence function calculations in Algorithm[I]at a given time point and treatment.

1:

(2]

10:
11:

12:
13:
14:

15:

16:
17:

18:
19:
20:
21:

Input: Observed multi-source right-censored data O = {O0; = (X;, A;,Y;, A4, Ry),i =
I,...,n} = O°UO'U---UOK~L where R; € {0,1,...,K — 1} and O* represents
the data for site R = k; Given treatment group A = a and a specific time point ¢; The num-
ber of disjoint folds into which the data are split, M, where M € {2,3,...,|n*/2]} with
n* =min{n,ny,...,nK_1}.
Output: Estimated influence functions for each individual.
Partition OV into M approximately equal-sized, disjoint validation folds V0, ..., V9, allowing a
size difference of at most =1 between folds.
form=1,...,M do
Define the training set 7,0 = O%\V9;
Fit nuisance functions S° G° 7° on 79, using some methods ensemble from
survSuperLearner and SuperLAearAner;
Predict nuisance functions on V9, as SY . GY and 70, .
end for
Train a model of S by the entire data of the target site O°, denoted as S
methods ensemble from survSuperLearner.
fork=1,...,K —1do
Partition O" into M approximately equal-sized, disjoint validation folds V| . . ., V]’Q, allowing
a size difference of at most &1 between folds.
form=1,...,M do
Define the training set 7,F = OF\V* ;
Fit the density ratio w*? using only covariate data of 7,2 U T,*, or by just passing through
some coarsening level summary statistics;
Fit nuisance functions G, 7% on T%, using chosen methods ensembles from
survSuperLearner and SuperLearner;
Predict above nuisance functions on V¥ as G , k.0 i
Predict nuisance function S* on V¥ using the pre-trained S*™!! model, and denote the
predicted value by S¥ .
end for A
Aggregate all predicted nuisance functions over M folds as S*, G¥, %0 and 7¥;
end for
Return: The estimated EIFs, by plugging-in their predicted nuisance function values,

Gi0(0:P) = 3;0(0; S, 80, G 7, 5M0), forall k € {0,1,..., K — 1}.

O.full “ysing chosen
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parameters for nuisance functions), as fixed. In contrast, Ep( f) is the usual mathematical expectation
of random variable/element f under distribution P, a fixed value without randomness.

E.1 THEORY OF THE LOCAL ESTIMATOR

E.1.1 PROOF OF THEOREM [2.3]

Recall that a mean zero, finite variance function gp{%(@; IP) is called an influence function of the target

estimand (a functional) 6°(¢,a) = 6°(t, a; P) at PP if, for any one-dimensional regular parametric
submodel {P, : € € [0,1)} through P = Py,

0 . .
L0(,aB)| = sl (O:P)O)),
€ e=0
where /(O) is the score function of the submodel at ¢ = 0 (ie., typically, /(O) =

dlog {pc(0)}/0e |c—p), where p.(-) denotes the probability density (likelihood) function under
submodel P, (Bickel et al., [1993).

Recall the partial CCOD assumption made in Theorem 2.5 S°(¢ | a,X) = S°(t | a,X) almost
surely. To find the EIF, we begin by writing the following equation:

0= %Ho(t,a) T %E{Sg(t | a,X)| R=0} »
. 0
=E{[S°(t | a,X) — 6°(t,a)]¢x | p—o | R = E —S%t ] a,x dx) | R =
(151 0.X) = (t.a)lixnna | R =0} +E{ [ 2520 ax0| utix)| R =0}
— B{[S°(t | a,X) — 6°(t, 0)}x;no | R = 0} +E{/§€Sf<t la,x)|  pldx) | R= o},
e=0

where £(+) denotes the distribution of X induced by P and, for any sets of variables V and W, ZV‘W
denotes the conditional score function of V' given W, i.e., typically 0log {pc(V" | W)}/0¢ |e=o—note
that such scores always satisfy Ep (¢ | W) = 0 (Bickel et al., {1993).

For the derivative of S* with respect to €, by the chain rule, we decompose it as (0S¥ /9A¥) x
(OAF /De). For the first part 0S¥ /OA*, we leverage Theorem 8 in|Gill & Johansen|(1990). Specifically,
the mapping H +— S*(t; H) := J0,q{1 + H(du)} is Hadamard differentiable at H relative to the

supremum norm with derivative
b Sk (u—; H)

o Sk(t;H)/O W@(du).

