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ABSTRACT

A primary challenge in large language model (LLM) development is their onerous
pre-training cost. Typically, such pre-training involves optimizing a self-supervised
objective (such as next-token prediction) over a large corpus. This paper explores a
promising paradigm to improve LLM pre-training efficiency and quality by suitably
leveraging a small language model (SLM). In particular, this paradigm relies on
an SLM to both (1) provide soft labels as additional training supervision, and (2)
select a small subset of valuable (“informative” and “hard”) training examples.
Put together, this enables an effective transfer of the SLM’s predictive distribution
to the LLM, while prioritizing specific regions of the training data distribution.
Empirically, this leads to reduced LLM training time compared to standard train-
ing, while improving the overall quality. Theoretically, we develop a statistical
framework to systematically study the utility of SLMs in enabling efficient training
of high-quality LLMs. In particular, our framework characterizes how the SLM’s
seemingly low-quality supervision can enhance the training of a much more capa-
ble LLM. Furthermore, it also highlights the need for an adaptive utilization of
such supervision, by striking a balance between the bias and variance introduced
by the SLM-provided soft labels. We corroborate our theoretical framework by
improving the pre-training of an LLM with 2.8B parameters by utilizing a smaller
LM with 1.5B parameters on the Pile dataset.

1 INTRODUCTION

Owing to the recent surge in their ever-growing capabilities, large language models (LLMs) (Chowdh-
ery et al., 2022; Touvron et al., 2023; OpenAI, 2023; Anil et al., 2023; Jiang et al., 2023; Gemini-Team
et al., 2023; Anthropic, 2024), have become the focal point of machine learning research. Several
research efforts focus on either further enhancing LLM performance, or utilizing LLMs in novel
applications ranging from conversational agents/assistants (Thoppilan et al., 2022) to novel material
design (Rubungo et al., 2023). Highly capable general-purpose LLMs rely on two critical ingre-
dients: choosing a model architecture with a very large number of parameters (Chowdhery et al.,
2022; Smith et al., 2022), and pre-training this model on a corpus with a very large number of exam-
ples (AI@Meta, 2024; Computer, 2023). Due to the large size of model and corpus, the computational
cost of pre-training can be highly onerous. Thus, sustainable advancement and widespread adoption
of LLMs hinges on designing novel architectures and algorithms that can reduce the overall training
(particularly, pre-training) compute cost and improve the data efficiency for LLM development.

This paper focuses on leveraging small language models (SLMs) for efficient LLM pre-training.
Interestingly, a growing literature (see, e.g., Gupta et al., 2024; Chen et al., 2023; Yue et al., 2024)
shows that, despite their limited model capacity, SLMs can acquire a good domain understanding
of pre-training data distribution. Particularly, SLMs can perform well on a large portion of “easy”
instances, while still providing valuable information towards identifying the remaining “hard” in-
stances, e.g., via the confidence, margin, or similar measures based on their predictive distribution.
This prompts us to explore the following question:
Can we speed up pre-training of a high-quality large LM by transferring the predictive distribution

resulting from pre-training of a lower-quality small LM?
Note that suitable SLMs are often readily available during LLM development as previous-generation
models trained on similar pre-training corpora or smaller models trained for initial exploration around
architectural and algorithmic choices on the current pre-training corpora itself. Furthermore, if proven,
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the potential of SLMs to enhance LLM quality and efficiency, coupled with their relatively cheaper
development cost, strongly justifies training such models even to solely aid LLM training.

Knowledge distillation (KD; Bucilǎ et al., 2006; Hinton et al., 2015) is a natural candidate to achieve
our underlying objective by utilizing the SLM as teacher model to transfer its predictive distribution
to student LLM during pre-training. However, it is unclear if KD can be helpful in realizing our goal
as unlike a typical KD setup – wherein a larger or stronger teacher is used to train a smaller or weaker
student – we are hoping to leverage a smaller and weaker teacher LM to improve the pre-training
efficiency and quality of a larger and stronger student LM.

We begin by developing a statistical framework to study KD in the context of language modeling.
We obtain novel risk bounds that delineate the desirable properties of the teacher LM-provided
supervision that can enhance the student LM’s performance, even when one employs a perceivably
weaker SLM as the teacher. To the best of our knowledge, ours are the first such bounds for language
modeling. Notably, our bounds subsume standard pre-training as a special case, and control LM
generalization as we scale model capacity and the amount of pre-training data, with latter being
measured in terms of either number of training sequences or number of training tokens. We believe
that these bounds are of independent interest to broader community working on LLMs.

