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ABSTRACT

Multi-token generation has emerged as a promising paradigm for accelerating
transformer-based large model inference. Recent efforts have primarily explored
diffusion-based LLMs (dLLM) for parallel decoding to reduce latency while pre-
serving model generation quality. However, non-diffusion approaches remain
largely underexplored and it’s unanswered whether AR models can be adapted
as faster parallel decoders than dLLMs while maintaining generation quality. We
present pcLLM, a progressive consistency distillation paradigm that transforms
autoregressive (AR) models into efficient parallel decoders while preserving the
causal inference property. pcLLM achieves 3.6× wall-clock speedup on cod-
ing benchmarks with minimal loss in performance. Based on pcLLM’s trajec-
tory characteristics, we introduce multi-block decoding with rejection recycling,
which enables up to 4.2× higher token acceptance count per iteration and nearly
4× speedup, effectively trading additional compute for lower inference latency.

1 INTRODUCTION

Modern Large Language Models (LLMs), such as GPT-5 (OpenAI, 2025), Gemini-2.5 (DeepMind,
2025), and DeepSeek-R1 (Ren et al., 2025), demonstrate impressive capabilities across a wide range
of complex reasoning and agentic tasks. However, the strong performance come at the cost of
high inference latency, particularly during the generation of long token sequences using chain-of-
thought (Wei et al., 2022; Hou et al., 2025; Ren et al., 2025; Muennighoff et al., 2025) under au-
toregressive (AR) decoding. Since each token generation requires a full forward pass through the
model, the sequential nature of decoding limits parallelism and underutilizes the massive parallel
processing capabilities of modern GPUs. This results in significantly increased inference latency
and high computational costs, degrading user experience in real-time and interactive applications.

Diffusion-based language models (dLLMs) offer an alternative to AR models by relaxing token-by-
token causality and enabling multi-token generation per iteration with improved controllability (Li
et al., 2024a; Nisonoff et al., 2024; Schiff et al., 2024). dLLMs reframe decoding as a more par-
allelizable computation that better utilizes the compute from modern accelerators. Mercury (In-
ception Labs, 2025), Gemini Diffusion (Google DeepMind, 2025) and Seed Diffusion (Song et al.,
2025b) demonstrate that diffusion-based LLMs (dLLMs) can achieve up to a 5× increase in through-
put while maintaining coding and text generation quality on par with autoregressive (AR) models.
Community-driven efforts (Ye et al., 2025; Zhu et al., 2025; Nie et al., 2025a; JetAstra, 2025; Gong
et al., 2025) are rapidly advancing in this direction; however, a performance gap remains. In par-
ticular, current open implementations often exhibit lower generation quality and face challenges
in adapting widely used inference optimizations for AR models, such as KV caching, to the bi-
directional attention setting of dLLMs. While recent work have made significant gains in further
improving dLLMs’ efficiency (Arriola et al., 2025; Wu et al., 2025a; Liu et al., 2025), it remains an
open question whether AR models possess the same potential for parallel decoding, or the ability to
train an efficient parallel decoder is a unique advantage of dLLMs.

One commonly used parallel decoding technique for AR models is Jacobi decoding (Song et al.,
2021; Santilli et al., 2023), which is training-free and requires no architecture modification. While
this method has inspired several extensions (Fu et al., 2024; Teng et al., 2024; Wu et al., 2025b), in
practice these techniques deliver only modest speedups. Prior works including CLLM (Kou et al.,
2024) and CEED-VLA (Song et al., 2025a) train LLMs and Vision-Language-Action (VLA) models

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

with consistency distillation (Song et al., 2023) to predict multiple correct tokens simultaneously in
each iteration. Kou et al. (2024); Gat et al. (2025) observes that when inference with larger block
sizes, the speedup achieved during inference plateau: as the block size increases, the number of
tokens “fast-forwarded” per iteration remains essentially constant. A natural question is whether
we can train models to better predict future tokens under Jacobi decoding, such that increasing the
block size yields useful predictions. Modern AI accelerators offer high FLOPs, and if decoding
more future tokens in each iteration could reduce the total number of iterations to generate the same
number of tokens, total latency drops.

