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ABSTRACT

State adversarial perturbations –such as sensor noise, environmental interference,
or targeted attacks– are common in real-world systems, often leading to compro-
mised state observations. Despite this, Inverse Reinforcement Learning (IRL) in
the context of State-Adversarial Markov Decision Processes (SA-MDPs) has re-
ceived limited attention, primarily because conventional notions of optimality do
not apply. In this paper, we introduce a novel definition of optimality that ensures
the existence of an optimal policy within SA-MDPs. Building on this foundation,
we propose the State-Adversarial Max-Margin IRL (SAMM-IRL) algorithm, de-
signed to be robust against state perturbations. Our theoretical analysis, supported
by empirical validation, demonstrates that SAMM-IRL significantly enhances IRL
performance in adversarial environments, providing a robust framework for real-
world applications that demand resilience.

1 INTRODUCTION

Many real-world systems, such as autonomous vehicles and robotics, are vulnerable to disruptions in
their sensory data, whether caused by environmental factors such as noise or deliberate adversarial
attacks. These state adversarial perturbations distort the agent’s perception of the environment, re-
sulting in compromised decision-making. In such settings, standard learning approaches, including
Inverse Reinforcement Learning (IRL), struggle to maintain performance because they rely on the
assumption of accurate state observations. This challenge is particularly critical in safety-sensitive
applications, where even small errors in state estimation can lead to significant risks.

Traditional IRL methods have been successful in recovering reward functions and replicating ex-
pert behavior. While some state-of-the-art approaches can handle limited static noise, they are not
equipped to deal with dynamic adversarial perturbations that actively interfere with state obser-
vations. This makes these methods vulnerable when such assumptions are violated by adversarial
forces. Our work focuses on State-Adversarial Markov Decision Processes (SA-MDPs) as formal-
ized by Zhang et al. (2020), where adversaries perturb state observations. This setting presents a
challenge, as a policy that is optimal for one initial state may become suboptimal for another. To ad-
dress this, we introduce Resilient State Optimality (RSO), which redefines optimality by maximizing
the expected value across initial state distributions under adversarial conditions. This guarantees the
existence of robust policies, even under worst-case adversarial perturbations, enabling more resilient
policy recovery.

Building on this foundation, we propose State-Adversarial Max-Margin IRL (SAMM-IRL), a novel
algorithm that extends the Max-Margin IRL framework (Abbeel & Ng, 2004) to address the chal-
lenge of robust IRL under adversarial environments. We provide theoretical performance guarantees
for policies learned by SAMM-IRL, and our empirical results demonstrate effectiveness in adver-
sarially perturbed environments.

2 RELATED WORK

IRL has been extensively studied as a method to infer reward functions from expert demonstrations,
allowing agents to learn in environments without explicit rewards. Ng & Russell (2000) laid the
foundation for IRL by recovering reward functions from observed expert behavior. Max-Margin
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IRL (Abbeel & Ng, 2004) improved this by focusing on feature expectation matching, addressing
under-determination in reward recovery. However, these methods assume stable environments with
accurate observations, making them vulnerable to adversarial attacks on state observations.

Several approaches have been proposed to address adversarial challenges in Reinforcement Learning
(RL). Robust Adversarial Reinforcement Learning (RARL) (Pinto et al., 2017) modeled the inter-
action between agent and adversary as a two-player Markov game, where the adversary can modify
environment parameters. Zhang et al. (2020) formalized SA-MDPs and demonstrated that an opti-
mal policy may not exist under dynamic adversarial perturbations, proposing methods to improve
robustness against a fixed adversary. Their follow-up work (Zhang et al., 2021) explored learned ad-
versaries actively perturbing state observations during training, improving robustness despite lacking
convergence guarantees.

Recent IRL methods, such as Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon,
2016) and Adversarial Inverse Reinforcement Learning (AIRL) (Fu et al., 2018), use adversarial
training frameworks inspired by Generative Adversarial Networks (GAN) to enhance policy imita-
tion and reward recovery. However, both GAIL and AIRL assume assume relatively accurate state
observations, leaving them vulnerable to adversarial manipulations that target the agent’s perception
of the environment.

In contrast, our work leverage RSO as a framework that guarantees the existence of optimal policies
in SA-MDPs, enabling the development of both RL and IRL methods that can withstand adversarial
manipulation of state observations. Building on this, we propose SAMM-IRL, which adapts Max-
Margin IRL to the SA-MDP framework, providing theoretical guarantees for robust policy and re-
ward recovery under adversarial conditions. Empirical results demonstrate significant improvements
in adversarial environments, positioning SAMM-IRL as a robust alternative to existing methods.

3 BACKGROUND

In the following, we first briefly review the MDP framework, followed by the traditional IRL prob-
lem, and then review the Max-Margin IRL algorithm from Abbeel & Ng (2004) to solve the afore-
mentioned IRL problem for MDPs. This will provide insights on how to address the IRL problem
under state adversarial perturbations.

3.1 MARKOV DECISION PROCESS

An MDPM is defined by a tuple (S,A, R, P, P0, γ) where S the set of states, A the set of actions,
R the reward function, P the state transition distribution, P0 the initial state distribution, and γ the
discount factor. Given an initial state S0 = s, the performance of a policy π is measured by the
expected discounted return, defined by the state-value function Vπ(s).

Vπ(s) = E
St+1∼P (·|St,At)

At∼π(·|St)

[
∞∑
t=0

γtR(St, At, St+1)

∣∣∣∣S0 = s

]
. (1)

The goal is to find a policy that maximizes the state-value function in every state. Formally, π∗ is an
optimal policy for a given MDP if and only if

Vπ∗(s) ≥ Vπ(s), ∀s ∈ S, ∀π. (2)

3.2 INVERSE REINFORCEMENT LEARNING

The seminal IRL problem includes an MDP without a reward function, i.e., M/R, and an expert
policy πE demonstrated through trajectories D = {τ1, . . . , τm}, where each τi includes state-action
pairs (st, at). The challenge is to infer the unknown reward function Rw, parameterized by an
unknown reward weight vector w ∈ Rk, from D.

For tractability, we use linear reward functions, i.e., Rw(s, a, s′) = ⟨w, ϕ(s, a, s′)⟩, where ϕ ∈ Rk

represents the features of the state-action pair: ϕ : S × A × S → [0, 1]k. For state-only rewards,
the feature function becomes ϕ : S → [0, 1]k. The feature expectation under a policy π is defined
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as µπ(s) = Eπ

[∑∞
t=0 γ

tϕ (St, At, St+1)
∣∣∣S0 = s

]
. Thus, the expected discounted return, or the state-

value function Vπ(s), can be expressed as

V w
π (s) = E

St+1∼P (·|St,At)
At∼π(·|St)

[
∞∑
t=0

γtRw(St, At, St+1)

∣∣∣∣S0 = s

]
= ⟨w, µπ(s)⟩. (3)

The goal of the IRL problem is to find the reward weights w that maximize the Eq. 3, i.e.,
w∗ = argmaxw V w

π (s). Having the optimal weights w∗, we can then find the optimal policy π∗

that satisfies Equation 2 as π∗ = argmaxπ V w∗
π (s).

3.3 MAX-MARGIN IRL ALGORITHM

The Max-Margin IRL algorithm for MDPs begins by estimating feature expectations for an initial
policy. It iteratively finds a reward function that maximizes the margin, the difference between the
expert’s feature expectations and those from the current and previous policies. This margin adjusts
the reward weights and the policy is updated accordingly. This process repeats, refining both the
reward function and the policy until the margin is sufficiently small, resulting in a policy that closely
approximates the expert’s behavior. The procedure is detailed in Algorithm 1.

