
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AR MODELS CAN BE FASTER AND MORE ACCURATE
PARALLEL DECODERS THAN DIFFUSION LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-token generation has emerged as a promising paradigm for accelerating
transformer-based large model inference. Recent efforts have primarily explored
diffusion-based LLMs (dLLM) for parallel decoding to reduce latency while pre-
serving model generation quality. However, non-diffusion approaches remain
largely underexplored and it’s unanswered whether AR models can be adapted
as faster parallel decoders than dLLMs while maintaining generation quality. We
present pcLLM, a progressive consistency distillation paradigm that transforms
autoregressive (AR) models into efficient parallel decoders while preserving the
causal inference property. pcLLM achieves 3.6× wall-clock speedup on cod-
ing benchmarks with minimal loss in performance. Based on pcLLM’s trajec-
tory characteristics, we introduce multi-block decoding with rejection recycling,
which enables up to 4.2× higher token acceptance count per iteration and nearly
4× speedup, effectively trading additional compute for lower inference latency.

1 INTRODUCTION

Modern Large Language Models (LLMs), such as GPT-5 (OpenAI, 2025), Gemini-2.5 (DeepMind,
2025), and DeepSeek-R1 (Ren et al., 2025), demonstrate impressive capabilities across a wide range
of complex reasoning and agentic tasks. However, the strong performance come at the cost of
high inference latency, particularly during the generation of long token sequences using chain-of-
thought (Wei et al., 2022; Hou et al., 2025; Ren et al., 2025; Muennighoff et al., 2025) under au-
toregressive (AR) decoding. Since each token generation requires a full forward pass through the
model, the sequential nature of decoding limits parallelism and underutilizes the massive parallel
processing capabilities of modern GPUs. This results in significantly increased inference latency
and high computational costs, degrading user experience in real-time and interactive applications.

Diffusion-based language models (dLLMs) offer an alternative to AR models by relaxing token-by-
token causality and enabling multi-token generation per iteration with improved controllability (Li
et al., 2024a; Nisonoff et al., 2024; Schiff et al., 2024). dLLMs reframe decoding as a more par-
allelizable computation that better utilizes the compute from modern accelerators. Mercury (In-
ception Labs, 2025), Gemini Diffusion (Google DeepMind, 2025) and Seed Diffusion (Song et al.,
2025b) demonstrate that diffusion-based LLMs (dLLMs) can achieve up to a 5× increase in through-
put while maintaining coding and text generation quality on par with autoregressive (AR) models.
Community-driven efforts (Ye et al., 2025; Zhu et al., 2025; Nie et al., 2025a; JetAstra, 2025; Gong
et al., 2025) are rapidly advancing in this direction; however, a performance gap remains. In par-
ticular, current open implementations often exhibit lower generation quality and face challenges
in adapting widely used inference optimizations for AR models, such as KV caching, to the bi-
directional attention setting of dLLMs. While recent work have made significant gains in further
improving dLLMs’ efficiency (Arriola et al., 2025; Wu et al., 2025a; Liu et al., 2025), it remains an
open question whether AR models possess the same potential for parallel decoding, or the ability to
train an efficient parallel decoder is a unique advantage of dLLMs.

One commonly used parallel decoding technique for AR models is Jacobi decoding (Song et al.,
2021; Santilli et al., 2023), which is training-free and requires no architecture modification. While
this method has inspired several extensions (Fu et al., 2024; Teng et al., 2024; Wu et al., 2025b), in
practice these techniques deliver only modest speedups. Prior works including CLLM (Kou et al.,
2024) and CEED-VLA (Song et al., 2025a) train LLMs and Vision-Language-Action (VLA) models

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

with consistency distillation (Song et al., 2023) to predict multiple correct tokens simultaneously in
each iteration. Kou et al. (2024); Gat et al. (2025) observes that when inference with larger block
sizes, the speedup achieved during inference plateau: as the block size increases, the number of
tokens “fast-forwarded” per iteration remains essentially constant. A natural question is whether
we can train models to better predict future tokens under Jacobi decoding, such that increasing the
block size yields useful predictions. Modern AI accelerators offer high FLOPs, and if decoding
more future tokens in each iteration could reduce the total number of iterations to generate the same
number of tokens, total latency drops.

In this work, we introduce a progressive consistency distillation technique that address the limitation
by progressively teaching to predict more tokens within each block and to perform better fast for-
warding with increasing block size. We further introduce a noise-aware causal attention that teaches
to model to predict correct tokens within each block conditioned on unconverged blocks, and we
show it enables more useful future tokens to emerge in each block’s trailing tails. We show apply-
ing rejection-recycling and multi-block decoding to leverage this model behavior from progressive
consistency LLMs (pcLLM) for further efficiency improvement.

Experiments show pcLLM can serve as very efficient parallel decoders with up to 3.8× improvement
in generation speed across coding and math benchmarks. It also effectively generate higher quality
draft n-grams from future tokens within each block, as observed in Section 4. Using rejection-
recycling and multi-block decoding makes use of future n-grams and further boost speedup to 4.2×.

In summary, key contributions of this paper includes:

• We introduce progressive consistency distillation to train AR models as fast parallel decoders,
pcLLM, with up to 4× generation speedup.

• We empirically observe and qualitatively verify pcLLM have both higher fast-forwarded token
count and a useful n-gram count in comparison with baseline models.

• We propose rejection-recycling and multi-block decoding to make use of higher quality draft n-
grams from future tokens within each block, and apply them to pcLLM boost generation speed
to 4.2× across various benchmarks.

2 PRELIMINARY

This section reviews the basics of Jacobi decoding and consistency distillation training to accelerate
Jacobi decoding of AR models.

2.1 JACOBI DECODING

Given a prompt x and a pre-trained LLM pθ(·|x) parametrized by θ, the standard AR decoding
under the greedy strategy produces a response sequentially as follows:

yi = argmax
y

pθ(y | y<i,x), for i = 1, . . . , n, (1)

where y<i = {y1, . . . , yi−1}. This process requires n forward passes of the LLM to generate
n tokens y≤n. The inherently sequential nature of AR decoding limits practical efficiency when
generating long sequences. Jacobi decoding (Song et al., 2021; Santilli et al., 2023) addresses this
bottleneck by reformulating token generation as solving a system of nonlinear equations:

f(yi,y<i,x) = 0, for i = 1, . . . , n, (2)
where f(yi,y<i,x) := yi − argmaxy pθ(y|y<i,x). This system can be solved in parallel us-
ing Jacobi fixed-point iteration (ort, 2000). Starting from a randomly initialized n-token sequence
y(0) = {y(0)1 , . . . , y(0)n }, the update at each iteration j is:

y
(j+1)
1 = argmax

y
pθ(y|x)

y
(j+1)
2 = argmax

y
pθ(y|y(j)

1 ,x)

...
y
(j+1)
n = argmax

y
pθ(y|y(j)

<n,x).