In this work, we introduce a progressive consistency distillation technique that address the limitation
by progressively teaching to predict more tokens within each block and to perform better fast for-
warding with increasing block size. We further introduce a noise-aware causal attention that teaches
to model to predict correct tokens within each block conditioned on unconverged blocks, and we
show it enables more useful future tokens to emerge in each block’s trailing tails. We show apply-
ing rejection-recycling and multi-block decoding to leverage this model behavior from progressive
consistency LLMs (pcLLM) for further efficiency improvement.

Experiments show pcLLM can serve as very efficient parallel decoders with up to 3.8× improvement
in generation speed across coding and math benchmarks. It also effectively generate higher quality
draft n-grams from future tokens within each block, as observed in Section 4. Using rejection-
recycling and multi-block decoding makes use of future n-grams and further boost speedup to 4.2×.

In summary, key contributions of this paper includes:

• We introduce progressive consistency distillation to train AR models as fast parallel decoders,
pcLLM, with up to 4× generation speedup.

• We empirically observe and qualitatively verify pcLLM have both higher fast-forwarded token
count and a useful n-gram count in comparison with baseline models.

• We propose rejection-recycling and multi-block decoding to make use of higher quality draft n-
grams from future tokens within each block, and apply them to pcLLM boost generation speed
to 4.2× across various benchmarks.

2 PRELIMINARY

This section reviews the basics of Jacobi decoding and consistency distillation training to accelerate
Jacobi decoding of AR models.

2.1 JACOBI DECODING

Given a prompt x and a pre-trained LLM pθ(·|x) parametrized by θ, the standard AR decoding
under the greedy strategy produces a response sequentially as follows:

yi = argmax
y

pθ(y | y<i,x), for i = 1, . . . , n, (1)

where y<i = {y1, . . . , yi−1}. This process requires n forward passes of the LLM to generate
n tokens y≤n. The inherently sequential nature of AR decoding limits practical efficiency when
generating long sequences. Jacobi decoding (Song et al., 2021; Santilli et al., 2023) addresses this
bottleneck by reformulating token generation as solving a system of nonlinear equations:

f(yi,y<i,x) = 0, for i = 1, . . . , n, (2)
where f(yi,y<i,x) := yi − argmaxy pθ(y|y<i,x). This system can be solved in parallel us-
ing Jacobi fixed-point iteration (ort, 2000). Starting from a randomly initialized n-token sequence
y(0) = {y(0)1 , . . . , y(0)n }, the update at each iteration j is:

y
(j+1)
1 = argmax

y
pθ(y|x)

y
(j+1)
2 = argmax

y
pθ(y|y(j)

1 ,x)

...
y
(j+1)
n = argmax

y
pθ(y|y(j)

<n,x).

(3)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Notably, for LLM, the above n maximization problems can be solved in parallel by using a causal
attention mask, i.e., only one forward pass of the LLM is required to obtain y(j+1) based on y(j).
The iteration exits at some k such that y(k) = y(k−1) and we define y∗ := y(k) as the fixed point.
Let J := {y(0), . . . ,y(k)} denote the Jacobi trajectory. It can be proven that y∗ is identical to AR
decoding under greedy strategy (Song et al., 2021).

To generate a long response l of length L≫ n, Jacobi decoding is applied sequentially over blocks
of size n until the <eos> token appears in a fixed point. Let y∗

Bi
denote the fixed point obtained for

the i-th block. The full output l is then constructed by concatenating fixed points from consecutive
blocks:

l = [y∗
B1

, . . . ,y∗
BN

], (4)

where N denotes the number of blocks generated before termination.

2.2 CONSISTENCY DISTILLATION

Despite the promise, Jacobi decoding achieves little speedup over standard AR decoding (Santilli
et al., 2023; Fu et al., 2024), as it rarely predicts more than one correct1 token within one fixed-
point iteration. To address this, recent works such as CLLMs (Kou et al., 2024) propose consistency
distillation, a training approach designed to accelerate convergence to the fixed point from arbitrary
states on a Jacobi trajectory. The key idea is to introduce a consistency loss that encourages an LLM
pθ(·|x) to predict multiple tokens simultaneously:

Lc = Ei∼U{1,...,N},yBi
∼Ji

[
DKL

(
pθ−(y∗

Bi
|x,y∗

B1
, . . . ,y∗

Bi−1
)||pθ(yBi

|x,y∗
B1

, . . . ,y∗
Bi−1

)
) ]

,

(5)
where θ− = stopgrad(θ) and DKL denotes the KL divergence aggregated across the n tokens in a
block. Here, i ∼ U{1, . . . , N} denotes sampling a block index uniformly at random, and yBi

∼ Ji
denotes randomly sampling from the Jacobi trajectory of the i-th block.