Thus, by letting H (t) = A*(¢ | a,x) and the chain rule, the integrand in the second term becomes

00— Ak a0

(O7t]

t ak(,
:fSk(t|a7x)/ STz 9% 0 pkigy | a,x)
e=0 0

Sk(u|a,x) Oe =0

Furthermore, recall that

" NF(du | a,X)
A*(t X) = A Sl Bt Bl
CeX)= ) Diwlax)

where Nf(t | a,X) =P(Y <t,A=1|A=a,X,R=k)and D*(t | a,X) =P(Y >t | A=
a,X, R = k). Hence,

gAk(du | a X) _ %Nﬁe(du | G/,X) |e:0 . %Df(u | a,x) |6:O le’e(du | CL,X)
Je € [ DF(u | a,x) DF(u | a,x)?
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In addition,

9
Oe

gIF’(Y<u A=1|A=a¢,X=x,R=k)

// (v 0,6 = )Py 0 |0, )|
=0
= // I(y < u,d =1)l(y,6 | a,x)P(dy, dd | a,x, k)

= /]I((S = 1)é(u,6 | a,x)P(du,dd | a,x, k),
5

N{“ﬁﬁ(du | a, X)

e=0

and

9
&D (u|a7x)

gP(Y>u|A—aX—xR k)

// (y > u)P dy,d5|axk)
=0

= // Iy < u)l(y,d | a,x)P(dy, do | a,x,k).

e=0

We can then express the integrand of (3) as

e // JUAL - Ak (du ] a,%)bu(dx)

(0,1]

g a,x)S* a,X
:/// A<t ”Ss(f(y ’a,)f)gwx)) (.6 | a,x, F)P(dy, b | 0., k)p(dx)

Sk(t ] a,x)S*(u— | a,x)
* ////H(“ < B S ) Gk Ty x) DR [ )
x £y, | a,x, k)P(dy, dd | a, %, k)N{ (du | a,x)p(dx)

i a,X k a,X
=[] st )SS(:(yaa)f)Dk(Mx)) (4,9 | @ x, K)P(dy, dd | a,x, k)pu(dx)

k o SHu—|a,x) !
+///S(t|a,x)/0 Sk(u|a,X)D’f(u|x)2N1(du|a’X)
x 0y, 8 | a,x, k)P(dy, dd | a,x, k)u(dx)

(A =a)
*a | X)

e=0

ZEFWHQX)

{Hk(tAYa X)— H(Y<t,A:1)sk(y—|a,X)}

SE(Y | a,X)D¥(Y | a,X)

xé(KMa,X,R—k)}

where

b SF(u— | a,x)Nf(du | a,x)

H*(¢ = i
102 = ) Sk @) D | a,%)?

Now, we note that

(Y <t,A=1)S*(Yy—-| A X
Sk(Y | A, X)DR(Y | A,X)

¢ Sk(y_ | a,X)le(dy | a,x)
o S*(y|a,x)Dk(y | a,x)

)

)‘Aza,xzx,Rzk} =
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and
E{H*(tAY,A,X)|A=a,X=x,R =k}
t k k
S*(u— | a,x)Ni(du | a,x)
= <
S 10 S P 0
t k() _ k
:/ B(Y >u|A=aX=x R =k [a0N(du]ox)
0

P
Sk(u | a,x)DF(u | a,x)? (dy | a,x, k)
B /t Sk(u— | a,x)N¥(du | a,x)
Jo S*u|a,x)DF(u|a,x)

Therefore,

(Y <t,A=1)S*Y—| A,X)
E{ (EAY A,X) SK(Y | A, X)D*(Y | 4,X) AX =k =0

almost surely. By properties of score functions and the tower property, the above implies that
0
o [ T = Ak axputan

]

(O,t e=0

) I(R=Fk) I(A=a)
]E{Sk(ﬂa,X)P(R:Mx) m™(a | X)
x {Hk(tAYA X) - Iy <t, A=1)S*(Y-| A X)

S i x| O
Combining these results with the facts that Nf(du | a,x)/D*(u | a,x) = A¥(du | a,x) and

D*(u | a,x) = S*(u— | x)G*(u | a,x), we can rewrite (3) at the beginning as follows:
0

