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Abstract

Automated driving (AD) systems require rigorous testing
to ensure safety and robustness, especially in corner-case
scenarios, before real-world deployment. Deep reinforce-
ment learning (DRL) is a promising approach for decision-
making in AD, enabling dynamic learning through trial and
error. Adversarial agents can be used to expose DRL sys-
tems to critical corner-cases, but reward functions solely
opposing the AD agent’s objectives can lead to unrealis-
tic behaviors, such as overly incentivizing crashes. This
paper explores an automated parking (AP) scenario where
an adversarial agent disrupts a parking agent exiting an
adjacent slot—a common but under-explored corner-case
challenge. We propose a more balanced adversary reward
function, aiming for realistic yet disruptive behavior com-
pared to the baseline approach. The results show promis-
ing improvements in correspondence with the operational
design domain (ODD) of AP systems, encouraging further
investigation into system performance after several victim-
adversary training iterations.

1. Introduction

Development of automated driving functions (ADFs) face
compelling challenges, primarily due to strict requirements
in safety and security [5] in heterogeneous decision-making
contexts [7], [6]. A significant application case is Au-
tomated Parking (AP) [10], a system that autonomously
drives a vehicle in a target parking slot.

Recent works focus on assessing and strengthening the
robustness of AD systems in safety-critical, yet realistic
challenging scenarios. This evaluation problem has been re-
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Figure 1. Overview of the proposed method. Trajectories of victim
(green) and adversarial (red) agents in (a) the baseline and (b) ours.
The adversarial agent in (a) intentionally chases the victim agent
and makes a collision, while the one in (b) blocks the victim from
reaching the target parking slot.

cently tackled by iterative search of adversarial trajectories
(i.e., aimed at disrupting the functionalities of an AD sys-
tem) and realistic scenario generation [8], also in the DRL
context [4]. The idea of DRL-based adversarial policies has
been introduced in zero-sum games between simulated hu-
manoid robots [3]. Here, the victim agent is a DRL model,
pre-trained through self-play and then frozen. To effectively
investigate challenging scenario adaptation in AD, Chen et
al. [1] achieve promising results by guiding a fleet of adver-
sarial vehicles through non-zero-sum assumption and intro-
ducing a traffic law-guided reward function to generate re-
alistic trajectories in a lane-change scenario.

This manuscript investigates the generation of an ef-
fective adversarial policy to validate the performance of a



DRL-based AP system in simulation contexts. Fig. 1 de-
picts a simplified overview of the proposed method. This
approach aims to smooth out a basic adversarial strategy ob-
tained through a reward function that is the plain negation
of the reward intake of the AP agent.

The main contributions of this paper include: (i) we in-
vestigate an AP scenario in which one of the parked ve-
hicles (i.e., the adversary) is exiting from its parking slot
while another (i.e., the victim) is entering an adjacent slot
(ii) we introduce a safety-guided training procedure for the
adversary to induce a balanced trade-off between realistic
and adversarial behavior; (iii) we demonstrate the benefit of
the proposed adversarial training by comparing the trajecto-
ries generated by the AP agent before and after the deploy-
ment of the policy fine-tuned through the interaction with
the adversary.

2. Method
We deploy a pre-trained DRL-based AP model derived from
previous work as our victim. The details of its training and
testing procedure, are reported in [6]. The initial parking
scene is populated by environment vehicles (Es) and a vic-
tim vehicle (V ) We define the complete state of the environ-
ment as S = Dn, where Dn refers to the position, longitu-
dinal and lateral acceleration, speed and angular velocity of
all vehicles in the scene.

2.1. Adversarial policy learning

To assess the robustness of the presented victim model in
a realistic and challenging scenario, we propose to learn
an adversarial policy that disrupts the functionalities of the
parking agent, simulating a situation in which the parking
agent tries to park in the designated parking slot while an-
other agent is exiting from an adjacent one. Therefore, we
set the starting point of the adversarial agent to be one of
the slots near to the victim agent. Fig. 2 depicts the pro-
posed DRL-guided pipeline. The training agent is just the
adversary, while the frozen victim is treated as part of the
environment. In this context, the observable state space of
the adversarial agent is defined by the tuple:

OA = {dist(V, tgt), dist(A, V ), DA}, (1)

where dist(V, tgt) and dist(A, V ) are the Euclidean dis-
tance between the victim agent and the target position and
between the victim agent and the opponent position, re-
spectively. DA refers to the subset of the complete state
S, only containing the features describing the adversarial
vehicle. Regarding the adversarial action space, we define
AA = throttle, brake, steering angle, reverse, the same as
for V [6]. In this context, we deploy the Proximal Pol-
icy Optimization (PPO) algorithm [9]. By iteratively ad-
justing the policy parameters based on a clipped surrogate

objective, it strikes a balance between exploration and ex-
ploitation while maintaining stability and dependable per-
formance.