CLLMs build upon this idea by first collecting Jacobi trajectories, obtained by running Jacobi de-
coding with pθ on a set of prompts. The model is then trained with a joint objective that combines
the consistency loss in Eq. 5 with the standard AR loss, achieving up to a 2× speedup over AR de-
coding while maintaining quality. Similar training objectives have also been adopted for inference
acceleration in other domains, such as action prediction in VLA models (Song et al., 2025a).

3 METHODOLOGY

In this section, we first discuss the training challenges of consistency distillation with larger block
sizes n, and then present progressive consistency distillation, a refined paradigm designed to mitigate
this bottleneck, and denote LLMs trained under this paradigm as pcLLM. Furthermore, by observing
pcLLM’s trajectories under vanilla Jacobi decoding, we introduce rejection-recycling and multi-
block decoding strategies to improve its efficiency.

3.1 PROGRESSIVE CONSISTENCY DISTILLATION

Progressive Noise Schedule. In Jacobi decoding, we maintain strict causality within each block,
where each token is updated in accordance with Eq. 3. Consider the i-th block y

(j)
Bi

of size n is been
decoded at some iteration step j. Assume the first c − 1 tokens have been accepted, and we denote
yf as the future token as shown in Eq. 6.

yf = argmax
y

p
(
y | xc, y

′
c:f−1

)
, for f = c+ 1, . . . , n, (6)

where xc = [x,y<c] is the clean context, y′
c:f−1 is the noisy2 context. While the training objective

in Eq. 5 is designed to optimize correct token prediction in this setting, it’s observed from Kou et al.

1By correctness, we mean alignment with the AR decoding result under a greedy sampling strategy.
2By noisy, we refer to tokens in the non-converged point along the Jacobi trajectory that that differ from

those in the fixed point at the same positions.
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<bos> Implement bubble sort def \n def bubble for i sort_

block 0

(unconverged)

block 0

(converged)

block 1

(unconverged)

block 1

(converged)

Clean Context Attention Mask (prompt length = 4, block size = 2, N = 2)

Key Index (k)

Query Index (q)

(a) clean-context conditioned causal mask.

Noise-Aware Attention Mask (prompt length = 4, block size = 2, N = 2)

Key Index (k)

Query Index (q)

<bos> Implement bubble sort def \n def bubble for i sort_

block 0

(unconverged)

block 0

(converged)

block 1

(unconverged)

block 1

(converged)

(b) noisy-context conditioned causal mask.

Figure 1: Sequence packing with two attention mask implementations, both allow logits from clean
blocks and noisy blocks to be generated with single forward pass to calculate the progressive con-
sistency loss and AR loss in Eq. 9.

(2024) that predicting yf is hard when it’s conditioned on a long noisy context y′
c:f−1 under large

block sizes (e.g., n = 256).

To address this challenge, we instead split a large block into smaller blocks (e.g., n = 16) with
noise ratios determined by a predefined schedule {t1, . . . , tN}. Each ti denotes the fraction of noisy
tokens in a block. The noise schedule follows a cyclic strategy with window size w, where the noise
ratio linearly increases from 0 to 1 within each window, i.e.,

W =

{
0,

1

w
, . . . ,

w − 1

w

}
, ti = W [j], j = i mod w. (7)

This progressive schedule ensures that each block retains a partially clean context, thereby shorten-
ing noisy tokens dependencies. In particular, it reduces the longest span of consecutive noisy inputs
for any prediction from O(⌈tnw⌉) to O(⌈tn⌉), which facilitates learning. Empirically, we find this
progressive schedule to be more effective than a purely random noise schedule (Table 4).