Algorithm 1 Max-Margin Algorithm for Apprenticeship Learning in MDPs

1: INPUT: Expert trajectories {τk
E}mk=1

2: Calculate expert’s feature expectations µE

3: Initialize: Randomly pick an initial policy π(0)

4: Calculate the feature expectations µ(0) of the initial policy
5: Set iteration counter i = 1
6: repeat
7: Compute w(i) = argmax

w:∥w∥2≤1

min
j∈{0,...,i−1}

wT (µE − µ(j))

8: Compute the optimal π(i) with R = w(i)Tϕ using Equation 2
9: Generate new trajectories and calculate µ(i)

10: Increment iteration counter i = i+ 1
11: until ∥µE − µ(i)∥2 ≤ ε

12: OUTPUT: Last policy π(iε) and weight w(iε)

In step 7 of Algorithm 1, we compute the unit normal vector w(i) defining the hyperplane that max-
imally separates µE from µ(0), . . . , µ(i−1). This involves solving a min-max optimization problem
to find a vector w(i), which maximizes the minimum distance between the feature expectations of
the expert’s policy µE and the feature expectations of other policies {µ(j)}i−1

j=0. The key assumption
is that the expert policy πE is optimal under condition (2), implying that for weight vector w(i), we
have w(i)T · µE > w(i)T · µπ for all other policies π.1

4 STATE-ADVERSARIAL MDPS AND SAMM-IRL ALGORITHM

An SA-MDP extends the MDP framework by introducing an adversary that perturbs the
agent’s observations of the environment. Formally, an SA-MDP defined by the tuple M̃ =
(S,A, B,R, P, P0, γ), which extends the standard MDP by introducing an additional mapping
B : S → 2S , where 2S represents the power set of S (Zhang et al., 2020). An adversary ν maps the
actual state s to a perturbed state ν(s) ∈ B(s). The perturbation set B(s)2, restricts the adversary to

1This inequality arises because the expert’s expected return under w(i) exceeds that of any other policy,
placing µE outside the convex hull of the feature expectations {µ(j)}i−1

j=0 of suboptimal policies. By the sepa-
ration theorem, a hyperplane with w(i) as its normal vector separates µE from {µ(j)}i−1

j=0.
2The theoretical justification for this extension is provided in Zhang et al. (2020) through the proof of

Lemma 1. The proof demonstrates that given an SA-MDP, M̃, and a fixed policy π, there exists an MDP, M,
such that the optimal policy of M is the optimal adversary ν∗ for the SA-MDP given the fixed π, and ν∗ is
restricted to the set K = {ν : ∀s,∃a ∈ B(s), ν(a|s) = 1}

3
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s1 s2 s3

s′1 s′2 s′3

a1 a2

ν(s1) ν(s2) ν(s3)

a1 a2

Actual States s

Perturbed States s′ = ν(s)

Figure 1: State perturbations in an SA-MDP. Solid blue lines show actions between actual states,
dashed red lines indicate perturbations, and gray lines represent actions between perturbed states.

perturb s to a predefined subset of states. This is crucial as it limits perturbations to the predefined
set B(s), making the theoretical model robust.

In this framework, the agent’s policy π becomes a function of the perturbed state, that is, π◦ν where
π ◦ ν = π(a|ν(s)) and the corresponding value functions are:

Vπ◦ν(s) = E
St+1∼P (·|St,At)
At∼π(·|ν(St))

[
∞∑
t=0

γtR(St, At, St+1)
∣∣∣S0 = s

]
, (4)

and

Qπ◦ν(s, a) = E
St+1∼P (·|St,At)
At∼π(·|ν(St))

[
∞∑
t=0

γtR(St, At, St+1)
∣∣∣S0 = s,A0 = a

]
. (5)

Definition 1 (Optimal Adversary). Given a policy π, the optimal adversary ν∗(π) is the adver-
sary that minimizes the expected total discounted reward, i.e., Vπ◦ν⋆(s) = minν Vπ◦ν(s), and
Qπ◦ν⋆(s, a) = minν Qπ◦ν(s, a).

We present the formal theorem from Zhang et al. (2020), confirming that the value functions Vπ◦ν∗

and Qπ◦ν∗ are well-defined for every policy π.
Theorem 1 (Existence of the optimal adversary value function (Zhang et al., 2020)). Let π be a
policy, and let us define the optimal adversary Bellman operator T π : RS → RS as

(TπVπ◦ν)(s) = min
ν(s)∈B(s)

∑
a∈A

π(a|ν(s))
∑
s′∈S

P (s′|s, a)
[
R(s, a, s′) + γVπ◦ν(s

′)
]
. (6)

The optimal adversary Bellman operator is a contraction w.r.t. the ∥ · ∥∞, and due to the Banach
fixed point theorem, it has a unique fixed point which coincides with Vπ◦ν∗ .

4.1 RESILIENT STATE OPTIMALITY IN SA-MDPS

s1 s2 s3

maxV (s1) maxV (s2) maxV (s3)

(a) Traditional Optimality Approach

max E
S0∼P0

[V (S0)]

s1 s2 s3

(b) Resilient State Optimality Approach

Figure 2: Comparison of traditional and novel optimality approaches in SA-MDP. Both approaches
deal with initial states drawn from P0. The traditional approach tries to maximize each V (si) indi-
vidually and RSO approach maximizes the expected value over the initial state distribution.

In SA-MDPs, conventional optimal policies may not exist due to the dynamic interplay between
adversarial perturbations and agent actions as detailed in the following section in Algorithm 2. This
algorithm iteratively the policy using a reinforcement learning algorithm, while continuously re-
calculating the adversary’s optimal strategy, ensuring the policy becomes robust against worst-case
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adversarial perturbations. In this section, we explore these theoretical challenges and present our
approach to addressing them, with further practical details provided in Section 4.2.

To define an optimal policy π∗ in an SA-MDP under the optimal adversary ν∗, one might simply
aim for straight-forward extension of the optimality in MDPs as

Vπ∗◦ν∗(π∗)(s) ≥ Vπ◦ν∗(π)(s) ∀s ∈ S,∀π. (7)

Zhang et al. (2020) demonstrated through a three-state, two-action example that an optimal policy
may not always exist. The optimality condition in Equation 7 is similar to that in standard MDPs,
where the policy must be optimal from any starting state s. However, in SA-MDPs, adversarial
perturbations make this requirement problematic. To address this challenge, we introduce Resilient
State Optimality (RSO), which allows the policy to balance performance across the distribution
of initial states rather than being optimal in each state. The following theorem formalizes this new
notion, namely Resilient State Optimality (RSO) and proves the existence of an optimal policy under
this new condition.
Theorem 2 (Existence of Optimal Policy under RSO in SA-MDPs). Let M̃ be an SA-MDP with
a finite state space S and a finite action space A. Besides, S0 ∼ P0 denotes the initial state and
Vπ◦ν⋆ is the value function of a policy π under an optimal adversarial perturbation ν∗(π). Then,
there exists a policy π∗

RSO = π∗ ◦ ν⋆(π∗) such that

ES0∼P0
[Vπ∗

RSO
(S0)] ≥ ES0∼P0

[Vπ◦ν⋆(π)(S0)], ∀π. (8)

Proof Sketch. To prove the existence of an optimal policy under RSO in SA-MDPs, we leverage the
policy space’s mathematical properties. With finite states and actions, the set of all possible poli-
cies forms a convex and compact space, which means that it is a well-behaved, finite-dimensional
set. We show that the function mapping any policy to its expected performance under the worst-
case adversarial perturbation is concave and continuous. This implies that there exist a policy π∗

RSO
maximizing expected performance across all initial states. The complete proof is provided in Ap-
pendix A.1.1. ■

Remark 1. Our theoretical framework naturally extends to Q-value functions, maintaining the same
optimality conditions in Q-value-based learning settings. Moreover, the results hold when the initial-
state distribution is adversarially perturbed. For the formal statements of these extensions of Theo-
rem 2 and their corresponding proofs, see Appendix A.1.1.
Assumption 1. We formulate and analyze the IRL problem in an SA-MDP framework using the
actual initial-state distribution for theoretical rigor. In the experimental setup, we consider initial
states drawn from the perturbed distribution to reflect its practical efficiency.