(3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Notably, for LLM, the above n maximization problems can be solved in parallel by using a causal
attention mask, i.e., only one forward pass of the LLM is required to obtain y(j+1) based on y(j).
The iteration exits at some k such that y(k) = y(k−1) and we define y∗ := y(k) as the fixed point.
Let J := {y(0), . . . ,y(k)} denote the Jacobi trajectory. It can be proven that y∗ is identical to AR
decoding under greedy strategy (Song et al., 2021).

To generate a long response l of length L≫ n, Jacobi decoding is applied sequentially over blocks
of size n until the <eos> token appears in a fixed point. Let y∗

Bi
denote the fixed point obtained for

the i-th block. The full output l is then constructed by concatenating fixed points from consecutive
blocks:

l = [y∗
B1

, . . . ,y∗
BN

], (4)

where N denotes the number of blocks generated before termination.

2.2 CONSISTENCY DISTILLATION

Despite the promise, Jacobi decoding achieves little speedup over standard AR decoding (Santilli
et al., 2023; Fu et al., 2024), as it rarely predicts more than one correct1 token within one fixed-
point iteration. To address this, recent works such as CLLMs (Kou et al., 2024) propose consistency
distillation, a training approach designed to accelerate convergence to the fixed point from arbitrary
states on a Jacobi trajectory. The key idea is to introduce a consistency loss that encourages an LLM
pθ(·|x) to predict multiple tokens simultaneously:

Lc = Ei∼U{1,...,N},yBi
∼Ji

[
DKL

(
pθ−(y∗

Bi
|x,y∗

B1
, . . . ,y∗

Bi−1
)||pθ(yBi

|x,y∗
B1

, . . . ,y∗
Bi−1

)
)]

,

(5)
where θ− = stopgrad(θ) and DKL denotes the KL divergence aggregated across the n tokens in a
block. Here, i ∼ U{1, . . . , N} denotes sampling a block index uniformly at random, and yBi

∼ Ji
denotes randomly sampling from the Jacobi trajectory of the i-th block.

CLLMs build upon this idea by first collecting Jacobi trajectories, obtained by running Jacobi de-
coding with pθ on a set of prompts. The model is then trained with a joint objective that combines
the consistency loss in Eq. 5 with the standard AR loss, achieving up to a 2× speedup over AR de-
coding while maintaining quality. Similar training objectives have also been adopted for inference
acceleration in other domains, such as action prediction in VLA models (Song et al., 2025a).

3 METHODOLOGY

In this section, we first discuss the training challenges of consistency distillation with larger block
sizes n, and then present progressive consistency distillation, a refined paradigm designed to mitigate
this bottleneck, and denote LLMs trained under this paradigm as pcLLM. Furthermore, by observing
pcLLM’s trajectories under vanilla Jacobi decoding, we introduce rejection-recycling and multi-
block decoding strategies to improve its efficiency.

3.1 PROGRESSIVE CONSISTENCY DISTILLATION

Progressive Noise Schedule. In Jacobi decoding, we maintain strict causality within each block,
where each token is updated in accordance with Eq. 3. Consider the i-th block y

(j)
Bi

of size n is been
decoded at some iteration step j. Assume the first c − 1 tokens have been accepted, and we denote
yf as the future token as shown in Eq. 6.

yf = argmax
y

p
(
y | xc, y

′
c:f−1

)
, for f = c+ 1, . . . , n, (6)

where xc = [x,y<c] is the clean context, y′
c:f−1 is the noisy2 context. While the training objective

in Eq. 5 is designed to optimize correct token prediction in this setting, it’s observed from Kou et al.

1By correctness, we mean alignment with the AR decoding result under a greedy sampling strategy.
2By noisy, we refer to tokens in the non-converged point along the Jacobi trajectory that that differ from

those in the fixed point at the same positions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

<bos> Implement bubble sort def \n def bubble for i sort_

block 0

(unconverged)

block 0

(converged)

block 1

(unconverged)

block 1

(converged)

Clean Context Attention Mask (prompt length = 4, block size = 2, N = 2)

Key Index (k)

Query Index (q)

(a) clean-context conditioned causal mask.

Noise-Aware Attention Mask (prompt length = 4, block size = 2, N = 2)

Key Index (k)

Query Index (q)

<bos> Implement bubble sort def \n def bubble for i sort_

block 0

(unconverged)

block 0

(converged)

block 1

(unconverged)

block 1

(converged)

(b) noisy-context conditioned causal mask.

Figure 1: Sequence packing with two attention mask implementations, both allow logits from clean
blocks and noisy blocks to be generated with single forward pass to calculate the progressive con-
sistency loss and AR loss in Eq. 9.

(2024) that predicting yf is hard when it’s conditioned on a long noisy context y′
c:f−1 under large

block sizes (e.g., n = 256).

To address this challenge, we instead split a large block into smaller blocks (e.g., n = 16) with
noise ratios determined by a predefined schedule {t1, . . . , tN}. Each ti denotes the fraction of noisy
tokens in a block. The noise schedule follows a cyclic strategy with window size w, where the noise
ratio linearly increases from 0 to 1 within each window, i.e.,

W =

{
0,

1

w
, . . . ,

w − 1

w

}
, ti = W [j], j = i mod w. (7)

This progressive schedule ensures that each block retains a partially clean context, thereby shorten-
ing noisy tokens dependencies. In particular, it reduces the longest span of consecutive noisy inputs
for any prediction from O(⌈tnw⌉) to O(⌈tn⌉), which facilitates learning. Empirically, we find this
progressive schedule to be more effective than a purely random noise schedule (Table 4).