—0%(t,a)
e =0
_E [I];((Z: ?))> 5% (t | 0, X) — 6%(t, a)]i(O) — M]E{Sk(t la, X)m
I(A=a) Iy <t A=1) iny A¥(du | a, X) :
Ei o A Erih veimrs vl M verme SRR
_E [;(éi%)) (SH(t | a,X) — 691, a)}é(O)} - E[&Zig iggf : f() S5(t] a.X)
IA=a) [ Y <tA=1)
Tl X) {Sk

thy A+ (du | a, X .
Tt Mo e
Therefore, an EIF of §°(¢, a) at IP is found as
01’ (O;P)
m{So(t 0, X) - 6%(t,a)} — ]Hpgi’;;[;((ﬁ = || };) S(t | a,X)
I(A = a) (Y <t,A=1) Y AF(du | a,X)
m™(a [ X) | SF(Y | a,X)GF(Y | a,X) _/0 Sk ( ]

u | a,X)G*(u | a,X)
Observe that, by Bayes’s rule,

P(R=0]|X) PX|R=0) P(R=0)
P(R=k|X) PX|R=k) P(R=k)’
N———

wh0(X)

where w*?(X) is a covariates density ratio function. We then find that the EIF form in Theorem
I(R=0) I(R=k)
*k,0 0 0 k,0 k
(O P) = ——+ t]a,X)—0"(t ———w (X t]a,X
cpt,a (O’ ) P(RZO){S ( |CL, ) ( 3a)} ]P(R:k)w ( )S ( |a7 )
(Y <t,A=1) B /W AF(du | a,X)
SE(Y | a, X)GF(Y | a,X) Jo  SFu]|a,X)GF(u]|a,X)|"

[(A=a)
* T X)
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E.1.2 REGULARITY CONDITIONS FOR THEOREM [2.6]

We now state regularity conditions for Theorem For site R = k, we denote 7%, G*, w®0, A¥
and S* the truths of nuisance functions. We use 7%, wk:0, G | A% and S% to denote some general
probability limits for nuisance function estimators.

Condition E.1. There exist %, wh0, G, A* and S, such that

1 2_> 0
e X)  mh@|X)] 7

m

(a) maxP [

(b) maxP [25°(X) — k2 (X)]* =, 0;

1 1
(¢) maxP [ sup

2
— =Ts —p 0;
m welo,t] | GE (u | a, X) Gk (u ] a,X)

~ 2
Sktla,X) Sk(t|a,X)
(d) maxP | sup |=2 — == ’ —, 0.
m Le[o,t] Sk (u)a,X) Sh(ula,X) ?

Condition E.2. There exists ann € (0, 00) such that for P-almost all x, 7& (a | x) > 1/n, 7%, (a |
x) = 1/n, 1/n < Gp0(x) < n, 1/n < wh2(x) <n, GL(t] a,x) = 1/n, and GE(t | a,x) = 1/n
with probability tending to 1.

Condition E.3. Define

s = maxP |75 (a | X) = (0 | XOHES(t | 0,X) = S5t 0. X0}
s = max P [{G50(X) - wEO(X)H(SE (¢ 0.X) — 5t 0,X)}], and
R t k X k
s = maxP 850,30 [ 3 ZHLER) (1) a0
o \Ghlax) [ \3

Then, it holds that s, , | = 0p(n=1/2), rE van=o0p(n ) and vk , 4 =o0,(n"1/?).

Next, to prove Theorem [2.6] we first introduce some useful results and lemmata in the next section.

E.1.3 USEFUL LEMMATA FOR THE LOCAL ESTIMATOR

We start by examining the difference (’97;,0@7 a) — 0°(t,a). Recall P™ is the empirical distribution
corresponding to the m-th validation set V,,, from the entire data O, and denote G]" the corresponding
empirical process. A result exactly following Westling et al.| (2024) is that

ok k,0 1 < Mny’ k.0 k.0
,0 00 _ £, i m m | ~k, _ s
9n (t7a) 0 (taa) - Pn[spoo,t,a} + M Z_l n Gn |:Q0n,m,t,a Qooo,t,a
M
1 Mnm ~k.,0 0
+ Mﬂ; rp [cpm .y (t,a)] . )

We then establish the Lo (PP) norm distance (bound) between the estimated EIF and its underlying
limit for the local estimator by the following lemma.