4.2 POLICY OPTIMIZATION IN SA-MDPS

Our theoretical framework based on Equation 8 formulates the worst-case scenario in an SA-MDP
as a dynamic interplay between the adversary and the agent. The adversary iteratively updates its
policy to minimize the expected return of the agent, while the agent adapts its policy accordingly.

ν∗ = argmin
ν(·)∈B(·)

Es∼P0
[Vπ∗◦ν(s)] s.t. π∗ ◦ ν = argmax

π
Es∼P0

[Vπ◦ν(s)] . (9)

This iterative process, outlined in Algorithm 2, is crucial for optimizing the expert agent’s policy
and finding the optimal adversarial strategy. We assume that the process stabilizes after enough
iterations, allowing the agent to perform robustly under adversarial perturbations. The algorithm
aligns with the general structure of reinforcement learning with an integrated adversarial layer.
Assumption 2. We focus primarily on the observer agent’s learning process and its convergence
within the IRL framework, as outlined in Section 4.3. We address the contraction behavior of the
SAMM-IRL algorithm in Theorem 3 (Section 4.3).

For the expert agent, we assume convergence after a number of iterations, justified by the existence
of an optimal policy in SA-MDPs (Theorem 2). This assumption allows us to concentrate on the
observer’s learning process. While a detailed convergence analysis for the expert is outside the scope
of this work, we briefly summarize the contraction property for the expert’s policy optimization using
an adaptation of SARSA algorithm (Rummery & Niranjan, 1994) in Section A.4, demonstrating the
stability under adversarial perturbations.

5
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Algorithm 2 Policy Optimization under Non-stationary Optimal Adversarial Perturbations

1: Input: Initial policy π(0)

2: Compute initial optimal adversary ν∗(π(0))
3: for each iteration i until convergence do
4: Update policy π(i+1) using RL under ν∗(π(i))

5: Recompute ν∗(π(i+1)).
6: end for
7: Output: Final policy π∗ and adversary ν∗(π∗)

4.3 SAMM-IRL ALGORITHM

Building on the notion of RSO, we adapt the feature expectation calculations used in Max-Margin
IRL to align with the RSO framework. In conventional Max-Margin IRL, the goal is to recover the
expert’s reward function by matching feature expectations. However, in the presence of state pertur-
bations, directly applying these methods fails to yield reliable results. The following adaptions of
calculating the feature expectations according to RSO allows the algorithm to handle the challenges
posed by adversarial perturbations in SA-MDPs.
Definition 2. Let π be a policy and ν∗ = ν∗(π) be the corresponding optimal adversary. We define
the “actual perturbed feature expectation” of π as

µπ◦ν∗ = E
S∼P0

[
Eπ◦ν∗

[∑
t

γtϕ(St)
∣∣∣S0 = S

]]
, (10)

where St represents the actual states visited.
Definition 3. We define the “believed perturbed feature expectation” as

µ̃π◦ν∗ = E
S∼P0

[
Eπ◦ν∗

[∑
t

γtϕ(ν∗(St))
∣∣∣S0 = S

]]
, (11)

where ν∗(St) represents the believed states.

The actual perturbed feature expectation µπ◦ν∗ and the believed perturbed feature expectation µ̃π◦ν∗

involve state perturbations in SA-MDPs. µπ◦ν∗ represents the true states visited by the agent, while
µ̃π◦ν∗ reflects the states perceived by the agent under perturbations. The key difference is in how
the perturbation function ν∗ is applied: µπ◦ν∗ considers the actual states whereas µ̃π◦ν∗ applies ν∗
directly to compute the feature vector. In applications where observation of actual states is infeasible,
our algorithm uses µ̃π◦ν∗ instead. As shown in Lemma 1, this approximation has an error bounded
by ε0 under bounded perturbations.

We assume the expert agent has an optimal policy, namely, ⟨w∗, µπE◦ν∗⟩ ≥ ⟨w∗, µπ◦ν∗⟩, for ev-
ery policy π. This condition aligns with the optimality condition in Equation 8, indicating that the
expert’s policy is optimal under state-adversarial perturbations.

Once the adversary’s optimal perturbation policy ν∗ is fixed –following its training with the expert
(Figure 3a), which occurs separately from the IRL process– the observer’s policy πobs is iteratively
updated in response to these fixed perturbations until convergence. The fixed adversary policy serves
as input to the SAMM-IRL algorithm, which then focuses on aligning the observer’s feature expec-
tations with the expert’s under the given adversarial conditions. The key steps are summarized in
Algorithm 3 and illustrated in Figure 3b.

In the following we discuss the key properties of the SAMM-IRL algorithm.

1. Input: The input to the algorithm consists of trajectories of the expert agent, following the
policy returned from the min-max optimization process for expert-adversary training (as
described in Algorithm 2) under perturbed conditions.

2. Optimization in SA-MDPs: During optimization, the algorithm computes policies that
maximize the expected value over the initial state distribution P0 while estimating feature
expectations based on perturbed trajectories. This aligns the policy with the new optimality
definition for SA-MDPs, ensuring performance in expectation over the initial state distri-
bution.

6
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Agent’s Policy π ◦ ν
(ν stays fixed as π is updated)

Adversary’s Policy ν(π)
(π stays fixed as ν is updated)

Perturbs states with
ν∗

new(π
∗
last)

Agent reacts with new
optimal policy π∗

new ◦ ν∗
last

Minimize Agent’s Return

Maximize Return

(a) Bi-level optimization process of the expert.

Observer’s Policy πobs ◦ ν∗

Fixed Optimal Adversary ν∗(πE)

Perturbs states with
ν∗(πE)

Observer reacts with
new policy π′

obs ◦ ν∗

Maximize Return

(b) Observer’s policy optimization process.

Figure 3: (a) Bi-level optimization process: The agent’s policy remains fixed while the adversary
optimizes its policy, and vice versa. Each party reacts to the other’s optimal policy after one has
finished optimizing. (b) The observer updates its policy in response to a fixed optimal adversary
ν∗(πE), with the adversary’s strategy unchanged.