Progressive Distillation Loss. Let yti
bi

denote the point along the i-th block Jacobi trajectory with a
number of noisy tokens closest to ⌈tin⌉. The training objective is to predict tokens correctly within
each block, aggregating losses across blocks to reduce gradient variance and stabilize optimization.
Accordingly, we introduce a new loss term, progressive consistency loss, which optimizes pθ under
the progressive noise schedule in Eq. 7:

Lpc =
1

N

N∑
i=1

DKL
(
pθ−(y∗

Bi
| x,yt1

B1
, . . . ,y

ti−1

Bi−1
)
∥∥ pθ(y

ti
Bi
| x,yt1

B1
, . . . ,y

ti−1

Bi−1
)
)
. (8)

AR Loss. Kou et al. (2024) notes that using only the consistency loss (Eq. 5) must be supplemented
with an AR loss to maintain generation quality. Our preliminary experiments show that using only
the consistency objective (Eq. 8) produces the same effect. This motivates our inclusion of a con-
ventional AR loss term in the final training objective to safeguard output quality:

L(θ) = Lpc + wLAR (9)

where w is a tunable weight that balances the two learning objectives.

Noise-aware Causal Attention. In CLLM, loss from each training step is computed based on
KL divergance from one block instance in Eq. 5. This learning objective is to train correct token
prediction in the setting where there is only a big block (Eq. 6). Moreover, in both Eq. 5 and Eq. 8,
the loss term computation involves two forward passes using a conventional causal mask since each
involves a distinction sequence. As a result, it requires O(2N) forward passes to compute all loss
terms in Eq. 8 and O(N) backward passes to compute gradients, resulting in low training efficiency,
especially in settings like CoT generation for reasoning models. We reduce the number of forward

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

73594 12128 311 1817 1008 1817 262 262 2661 2661 2661 624 262 702 12704 22801 2561 13 13 13 55722

73594 12128 311 1817 1008 1091 198 262 262 12171 2661 624 262 12109 262 702 2561 16 13 15 11

73594 12128 311 1817 1008 1091 198 262 2661 12171 624 262 262 12109 702 12704 22081 2561 16 13 15

73594 12128 311 1817 1008 1091 198 262 2661 12171 624 262 12109 702 12704 22081 22081 16 16 13 15

73594 12128 311 1817 1008 1091 198 262 2661 12171 624 262 12109 702 12704 22801 2561 16 13 15 11

73594 12128 311 1817 1008 1091 198 262 2661 12171 624 262 12109 702 12704 22801 2561 16 13 15 11

accepted tokens noisy tokens fixed point segments

 1:

 2:

 3:

 4:

 5:

 6:

 Rejection-
recycling helps
me solve faster!

Figure 2: Visualization of pcLLM’s trajectory under vanilla Jacobi decoding. The figure shows a
partial segment of the trajectory. Blue tokens denote accepted tokens that match the fixed point at
their positions. Black tokens denote unconverged noisy tokens, and we highlight them in red if more
than three consecutive tokens match the fixed point regardless of position.

and backward passes from O(N) to O(1) by introducing a sequence packing technique and a block-
wise sparse attention mask. We illustrate the sequence packing that interleaves yti

bi
and y∗

bi
for

the entire complete sequence in Figure 1b for Lpc computation, in contrast with conditioning each
unconverged ybs only on clean tokens for consistency distillation with Lc in Figure 1a.

Progressive Distillation for Larger Block Sizes. In training pcLLM on Jacobi trajectories prepared
from the original AR model, we find model speedup scales with the number of training steps and
saturate at around 400k steps. We find that collecting additional rounds of Jacobi trajectories from
intermediate checkpoints empowered with multi-token prediction capability and train the models
on new trajectories with progressively larger block sizes can break the ceiling and further improve
model speedup by up to 20%, yet with a slight degradation of model performance.

3.2 INFERENCE OPTIMIZATION

Jacobi Decoding Behavior of pcLLM. pcLLM is trained to have a stronger capability of generating
correct future tokens conditioning on noisy tokens. Qualitative analysis in Figure 2 illustrates that
it indeed brings the quality improvement: fixed-point segments emerge within the noisy tokens of
the unconverged point. Furthermore, these segments progressively extend (e.g., the number of red
tokens increases from point 1 to point 2 in Figure 2), even under noisy context, consistent with our
training patterns. In this section, we focus on how to translating this qualitative observation of draft
quality improvement into qualitative speedup.

Rejection Recycling. Prior work has shown that n-grams produced during Jacobi iterations can be
verified in parallel and reused in subsequent iterations (Fu et al., 2024). As illustrated in Figure 2,
such n-gram sizes could be large in pcLLM, and if correctly verified many tokens can be fast-
forwarded in one iteration. In particular, we initialize a fixed-size n-gram pool by collecting noisy
token sequences from unconverged points during Jacobi decoding. If the pool contains an n-gram
matching the last accepted token of the current point, we concatenate its subsequent tokens to form
new candidates (line 11 in Algorithm 1). At each iteration, we select the candidate with the most
accepted tokens. For instance, this strategy enables skipping from point 3 to point 5 in Figure 2, as
the fixed-point segments in point 3 yield higher-quality candidates.

n-gram

pool

<bos> Implement bubble sort def bubble _ \n arr(arr range

 j

block 0 block 1

accepted

commit KV

real-active block

threshold reached;

spawning new block

 j + 1

<bos> Implement bubble sort def bubble _ sort

accepted

commit KV

arr(arr \n

pseudo accepted

j + 2

<bos> Implement bubble sort def bubble _ sort arr() :

accepted

commit KV

prompt

n-gram matching

and parallel verif ication

n-gram caching

committed tokens

with KV cache

real-accepted tokens pseudo-accepted tokens rejected tokens

iteration

index

...

Figure 3: An example of multiblock decod-
ing with rejection recycling at prompt length
= 4, block size = 4, r = 0.5, K = 2.

Multi-block Decoding. In addition to high-quality
n-grams in the draft, we also observe the increasing
number of stationary tokens, which are correctly pre-
dicted with preceding noisy tokens and remain unal-
tered through subsequent iterations. Together they
yield higher quality drafts. To make use of the prop-
erty, we introduce multi-block decoding, a new de-
coding paradigm that maintains and refines up to K
blocks simultaneously. It marks the block closest to
the effective KV cache boundary as the real-active
block and all the other K−1 blocks as pseudo-active
blocks. Only tokens within the real-active block are
accepted and committed to KV cache. Tokens in
pseudo-active blocks are only pseudo-accepted, con-
ditioning on prior blocks; once converged, pseudo-
active blocks will wait until they are promoted as the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 MULTIBLOCK DECODING + REJECTION RECYCLING

1: Init: Create a set of blocks {b} with one real–active block RA: draft tokens qRA randomly
initialized, accepted tokens aRA = ∅ ; For all other blocks b, set qb = ∅, ab = ∅, and mark as
pseudo-active.