Small LM 

Large LM

Token-level 
KD loss with 
Small LM as 

teacher

Standard 
pre-training loss

Original 
pre-training 

corpora

Selected 
data

Small LMs selects 
challenging yet learnable 
training sequences for KD

1

2 One-hot distribution for 
ground truth next-token

Figure 1: An overview of the proposed SALT. SALT utilizes
an SLM in two ways to improve the pre-training of LLM:
1© To perform KD with SLM as teacher in the early phase
of LLM pre-training; and 2© To obtain a valuable subset of
pre-training corpora to be utilized during the KD.

Our statistical analysis lays the foun-
dation for an adaptive pre-training
method that leverages SLM via KD
only in the so-called “easy” regions
where SLM can approximate the
ground truth next-token distribution
well. Combining this with the ten-
dency of neural network to learn eas-
ier examples first (Kalimeris et al.,
2019; Refinetti et al., 2023), we pro-
pose small model aided large model
training (SALT) – a two-stage pre-
training approach that employs KD
from an SLM in the early phase of
the LLM pre-training and resorts to
standard self-supervision-based training for the rest of the pre-training. We then expand the SALT
method by employing SLM to additionally perform data selection for the KD phase. Our selection
procedure focuses on identifying challenging yet learnable sequences from the easy region of the
data distribution to ensure an effective transfer of SLM’s predictive distribution during KD (see Fig. 1
for an overview). Our empirical study, focusing on both few-shot and post-supervised fine-tuning
(SFT) performance, validates the utility of SALT for improving both quality and training efficiency
of LLMs compared to standard pre-training. Our key contributions are summarized as follows:

(i) We present a statistical framework for KD in the context of language modeling, which provides
novel risk bounds describing how even a perceivably weaker teacher LM can improve the
quality of a larger student LM (cf. Sec. 3).

(ii) Guided by our framework, we propose a two-stage pre-training method, namely SALT, that
uses SLMs as teacher to perform KD during the first stage corresponding to early phase of
LLM pre-training. We extend SALT by utilizing SLMs to perform data selection for the KD
phase, facilitating an effective transfer of predictive distribution from SLM to LLM (cf. Sec. 4).

(iii) We showcase the utility of SALT (with and without data selection) by training a 2.8B parameter
LM with the help of 1.5B parameter LM on the Pile dataset (Gao et al., 2020). The 2.8B LM
trained with SALT outperforms a 2.8B LM trained via standard pre-training method on a wide
range of popular few-shot benchmarks while utilizing less than 0.7X training step budget, re-
sulting in ∼ 28% wall-clock time reduction. Moreover, SALT models consistently demonstrate
significant downstream performance gains after SFT on multiple domains (cf. Sec. 5).

2 BACKGROUND

Language modeling. Given a large corpus, language modeling aims to train a model that can assign
probabilities or likelihood to each sequence x ∈ V?, where V denotes the underlying vocabulary
with V = |V| tokens. Assuming that the language model (LM) is parameterized by θ, it assigns the
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following probability to a T -token long input sequence x = [x1, x2, . . . , xT ]:
Pθ(x) = Pθ(x1)Pθ(x2|x1) · · ·Pθ(xT |x1, . . . , xT−1).

Transformers (Vaswani et al., 2017) are the most prominent architecture supporting LMs (OpenAI,
2023; Touvron et al., 2023; Gemini-Team et al., 2023), which we briefly discuss in Appendix A.1.

Standard LM pre-training. Typically, LM pre-training involves the next-token prediction task:
given a training sequence x = [x1, x2, . . . , xT ], for each t ∈ [T ], one maximizes the log-likelihood
logPθ(xt|x≤t−1). This amounts to minimizing the cross-entropy loss between the per-token LM
prediction distribution Pθ(·|x≤t−1) and the one-hot distribution1 1xt(·) defined by the ground truth
next-token xt. Thus, the overall loss associated with x becomes

`(x; θ) = 1/T ·
∑

t∈[T ]
− logPθ(xt|x≤t−1) = 1/T ·

∑
t∈[T ]

CE
(
1xt(·), Pθ(·|x≤t−1)

)
, (1)

where, CE(P1, P2)=−
∑
v∈V P1(v) logP2(v) is the cross-entropy between distributions P1 and P2.