Algorithm 3 State-Adversarial Max-Margin IRL in SA-MDPs

1: Input: Expert trajectories {τk
E}mk=1 generated by πE◦ν∗ under state perturbations ν∗, P0

2: Calculate expert’s believed perturbed feature expectations µ̃E via Equation 11
3: Initialize: Randomly pick an initial policy π(0)

4: Compute µ̃(0) by Equation 11
5: Set iteration counter i = 1
6: repeat
7: Compute w(i) = argmax

w:∥w∥2≤1

min
j∈{0,...,i−1}

wT (µ̃E − µ̃(j))

8: Compute the optimal π(i) with R = w(i)Tϕ using Equation 8
9: Generate trajectories using π(i) under state perturbations ν∗ and calculate µ̃(i)

10: Increment iteration counter i = i+ 1
11: until ∥µ̃E − µ̃(i)∥2 ≤ ε
12: Output: Last policy πε and weight vector wε

3. Contraction Property: The contraction property, established in Theorem 3 in the follow-
ing section, ensures that iterative updates to the value function and policy converge to a
unique fixed point.

4. Feature Matching: The algorithm’s max-margin optimization guarantees that the ob-
server’s policy aligns closely with the expert’s feature expectations when measured by their
corresponding expected rewards. This alignment is reflected in the similarity between the
expert’s and observer’s feature expectations, weighted by the actual reward weights w∗

used by the expert:
⟨w∗, µπE◦ν∗⟩ ≃ ⟨w∗, µπε◦ν∗⟩. (12)

4.4 THEORETICAL ANALYSIS

Given an SA-MDP with finite state and action spaces, we establish theoretical guarantees on the
number of iterations for SAMM-IRL algorithm to converge to an optimal policy. The derived bounds
includes the error component between the believed and actual perturbed feature expectations. This
ensures robust guarantees on the convergence where the agent optimizes with believed perturbed
features, and the actual perturbed states are used as the ground truth for analysis. Adapting Lemma
2 and Theorem 1 from Abbeel & Ng (2004) to SA-MDPs, Theorem 3 shows how the distance
between expert’s and observer’s feature expectations reduces at each iteration leading to convergence
in the believed perturbed feature expectation space, and Theorem 4 outlines the required iterations
to reach the upper bound on the error in actual perturbed feature expectation space. Both theorems
presuppose the ability to compute µE to demonstrate performance in state-adversarial settings.
Lemma 1 (Bound on Adversarial Error between Actual and Believed Perturbed Feature Expecta-
tions). Let µπ◦ν∗ be the actual perturbed feature expectation and µ̃π◦ν∗ be the believed perturbed

7
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feature expectation. Suppose that maximum norm of the perturbations ∥ν∗∥∞ is bounded by δ > 0
and ϕ(·) is Lipschitz continuous with constant L.3 Then,

∥µπ◦ν∗ − µ̃π◦ν∗∥2 ≤ ε, ε =
Lδ

1− γ
. (13)

Proof. See Appendix A.2.1 . ■

Theorem 3 (Contraction Behavior of SAMM-IRL (Simplified)). Let µ̃E be the believed perturbed
feature expectation of the expert under adversarial perturbations, and µ̃

(i)
π◦ν∗ be the believed fea-

ture expectation of the observer at iteration i. The distance between these two feature expectations
decreases at each iteration satisfying the following inequality:

∥µ̃E − µ̃
(i+1)
proj ∥2

∥µ̃E − µ̃
(i)
π◦ν∗∥2

≤ k√
k2 + (1− γ)2∥µ̃E − µ̃

(i)
π◦ν∗∥22

, (14)

where µ̃
(i+1)
proj is the projection of the expert’s feature expectation onto the space of the observer’s

believed feature expectations at iteration i+ 1, k is the number of features, γ is the discount factor.

Proof. For the complete statement of the theorem and its proof, see Appendix A.2.1. ■

Corollary 1. If perturbations ν∗ are bounded by δ > 0 and ϕ(·) is Lipschitz continuous with
constant L, then there exists an ε0 > 0 such that

∥µ̃E − µ̃
(i+1)
proj ∥2

∥µ̃E − µ̃
(i)
π◦ν∗∥2

≤ k√
k2 + (1− γ)24ε20

, (15)

where ε0 is the error bound between the actual and believed perturbed feature expectations (13).

The inequality in Equation 14 shows that each iteration reduces the distance between the expert’s and
observer’s feature expectations in an SA-MDP. The contraction behavior ensures that the algorithm
converges toward an optimal policy that closely matches the expert’s demonstrated behavior.

Theorem 4 (Bound on the Number of Iterations). Let M̃ be an SA-MDP with a finite state space S
and a finite action space A, and let πE = πE ◦ ν∗ be the expert policy under state perturbations ν∗
and let maximum norm of the perturbations ∥ν∗∥∞ be bounded by δ > 0. Let the reward function’s
feature vector ϕ : S → [0, 1]k be Lipschitz continuous with constant L. Then the number of itera-
tions T required for the SAMM-IRL algorithm to converge to a policy π such that ∥µE−µπ◦ν∗∥2 ≤ ε
for all ε > 2ε0, is bounded by

T = O

(
k2

(1− γ)2(ε− 2ε0)2
log

1

(ε− 2ε0)

)
, where ε0 =

Lδ

1− γ
. (16)

Proof. See Appendix A.2.3. ■

This result highlights the inherent limitations imposed by state adversarial perturbations in the en-
vironment. The state adversarial error represented by 2ε0 sets a lower bound on the achievable
distance between the expert’s and observer’s actual perturbed feature expectations. SAMM-IRL al-
gorithm converges in terms of believed perturbed feature expectations, but adversarial perturbations
introduce a fixed discrepancy between the actual perturbed feature expectations. Consequently, the
algorithm guarantees convergence only within a margin of ε > 2ε0 in terms of actual perturbed
feature expectations, beyond which further improvements are not possible. This bound reflects that
adversarial errors limit the ultimate performance of the observer’s policy, despite the convergence
achieved in the believed perturbed feature space.

Having established the theoretical robustness of SAMM-IRL under adversarial perturbations, we
now turn to empirical validation to confirm these findings in practice.

3Assuming the feature function ϕ(·) to be Lipschitz continuous is a common in the literature Abbeel & Ng
(2004); Ng & Russell (2000); Sutton & Barto (2018). It ensures smoothness and stability in learned policies,
and also simplifies the analysis Mnih et al. (2015); Schulman et al. (2015).
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(a) Comparison of expert training average rewards. (b) Total rewards of the expert and observer.

Figure 5: (a) Comparison between the original Sarsa model and our approach under uniform state
adversarial perturbations. (b) Total rewards when both agent trained by the modified Sarsa model.

5 EXPERIMENTS AND RESULTS

We evaluated the algorithms’ ability to recover rewards and learn robust policies under adversarial
perturbations. Both the expert’s and observer’s policies were optimized using a modified Sarsa model
under the same identical state adversarial perturbations against which the expert’s policy is optimal,
with results compared to the original Sarsa (Rummery & Niranjan, 1994). Our experiments used
believed perturbed feature expectations Equation 11 to model the agent’s perception of adversarially
perturbed states.

5.1 EXPERIMENTAL SETUP

We tested our algorithm in a grid-world environment 5 × 5 with various adversarial perturbations
(e.g., random perturbation, random search adversary, and critic adversary). The agent’s goal is to
reach position (4, 4) from multiple initial states with different probabilities. Perturbations involved
directional shifts (e.g., left, right, up, down). Key guiding features are: (i) goal reached, (ii) direc-
tion to the goal, (iii) danger zones, and (iv) proximity to boundaries. Each feature is rewarded or
penalized based on its impact. For details on perturbation types, see Appendix B.2.

Figure 4: Sample expert trajectory from the grid world environment.