2: Initialize candidate pool N = ∅, spawn ratio r, threshold s = ⌈rn⌉, block size n.
3: while iters < max do
4: Assemble input y: Concatenate qRA, then for each pseudo-active b, append ab (no logits)

and qb (collect logits). Resize cache to batch y.
5: Forward: Run model pθ(y) to produce logits.
6: for each block b with span (start, L) do
7: Verification (with rejection-recycling): Greedy prediction g = argmax logits; accept

longest matching prefix of qb using g (or g ∪ N if b = RA); update ab.
8: if b = RA and EOS encountered in accepted region then
9: return committed output.

10: end if
11: Tail update: If partial accept, set qb ← [next∥gtail] (and if b = RA: push rejected tail to

update N and qRA); else qb ← ∅.
12: end for
13: Cache trim: Delete false KV to committed length: prompt + verified ab (all accepted

blocks) + aRA.
14: Spawn: If some block b reaches |ab| ≥ s and active {b} < K, clone and pad qRA to length

n and add as new pseudo-active block.
15: Promote: If |aRA| ≥ n, choose a pseudo-active b with |ab| > 0, rebuild its draft to length

n, mark as verified, set RA← b.
16: Stop: If all |ab| ≥ n or EOS emitted by RA, break.
17: end while
18: Finalize: Concatenate output = verified ab for all non-RA blocks, then aRA; trim KV cache C;
19: Return: (output, C, iters)

real active block, where all tokens will be verified again, but now with a higher-quality draft. A
detailed description is provided in Algorithm 1 (with rejection recycling) and with an example in
Figure 4b. Note that both rejection recycling and multi-block decoding are lossless as they employ
greedy rejection sampling for token acceptance in the real-active block (Leviathan et al., 2022).

4 EXPERIMENTS

4.1 EVALUATION SETTINGS

Models and Datasets. We evaluate pcLLM across coding benchmark. For coding benchmarks,
we train Qwen2.5-Coder-Insutrct (Hui et al., 2024) on OpenCodeInstruct (Ahmad et al., 2025) and
test on the HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021). On OpenCodeInstruct, we
curate question instances that come with generations that pass all unit tests, from where we use 450k
prompts for trajectory generation and training.

Training Settings. All training and inference are conducted on instances equipped with 8x NVIDIA
A100-80GB GPUs, and 8x NVIDIA H200 GPUs. All models are trained with learning rate lr=10−6,
max new sequence length at 2048. For pcLLM, we adopt linear progressive noise schedule, initial
block size at 16, window size at 16, and a second round of trianing with block size at 32, window
size at 8. Ablation studies on parameter choices are presented in Section 4.3.

Baselines. Our main objective in this section is to compare performance and efficiency between
diffusion-based parallel decoders and AR-based parallel decoder, pcLLM. The dLLM baselines,
also have the capability of generating a single block of tokens or multiple consecutive blocks of
tokens together. Specifically, we compare pcLLM with state-of-the-art (SOTA) dLLMs including
LLaDA-7B (Nie et al., 2025b), Dream-7B (Ye et al., 2025), fast-dLLM (Wu et al., 2025a) and
D2F (Wang et al., 2025). We also compare pcLLM with AR-based parallel decoder including vanilla
Jacobi decoding (Santilli et al., 2023) and CLLM (Kou et al., 2024). In this work, we do not focus

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance and efficiency on coding benchmarks, HumanEval and MBPP, grouped by de-
coding family. For AR-based models, all methods adopt Qwen2.5-Coder-7B-Instruct. For pcLLM,
MR stands for employing the multi-block and rejection-recycling decoding algorithm introduced in
Algorithm 1. DC stands for using bi-directional dual cache from fast-dLLM. For both Fast-dLLM
and D2F, we choose the Dream-7B as it’s significantly faster with similar or better performance
than LLaDA-7B. For CLLM*, we follow mostly the same recipe in CLLM but with new sequence
packing technique (without progressive training on larger block sizes). The speedup ratio is relative
to the AR baseline.

Benchmark Family Method TPS ↑ Speedup↑ Accuracy↑ Param Size (B)

HumanEval

AR-based

AR 41.3 1.00× 87.9 7
Jacobi 39.9 0.97× 87.9 7
CLLM* 103.3 2.50× 88.0 7
pcLLM 147.6 3.57× 84.8 7
pcLLM (MR) 149.3 3.62× 84.8 7

Diffusion-based

LLaDA-Instruct 2.8 0.07× 36.0 7
Dream-Base 20.2 0.49× 54.3 7
Fast-dLLM (DC) 60.0 1.45× 53.0 7
D2F 73.2 1.77× 54.3 7

MBPP

AR-based

AR 43.1 1.00× 74.3 7
Jacobi 42.4 0.98× 74.3 7
CLLM* 80.1 1.94× 71.4 7
pcLLM 90.4 2.10× 73.4 7
pcLLM (MR) 106.3 2.47× 73.4 7

Diffusion-based

LLaDA-Instruct 0.9 0.02× 39.0 7
Dream-Base 10.4 0.24× 56.2 7
Fast-dLLM (DC) 73.2 1.70× 51.0 7
D2F 105.0 2.44× 55.2 7

on speculative decoding methods, because the models themselves don’t serve as parallel decoders
without supplemental architecture modifications (e.g. via additional heads) (Cai et al., 2024; Li
et al., 2024b;c; 2025) or separate draft models (Leviathan et al., 2022; Liu et al., 2024).

4.2 RESULTS

Table 2: Speedup on HumanEval tested on H200
using same settings and speedup ratio over A100.