Lemma E.1. Under Condition there exists a universal constant C = C(n) such that for each k,
m, n, t, and a,

6
~k,0 k,0
P[(pt,a - <poo,t7a}2 < 0(77) Z A§7n,m,t7a7
j=1
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where
- 1 1 2
A} =P -
Ln,m.t,a [Pn(R=0) P(R=0)]
- 12
1 1
A =P -
promta TS Pm(R=k) P(R=k)| "’
A ta =P 0500 | X) —wh(a | X)),
! 17
A¥ =P -
Hrmita [Th(a | X)  wh(a] X))’
- 2
1 1
Ar . =P| sup |= - )
St Luelo.) | GE (u | a,X) G’:;c(ula,X)]
[ St a,X)  SE(t]ax)]]
Alg.nmta:]P) sSup AM( |a, )7 ;C:C( |a7 ) '
S Luclo.g | SE (u ] a,X)  S&(ula,X)
Proof. We first denote
I(A=a)
B*W,) = ———L 8%t | a, X
(Vi) (0 [ X) (t]a,X)

X

(Y <t,A=1) _/W AF(du | a,X)
SEY [a, X)GHY |a,X)  Jo  SM(u|a,X)GF(u|a,X) |’

C*(Vm) = BF (V)"0 (X).
Then, we first have the following decomposition:

4
Pt = Poota = D Ulnmitas
=1
where ) :
Ubvimia = | ey ~ B =) | Slt ] %)
Ubomin = B =) (S0t 0:%) = 8%(¢ [ )]
. I(R =k

U =_———
4.n,m,t,a ]P(R _ k)

I(R=k) <
k S S A E k
U4,n,m,t,a - ]P(R _ k) V, n

where
‘/llfn,m,ta = Bl;o (Vm) [@fn’O(X) - wfdo(x)] )
Vit = O50(X) | Bl (Vi) = BE (V)] -

The expression of E]%(Vm) — B (V) is exactly the same as the Lemma 3 in Westling et al.

(2024), while we only need to replace the corresponding nuisance functions by the site-k ver-
sion here, so the detail is omitted. By the triangle inequality, we have ]P’[@f”f — golggftyaP <

2
{Z?zl{P[(Ujlfn’m’m)Q]}l/ 2} . Therefore, under Assumption and Condition , there ex-

ists a universal constant C' = C'(n) such that the result in the statement holds.

33



Under review as a conference paper at ICLR 2026

Furthermore, we need to bound the empirical process term GJ" [gpﬁ ?n ta cpl(;’ft’a 0} by op(n’l/ 2).
This is formally shown below in Lemma|[E.2]

Lemma E.2. If Conditions |E.IHE.2l hold, M~V 520 0™ "My Gy (G50, 00 = #5010, | =

Pn,m ,ta @oo,t,ao
—1/2
op(n=1/2).

Proof. We follow notation in Lemma[E-T] First, we note that

Mnil?  M(|nm —n/M|+n/M)Y?
n n
M|y, —n/M|"? + M|n/M|*/?
n

<M>1/2 M
_ +7’
n n

for all m since |n,, — n/M| < 1 by assumption on n,,. Then, we have that

M 1/2
1 Mny,
— g sup
M me1 v uelog

IA

IA

IN

m | ~k,0 k,0
Gn {(pn,m,t,a - ono,t,a]

3

1 M
= O(nil/z)ﬂ Sl[lg)t]
m=1 uelo,

m | ~k,0 k,0
Gn {Qpn,m,t,a - <poo,t,a:|

since K = O(1).

Therefore, we turn to show M ~! Z%:l ‘GZI [@ﬁ?n ta @lgoot a} = 0p(1). Using conditional

argument, we write
m | ~k,0 k,0 m | ~k,0
E 'Gn [‘pn m,t,a Sooo,t,a:| = E |:E ‘Gn |:<)0n m,t,a <)000 ,t aj|

where 7,,, = O\V,, is the m-th training set. Note that the randomness in the inner expectation of the
right-hand-side above, by conditioning on the training set, is only induced from G by averaging
over the observations on the validation set. Therefore,

E[E‘Gf[aﬁ?fbm Sooota:| ‘T}_P‘Gm(ﬁﬁgnta @l;oota)-

. . ~k k.0
as the singleton class of functions S"n’,m,m — Poo.t,q» We further have

[T

Defining fn

m,t,a

=P| sup [G(f)
feFko

n,m,t,a

AkO k,0
P‘G7 @nmta gpoota)