Knowledge distillation for LM. Going beyond the ground truth next-token based loss in (1), one can
utilize the per-token prediction distribution provided by another LM, say the one parameterized by ζ,
as additional supervision. Formally, given the context x≤t−1, one can train the LM parameterized by
θ via aligning its prediction distribution Pθ(·|x≤t−1) with Pζ(·|x≤t−1). KL divergence is a common
choice to promote such an alignment, which amounts to minimizing the following cross-entropy loss:

`(x; ζ → θ) = 1/T ·
∑

t∈[T ]
CE
(
Pζ(·|x≤t−1), Pθ(·|x≤t−1)

)
. (2)

Training based on the loss in (2) is referred to as the token-level knowledge distillation (KD; Kim &
Rush, 2016) in the literature, with LMs parameterized by ζ and θ termed as the teacher and student
LMs, respectively. See Appendix A.2 for a discussion on other related KD for LM variants. Tem-
perature scaling of teacher is a common strategy (Zheng & Yang, 2024) where, given a temperature
ρ > 0, one utilizes Pζ,ρ(·|x≤t−1) = Pζ(·|x≤t−1)ρ/

∑
v′∈V Pζ(v

′|x≤t−1)ρ during KD, resulting in
the loss:

`(x; ζρ → θ) = 1/T ·
∑

t∈[T ]
CE
(
Pζ,ρ(·|x≤t−1), Pθ(·|x≤t−1)

)
. (3)

In practice, one typically utilizes both ground truth next-token as well as teacher’s next-token
distribution and, for a distillation loss weight ω ∈ [0, 1], minimizes the following as the loss for x:

`ω(x; θ) , (1− ω) · `(x;θ) + ω · `(x; ζρ → θ). (4)
Note that, for brevity, our notation `ω(x; θ) omits the dependence on ζ and ρ.

3 THEORETICAL ANALYSIS: WHEN CAN KD HELP LANGUAGE MODELING?

As alluded in the introduction, we hope to leverage KD with an SLM as the teacher to speed-up the
pre-training of a high quality LLM. However, due to SLM’s relatively limited capacity and inferior
quality, it is not immediately clear that such a teacher can benefit the LLM. Motivated by this, we
now develop a rigorous statistical framework for KD in the context of language modeling by building
on the works of Menon et al. (2021); Dao et al. (2021a); Ren et al. (2022a). Novel risk bounds
originating from this framework highlight how a teacher LM – even a perceivably weaker one – can
benefit student LLM by striking the right balance in terms of a bias-variance trade-off.

Notably, our analysis allows one to control the generalization gap for the student LM in terms of
both number of training sequences N as well as number of total tokens NT , with the latter being
highly non-trivial due to possibly arbitrary dependence within a training sequence. In this work, we
crucially leverage certain natural stability conditions on the underlying distribution and function class
to obtain such bounds in terms of NT . Next, we setup some necessary notation and then present our
risk bounds as functions of N and NT in Sections 3.1 and 3.2, respectively. Sec. 3.3 utilizes our
bounds to justify the utility of SLMs for improving LLM model quality via KD.

Let D be the data distribution that generates N independent training sequences SN = {x(i)}i∈[N ] ⊂
VT , i.e., x(i) ∼ D, ∀ i ∈ [N ].2 Given SN and CE surrogate loss (cf. (1)), the empirical surrogate
risk, i.e., standard training objective, and its population version for an LM parameterized by θ are:

RN (θ) = 1/N ·
∑

x∈SN
`(x;θ) and R(θ) = Ex∼D

[
`(x;θ)

]
. (5)

1For v ∈ V , we define 1x(v) = 1 if v = x and 1x(v) = 0 if v 6= x.
2 Our analysis can be extended to varying length sequences at the cost of increased notational complexity.
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On the other hand, the empirical surrogate risk for KD, i.e., the KD training objective, and its
population version take the following form (note that we omit dependence on ζ and ρ):

RωN (θ) = 1/N ·
∑

x∈SN
`ω(x;θ) and Rω(θ) = Ex∼D

[
`ω(x;θ)