Method TPS ↑ Speedup↑ r (vs. A100)

AR 65.4 1.00× 1.00
Jacobi 63.0 0.96× 1.00
CLLM* 151.3 2.31× 0.92
pcLLM 235.3 3.60× 1.01
pcLLM (MR) 258.3 3.95× 1.09

Performance. The performance metrics are
the greedy generations’ strict accuracy (pass@1)
on HumanEval and MBPP. Table 1 compares
pcLLM with both dLLMs and Jacobi decod-
ing baselines. On A100 GPUs, our results
show that on both benchmarks, pcLLM consis-
tently achieves both better accuracy and better
speedup at the same parameter scale. In partic-
ular, for structured generations like Python cod-
ing, pcLLM achieves 3.6× speedup in compari-
son with the AR baseline, 53.3 ∼ 7.4× speedup comparing to dLLM baselines, and 2.0× comparing
to optimized dLLM baselines including Fst-dLLM and D2F with techniques like adding block-wise
KV cache, bidirectional KV cache and pipelined parallel decoding. For speedup evaluation, we run
all evaluations with block size at 128 except for pcLLM (MR) since MR takes extra FLOPs for
multiblock decoding and parallel verification. We also present speedup comparison across different
AR-based techniques with pcLLM on H200 in Table 2 as it comes with a better fast-forwward count
to TPS conversion rate with mroe compute on H200.

4.3 ABLATION STUDY

Block sizes. In this section, we analyze how block size impacts speedup for vanilla Jacobi decoding
and multiblock decoding using pcLLM. As shown in Figure 4a, modern GPUs can sustain large
block sizes without increasing end-to-end latency compared to the AR baseline. On H200 GPUs,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Speedup vs. (log-scaled) block size at fixed fast-
forwarding count per iteration on NVIDIA H200 GPU,
using Jacobi decoding at prompt length = 128, gener-
ation length = 256.

(b) fast-forward count vs. block size on Hu-
manEval using three decoding strategies on
NVIDIA H200 GPU. Notice larger block size
provides more fast-forward token count for
multi-block decoding with rejection recycling.

Figure 4: Effect of block size choices on fast-forward counts and wall-clock speedup under different
settings. We choose the maximum block size on hardware without sacrificing wall-clock speedup.

Table 4: Inference results for block size = 256 with N = 16, tmin = 0.0 and tmax = 1.0. Acc.
= pass@1 accuracy (%) on HumanEval. The checkpoints are trained with Qwen2.5-Coder-7B-
Instruct on 10k randomly sampled instances from our OpenCodeInstruct trajectory dataset. Notice
that for ablation purpose, the checkpoints are not trained with full datascale as in Table 1. Reverse
progressive is significantly worse than other schedule and we only conduct ablation for one choice
of window size.

Window Size Random Linear Progressive Reverse Progressive

Acc. iter/token Acc. iter/token Acc. iter/token

8 82.9 0.53 84.7 0.48 – –
16 83.5 0.51 81.7 0.46 82.9 0.62

when the number of tokens accepted per iteration with pcLLM are fixed at 2, 3, 4, 5, Jacobi decoding
with block sizes up to 64 incurs no latency penalty, and only minor degradation arises at block size
128, particularly in the high fast-forwarding count regime.

Table 3: Effects of applying noise-conditioned
mask (NC) or noise-conditioned mask with intra-
window clean context (NC-IC) for pcLLM train-
ing, and evaluated on HumanEval with A100.

Method Speedup↑ Acc.

NC 3.6× 82.3
NC-IC 1.9× 82.3

With varying block sizes, we apply multi-block
decoding using pcLLM and the results are pre-
sented in Figure 4b. The running window
method is an optimized variant of Jacobi decod-
ing designed for settings where many tokens are
accepted per iteration. It maintains a fixed-size
active block by replenishing draft tokens to the
original block size as accepted tokens are com-
mitted to the KV cache. The results demonstrate
that multi-block decoding with rejection recy-
cling consistently achieves the highest number
of fast-forwarded tokens per iteration, particularly in the larger block-size regime.

Noise schedules. We evaluate three types of noise schedules: random, linear progressive, and re-
verse progressive. In the random schedule, the noise step ti for each block is sampled uniformly
as ti ∼ U(1, . . . , N) during sequence packing in pcLLM training. The linear progressive schedule
follows Eq. 7, while the reverse progressive schedule applies a linearly decreasing noise ratio from
1 to 0 within each window. Results in Table 4 show that the linear progressive schedule significantly
outperforms the other two when the window size is 8. Intuitively, with N = 16, this schedule corre-
sponds to adding noise more aggressively across blocks within each window, roughly two additional
noisy tokens per future block, until the final block where all tokens are noisy.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Mask types. We train pcLLM on the objective in Eq. 8 with noise-conditioned mask implementation
(Figure 1b). An alternative implementation of the mask is to condition all blocks within a window
on clean context. In other words, for every query, it sees blocks from all proceeding windows as
of Figure 1a]), and all blocks within its own window as of Figure 1b. Intuitively, it makes token
predictions in later windows and blocks easier to learn because now they are conditioned on cleaner
context. We summarize results in Table 3, where it shows noise-conditioned mask is more effective
in empowering pcLLM with speedup while maintaining generation quality.

5 RELATED WORK

Diffusion-based Large Language Models (dLLMs) represent an new paradigm that challenges tra-
ditional autoregressive (AR) modeling by replacing left-to-right causality with iterative denoising,
enabling parallel multi-token generation (Li et al., 2024a; Nisonoff et al., 2024; Schiff et al., 2024).
Closed-source dLLMs (e.g., Gemini Diffusion (Google DeepMind, 2025; Inception Labs, 2025;
Song et al., 2025b)) show huge throughput improvement while maintaining competitive code and
text quality, underscoring better accelerator utilization. On the open-source side, community dLLMs
with released code and weights delivered strong throughput and controllability via parallel iterative
denoising, yet remaining less efficient than autoregressive decoding (Ye et al., 2025; Zhu et al., 2025;
Nie et al., 2025a; JetAstra, 2025; Gong et al., 2025). Recent efforts (Arriola et al., 2025; Wu et al.,
2025a; Liu et al., 2025) further push the efficiency and scalability of dLLMs.