By Theorem 2.1.14 in|Van der Vaart & Wellner|(1996)), the covering number of .7-'n

so the uniform entropy integral J(1, ]—'T]f 21 +.a) s 1 relative to the natural envelope |<pn’m7t a cpoo tal

Therefore, there is a universal constant C’ such that

mtulslforall

. V2 6
P Sup |G?(f)‘ S Cl{ (@Z?nta Solocoota } ZA ,n,m,t,as
fe]-‘n j=1

following definition of Aj,n,m ta terms in Lemma SO that

|G [Bh e — ]| is bounded up to C" ST, Elmas (A m,ia)]
for some constant C"”. It is straightforward that by ConditionsE. 1| E and|E.2| . this upper bound tends to
Zero, so M ! Zm 1 ’Gm {@Z(T)n t,a ono,t,a:| - Op(l)- D

Finally, the only difference we have not characterized in (@) is P[ Lpt 9(0;Ps)] — 0°(t, a), which we
show it below.
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Lemma E.3. Consider some general nuisance functions under P, denoted by Sgo, S5 k Gk oo,
and Wk (equals 1 if k = 0). Then, [<pt Y(0;Ps)] — 0°(L, a) equals

£(X) CS4(y— | a,X)
E{MR:mS&“'“’X)/O St (y] @ X)
{w&°<x> (|0, Xt (o | X
POV (y [ 0. )k (a] X

-1k - AN |0 X)|.

Proof. By direct calculations, ]P’[gat 9(0;Ps)] — 0°(t, a) equals

k(X) k,O(X)Sk

E[H(R:O){Sgo(ﬂa, X) = 8%t 0 X} + = e =X x)

P(R = 0)
PSR y— | a,X)G*(y | a,X)
o SE(y|a,X)GE (y | a,X)

(AK, — A¥)(dy | a, X)}

{S%(t] a,X) — St | a,X)} +

q
:E[P(R:O) P(R_O)w“(

t ok k
S (y—l&,X)G (y|a7X) k k :l
X A —A¥)(dy | a,X)].
o SE]aX)Gh(y]a,x) N A0 X)
In the second “E” after “=", we used the following relationship:
400 _ o) BE=0)
7"(X) P(R = k)
by Bayes’s rule. Furthermore, by Duhamel equation in|Gill & Johansen|(1990),
Pleia (O5Poc)] = 0°(t, a)
0 t Qk
¢(X) gk S*(y—1a,X)
=E 7500 t|a,X —
Frooete® [ S

OG0T @ 1K)\ e pkig )
{ ROX) G (y | a, X)n (a ]| X) 1}<A°° A)dy | a. X)|. ©

?5

E.1.4 PROOF OF THEOREM[2.G
By @ with 7%, = 7F, wk0 = Wk 0 GE = G¥, and Sk, = S*,

1/2
~k,0 k,0
gpn m,t,a @t,a

1 Mn., ~k,0 0
+ Mmz::l - P [gpm —0 (t,a)} .
By Conditio and the second summand on the right-hand-side is o, (n~1/2) by Lemma
E

E0(t, a) — 6°(t,a) = Pl h0) + Z

(pt a] 90 (t7 a’) equals

°X) 5 ‘s k(—|aX)
E{P(R=0)S§l(t|a’x)/o S (y | @, X)

L B X)GRy | a. X)rh(a | X)
WhO(X)GE, (y | a, X)7k (a | X

By Lemma o 0

)—1}<Kﬁ—Ak><dya,x> :

By Duhamel equation in |Gill & Johansen (1990)) and Condition @ we find that the above bias term

can be bounded by n*{rf , ., + 7k, o+ 1k, 5} over m. Since M ™! SM o Mn, <2, we
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have

k k k —
S 2772 {rn,t,a,l + Tn,t,a,Q + Tn,t,a,S} = Op(n 1/2)7

;4 Z M”’” [A’“O 6°(t, a)}
xk,0

by Condition This established the pointwise RAL property: 650(¢, a) = 6°(t, a) + P, (Pra )+

0p(n=1/2). Since ¢} is uniformly bounded, P{(;%")?} < oo and since P{y; "} = 0, then

n2P, (3750) =4 N (0, P{(}50)2)).