]
. (6)

3.1 EXCESS SURROGATE RISK BOUND FOR LM IN TERMS OF NUMBER OF SEQUENCES

Given a potentially infinite function class Θ for student LMs, let θ̂ and θ∗ be the minimizers of KD
training objective (6) and the population risk in (5), respectively:

θ̂ := arg minθ∈ΘR
ω
N (θ) and θ∗ = arg minθ∈ΘR(θ). (7)

We want to compare the test performance (population risk) of θ̂ with that of θ∗ – the optimal LM in
Θ. Before stating our excess risk bound, we introduce an assumption that we rely on in our analysis.
Assumption 3.1. The per-token log-loss with at most T -token long sequences for the function class
Θ is bounded by M , i.e., supθ∈Θ;x∈V≤T−1 maxv∈V | logPθ(v|x)| ≤M.

Remark 3.2. Assuming loss to be bounded is a standard practice in the statistical learning literature
which can be realized, e.g., by clipping the CE loss by a sufficiently large constant M . Recently,
Lotfi et al. (2024a) realized such an assumption by adding a small amount of uniform noise to LM
predictions in their study on generalization for LMs trained via standard pre-training without KD.

We are now ready to present our excess risk bound. Due to the page limit we provide an informal
statement of our result below; see Appendix B.1 for the complete statement and its proof.

Theorem 3.3 (Informal). Let θ̂ and θ∗ be as defined in (7). Define fθ : VT → [0,M ] by fθ(x) =
`ω(x;θ), ∀x ∈ VT ,θ ∈ Θ. Then, under Assumption 3.1, with probability at least 1− δ, we have

R(θ̂)−R(θ∗) ≤ c1√
N
·
(√

VN (f θ̂) log (2M(N)/δ) +
√
VN (fθ∗) log (4/δ)

)
+ (4Mω)/T ·

∑
t∈[T ]

E
[
DTV

(
Pζ,ρ(·|x≤t−1),D(·|x≤t−1)

)]
+ c2M/(N − 1) · log(M(N)/δ)

where DTV is TV distance, VN (fθ) = 1
N(N−1)

∑
1≤i<j≤N

(
fθ(x(i))− fθ(x(j))

)2
is sample vari-

ance,M(N) depends on the growth function of
{
fθ : θ ∈ Θ

}
, and c1 & c2 are universal constants.

3.2 EXCESS SURROGATE RISK BOUND FOR LM IN TERMS OF NUMBER OF TOKENS

For an LM θ ∈ Θ and a training sequence x = [x1, x2, . . . , xT ] ∈ VT , define

ξt(x;θ) = Ez∼D [`ω(z;θ)|z≤t−1 = x≤t−1]− Ez∼D [`ω(z;θ)|z≤t = x≤t] , t ∈ [T ]. (8)

Note that ξt(x;θ) does not depend on x>t. For t ∈ [T ], ξt(x;θ) measures the expected KD loss
deviation for the student when we condition on the context up to (t−1)-th vs. t-th token, respectively,
and sample the remaining tokens from D. In general, the deviation could be large as changing a
single token in the context can significantly alter LM’s distribution. However, a well-behaved LM
should be robust to such perturbations. Motivated by this, we introduce the following assumption.
Assumption 3.4. Given the data distribution D and finite function class Θ, the following holds for
any x ∈ Support(D), θ ∈ Θ, and t ∈ [T ]:

|ξt(x;θ)| ≤ Ct ≤ C; and E
[
ξ2
t (x;θ)|x≤t−1

]
≤ Vt. (9)

Under Assumption 3.4, we obtain the following result on student’s generalization gap.
Theorem 3.5. Let Θ be a finite function class. Under Assumption 3.4, with probability at least 1− δ,
the following holds for the student LM θ̂ ∈ Θ obtained via KD:

R(θ̂) ≤ RωN (θ̂) +

√
2
∑

t
Vt/N · log (|Θ|/δ) + 2C/(3N) · log (|Θ|/δ) +

(4Mω)/T ·
∑

t∈[T ]
Ex≤t−1∼DDTV

(
Pζ,ρ(·|x≤t−1),D(·|x≤t−1)

)
. (10)

Remark 3.6 (Dependence of C, {Vt} on T ). Theorem 3.5 captures a fine-grained dependence on C
and {Vt} from Assumption 3.4. For a robust LM, when C is O(1/T ) and {Vt} are O(1/T 2) (note
the scaling of `ω by T ), we get the tightest generalization gap decaying with NT . For a non-robust
LM in the worst case, i.e., C and {Vt} scaling asO(1) andO(1/T ), the generalization gap gracefully
falls back to a bound akin to Theorem 3.3 that only decays with N .