Jacobi decoding reframes AR generation as a parallel fixed-point update over all positions, with con-
vergence linked to greedy AR, and has been instantiated using Jacobi (Gauss-Seidel) iterations (Song
et al., 2021; Santilli et al., 2023). Building on this, follow-ups either refine the decoding procedure
or train models as parallel decoders to exploit parall: CLLMs (Kou et al., 2024) fine-tune LLMs
with consistency distillation to predict multiple correct tokens per iteration and speed convergence;
CEED-VLA (Song et al., 2025a) brings the similar idea to robotics. Other strands adapt Jacobi
to new regimes, including FastCoT (Zhang et al., 2023) for reasoning with parallel CoT updates,
Speculative Jacobi Decoding (Teng et al., 2024) for sampling in AR Test-to-Image, and MSN, TR-
Jacobi (Wang et al., 2024) that injects denoising training and a retrieval-augmented Jacobi strategy.

Speculative decoding speeds up AR generation by letting a lightweight drafter propose several future
tokens and having the target model verify them in one pass (Leviathan et al., 2022; Chen et al., 2023).
It preserves the target model’s distribution while reducing latency. Subsequent work improves pro-
posal quality and verification efficiency: online speculative decoding (OSD) (Liu et al., 2024) adapts
draft models to user query distributions via continual distillation, substantially improving token ac-
ceptance and reducing inference latency. Medusa (Cai et al., 2024) adds multi-head drafters to the
base LM to produce verify-able token blocks; EAGLE, EAGLE-2 (Li et al., 2024b;c) reuse target
features for feature-level drafting, and EAGLE-3 (Li et al., 2025) scales this idea with multi-layer
fusion. Lookahead Decoding (Fu et al., 2024), PLD (Saxena, 2023; Somasundaram et al., 2024), and
REST (He et al., 2023) dispense with a separate drafter, instead synthesizing speculative candidates
directly from context or future tokens.

6 CONCLUSION

In this work, we propose a progressive distillation technique for training AR models as faster and
more accurate parallel decoders compared to dLLMs. Unlike CLLM (Kou et al., 2024), which
directly trains models to predict large blocks of tokens in parallel, our approach introduces a pro-
gressively more difficult learning objective. This is achieved through a progressive noise schedule,
combined with a sequence packing strategy and a noise-aware causal mask, enabling parallel token
prediction conditioned on noise. The model is further improved through iterative training, where
trajectories are regenerated with progressively larger block sizes. The resulting model, pcLLM,
achieves a 3.6× speedup while largely preserving accuracy. Analysis of its generated trajectories
shows that pcLLM produces high-quality draft tokens toward the tail of sequences. In addition, we
introduce rejection recycling and multi-block decoding, which together brings tokens accepted per
iteration to 4.2× as high with nearly 4× speedup on HumanEval using an H200 GPU.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All authors have read and adhere to the ICLR Code of Ethics. This work does not involve human
subjects, sensitive personal data, or experiments with the potential to cause harm. No confidential
or proprietary data were used. The methods and experiments were conducted in accordance with
principles of research integrity, fairness, and transparency. Potential societal impacts, including
limitations and biases of large language models, are explicitly discussed in the paper. All conclusions
are the sole responsibility of the authors.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our results. Detailed descriptions
of the models, datasets been used, as well as hyperparameter choices are included in the main text.
All datasets used are publicly available, and the preprocessing steps are fully documented. Ablation
studies are provided to validate robustness of results. These resources collectively allow independent
researchers to verify and reproduce our work.

7 USE OF LLM

During the preparation of this manuscript, large language model was used to refine grammar and
improve clarity. The authors carefully reviewed and revised all outputs to ensure the text reflects
their original ideas and take full responsibility for the final content, including all statements and
conclusions.

REFERENCES

Iterative solution of nonlinear equations in several variables. SIAM, 2000.

Wasi Uddin Ahmad, Aleksander Ficek, Mehrzad Samadi, Jocelyn Huang, Vahid Noroozi,
Somshubra Majumdar, and Boris Ginsburg. Opencodeinstruct: A large-scale instruction tuning
dataset for code llms. arXiv preprint arXiv:2504.04030, 2025. URL https://arxiv.org/
abs/2504.04030. Introduces the OpenCodeInstruct dataset of 5M instruction-code samples
and reports fine-tuning results on code LLMs; improves performance on HumanEval, MBPP,
LiveCodeBench, and BigCodeBench.

Marianne Arriola, Aaron Kerem Gokaslan, Justin T. Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han,
Subham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autore-
gressive and diffusion language models. In Proceedings of the 2025 International Conference
on Learning Representations (ICLR 2025), 2025. URL https://arxiv.org/abs/2503.
09573. Oral.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. Pro-
ceedings of Machine Learning Research, 235:5209–5235, 2024. URL https://arxiv.org/
abs/2401.10774. Introduces Medusa-1 and Medusa-2: augmenting LLMs with parallel de-
coding heads to speed inference.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Gabriele Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,

10

https://iclr.cc/public/CodeOfEthics
https://arxiv.org/abs/2504.04030
https://arxiv.org/abs/2504.04030
https://arxiv.org/abs/2503.09573
https://arxiv.org/abs/2503.09573
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2401.10774

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nick Ryder, Michael Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Win-
ter, Phil Tillet, Felipe Petroski Such, Reid Cummings, Matthias Plappert, Fotios Chantzis, Eliz-
abeth Barnes, Ariel Herbert-Voss, William Guss, Alex Nichol, Michael Paino, Nikolas Tezak,
Jie Tang, Igor Babuschkin, Suchir Balaji, Sukhdeep Jain, William Saunders, Christopher Hesse,
Andrew Carr, Aitor Lewkowycz, Conor Durkan, Diego De Las Casas, Madeleine Li, Susan Hoff-
man, Bowen Wu, Frederick Kelton, Peter Jacobs, Rewon Chen, Sandhini Agrawal, Shantanu Sas-
try, Amanda Askell, Yuntao Bai, Daniel Ziegler, Michael Steinberg, Paul Smolensky, Gretchen
Krueger, Sam McCandlish, Dario Amodei, Ilya Sutskever, Tom Brown, and Jared Kaplan. Eval-
uating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Google DeepMind. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
context, and next-generation agentic capabilities. arXiv preprint arXiv:2507.06261, July 2025.
URL https://arxiv.org/abs/2507.06261. Also see “Gemini 2.5: Our most intelli-
gent AI model” blog post, March 25, 2025.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm in-
ference using lookahead decoding. arXiv preprint, (arXiv:2402.02057), 2024. URL https:
//arxiv.org/abs/2402.02057.