5.2 RESULTS AND DISCUSSION

Table 1a compares the expert’s µE and observer’s µπε feature expectations, along with the actual
and recovered reward weights, w∗ and wε. To assess the observer’s performance under adversarial
perturbations, we calculated the correlation between the dot product values of the expert’s reward
weights and the expert’s and observer’s feature expectations, as defined in Equation 12. The PCC
of 0.84 shows a strong linear relationship, while the SCC of 0.95 indicates a very strong agreement
in feature ranking. These results confirm that the observer closely approximates the expert’s policy.
The full table is provided in Appendix C (Table 4).

Table 1b shows that SAMM-IRL achieves a consistently higher correlation between expert and re-
covered rewards in various adversarial settings compared to the original Max-Margin IRL algorithm.

Figure 5 illustrates that, under uniform perturbations, the expert optimizes successfully, and the
observer, learning from this expert, achieves consistent and stable rewards, though slightly lower

9
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than the expert’s more variable performance. That indicates the observer learns a robust policy from
the expert demonstrations despite the perturbations.

Table 1: (a) Feature expectation matching analysis of SAMM-IRL under different adversary types
(b) Correlation values between actual and recovered rewards for different adversary types

(a) Feature expectation matching analysis

Feature Type µE µπε w∗ wε

Uniform 0.12 0.01 0.50 0.24
Goal

reached RS 0.07 0.00 0.68 0.39
Critic 0.02 0.00 0.45 0.31

Uniform 0.44 0.06 0.60 0.51
Vertical
direction RS 0.34 0.05 0.34 0.55

Critic 0.29 0.22 0.40 0.53

(b) Correlation between actual and recovered rewards

Metric Type Max-Margin
IRL SAMM-IRL

Uniform 0.48± 0.19 0.91± 0.12
SCC RS 0.23± 0.07 0.84± 0.12

Critic 0.52± 0.21 0.78± 0.18
Uniform 0.65± 0.13 0.90± 0.09

PCC RS 0.38± 0.13 0.83± 0.16

Critic 0.62± 0.15 0.77± 0.17

Table 2: Comparison of expert and observer policies before and after re-optimization in a MDP

Metric Expert Observer (original) Observer (re-optimized)
Frequency of Reaching the Goal 100 66 100
Expected Total Reward 1.41 -0.71 1.42
Policy Stability - 0.60 0.36
Average Steps to Goal 7.12 7.12 7.09
Cosine Similarity of State Visits - 0.33 0.50

Table 2 illustrates that policies trained under adversarial conditions and evaluated in non-perturbed
environments achieve similar success rates and average steps to the goal as the expert, thus demon-
strating robust generalization. Moreover, as hypothesized, the recovered reward weights wε facili-
tate the training of a policy πMDP that performs comparably to the expert’s policy πE , which was
optimized under adversarial conditions.

While SAMM-IRL provides a strong foundation for resilient IRL strategies, it faces challenges such
as scalability and the reliance on manual feature engineering. Incorporating neural networks for
automated feature extraction and representation learning could enhance scalability and streamline
the process.

6 CONCLUSION

We developed the SAMM-IRL algorithm, an adaptation of the Max-Margin IRL algorithm to solve
the inverse reinforcement learning problem in SA-MDPs. Our work introduces a new definition of
optimality in SA-MDPs, ensuring an optimal policy by considering the initial state distribution. The-
oretical and numerical analysis demonstrated its effectiveness under adversarial conditions, making
it well-suited for real-world applications.

Future work could improve scalability by integrating neural networks for automated feature extrac-
tion and extending the method to continuous state-action spaces. Additionally, adapting the algo-
rithm to multi-agent settings could broaden its applicability in dynamic, high-stakes domains.
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A PROOFS

A.1 PROOFS OF THE THEOREMS IN SECTION 3

A.1.1 PROOF OF THEOREM 2

Let Π be the set of all policies. The set Π of policies is convex because a policy can be represented
as a probability distribution over actions for each state. Since S andA are finite, is a compact subset
of a finite-dimensional Euclidean space. We conclude the theorem if we can show that the mapping
π 7→ ES0∼P0

[Vπ◦ν⋆(S0)] is a continuous function from Π to R, since a continuous function over a
compact set attains a maximum in the compact set.

Let π1 and π2 be two policies, and πθ = θπ1 + (1− θ)π2 be a convex combination with θ ∈ [0, 1].
For any adversary ν : S → S and s ∈ S, it holds

Vπθ◦ν(s) = θVπ1◦ν(s) + (1− θ)Vπ2◦ν(s). (17)

Therefore,

Vπθ◦ν⋆ = min
ν

Vπθ◦ν(s)

= min
ν

[θVπ1◦ν(s) + (1− θ)Vπ2◦ν ] (s)

≥ θmin
ν

[Vπ1◦ν(s)] + (1− θ)min
ν′

[Vπ2◦ν′ ]

= θVπ1◦ν⋆(s) + (1− θ)Vπ2◦ν⋆(s). (18)
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By taking the expectation from both sides and using the linearity property of the expectation, we
arrive at

E
S0∼P0

[Vπθ◦ν⋆(S0)] ≥ θ E
S0∼P0

[Vπ1◦ν⋆(S0)] + (1− θ) E
S0∼P0

[Vπ2◦ν⋆(S0)]. (19)

Thus, the mapping π 7→ E
S0∼P0

[Vπ◦ν∗(S0)] is a concave function and, therefore, continuous in the

policy space. Since the policy space is compact, it attains a maximum π∗
RSO ∈ Π. ■

Corollary 2 (Optimal Q-value Function in SA-MDPs). Under the same conditions as Theorem
2, let Qπ◦ν∗ be the Q-value function corresponding to the policy π under an optimal adversarial
perturbation ν∗(π). Then, there exists a policy π∗

RSO = π∗ ◦ ν⋆(π∗) such that

ES0∼P0

[
Qπ∗

RSO
(S0, a)

]
≥ ES0∼P0

[
Qπ◦ν∗(π)(S0, a)

]
, ∀π. (20)

Proof. This is a natural extension of Theorem 2. The mapping π 7→ E
S0∼P0

[Qπ◦ν∗(S0, a)] inher-

its the concavity and continuity properties of the value function mapping. Therefore, by the same
arguments, the Q-value function attains a maximum at π∗

RSO ∈ Π. ■

In the following corollary, we show that the results of Theorem 2 and Corollary 2 hold when the
initial state distribution P0 is replaced by an adversarially perturbed initial state distribution S ∼
ν(P0).

Corollary 3 (Perturbed Initial State Distribution). The results of both Theorem 2 and Corollary 2
hold when the initial state distribution P0 is replaced by an adversarially perturbed initial state
distribution S ∼ ν(P0). Specifically, there exists a policy π∗

RSO = π∗ ◦ ν⋆(π∗) such that:

ES∼ν(P0)[Vπ∗
RSO

(S)] ≥ ES∼ν(P0)[Vπ◦ν⋆(π)(S)], ∀π, (21)

and
ES∼ν(P0)

[
Qπ∗

RSO
(S, a)

]
≥ ES∼ν(P0)

[
Qπ◦ν∗(π)(S, a)

]
, ∀π. (22)

Proof. If S0 follows ν(P0), the expected value function ES0∼ν(P0)[Vπ∗
RSO

(S0)] incorporates ad-
versarial perturbations in the initial state distribution. Theorem 2 still holds because the mapping
π 7→ ES0∼ν(P0)[Vπ◦ν⋆(S0)] remains concave and continuous, thereby guaranteeing the existence of
an optimal policy π∗

RSO. ■

A.2 PROOFS OF THE THEOREMS IN SECTION 4.3

To establish the convergence bounds for the SAMM-IRL algorithm in an SA-MDP framework, we
focus on both actual and believed feature expectations, leveraging the error bounds from adversarial
perturbations. For the sake of clarity, we begin by proving Lemma 1 which is essential for proving
the convergence theorems, i.e., Theorem 3 and Theorem 4, respectively.