4
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Algorithm 1 Small model aided large model training (SALT)

Input: Training data SN = {x(i)}i∈[N ] ⊂ VT , gradient-based optimization algorithm A, SLM
parameterized by ζ, distillation loss weight ω ∈ [0, 1], teacher temperature ρ > 0, batch size B,
training step budget n, learning rate schedule {ηj}j∈[n], and nKD ≤ n.

Output: Pre-trained LLM parameterized by θ̂ ∈ Θ.
1: Initialize θ0 ∈ Θ.
2: for j = 1, 2, . . . , nKD do // First stage of LLM pre-training via KD
3: Construct a new batch of B training sequences Bj = {x(i)}i∈[B] ⊂ SN .
4: Update θj+1 with step size ηj via one step of A on LKD(Bj) = 1

B

∑
x∈Bj `

ω(x;θj).
5: end for
6: for j = nKD + 1, nKD + 2, . . . , n do // Second stage: standard training
7: Construct a new batch of B training sequences Bj = {x(i)}i∈[B] ⊂ SN .
8: Update θj+1 with step size ηj via one step of A on LStd(Bj) = 1

B

∑
x∈Bj `(x;θj).

9: end for
10: θ̂ ← θn

Remark 3.7. Recently, Lotfi et al. (2024b) obtained generalization bounds for LLMs trained without
KD in terms of total number of tokens. However, even when we specialize Theorem 3.5 to standard
pre-training by setting ω to 0, our result significantly differs from theirs both in terms of proof
technique as well as its implications. Crucially, results in Lotfi et al. (2024b) only holds for the
contexts seen during training whereas our bound enable controlling LM’s generalization gap on novel
contexts generated from the data distribution during the test time. Also, see Remark 3.6.

3.3 KD OUT-PERFORMING STANDARD PRE-TRAINING: A BIAS-VARIANCE TRADE-OFF

Empowered by our novel risk bounds, we now provide justification for why KD can outperform
standard pre-training. Specifically, based on Theorem 3.5, we clarify when KD might lead to a tighter
bound than standard pre-training. Similar conclusions follow from Theorem 3.3 by extending the
arguments from Menon et al. (2021) to language modeling. As per Theorem 3.5, three key quantities
control the generalization of the student: (1)

∑
t Vt which relates to loss variance; (2) C which

relates to extreme loss values; and (3) divergence between the teacher-provided distribution and
the ground truth distribution: DIV(ζ, ω) = ω ·

∑
t E [DTV (Pζ,ρ(·|x≤t−1),D(·|x≤t−1))] . Under

Assumption 3.1, only
∑
t Vt and DIV(ζ, ω) are crucial in distinguishing KD and standard pre-training.

Since DIV(ζ, 0) = 0, one may surmise that standard pre-training (i.e, ω = 0) leads to tighter bound.
But as we detail in Appendix C due to the page limit, the variance term becomes smaller as we
increase ω. Thus, with a careful selection of ω, the variance reduction via KD can offset the bias
DIV(ζ, ω). In particular, if the teacher closely approximates the ground truth distribution so that the
bias DIV(ζ, ω) is small even for large ω, then the variance reduction via KD becomes prominent,
resulting in significantly tighter generalization gap compared to standard pre-training.

Performance gain via KD from an SLM as teacher. While small teacher LMs – the main interest
of this work – also lead to variance reduction, they are typically not powerful enough to model the
true distribution over the entire data domain very well. Thus, any effect of variance reduction via
KD with such a teacher would be washed away by the large bias DIV(ζ, ω). This highlights the need
for an adaptive form of KD from SLMs. Even SLMs with their limited capacity can approximate
the true distribution well on certain regions of the data domain, which we call the ‘easy’ regions.
Thus, one can employ KD from SLMs on the easy regions to benefit from the variance reduction
without incurring large bias and guarantee improved student LLM performance on these regions. For
the remaining (‘hard’) regions, where the bias is large enough to overshadow the contributions of
variance reduction, one should not perform KD from SLMs and utilize the standard pre-training loss.