Itai Gat, Heli Ben-Hamu, Marton Havasi, Daniel Haziza, Jeremy Reizenstein, Gabriel Synnaeve,
David Lopez-Paz, Brian Karrer, and Yaron Lipman. Set block decoding is a language model
inference accelerator. arXiv preprint, (arXiv:2509.04185), 2025. URL https://arxiv.org/
abs/2509.04185.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling diffusion language
models via adaptation from autoregressive models. In Proceedings of the 2025 International
Conference on Learning Representations (ICLR), 2025. URL https://arxiv.org/abs/
2410.17891. Presents DiffuGPT and DiffuLLaMA (also “Diffullama”) – adapting AR models
to diffusion LMs; shows performance competitive with AR counterparts using ¡200B tokens.

Google DeepMind. Gemini diffusion. Experimental research model / preview, 2025. URL https:
//deepmind.google/models/gemini-diffusion/. Demonstration blog post; details
such as full author list not publicly released.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang Li, Zijun Yao, Juanzi Li, Jie Tang, and Yuxiao
Dong. T1: Advancing language model reasoning through reinforcement learning and inference
scaling. In ICML 2025, 2025. URL https://arxiv.org/abs/2501.11651. Combines
RL with inference scaling; uses chain-of-thought with trial-and-error and self-verification; shows
improved reasoning on math benchmarks; exhibits inference-scaling behavior.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2.5-coder: A code-specialized instruction language model.
arXiv preprint arXiv:2409.12186, 2024. URL https://arxiv.org/abs/2409.12186.
Describes the Qwen2.5-Coder family and its instruction-tuned versions; includes 7B instruct vari-
ant.

Inception Labs. Mercury: Ultra-fast language models based on diffusion. arXiv preprint,
(arXiv:2506.17298), 2025. URL https://arxiv.org/abs/2506.17298.

JetAstra. Sdar: Synergy of diffusion & autoregression. https://github.com/JetAstra/
SDAR, 2025. Code repository.

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, Hao Zhang, et al. Consistency large language
models: A family of efficient parallel decoders. arXiv preprint arXiv:2403.00835, 2024. URL
https://arxiv.org/abs/2403.00835. Introduces CLLMs, which are trained via a con-
sistency loss so that they can decode multiple tokens in parallel while approximating AR decod-
ing; shows 2.4× to 3.4× speedups with preserved generation quality.

11

https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2402.02057
https://arxiv.org/abs/2402.02057
https://arxiv.org/abs/2509.04185
https://arxiv.org/abs/2509.04185
https://arxiv.org/abs/2410.17891
https://arxiv.org/abs/2410.17891
https://deepmind.google/models/gemini-diffusion/
https://deepmind.google/models/gemini-diffusion/
https://arxiv.org/abs/2501.11651
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2506.17298
https://github.com/JetAstra/SDAR
https://github.com/JetAstra/SDAR
https://arxiv.org/abs/2403.00835

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via specula-
tive decoding. arXiv preprint arXiv:2211.17192, 2022. URL https://arxiv.org/abs/
2211.17192. Introduces the speculative decoding (draft + verify) paradigm for accelerating
autoregressive models without changing output distributions.

Xiner Li, Yulai Zhao, Chenyu Wang, Gabriele Scalia, Gokcen Eraslan, Surag Nair, Tommaso Bian-
calani, Shuiwang Ji, Aviv Regev, Sergey Levine, and Masatoshi Uehara. Derivative-free guidance
in continuous and discrete diffusion models with soft value-based decoding. arXiv preprint,
(arXiv:2408.08252), 2024a. URL https://arxiv.org/abs/2408.08252.

Yuhui Li, Fangyun Wei, Chao Zhang, et al. Eagle: Extrapolation algorithm for greater language-
model efficiency. In ICML / appropriate venue, 2024b. URL https://github.com/
SafeAILab/EAGLE. Uses feature extrapolation on second-top hidden states to propose drafts,
reducing forward passes.

Yuhui Li, Fangyun Wei, Chao Zhang, et al. Eagle-2: Faster inference of language models with
dynamic draft trees. arXiv preprint arXiv:2406.16858, 2024c. URL https://arxiv.org/
abs/2406.16858. Introduces context-aware dynamic drafting (tree structure) to EAGLE, im-
proving acceptance and speedups.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference accel-
eration of large language models via training-time test. arXiv preprint arXiv:2503.01840, 2025.
URL https://arxiv.org/abs/2503.01840. Improves speculative decoding by aban-
doning feature prediction, using multi-layer feature fusion, and enabling better scalability of draft
performance.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Alvin Cheung, Zhijie Deng, Ion Stoica, and Hao Zhang.
Online speculative decoding. In Proceedings of the 41st International Conference on Machine
Learning, pp. 31131–31146. PMLR, 2024. URL https://proceedings.mlr.press/
v235/liu24y.html.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang,
and Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive
caching. arXiv preprint arXiv:2506.06295, 2025. URL https://arxiv.org/abs/2506.
06295. Adaptive caching for diffusion LLMs (LLaDA, Dream); reuse of computations across
diffusion steps.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Fei-Fei Li, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025. URL https://arxiv.org/abs/2501.
19393. Budget forcing + s1K data; test-time scaling via forcing more reasoning (“Wait” tokens);
outperforms o1-preview on math reasoning tasks.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025a. URL https://arxiv.org/abs/2502.09992. Introduces
LLaDA, a diffusion model trained from scratch; competitive with autoregressive models of similar
scale.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025b. URL https://arxiv.org/abs/2502.09992. LLaDA is a
diffusion LLM trained from scratch under masking and reverse processes.

Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
for discrete state-space diffusion and flow models. arXiv preprint, (arXiv:2406.01572), 2024.
URL https://arxiv.org/abs/2406.01572.

OpenAI. Introducing gpt-5. OpenAI blog post, August 7 2025. URL https://openai.com/
index/introducing-gpt-5/. Also see the GPT-5 system card (PDF, August 13, 2025).

12

https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2408.08252
https://github.com/SafeAILab/EAGLE
https://github.com/SafeAILab/EAGLE
https://arxiv.org/abs/2406.16858
https://arxiv.org/abs/2406.16858
https://arxiv.org/abs/2503.01840
https://proceedings.mlr.press/v235/liu24y.html
https://proceedings.mlr.press/v235/liu24y.html
https://arxiv.org/abs/2506.06295
https://arxiv.org/abs/2506.06295
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2406.01572
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng
Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incen-
tivizing reasoning capability in llms via reinforcement learning. arXiv preprint arXiv:2501.12948,
2025. URL https://arxiv.org/abs/2501.12948. Also published in *Nature* as
“DeepSeek-R1: Incentivizing Reasoning Capability in LLMs”.