2.2. Adversarial reward

To obtain a successful adversarial policy against our pre-
trained victim, the underlying structure of the reward signal
RA must be designed to be disruptive to the victim policy,
whose objective is defined by RV . Existing work [3], learn
adversarial policies by formulating the problem as zero-sum
game, which can be directly modeled as:

RA = −RV (2)

Although this baseline approach may produce highly dis-
ruptive adversarial policies, they are not realistic and do not
translate to the safety-critical scenario of automated driv-
ing. Deploying the zero-sum adversarial reward function
can lead to undesired and overly aggressive adversarial be-
haviors. Inspired by [1], we relax the zero-sum assumption
and add a regularization reward Rrs, expanding Eq. 2 as:

RA = −RV +Rrs, (3)

where Rrs encourages the adversarial policy to generate re-
alistic and safety-driven trajectories by penalizing the colli-
sion (Rr) and the blocking of the parking area (Rs):

Rrs = Rr +Rs (4)

To limit the disruptive adversarial collision strategy, the
learning agent is penalized through a sparse contribution,
Rr, in the following way:

Rr =

{
−1, for A collision,
0, otherwise.

(5)

Because of the large time horizon faced by the learning
agent during a training episode, we add the dense contribu-
tion Rs which is given at every simulation step. We define
this term as:

Rs =

{
−0.05, if A is in Artgt,

0, otherwise,
(6)

where Artgt refers to a predefined area, dynamically chang-
ing a position based on the location of the current target
parking slot, as depicted in Fig. 2. Rs is introduced to pre-
vent A from physically obstructing the victim’s target park-
ing slot.

3. Experimental results
The experimental part of the proposed work is conducted
using the CARLA [2] simulator, an open-source software
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Figure 2. Proposed adversarial policy training pipeline and environment. Adversarial and victim action spaces are continuous: {throttle,
brake, steering angle, reverse}. Both observations OV and OA are given as a sequence of N observations at a time for the current state
st and the previous [st−1, · · · , st−(N−1)] states of the environment. For our experiments N = 5. The scene includes the victim agent
(green), adversarial agent (orange), and a static environment vehicle (red), parked next to the target. The green dot is the target parking
slot, and the green rectangle is Artgt, in Eq. 6.

Table 1. Victim model robustness evaluation over 1000 episodes.
The model is evaluated by measuring the success rate, mean align-
ment error (Aerr), expressed in degrees, and the mean number of
reverse gear changes per episode (Nrev).

Environment Success rate Aerr Nrev

Training 97% 4.41 1.61
Random agent 96% 6.35 1.71

Baseline Adversarial 9% 45.02 2.64
Safe Adversarial 32% 44.24 2.21

featuring realistic vehicle and environment dynamics, cre-
ated to support the development of AD systems. Fig. 2
depicts the environment setup, populated by V (in green)
along with a static E and A (in orange), both parked close
the target. The green dot marks the target parking slot, the
green rectangle refers to Artgt, in Eq. 6.

For the experimental settings, we deployed the pre-
trained victim parking model, reaching a final success rate
of 97% , in a scenario with 0-2 Es, parked around the ran-
domly changing target location. Here, a parking attempt is
considered successful if V reaches the target tgt. Alterna-
tively, the episode terminates when a timeout occurs after
120 seconds or if V collides with any object or vehicle in
the scene. At each episode, the alignment of the target is
randomized as well, between front and rear parking.

3.1. Victim policy

We first evaluated the efficacy of our initial adversarial pol-
icy, trained with the reward function described in Eq. 2. The
goal is to assess the robustness of the victim policy to ex-
treme, not-safe-guarded attacks by A and generate a base-
line to compare with a more realistic adversary. Table 1
shows the evaluation parameters for V in the scene. In this
context, we do not explicitly report the collision rate of V ,

Table 2. Effect of Rrs. The model is evaluated by measuring the
mean number of overall collisions (Call) and collisions with E or
the walls (CE), collision rate against V (CRV ), and the mean of
time steps when A is in Artgt (Tblock). The scores are the average
of 1000 episodes.