4 SALT: SMALL MODEL AIDED LARGE MODEL TRAINING

We now operationalize the key takeaway from Sec. 3 by proposing SALT – a simple yet effective
two-stage pre-training method. SALT relies on the inherent preference of a model to first focus on
easier supervision before fitting more complex supervision during training (Kalimeris et al., 2019;
Refinetti et al., 2023) to perform selective KD from a teacher SLM. We then expand SALT to perform

5
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explicit selection of training sequences where we want to conduct KD from an SLM on. In particular,
we identify challenging sequences which are learnable as per teacher SLM; as a result, performing
KD on those sequences result in further variance reduction (Katharopoulos & Fleuret, 2018).

Two-stage LLM pre-training via SALT. Inspired by our analysis, we propose a two-stage pre-
training methods for LLMs in Algorithm 1. The algorithm employs KD with SLM as a teacher in
the first stage which lasts till nKD training steps, and transitions to standard pre-training without KD
in the second stage. Note that we are interested in the selective transfer of predictive distribution
from teacher SLM to student LLM in those regions where SLM performs well by capturing true
distribution. By design, KD aims to align predictive distributions of the teacher and student. On the
regions where SLM performs well, we expect it to exhibit reasonably confident predictive distribution
that should align with ground truth next-token (Gupta et al., 2024), thereby constituting an easier
supervision signal for the LLM. In contrast, on hard instances where SLM’s predictive distribution
is not confident enough or does not align well with the ground truth next-token, learning will be
delayed to the later phase of the training (Kalimeris et al., 2019; Refinetti et al., 2023). Thus,
SALT relies on the tendency of neural networks to focus on easier instances early during the training
to perform desirable knowledge transfer from SLM in the first stage. Once the student LLM is
sufficiently aligned with teacher SLM on easier regions, it starts utilizing its model capacity to further
align with SLM on more complex regions where high divergence between SLM and ground truth
distribution can become detrimental to the LLM’s performance. Switching to standard pre-training
based solely on the self-supervision from next-tokens in the second stage prevents this undesirable
over-alignment. We empirically verify the above intuition behind SALT in Sec. 5.4.

SALTDS: SALT with data selection. We now endow SALT approach (cf. Algorithm 1) with explicit
selection of examples where we want to transfer teacher SLM’s predictive distribution on, with SLM
itself enabling the data selection. In particular, we want to select the most informative (or challenging)
examples among the ones that SLM performs well on. Towards this, given the SLM ζ and a positive
integer k, we assign a score Sζ,k(x) to training sequence x, with a higher score indicating a higher
likelihood to be included for training. More specifically, we compute the per-token cross-entropy
loss of SLM on x and aggregate (typically using the median) into a sequence-level score. This
encourages selecting more challenging examples. However, in the spirit of selecting examples that
are still learnable, we remove all losses where the ground-truth token is not in top-k outputs of the
model before aggregating:

Sζ,k(x) = median
({
− 1{xi ∈ argtopk(Pζ(·|x<i))} logPζ(xi|x<i) : i ∈ [n]

})
, (11)

where argtopk(Pζ(·|x<i)) denotes the top-k scoring tokens at position i according to SLM. Given
a scored pool of sequences, we select the top-m scoring sequences where m is sufficiently large to
complete the first stage of Algorithm 1. The reader may note, that if the SLM has been trained with
the same dataset that it is scoring, then the computed per-token loss (and resulting sequence score)
may be heavily biased. To circumvent that, we use an “early checkpoint” of the model ζn0

, which
has trained on a small number of examples from the overall training set n0 � N . We then sample
from the remainder of the training examples using score Sζn0

,k(·). Although the early model ζn0

may be a lower quality model due to training with relatively little data, it is only the relative ordering
of examples that is important when computing a score, rather than the absolute score.

5 EXPERIMENTS

We now showcase the potential of leveraging SLMs for improving LLM pre-training, by realizing
both better quality and improved training efficiency. We demonstrate the additive utility of two
aspects of our proposal: (1) employing SLMs as teacher models during the early phase of LLM pre-
training (SALT); and (2) further performing data selection via SLMs during the KD phase (SALTDS).