Progressive Distillation Loss. Let yti
bi

denote the point along the i-th block Jacobi trajectory with a
number of noisy tokens closest to ⌈tin⌉. The training objective is to predict tokens correctly within
each block, aggregating losses across blocks to reduce gradient variance and stabilize optimization.
Accordingly, we introduce a new loss term, progressive consistency loss, which optimizes pθ under
the progressive noise schedule in Eq. 7:

Lpc =
1

N

N∑
i=1

DKL
(
pθ−(y∗

Bi
| x,yt1

B1
, . . . ,y

ti−1

Bi−1
)
∥∥ pθ(y

ti
Bi
| x,yt1

B1
, . . . ,y

ti−1

Bi−1
)
)
. (8)

AR Loss. Kou et al. (2024) notes that using only the consistency loss (Eq. 5) must be supplemented
with an AR loss to maintain generation quality. Our preliminary experiments show that using only
the consistency objective (Eq. 8) produces the same effect. This motivates our inclusion of a con-
ventional AR loss term in the final training objective to safeguard output quality:

L(θ) = Lpc + wLAR (9)

where w is a tunable weight that balances the two learning objectives.

Noise-aware Causal Attention. In CLLM, loss from each training step is computed based on
KL divergance from one block instance in Eq. 5. This learning objective is to train correct token
prediction in the setting where there is only a big block (Eq. 6). Moreover, in both Eq. 5 and Eq. 8,
the loss term computation involves two forward passes using a conventional causal mask since each
involves a distinction sequence. As a result, it requires O(2N) forward passes to compute all loss
terms in Eq. 8 and O(N) backward passes to compute gradients, resulting in low training efficiency,
especially in settings like CoT generation for reasoning models. We reduce the number of forward

4
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accepted tokens noisy tokens fixed point segments  

         1:

         2:

         3:

         4:

         5:

         6:

    Rejection-
recycling helps 
me solve faster!

Figure 2: Visualization of pcLLM’s trajectory under vanilla Jacobi decoding. The figure shows a
partial segment of the trajectory. Blue tokens denote accepted tokens that match the fixed point at
their positions. Black tokens denote unconverged noisy tokens, and we highlight them in red if more
than three consecutive tokens match the fixed point regardless of position.

and backward passes from O(N) to O(1) by introducing a sequence packing technique and a block-
wise sparse attention mask. We illustrate the sequence packing that interleaves yti

bi
and y∗

bi
for

the entire complete sequence in Figure 1b for Lpc computation, in contrast with conditioning each
unconverged ybs only on clean tokens for consistency distillation with Lc in Figure 1a.

Progressive Distillation for Larger Block Sizes. In training pcLLM on Jacobi trajectories prepared
from the original AR model, we find model speedup scales with the number of training steps and
saturate at around 400k steps. We find that collecting additional rounds of Jacobi trajectories from
intermediate checkpoints empowered with multi-token prediction capability and train the models
on new trajectories with progressively larger block sizes can break the ceiling and further improve
model speedup by up to 20%, yet with a slight degradation of model performance.

3.2 INFERENCE OPTIMIZATION

Jacobi Decoding Behavior of pcLLM. pcLLM is trained to have a stronger capability of generating
correct future tokens conditioning on noisy tokens. Qualitative analysis in Figure 2 illustrates that
it indeed brings the quality improvement: fixed-point segments emerge within the noisy tokens of
the unconverged point. Furthermore, these segments progressively extend (e.g., the number of red
tokens increases from point 1 to point 2 in Figure 2), even under noisy context, consistent with our
training patterns. In this section, we focus on how to translating this qualitative observation of draft
quality improvement into qualitative speedup.