Andrea Santilli, Silvio Severino, Emilian Postolache, Valentino Maiorca, Michele Mancusi, Ric-
cardo Marin, and Emanuele Rodolà. Accelerating transformer inference for translation via
parallel decoding. In Proceedings of the 61st Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2023, Long Papers), pp. 12336–12355, Toronto, Canada, 2023. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.689. URL https:
//aclanthology.org/2023.acl-long.689.

Apoorv Saxena. Prompt lookup decoding (pld). https://github.com/apoorvumang/
prompt-lookup-decoding, 2023. Training-free speculative decoding via prompt n-gram
retrieval.

Yair Schiff, Subham Sekhar Sahoo, Hao Phung, Guanghan Wang, Sam Boshar, Hugo Dalla-torre,
Bernardo P. de Almeida, Alexander Rush, Thomas Pierrot, and Volodymyr Kuleshov. Simple
guidance mechanisms for discrete diffusion models. arXiv preprint, (arXiv:2412.10193), 2024.
URL https://arxiv.org/abs/2412.10193.

Shwetha Somasundaram, Anirudh Phukan, and Apoorv Saxena. Pld+: Accelerating llm inference
by leveraging language model artifacts. arXiv preprint arXiv:2412.01447, 2024.

Wenxuan Song, Jiayi Chen, Pengxiang Ding, Yuxin Huang, Han Zhao, Donglin Wang, and Haoang
Li. Ceed-vla: Consistency vision-language-action model with early-exit decoding. arXiv preprint
arXiv:2506.13725, 2025a. URL https://arxiv.org/abs/2506.13725. Presents meth-
ods for consistency distillation, mixed-label supervision, and early-exit decoding to accelerate
inference in Vision-Language-Action models with minimal performance loss.

Yang Song, Chenlin Meng, Renjie Liao, and Stefano Ermon. Accelerating feedforward computation
via parallel nonlinear equation solving. In International Conference on Machine Learning, pp.
9791–9800. PMLR, 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In Proceedings
of the 40th International Conference on Machine Learning (ICML), pp. 9929–9940. PMLR, 2023.
URL https://arxiv.org/abs/2303.01469. Introduces consistency loss in generative
consistency models, enabling efficient one-step and few-step sampling.

Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang
Yang, Hongli Yu, Xingwei Qu, Yuwei Fu, Jing Su, Ge Zhang, Wenhao Huang, Mingxuan Wang,
Lin Yan, Xiaoying Jia, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Yonghui Wu, and Hao Zhou.
Seed diffusion: A large-scale diffusion language model with high-speed inference. arXiv preprint,
2025b. URL https://arxiv.org/abs/2508.02193.

Yao Teng, Han Shi, Xian Liu, Xuefei Ning, Guohao Dai, Yu Wang, Zhenguo Li, and Xihui Liu. Ac-
celerating auto-regressive text-to-image generation with training-free speculative jacobi decoding.
arXiv preprint, (arXiv:2410.01699), 2024. URL https://arxiv.org/abs/2410.01699.

Xu Wang, Chenkai Xu, Yijie Jin, Jiachun Jin, Hao Zhang, and Zhijie Deng. Diffusion llms can do
faster-than-ar inference via discrete diffusion forcing. arXiv preprint arXiv:2508.09192, 2025.
URL https://arxiv.org/abs/2508.09192. Introduces D2F: a hybrid AR-diffusion
approach enabling KV cache and inter-block parallel decoding for dLLMs.

Yixuan Wang, Xianzhen Luo, Fuxuan Wei, Yijun Liu, Qingfu Zhu, Xuanyu Zhang, Qing Yang,
Dongliang Xu, and Wanxiang Che. Make some noise: Unlocking language model parallel infer-
ence capability through noisy training. arXiv preprint arXiv:2406.17404, 2024.

13

https://arxiv.org/abs/2501.12948
https://aclanthology.org/2023.acl-long.689
https://aclanthology.org/2023.acl-long.689
https://github.com/apoorvumang/prompt-lookup-decoding
https://github.com/apoorvumang/prompt-lookup-decoding
https://arxiv.org/abs/2412.10193
https://arxiv.org/abs/2506.13725
https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2508.02193
https://arxiv.org/abs/2410.01699
https://arxiv.org/abs/2508.09192

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia,
Ed H. Chi, Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elic-
its reasoning in large language models. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 35, pp. 24824–24837. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo,
Song Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling
kv cache and parallel decoding. arXiv preprint arXiv:2505.22618, 2025a. URL https:
//arxiv.org/abs/2505.22618. Inference acceleration for diffusion LLMs; block-wise
KV cache; confidence-aware parallel decoding.

Haoyi Wu, Zhihao Teng, and Kewei Tu. Parallel continuous chain-of-thought with jacobi iteration.
arXiv preprint arXiv:2506.18582, 2025b.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.
URL https://arxiv.org/abs/2508.15487. Dream-Base and Dream-Instruct variants
released; uses discrete diffusion modeling, AR initialization, context-adaptive token-level noise
rescheduling.

Hongxuan Zhang, Zhining Liu, Yao Zhao, Jiaqi Zheng, Chenyi Zhuang, Jinjie Gu, and Guihai Chen.
Fast chain-of-thought: A glance of future from parallel decoding leads to answers faster. arXiv
preprint arXiv:2311.08263, 2023.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Llada 1.5: Variance-reduced preference
optimization for large language diffusion models. arXiv preprint arXiv:2505.19223, 2025. URL
https://arxiv.org/abs/2505.19223. Applies RL-style alignment (preference opti-
mization) to LLaDA, reducing variance in ELBO estimators.

14

https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2505.22618
https://arxiv.org/abs/2505.22618
https://arxiv.org/abs/2508.15487
https://arxiv.org/abs/2505.19223

	Introduction
	Preliminary
	Jacobi Decoding
	Consistency Distillation

	Methodology
	Progressive Consistency Distillation
	Inference Optimization

	Experiments
	Evaluation Settings
	Results
	Ablation Study

	Related Work
	Conclusion
	Use of LLM