Remark E.4 (Technical version of Theorem . If we only need the consistency of @\ﬁ(t, a), then

condition 78 = 7k, Wk0 = RO GE = GF, and S = Sk can be replaced by the following
statement: For P-almost all X there exist measurable sets Sy, Sk O tL such that S¥ U GF = [0, 7]
and A*(u | a X])C A% (u | a,X) forall u € S* andG(u | a, X (u ] a,X) for all u gk

In addition, ifS is a strict subset of [0, ], then 7% al X (a | X) and b 0(X) wk 0(X)
as well. Then, @fl (t, a) is consistent if Conditions [E.1|and hold.

To prove Remark , we decompose the integral fg as [g, + [gi.c, where SE is the complement

of set S¥, and S¥¢ C G* by definition. Then, it is straightforward to verify that when the statement
in Remark [E.4]holds, the following integral

"SHy= ] X) [ GMy e X)rH(a | X) £ - ARy |
o Sk y|aX){ oy | . X)mk (a | X) 1}(/\00 A®)(dy | a,X)

(r=10,X) { Gy o, X)n(o] X) _
</s /g> T30 (Gl a0 fa ) ~ L (4 =400 . 3) =0

which further implies P[w*of ? . =0.

E.2 THEORY FOR THE FEDERATED ESTIMATOR

In this section, we present the properties of the federated estimator. Given that our proposed weights,
7¢,q» are both time- and treatment-specific, we focus on the pointwise convergence properties.

Let the set of all source site indices be S = {1,..., K — 1}. We then define the oracle selection
space for 7, ,, and the corresponding weight space as:

Sta=1{ke€8:6"t.a) =0°(t,a)}, and R ={n,, e RN "oyl , =0,Vj & 57},
respectively.
The space Sy, is both time- and treatment-varying, indicating that a source site may not consistently
be useful or unhelpful across different time points or treatments. However, it offers the advantage of

increased flexibility and adaptivity, allowing for more effective borrowing of information at different
points along the survival functions. Based on the theory presented in SectlonE E.1} for k € S, the

site-specific estimator @“ 0(t, a) is consistent for °(¢, a) for any given ¢t € [0, 7] and a € {0, 1}.

We begin by assuming fixed 0, , = (0} ,.nl4.---, 71 ). We invoke Lemmata 4 and 5 in Han
et al. (2025}, which state that the proposed adaptive estimation for nﬁa as shown in (@) allows
for (i) the recovery of the optimal nF ', by the estimator ne o> and (ii) the uncertainty induced by

77t . is negligible when estimating 6° (¢, a). We require regularity CondltlonsF g and 3(for
the p01ntw1se convergence result in Theorem [2.6] hold. Let us denote the federate estnnator by
plugging-in the fixed 7, , as

é\f’fd(taa;nta (1_Znta> ta’ +Zntan (t Cl)

kes kes
Recall that notation H; , defined in (T):
(Y <t,0=1) /MY A(du | a,X)
SY |a,X)G(Y |a,X) Jo Sul|a,X)G(ula,X)

Hia(O;S,G) =
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Let us then write

¢(0) = 5t | a,X)H(? |X))”Hta(0 S0, A%, GY),

0D (0) = OS] 0.X) 7 Tk (05 54, AR GE),
£0(0) = 8t | 0.X) ~ 6°(t.a),

andny => . I(R; =k)fork=0,1,...,K — 1.

Then,
0t a;
:(1 Z?M) ta—ﬁota} Znta{n ta—GO(ta)}
keS
(1 >k ) =0) {&®(0) -0 ()}
keS
i Liﬂ . Q@(0) -3 — ZH 00 (0;)
ke 1o =1 kES k =1

1 ; (0 - 800

—nl 1( %nt,a> (RZ_O) ]/I\D(RiZO)

7() £k0,(1) (O,
30 (St ) £ L5 S it SO

kes R; kesS i=1 (R = k)

The asymptotic variance of é\fed (t,a;m;,) equals the variance of the influence function of (6). Let us

denote it as Vf"'d erd(nt o). We highlight its dependence to the federated weights vector 1, , here
because in the below @]) we consider an optimization program for deriving the weights based on
minimizing the (estimated) asymptotic variance.