Reward (RA) Call CE CRV Tblock

−RV 2.1 1.55 87% 9.43
−RV +Rrs 0.84 0.26 62% 0.71

as it is simply the complement of the success rate, as no
episode timeout was observed in the test phase. We tested
the scenario for 1,000 episodes in the original training en-
vironment, along with a random agent and both against the
baseline and a safe As. The success rate, alignment error
and the number of gear changes shows how the adversary
is able to disrupt the normal victim capabilities when com-
pared to the non-adversarial environment. However, Fig. 3a
shows that the sample adversarial trajectory generated by
this preliminary phase is not indicative of a true failure of V
policy, since the adversary’s behavior neglects safety. The
goal of A is solely achieved through physical target block-
ing and by actively seeking a direct collision with V , which
is also reflected by the metrics presented in Table 2. This be-
havior would not be regarded as realistic in the AD context
and is completely outside the ODD of a typical AP system.
This spurred us to seek a finer reward.

3.2. Adversarial policy

To enhance the adversary behavior in terms of realism w.r.t.
a typical AP system ODD, we introduced the Rrs safety
term, presented in Eq. 3, to the training procedure of A.
We did so by loading the pre-trained model weights from
the first purely adversarial phase and continuing the train-
ing procedure after adding the Rrs contribution. We then,
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Figure 3. Trajectories of the victim (green) and adversarial (red) agents using the baseline (a) and the proposed (b) adversarial policy. The
green dot is the parking target. (a) shows the adversarial agent simply blocking the parking slot, making the victim’s parking impossible,
while (b) shows the adversarial agent not intentionally colliding with the victim but exiting the parking slot.

again, evaluated both V and A policies simultaneously. Re-
sults are reported in both Table 1 and 2. When compared
to the results of the first adversary, the re-trained A dras-
tically reduced the mean number of collisions per episode
against V and Es and walls surrounding the parking envi-
ronment. The new adversarial policy also guided the ve-
hicle outside of Artgt and avoided target blocking com-
pletely. This results suggest that the behavior exhibited by
A is more safety-aware and more realistic overall. This is
also visible from the generated sample trajectory, shown in
Fig. 3b, where A limits its disruptive behavior by exiting
the parking slot at a certain angle, depending on the initial
simulation scene, and then braking. This behavior allows to
assess the response of V , which often led to a policy failure
and not seldom to a collision caused by itself rather than
actively by A, highlighting gaps on V generalization capa-
bility in such challenging scenarios. This is also confirmed
by the collision rate of V , which is significantly higher than
in the non-adversarial testing environment. Table 1 shows
that, the change in the adversarial policy led V to have a
higher success rate and lower collision rate then the base-
line, which is negative from the adversary’s point of view.
However, the generated adversarial behavior and trajecto-
ries are more realistic, as shown by the analysis of both the
metrics presented in Table 2 and the trajectory reported in
Fig. 3b, and can be accounted for when deploying such end-
to-end AP system in a real-world scenario.

4. Conclusion

This study applied a DRL-based framework to implement
a safety-aware, realistic adversarial policy in an AP con-
text, effectively uncovering vulnerabilities in the system un-
der real-world, safety-bounded adversarial conditions that
mimic corner-case scenarios. Such integration serves as a
first step towards making AP systems more robust against
potential corner cases, thus extending their ODD. However,
the current adversarial behavior and corner-case generation
system presents some limitations. For instance, the pro-
posed scenario is limited to the interaction between the ego
vehicle and a single adversarial vehicle agent. This is in-
sufficient to properly model the variety of situations that

could lead to victim failure cases. Moreover, the behavior of
the adversarial agent is limited to exiting an adjacent park-
ing slot, which limits the variety of the generated corner-
case scenarios. To expand the investigation domain, future
work will, therefore, include multi-agent systems composed
of several vehicle and non-vehicle (e.g. pedestrian) agent
guided by an adversarial policy. Furthermore, a proper as-
sessment of the overall system’s capabilities (also in com-
parison to other corner-case generation techniques) will re-
quire several iterations of victim and adversary model re-
training.
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