Rejection Recycling. Prior work has shown that n-grams produced during Jacobi iterations can be
verified in parallel and reused in subsequent iterations (Fu et al., 2024). As illustrated in Figure 2,
such n-gram sizes could be large in pcLLM, and if correctly verified many tokens can be fast-
forwarded in one iteration. In particular, we initialize a fixed-size n-gram pool by collecting noisy
token sequences from unconverged points during Jacobi decoding. If the pool contains an n-gram
matching the last accepted token of the current point, we concatenate its subsequent tokens to form
new candidates (line 11 in Algorithm 1). At each iteration, we select the candidate with the most
accepted tokens. For instance, this strategy enables skipping from point 3 to point 5 in Figure 2, as
the fixed-point segments in point 3 yield higher-quality candidates.

n-gram 

pool

<bos> Implement bubble sort def bubble _ \n arr( arr range

 j 

block 0 block 1

accepted

commit KV

real-active block 

threshold reached;

spawning new block

 j  + 1

<bos> Implement bubble sort def bubble _ sort

accepted

commit KV

arr( arr \n

pseudo accepted

j  + 2

<bos> Implement bubble sort def bubble _ sort arr( ) :

accepted

commit KV

prompt

n-gram matching 

and parallel verif ication

n-gram caching

committed tokens 

with KV cache

real-accepted tokens pseudo-accepted tokens rejected tokens

iteration 

index

...

Figure 3: An example of multiblock decod-
ing with rejection recycling at prompt length
= 4, block size = 4, r = 0.5, K = 2.

Multi-block Decoding. In addition to high-quality
n-grams in the draft, we also observe the increasing
number of stationary tokens, which are correctly pre-
dicted with preceding noisy tokens and remain unal-
tered through subsequent iterations. Together they
yield higher quality drafts. To make use of the prop-
erty, we introduce multi-block decoding, a new de-
coding paradigm that maintains and refines up to K
blocks simultaneously. It marks the block closest to
the effective KV cache boundary as the real-active
block and all the other K−1 blocks as pseudo-active
blocks. Only tokens within the real-active block are
accepted and committed to KV cache. Tokens in
pseudo-active blocks are only pseudo-accepted, con-
ditioning on prior blocks; once converged, pseudo-
active blocks will wait until they are promoted as the
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Algorithm 1 MULTIBLOCK DECODING + REJECTION RECYCLING

1: Init: Create a set of blocks {b} with one real–active block RA: draft tokens qRA randomly
initialized, accepted tokens aRA = ∅ ; For all other blocks b, set qb = ∅, ab = ∅, and mark as
pseudo-active.

2: Initialize candidate pool N = ∅, spawn ratio r, threshold s = ⌈rn⌉, block size n.
3: while iters < max do
4: Assemble input y: Concatenate qRA, then for each pseudo-active b, append ab (no logits)

and qb (collect logits). Resize cache to batch y.
5: Forward: Run model pθ(y) to produce logits.
6: for each block b with span (start, L) do
7: Verification (with rejection-recycling): Greedy prediction g = argmax logits; accept

longest matching prefix of qb using g (or g ∪ N if b = RA); update ab.
8: if b = RA and EOS encountered in accepted region then
9: return committed output.

10: end if
11: Tail update: If partial accept, set qb ← [next∥gtail] (and if b = RA: push rejected tail to

update N and qRA); else qb ← ∅.
12: end for
13: Cache trim: Delete false KV to committed length: prompt + verified ab (all accepted

blocks) + aRA.
14: Spawn: If some block b reaches |ab| ≥ s and active {b} < K, clone and pad qRA to length

n and add as new pseudo-active block.
15: Promote: If |aRA| ≥ n, choose a pseudo-active b with |ab| > 0, rebuild its draft to length

n, mark as verified, set RA← b.
16: Stop: If all |ab| ≥ n or EOS emitted by RA, break.
17: end while
18: Finalize: Concatenate output = verified ab for all non-RA blocks, then aRA; trim KV cache C;
19: Return: (output, C, iters)

real active block, where all tokens will be verified again, but now with a higher-quality draft. A
detailed description is provided in Algorithm 1 (with rejection recycling) and with an example in
Figure 4b. Note that both rejection recycling and multi-block decoding are lossless as they employ
greedy rejection sampling for token acceptance in the real-active block (Leviathan et al., 2022).

4 EXPERIMENTS

4.1 EVALUATION SETTINGS

Models and Datasets. We evaluate pcLLM across coding benchmark. For coding benchmarks,
we train Qwen2.5-Coder-Insutrct (Hui et al., 2024) on OpenCodeInstruct (Ahmad et al., 2025) and
test on the HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021). On OpenCodeInstruct, we
curate question instances that come with generations that pass all unit tests, from where we use 450k
prompts for trajectory generation and training.