A.2.1 PROOF OF LEMMA 1

If ϕ(·) is Lipschitz continuous with constant L, then for any state St and its perturbed counterpart
ν∗(St),

∥ϕ(St)− ϕ(ν∗(St))∥2 ≤ L ∥St − ν∗(St)∥2 ≤ Lδ. (23)

Considering the absolute value of difference between actual feature expectation and believed feature
expectations, we have

∥µπ◦ν∗ − µ̃π◦ν∗∥2 =

∥∥∥∥∥ES∼P0

[ ∞∑
t=0

γt (ϕ(St)− ϕ(ν∗(St)))

]∥∥∥∥∥
2

≤ ES∼P0

[ ∞∑
t=0

γt ∥ϕ(St)− ϕ(ν∗(St)))∥2

]
. (24)
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By using the Lipschitz continuity of ϕ and the bound on the perturbations ν∗, it yields

∥µπ◦ν∗ − µ̃π◦ν∗∥2 ≤ ES∼P0

[ ∞∑
t=0

γtLδ

]

= Lδ

∞∑
t=0

γt

=
Lδ

1− γ
. (25)

By choosing ε = Lδ
1−γ , we have

∥µπ◦ν∗ − µ̃π◦ν∗∥2 ≤ ε. (26)

■

A.2.2 RESTATEMENT AND PROOF OF THEOREM 3

Let µ̃E = µ̃πE◦ν∗ be believed perturbed feature expectation of the expert with features ϕ : S →
[0, 1]k in a given SA-MDP under perturbations ν∗. Besides, µ̃π◦ν∗ denotes the believed perturbed
feature expectation of a policy π. Also, π(i+1) = π∗

RSO is the optimal policy for the SA-MDP\R
augmented with reward R(sν∗) = (µ̃E − µ̃

(i)
π◦ν∗) · ϕ(sν∗), i.e.,

π(i+1) = argmax
π

(µ̃E − µ̃
(i)
π◦ν∗) · µ̃π◦ν∗ , (27)

where µ̃
(i)
π◦ν∗ is the believed perturbed feature expectation at iteration i and µ̃

(i+1)
π◦ν∗ = µ̃(π∗

RSO). In
addition, µ̃(i+1)

proj is the projection of µ̃E onto the line through µ̃
(i)
π◦ν∗ and µ̃

(i+1)
π◦ν∗ . Then,

∥µ̃E − µ̃
(i+1)
proj ∥2

∥µ̃E − µ̃
(i)
π◦ν∗∥2

≤ k√
k2 + (1− γ)2∥µ̃E − µ̃

(i)
π◦ν∗∥22

. (28)

Moreover, if perturbations ν∗ are bounded by δ > 0 and ϕ(·) is Lipschitz continuous with constant
L, then there exists an ε0 > 0 such that

∥µ̃E − µ̃
(i+1)
proj ∥2

∥µ̃E − µ̃
(i)
π◦ν∗∥2

≤ k√
k2 + (1− γ)24ε20

, (29)

where ε0 = Lδ
1−γ .

Proof. Let M̃Co be the convex hull of the set of believed perturbed feature expectations of all policies
π and let µ̃E ∈ M̃Co

4 be believed perturbed feature expectation of the expert agent. For mathematical
convenience, we set the origin of the coordinate system at µ̃(i)

π◦ν∗ , the believed perturbed feature
expectation at iteration i. This allows us to express all the vectors relative to µ̃

(i)
π◦ν∗ .

Define the projection µ̃
(i+1)
proj as the point on the line through µ̃

(i)
π◦ν∗ and µ̃

(i+1)
π◦ν∗ that is closest to µ̃E .

Formally, this projection is given by:

µ̃
(i+1)
proj = θµ̃

(i+1)
π◦ν∗ + (1− θ)µ̃

(i)
π◦ν∗ , (30)

where

θ =
(µ̃E − µ̃

(i)
π◦ν∗) · (µ̃(i+1)

π◦ν∗ − µ̃
(i)
π◦ν∗)

∥µ̃(i+1)
π◦ν∗ − µ̃

(i)
π◦ν∗∥22

. (31)

The coefficient θ ensures that µ̃(i+1)
proj is the projection which minimizes the squared distance to µ̃E .

4We assume feature expectations of the expert can be calculated accurately.
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Next, we calculate the squared distance between µ̃E and µ̃
(i+1)
proj as

∥µ̃E − µ̃
(i+1)
proj ∥22 =

∥∥∥µ̃E −
(
θµ̃

(i+1)
π◦ν∗ + (1− θ)µ̃

(i)
π◦ν∗

)∥∥∥2
2

= ∥µ̃E − µ̃
(i)
π◦ν∗∥22 −

(
(µ̃E − µ̃

(i)
π◦ν∗) · (µ̃(i+1)

π◦ν∗ − µ̃
(i)
π◦ν∗)

)2
∥µ̃(i+1)

π◦ν∗ − µ̃
(i)
π◦ν∗∥22

. (32)

By the Cauchy-Schwarz inequality and noting that for any vector x, the norms satisfy ∥x∥∞ ≤
∥x∥2 ≤

√
n∥x∥∞, we obtain the following bounds:

∥µ̃(i+1)
π◦ν∗ ∥2 ≤

√
k

(
1

1− γ

)
, ∥µ̃E∥2 ≤

√
k

(
1

1− γ

)
. (33)

This leads to the inequality:

∥µ̃E − µ̃
(i+1)
proj ∥22

∥µ̃E − µ̃
(i)
π◦ν∗∥22

≤ k2/(1− γ)2

k2/(1− γ)2 + ∥µ̃E − µ̃
(i)
π◦ν∗∥22

. (34)

If the feature mapping ϕ is Lipschitz continuous and perturbations caused by ν∗ are bounded, then
Lemma 15 gives us:

∥µ̃π◦ν∗ − µπ◦ν∗∥2 ≤ ε0, (36)

∥µ̃E − µE∥2 ≤ ε0, (37)

where ε0 = Lδ
1−γ

In the worst-case where we have the largest discrepancy between actual and believed perturbed
feature expectations when ∥µE−µπ(i)◦ν∗∥2 = 0 and ∥µπ(i)◦ν∗−µ̃π(i)◦ν∗∥2 ̸= 0 and ∥µ̃E−µE∥2 ̸=
0. In this case, we can further simplify the above expression to:

∥µ̃E − µ̃
(i+1)
proj ∥22

∥µ̃E − µ̃
(i)
π◦ν∗∥22

≤ k2/(1− γ)2

k2/(1− γ)2 + (2ε0)2
. (38)

By re-arranging, we arrive at

∥µ̃E − µ̃
(i+1)
proj ∥2

∥µ̃E − µ̃
(i)
π◦ν∗∥2

≤ k√
k2 + (1− γ)24ε20

, (39)

which demonstrates the reduction in distance at each iteration using the believed feature expectations
and incorporates adversarial perturbation error between actual and believed feature expectations.