Under the assumption of i.i.d. participants within each site, we have

i <an> Vi@ (0,) = €20, | B, = 0}

kes " P(R; =0)
2
V{"@(0;) | R; =0}
(o) MR
Cov{¢"@(0;) — £2W(0,),%(0;) | R; = 0}
+2(1- nfﬂ) ( a)
< ;;g ,;S ]P)(Rz = O)

V{¢HW(0;) | R; = k}

+ ];S(nf,af B = B) : 7

With appropriate boundedness conditions on conditional variance and covariance terms above,
erd < oo (see Lemma | Consequently, the asymptotic distribution of fod (t, a; nm) is given by

V{0t ain, ) — 0°(t ) b —a N(O, VD).

Remark E.5. Based on the derivations in (6) and (7), an influence-function-based asymptotic

variance estimator of Gf"d(t a) (V, fed in Theorem , is obtained by replacing the population
proportions, variances, and covarlances in (7) with their sample (empirical) counterparts and plugging
in the estimated weight vector ), .
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We further define the optimal adaptive weights 7, , as follows:

If]t,a = arg min erd (nt a) (8)
nl"’a:O,ng'S*,

We adapt two lemmata from Han et al.|(2025)) for recovering the optimal weights 7, , with negligible
uncertainty for estimating 6°(t, a) if we estimate 7, , using (2), akin to adaptive Lasso (Zou, 2006;
Fan et al., [2024).

Lemma E.6 (adapted from Lemma 4 in/Han et al.|(2025))). Under Conditions L. 3| along with the
following mild conditions on covariates support and covariances: (i) The covariates X and density
ratio w* 9 (X) are in compact sets X € [—B, B]P and w*°(X) € [-B, B] forallk =1,..., K — 1
with probability 1; and (ii) The variance of £*0-(1) (0O) € [e, M|, and the variance-covariance matrix

V[(E8M, 0@ | R = 0] has eigenvalues in [e, B] for some positive constants € and B. Then, it
holds that
Op(n_1/2)7

lim P(ntaeR ta):L ||ﬁt,u,__7

n—0o0

forall (t,a) € [0,7] x {0,1}.

Lemma E.7 (adapted from Lemma 5 in[Han et al.| (2025)). Under conditions in LemmalE.6]
Vi (04t a5 ) = 00t ) ) —a N0,V (,,0),

forall (t,a) € [0,7] x {0,1}.

The consistency of 17{?d er‘i(nt o) follows when we can effectively approximate V;$(#), ,) with

9{33 Thus,
\/ﬁ{m( ,a) — eo(t,a)} —a N(0,1).

We now analyze the efficiency gain resulting from the federation process. The estimator relies only on

the target data is denoted as 52(1&, a) = Afed(t a;n? ), where nf , assigns all weights to the target and

none to the source. In contrast, the estimator that leverages the proposed adaptive ensemble approach
is denoted as 0™4(¢, a; 7;.,)- Here 1), , can recover the optimal weights 1), , that are associated with
the minimum asymptotic variance. Consequently, the variance of éffd (t,a; 7y ,) is no larger than that

of the estimator relying solely on the target data since nga is generally not the variance minimizer.

To establish that the asymptotic variance of 9 d(t, a; 7)) is strictly smaller than that of the estimator
based solely on the target data 92 (t,a), we adopt Proposition 1 in[Han et al.|(2025) with a modified
informative source condition (modified Assumption 3(b) in|Han et al.[(2025)).

Specifically, for each source site s € Sy, we define HAffd (t,a;n; ) a federated estimator where 7; ,
is the optimal ensemble weight of site s if we only consider target site and this source site s for the
federation. Then, the modified informative source condition is given as

‘COV [\/ﬁé‘;(t, a), \/ﬁ{é*ed(t aina) — 00, a)H ] > e,

@\fed(t, a;n;a) — é?l(t, a) can be expressed as

for some ¢ > 0, where
‘/g\fed(tv 777t a) - 9 (tva)

=Bt ami) = (L)} — { B0t ) 0°(t,0) |
+

1 A EP0) - M) 1 . €00
= 2S5 I(R; = 0)(1 — > SR =0, 2T
n; ( )1 =17 ,) PR = 0) n; ( )m,ap(Ri:O)
1 000 1 £2(0;) - &0(0;)
_ = I(R; = P — — I(R; =0 =
n; ( s)n;. PR =) n; ( ) (R =0)
1y L) 1y £00(0)
=-SNI(R; =0 ,>—"2 — ZSTI(R; = s)pf , —— L
n; ( ), B(R: = 0) n; ( s);, B(R: — 5)

Therefore, it is straightforward to see that the modified condition can be achieved if n; , > 0.
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