Training Settings. All training and inference are conducted on instances equipped with 8x NVIDIA
A100-80GB GPUs, and 8x NVIDIA H200 GPUs. All models are trained with learning rate lr=10−6,
max new sequence length at 2048. For pcLLM, we adopt linear progressive noise schedule, initial
block size at 16, window size at 16, and a second round of trianing with block size at 32, window
size at 8. Ablation studies on parameter choices are presented in Section 4.3.

Baselines. Our main objective in this section is to compare performance and efficiency between
diffusion-based parallel decoders and AR-based parallel decoder, pcLLM. The dLLM baselines,
also have the capability of generating a single block of tokens or multiple consecutive blocks of
tokens together. Specifically, we compare pcLLM with state-of-the-art (SOTA) dLLMs including
LLaDA-7B (Nie et al., 2025b), Dream-7B (Ye et al., 2025), fast-dLLM (Wu et al., 2025a) and
D2F (Wang et al., 2025). We also compare pcLLM with AR-based parallel decoder including vanilla
Jacobi decoding (Santilli et al., 2023) and CLLM (Kou et al., 2024). In this work, we do not focus

6
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Table 1: Performance and efficiency on coding benchmarks, HumanEval and MBPP, grouped by de-
coding family. For AR-based models, all methods adopt Qwen2.5-Coder-7B-Instruct. For pcLLM,
MR stands for employing the multi-block and rejection-recycling decoding algorithm introduced in
Algorithm 1. DC stands for using bi-directional dual cache from fast-dLLM. For both Fast-dLLM
and D2F, we choose the Dream-7B as it’s significantly faster with similar or better performance
than LLaDA-7B. For CLLM*, we follow mostly the same recipe in CLLM but with new sequence
packing technique (without progressive training on larger block sizes). The speedup ratio is relative
to the AR baseline.

Benchmark Family Method TPS ↑ Speedup↑ Accuracy↑ Param Size (B)

HumanEval

AR-based

AR 41.3 1.00× 87.9 7
Jacobi 39.9 0.97× 87.9 7
CLLM* 103.3 2.50× 88.0 7
pcLLM 147.6 3.57× 84.8 7
pcLLM (MR) 149.3 3.62× 84.8 7

Diffusion-based

LLaDA-Instruct 2.8 0.07× 36.0 7
Dream-Base 20.2 0.49× 54.3 7
Fast-dLLM (DC) 60.0 1.45× 53.0 7
D2F 73.2 1.77× 54.3 7

MBPP

AR-based

AR 43.1 1.00× 74.3 7
Jacobi 42.4 0.98× 74.3 7
CLLM* 80.1 1.94× 71.4 7
pcLLM 90.4 2.10× 73.4 7
pcLLM (MR) 106.3 2.47× 73.4 7

Diffusion-based

LLaDA-Instruct 0.9 0.02× 39.0 7
Dream-Base 10.4 0.24× 56.2 7
Fast-dLLM (DC) 73.2 1.70× 51.0 7
D2F 105.0 2.44× 55.2 7

on speculative decoding methods, because the models themselves don’t serve as parallel decoders
without supplemental architecture modifications (e.g. via additional heads) (Cai et al., 2024; Li
et al., 2024b;c; 2025) or separate draft models (Leviathan et al., 2022; Liu et al., 2024).

4.2 RESULTS

Table 2: Speedup on HumanEval tested on H200
using same settings and speedup ratio over A100.

Method TPS ↑ Speedup↑ r (vs. A100)

AR 65.4 1.00× 1.00
Jacobi 63.0 0.96× 1.00
CLLM* 151.3 2.31× 0.92
pcLLM 235.3 3.60× 1.01
pcLLM (MR) 258.3 3.95× 1.09

Performance. The performance metrics are
the greedy generations’ strict accuracy (pass@1)
on HumanEval and MBPP. Table 1 compares
pcLLM with both dLLMs and Jacobi decod-
ing baselines. On A100 GPUs, our results
show that on both benchmarks, pcLLM consis-
tently achieves both better accuracy and better
speedup at the same parameter scale. In partic-
ular, for structured generations like Python cod-
ing, pcLLM achieves 3.6× speedup in compari-
son with the AR baseline, 53.3 ∼ 7.4× speedup comparing to dLLM baselines, and 2.0× comparing
to optimized dLLM baselines including Fst-dLLM and D2F with techniques like adding block-wise
KV cache, bidirectional KV cache and pipelined parallel decoding. For speedup evaluation, we run
all evaluations with block size at 128 except for pcLLM (MR) since MR takes extra FLOPs for
multiblock decoding and parallel verification. We also present speedup comparison across different
AR-based techniques with pcLLM on H200 in Table 2 as it comes with a better fast-forwward count
to TPS conversion rate with mroe compute on H200.