■

A.2.3 PROOF OF THE THEOREM 4

The goal is for the feature expectations of the learned policy to converge such that the distance
between the expert feature expectations µE and the actual perturbed feature expectations of the
learned policy µπ◦ν∗ is within a small error ε, i.e.,

∥µE − µπ◦ν∗∥2 ≤ ε. (40)

However, because we only have access to the believed perturbed feature expectations, we consider
the convergence in terms of the believed perturbed feature expectations, i.e.,

∥µ̃E − µ̃π◦ν∗∥2 ≤ ε+ 2ε0. (41)

5If we consider different bounds on the state adversarial perturbations,

∥µ̃π◦ν∗ − µπ◦ν∗∥2 ≤ εobs
0 , ∥µ̃E − µE∥2 ≤ εexp

0 , (35)

where εobs
0 = Lδobs

1−γ
and εexp

0 = Lδexp

1−γ
.
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Here, ε0 represents the discrepancy between the actual and believed perturbed feature expectations
due to adversarial perturbations.

Consider the inequality established in Lemma 3 and let d(i) = ∥µ̃E − µ̃
(i)
π◦ν∗∥2 denote the distance

at iteration i. Then, the reduction at each step is given by

d(i+1) ≤ k√
k2 + (1− γ)24ε20

d(i). (42)

By applying this reduction iteratively over T rounds, we arrive at

d(T ) ≤

(
k√

k2 + (1− γ)24ε20

)T

d(0). (43)

For convergence, we need d(T ) ≤ ε− 2ε0. Thus, it should hold(
k√

k2 + (1− γ)24ε20

)T

d(0) ≤ ε− 2ε0. (44)

Since M̃Co ∈ [0, 1]k, we have d(0) < k
1−γ . To ensure that dividing ε − 2ε0 by d(0) is valid, we

recognize that the term
(

k√
k2+(1−γ)24ε20

)T

represents the cumulative reduction over T iterations.

As T increases, this term becomes smaller, eventually making it sufficiently small relative to ε−2ε0.
Then there exists T such that

(
k√

k2 + (1− γ)24ε20

)T

≤

(
ε− 2ε0

k
1−γ

)
. (45)

Taking logarithms on both sides results in

T log

(
k√

k2 + (1− γ)24ε20

)
≤ log

(
ε− 2ε0

k
1−γ

)
. (46)

Since log

(
k√

k2+(1−γ)2(2ε0)2

)
≈ − (1−γ)2(2ε0)

2

2k2 for small 2ε0, we can conclude that

T ≥ 2k2

(1− γ)24ε20
log

(
k

(1− γ)(ε− 2ε0)

)
. (47)

Given the reduction factor and the bounds on feature expectations, the number of iterations required
for convergence yields

T = O

(
k2

(1− γ)2(ε− 2ε0))2
log

1

ε− 2ε0

)
. (48)

■

In our SA-MDP framework, the agent perceives perturbed states due to adversarial perturbations
while the environment transitions are governed by actual states. Thus, it is crucial to consider how
the perturbations affect the total variation distance between the original transition probabilities and
those perceived by the agent under perturbations.

A.3 TOTAL VARIATION DISTANCE BETWEEN ACTUAL AND PERTURBED TRANSITION
PROBABILITIES

In the following lemma, we analyze total variation distance between the actual and believed transi-
tion probabilities. This analysis important for the empirical results as the agent may not have access
to initial state distribution as it is taken as an input in Algorithm 3.
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Lemma 2 (Total Variation (TV) Bound with Perturbed Perceptions). Let ν be an adversarial per-
turbation bounded by δ > 0. Let P and ν(P ) be the original and perceived transition probabilities,
respectively. Then, for any state s and action a, it holds

dTV(P (·|s, a), ν(P )(·|s, a)) ≤ δ ·max
s∈S
|B(s)|, (49)

where δ is the magnitude of the maximum perturbation and |B(s)| is the size of the perturbation set
for each state s.

Proof. The total variation distance between two probability distributions P and Q over the same
space S is defined as

dTV(P,Q) =
1

2

∑
s∈S

|P (s)−Q(s)| . (50)

In our problem, we are dealing with finite state and action spaces and the adversary perturbs each
state s ∈ S within a set of possible perturbations B(s). Therefore, the perturbation magnitude is
bounded by δ, i.e., for each state s and perturbed state s′ ∈ B(s), we have

|P (s)− ν(P )(s)| ≤ δ. (51)

Given the bounded perturbation magnitude, the difference |P (s) − ν(P )(s)| for each state s is at
most δ. Additionally, the total number of states that can be perturbed is bounded by the maximum
size of the perturbation set for any state, i.e., maxs∈S |B(s)|. Thus, the total variation distance can
be bounded by

1

2

∑
s∈S

|P (s)− ν(P )(s)| ≤ 1

2

∑
s∈S

δ · |B(s)| (52)

≤ 1

2
· δ ·

∑
s∈S

|B(s)| (53)

≤ δ · maxs∈S |B(s)| . (54)

■

A.4 BELLMAN OPERATOR CONTRACTION ANALYSIS

Theorem 5 (Contraction Theorem for SA-MDP Bellman Operator). Let M̃ =
(S,A, B,R, P, P0, γ) be a State-Adversarial Markov Decision Process (SA-MDP). Assume
that the adversary ν∗(π∗) is optimal with respect to the optimal policy π∗. Define the Bellman
operator T π as:

(T πV
π
)(s)

= max
π

∑
a∈A

π(a|ν∗(s))
∑
s′∈S

P (s′|s, a)
[
R(s, a, s′) + γV

π
(s′)
]
, (55)

where V
π
= ES0∼P0

[Vπ◦ν∗(π)(S0)]. Then, the Bellman operator T π is a contraction mapping with
respect to the ∥ · ∥∞ norm, and as a result it converges to a unique value function

V
π∗

= ES0∼P0
[Vπ∗◦ν∗(π∗)(S0)]. (56)

Proof. Consider the actual value function under a fixed optimal adversarial perturbation ν∗ where
the policy π selects actions based on the perturbed state ν∗(St):

E
S∼P0

[Vπ◦ν∗(s)] = E
S∼P0

 E
St+1∼P (·|St,At)

At∼π(·|ν∗(St))

[
∞∑
t=0

γtRt

∣∣∣S0 = S

] . (57)

The Bellman operator for a given policy π in this set-up is defined as:

(T πV )(S0) = E
S0∼P0

[
E

A∼π(·|ν∗(S))S′∼P (·|S,A)

[
R(S,A, ν∗(S′)) + γV (ν∗(S′))

]]
.
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For any two policies π1 and π2, and their corresponding value functions V 1 and V 2, the Bellman
updates are:

(T π1V 1)(S0) = E
S0∼P0

 E
A1∼π1(·|ν∗(S))

S′∼P (·|S,A1)

[
R(S,A1, ν

∗(S′)) + γV 1(ν
∗(S′))

] , (58)

(T π2V 2)(S0) = E
S0∼P0

 E
A2∼π2(·|ν∗(S))

S′∼P (·|S,A2)

[
R(S,A2, ν

∗(S′)) + γV 2(ν
∗(S′))

] . (59)

Then, the difference between them is given by

(T π1V 1)(S0)− (T π2V 2)(S0)

= E
S0∼P0

 E
A1∼π1(·|ν(S))
S′∼P (·|S,A1)

[
R(S,A1, ν

∗(S′)) + γV 1(ν
∗(S′))

]
− E

S0∼P0

 E
A2∼π2(·|ν∗(S))
S′∼P (·|S,A2)

[
R(S,A2, ν

∗(S′)) + γV 2(ν
(S′))

] . (60)