4.3 ABLATION STUDY

Block sizes. In this section, we analyze how block size impacts speedup for vanilla Jacobi decoding
and multiblock decoding using pcLLM. As shown in Figure 4a, modern GPUs can sustain large
block sizes without increasing end-to-end latency compared to the AR baseline. On H200 GPUs,
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(a) Speedup vs. (log-scaled) block size at fixed fast-
forwarding count per iteration on NVIDIA H200 GPU,
using Jacobi decoding at prompt length = 128, gener-
ation length = 256.

(b) fast-forward count vs. block size on Hu-
manEval using three decoding strategies on
NVIDIA H200 GPU. Notice larger block size
provides more fast-forward token count for
multi-block decoding with rejection recycling.

Figure 4: Effect of block size choices on fast-forward counts and wall-clock speedup under different
settings. We choose the maximum block size on hardware without sacrificing wall-clock speedup.

Table 4: Inference results for block size = 256 with N = 16, tmin = 0.0 and tmax = 1.0. Acc.
= pass@1 accuracy (%) on HumanEval. The checkpoints are trained with Qwen2.5-Coder-7B-
Instruct on 10k randomly sampled instances from our OpenCodeInstruct trajectory dataset. Notice
that for ablation purpose, the checkpoints are not trained with full datascale as in Table 1. Reverse
progressive is significantly worse than other schedule and we only conduct ablation for one choice
of window size.

Window Size Random Linear Progressive Reverse Progressive

Acc. iter/token Acc. iter/token Acc. iter/token

8 82.9 0.53 84.7 0.48 – –
16 83.5 0.51 81.7 0.46 82.9 0.62

when the number of tokens accepted per iteration with pcLLM are fixed at 2, 3, 4, 5, Jacobi decoding
with block sizes up to 64 incurs no latency penalty, and only minor degradation arises at block size
128, particularly in the high fast-forwarding count regime.

Table 3: Effects of applying noise-conditioned
mask (NC) or noise-conditioned mask with intra-
window clean context (NC-IC) for pcLLM train-
ing, and evaluated on HumanEval with A100.

Method Speedup↑ Acc.

NC 3.6× 82.3
NC-IC 1.9× 82.3

With varying block sizes, we apply multi-block
decoding using pcLLM and the results are pre-
sented in Figure 4b. The running window
method is an optimized variant of Jacobi decod-
ing designed for settings where many tokens are
accepted per iteration. It maintains a fixed-size
active block by replenishing draft tokens to the
original block size as accepted tokens are com-
mitted to the KV cache. The results demonstrate
that multi-block decoding with rejection recy-
cling consistently achieves the highest number
of fast-forwarded tokens per iteration, particularly in the larger block-size regime.

Noise schedules. We evaluate three types of noise schedules: random, linear progressive, and re-
verse progressive. In the random schedule, the noise step ti for each block is sampled uniformly
as ti ∼ U(1, . . . , N) during sequence packing in pcLLM training. The linear progressive schedule
follows Eq. 7, while the reverse progressive schedule applies a linearly decreasing noise ratio from
1 to 0 within each window. Results in Table 4 show that the linear progressive schedule significantly
outperforms the other two when the window size is 8. Intuitively, with N = 16, this schedule corre-
sponds to adding noise more aggressively across blocks within each window, roughly two additional
noisy tokens per future block, until the final block where all tokens are noisy.
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Mask types. We train pcLLM on the objective in Eq. 8 with noise-conditioned mask implementation
(Figure 1b). An alternative implementation of the mask is to condition all blocks within a window
on clean context. In other words, for every query, it sees blocks from all proceeding windows as
of Figure 1a]), and all blocks within its own window as of Figure 1b. Intuitively, it makes token
predictions in later windows and blocks easier to learn because now they are conditioned on cleaner
context. We summarize results in Table 3, where it shows noise-conditioned mask is more effective
in empowering pcLLM with speedup while maintaining generation quality.