To understand how policies and value functions behave under adversarial conditions, we need to
analyze how much the value function can change as we tweak the policy. A useful fact here is
that the difference in value functions, when comparing two different policies, can be bounded by
looking at the maximum difference between these policies. This is because for any functions f and
g the following holds:

max
π1

f(π1)−max
π2

g(π2) ≤ max
π

(f(π)− g(π)) . (61)

Then, given the fixed optimal adversarial perturbation ν∗, the difference can be bounded as:

∣∣(T π1V 1)(S0)− (T π2V 2)(S0)
∣∣ ≤ E

S0∼P0

max
π

∣∣∣∣∣ E
A∼π(·|ν∗(S))
S′∼P (·|S,A)

[
γ
(
V 1(ν

∗(S′))− V 2(ν
∗(S′))

) ]∣∣∣∣∣


≤ γ E
S0∼P0

[
max
π
∥V 1 − V 2∥∞

]
. (62)

In simpler terms, even though the adversary tries to disrupt the learning process, the extent to which
it can do so is limited. This bounded difference is a key step in showing that our Bellman operator
is a contraction, meaning that it pulls the value function closer to a stable, final form with each
iteration. As a result, we can confidently say that the learning process will converge to a unique
value function that represents the best policy under the worst adversarial conditions. Formally, this
is concluded as follows.

Since the maximum difference in value functions is bounded by the infinity norm, by Equation 62
we obtain:

∣∣(T π1V 1)(S0)− (T π2V 2)(S0)
∣∣ ≤ γ∥V 1 − V 2∥∞. (63)

This means that T π is a contraction mapping with respect to the infinity norm. By the Banach fixed-
point theorem, this implies that the sequence of value functions {V πi◦ν∗} with actual state values
under fixed optimal adversarial perturbations converges to a unique fixed point.

■
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B IMPLEMENTATION DETAILS

All of our experiments were conducted in a Conda environment using Python, making use of CuPy
for GPU acceleration on a 2080 Ti. The source code is available on GitHub for reproducibility.

B.1 HYPERPARAMETERS

Experimental results presented in Table 1a and Table 4 are using the hyperparameters given in Ta-
ble 3 below.

Table 3: Hyperparameters for Reproducing the Results

Hyperparameter Uniform
Epsilon (ε) 0.1
Gamma (γ) 0.9
Alpha (α) 0.1

Max Episodes 500
Max Iterations per Episode 100
Max Steps per Trajectory 100

Grid Size 5x5

B.2 PERTURBATION TYPES

In our experiments, perturbations were assumed to be bounded around the actual state. Various
adversarial perturbations were characterized by directional shifts: Right (0, 1), Left (0,−1), Down
(1, 0), and Up (−1, 0). The intensity levels might vary with the level of the shift. At each level, the
adversary perturbs a state on the extra grid in one of four directions and adversaries are not allowed
to perturb any other component, i.e, value function or have an effect on the environment dynamics.
Details follow.6

1. Random Perturbation: The adversary selects a perturbation from the set of possible per-
turbations randomly. The selected perturbation is applied to the current state, resulting in
a new state (x′, y′). This scenario both tests the model’s robustness under unpredictable
conditions and sets a baselines for the adversarial conditions.

s′ = s+ η, η ∼ Uniform(ν(s)),

where s is the current state, s′ is the perturbed state, and ν(s) is the set of possible pertur-
bations. The perturbation η is selected randomly from ν(s) for all s ∈ S.

2. RS Adversary: The RS Adversary assumes that the adversary knows the reward function
or has some other information about the environment. The adversary chooses a perturbation
that is the most detrimental on the progression towards the goal.

s′ = argmax
s′∈ν(s)

Cost(s′, g)− Cost(s, g),

where s is the current state, s′ is the perturbed state, g is the goal state, and ν(s) is the set
of possible states resulting from perturbations. The cost function, the Manhattan distance
Cost(s, g), measures the distance to the goal. The adversary selects the perturbation that
maximizes the distance from the goal.

3. Critic Adversary: Critic attack assumes the adversary knows the value functions and then
chooses the perturbation from possible perturbations that leads to the worst expected out-
come for the agent.

s′ = argmin
s′∈ν(s)

V (s′),

where V (s′) is the value function of the agent at the perturbed state s′. The adversary selects
the perturbation that minimizes the agent’s value function, leading to the worst expected
outcome.

6Random Search (RS) Adversary and Critic Adversary are inspired by Zhang et al. (2020).
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In our experiments, RS Adversary and Critic Adversary follow a similar setting to Zhang et al.
(2020), allowing the adversary to choose the worst-case perturbation for the current state in the aim
for minimizing the expected return using some heuristics from the dynamics of the environment.
Therefore, the interplay given in Section 4.2 is simplified into

s′ = argmin
s′∼ν(s)

Es∼P0 [Vπ∗◦ν(s
′)]

s.t. π∗ ◦ ν = argmax
π

Es∼P0
[Vπ◦ν(s

′)] . (64)

For empirical integrity, we compared the performance of the modified Sarsa model with the original
Sarsa in our experiments, which we give details of in the following subsection.

B.2.1 SARSA ALGORITHM AND ITS MODIFICATION FOR SA-MDPS

The Sarsa algorithm is an on-policy reinforcement learning method commonly used in MDPs. It
updates the Q-value function based on observed transitions, making it sensitive to the specific state-
action pairs encountered during training. The standard update rule for Sarsa is given by:

Q(st, at)← Q(st, at) + α (rt+1 + γQ(st+1, at+1)−Q(st, at)) . (65)

This update is based solely on the specific state-action pairs encountered during training, making it
sensitive to the exact trajectories experienced.

To handle the adversarial perturbations in SA-MDPs, we modify the Sarsa update rule to incorporate
an expected Q-value over the initial state distribution. This modification ensures that the agent’s
policy remains robust across varied starting conditions. The modified update rule is expressed as:

Q(st, at)← Q(st, at) + α (rt+1 + γ · Es∼P0
[Q(s, a)]−Q(st, at)) . (66)

The modification improves policy robustness and ensures consistent performance under varying
starting conditions.

C ADDITIONAL RESULTS

Table 4: Feature expectation matching analysis under different adversary types

Feature Adv. Type µE µπε w∗ wε ⟨w∗, µπE◦ν∗⟩ ⟨w∗, µπε◦ν∗⟩
Uniform 0.12 0.01 0.24 0.08 0.01

goal reached RS Adv. 0.07 0.00 0.68 0.39 0.05 0.00
Critic Adv. 0.02 0.00 0.31 0.01 0.00
Uniform 0.44 0.06 0.51 0.22 0.03

horizontal direction to goal RS Adv. 0.33 0.03 0.34 0.54 0.11 0.02
Critic Adv. 0.26 0.28 0.04 0.09 0.01
Uniform 0.44 0.44 0.25 0.11 0.11

vertical direction to goal RS Adv. 0.34 0.05 0.34 0.55 0.11 0.02
Critic Adv. 0.29 0.22 0.53 0.10 0.07
Uniform 0.00 0.42 -0.64 0.00 -0.27

danger zones RS Adv. 0.00 0.00 -0.51 -0.46 0.00 0.00
Critic Adv. 0.06 0.09 -0.62 -0.03 -0.06
Uniform 1.00 0.56 0.17 0.17 0.10

near boundary RS Adv. 0.61 0.97 -0.17 -0.46 -0.10 -0.45
Critic Adv. 0.45 0.57 -0.49 -0.22 -0.28
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