5 RELATED WORK

Diffusion-based Large Language Models (dLLMs) represent an new paradigm that challenges tra-
ditional autoregressive (AR) modeling by replacing left-to-right causality with iterative denoising,
enabling parallel multi-token generation (Li et al., 2024a; Nisonoff et al., 2024; Schiff et al., 2024).
Closed-source dLLMs (e.g., Gemini Diffusion (Google DeepMind, 2025; Inception Labs, 2025;
Song et al., 2025b)) show huge throughput improvement while maintaining competitive code and
text quality, underscoring better accelerator utilization. On the open-source side, community dLLMs
with released code and weights delivered strong throughput and controllability via parallel iterative
denoising, yet remaining less efficient than autoregressive decoding (Ye et al., 2025; Zhu et al., 2025;
Nie et al., 2025a; JetAstra, 2025; Gong et al., 2025). Recent efforts (Arriola et al., 2025; Wu et al.,
2025a; Liu et al., 2025) further push the efficiency and scalability of dLLMs.

Jacobi decoding reframes AR generation as a parallel fixed-point update over all positions, with con-
vergence linked to greedy AR, and has been instantiated using Jacobi (Gauss-Seidel) iterations (Song
et al., 2021; Santilli et al., 2023). Building on this, follow-ups either refine the decoding procedure
or train models as parallel decoders to exploit parall: CLLMs (Kou et al., 2024) fine-tune LLMs
with consistency distillation to predict multiple correct tokens per iteration and speed convergence;
CEED-VLA (Song et al., 2025a) brings the similar idea to robotics. Other strands adapt Jacobi
to new regimes, including FastCoT (Zhang et al., 2023) for reasoning with parallel CoT updates,
Speculative Jacobi Decoding (Teng et al., 2024) for sampling in AR Test-to-Image, and MSN, TR-
Jacobi (Wang et al., 2024) that injects denoising training and a retrieval-augmented Jacobi strategy.

Speculative decoding speeds up AR generation by letting a lightweight drafter propose several future
tokens and having the target model verify them in one pass (Leviathan et al., 2022; Chen et al., 2023).
It preserves the target model’s distribution while reducing latency. Subsequent work improves pro-
posal quality and verification efficiency: online speculative decoding (OSD) (Liu et al., 2024) adapts
draft models to user query distributions via continual distillation, substantially improving token ac-
ceptance and reducing inference latency. Medusa (Cai et al., 2024) adds multi-head drafters to the
base LM to produce verify-able token blocks; EAGLE, EAGLE-2 (Li et al., 2024b;c) reuse target
features for feature-level drafting, and EAGLE-3 (Li et al., 2025) scales this idea with multi-layer
fusion. Lookahead Decoding (Fu et al., 2024), PLD (Saxena, 2023; Somasundaram et al., 2024), and
REST (He et al., 2023) dispense with a separate drafter, instead synthesizing speculative candidates
directly from context or future tokens.

6 CONCLUSION

In this work, we propose a progressive distillation technique for training AR models as faster and
more accurate parallel decoders compared to dLLMs. Unlike CLLM (Kou et al., 2024), which
directly trains models to predict large blocks of tokens in parallel, our approach introduces a pro-
gressively more difficult learning objective. This is achieved through a progressive noise schedule,
combined with a sequence packing strategy and a noise-aware causal mask, enabling parallel token
prediction conditioned on noise. The model is further improved through iterative training, where
trajectories are regenerated with progressively larger block sizes. The resulting model, pcLLM,
achieves a 3.6× speedup while largely preserving accuracy. Analysis of its generated trajectories
shows that pcLLM produces high-quality draft tokens toward the tail of sequences. In addition, we
introduce rejection recycling and multi-block decoding, which together brings tokens accepted per
iteration to 4.2× as high with nearly 4× speedup on HumanEval using an H200 GPU.
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