Throughout our study, we compare with a natural baseline (denoted BASELINE) where the large
LM is pre-trained in a standalone manner with a self-supervised objective over a pre-training set.
This enables us to fairly compare our proposed approach as we fix the model architecture and the
underlying pre-training data in our evaluation. The key takeaways from this section are:

(1) SALT and SALTDS attain BASELINE performance with less than 70% of training steps, and signif-
icantly outperform BASELINE with the same number of training steps (cf. Sec. 5.2). Additionally,
SALT can leverage improved quality small teacher LM to further improve the performance of the
large student LM (cf. Appendix H)
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(2) SALT and SALTDS pre-trained LMs consistently outperform BASELINE after SFT on arithmetic
reasoning, summarization, and natural language inference (NLI) tasks (cf. Sec. 5.3).

(3) Step transition from KD phase to standard training phase in SALT (cf. Algorithm 1) constitutes a
good design choice as it outperforms other natural alternatives (cf. Appendix H).

We also compare SALT with RKD (standing for reverse KD) where we perform KD with SLM as the
teacher throughout pre-training. RKD results in sub-par performance even compared to BASELINE as
the relatively poor quality of SLM limits LLM performance during the later part of training.

5.1 EXPERIMENTAL SETUP
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Figure 2: Fraction of correct next-token
predictions for various LMs during train-
ing, on a subset of the Pile training set.

Model architectures and pre-training data. We work
with standard decoder-only Transformer-based LMs. Our
small model (SLM) has 1.5B parameters and our large
model has 2.8B parameters. We use a SentencePiece to-
kenizer (Kudo & Richardson, 2018) from Du et al. (2022)
with a vocabulary size of 256K. We pre-train all LMs on
the Pile dataset (Gao et al., 2020) for 545 billion tokens via
UL2 objective (Tay et al., 2023) with a mixture of causal
LM, prefix LM and span corruption tasks. We use a batch
size of 2048 and input sequence length of 1280. Based on
our hyperparameter search, we set the distillation weight
ω = 0.667 and teacher temperature ρ = 0.25. Further de-
tails on model architecture and pre-training are provided
in Appendix E.

Few-shot evaluation tasks. Following the literature (see, e.g., Anil et al., 2023; Touvron et al.,
2023),we perform few-shot evaluation of pre-trained LMs on a wide range of standard benchmarks.
We focus on English benchmarks as the pre-training data is mostly English. We defer the full list of
benchmarks to Appendix F which can be categorized into: (1) world knowledge, (2) reading compre-
hension, (3) commonsense reasoning, (4) natural language generation (NLG), and (5) SuperGLUE.
We also consider LAMBADA (Paperno et al., 2016) and MBPP (Austin et al., 2021) which are Cloze
and code generation tasks, respectively. We conduct 1-shot evaluation for all benchmarks, except for
MBPP which is 3-shot. For each benchmark, we report the corresponding prevalent metric in the
literature. See Appendix G for details.

Fine-tuning tasks. We focused on (arithmetic) reasoning, summarization, and NLI tasks where
the few-shot performance of all pre-trained models (including baseline and our models) were poor.
For arithmetic reasoning, we utilize GSM8K (Nie et al., 2020). For summarization, we employ
XSum (Narayan et al., 2018) and CNN/DailyMail (Nallapati et al., 2016). For NLI tasks, we employ
ANLI-R1, ANLI-R2, and ANLI-R3 (Nie et al., 2020).

5.2 RESULTS: SALT ENABLES EFFICIENT TRAINING OF HIGH QUALITY LLMS

Interestingly, KD from the seemingly weaker SLM does improve LLM training in the beginning
compared to BASELINE, as reflected in the next-token prediction accuracy over the training set in
Fig. 2. However, continuing KD from the weaker teacher eventually become detrimental. As evident
in Fig. 2 and Tab. 1, RKD significantly underperforms BASELINE on both training and validation set.
In contrast, SALT leverages KD from SLM only during first nKD training steps (cf. Algorithm 1).

Quality improvements via SALT. Unlike RKD, SALT (with nKD = 36K steps) yields a pre-trained
LLM that improves upon BASELINE on both training set (cf. Fig. 2) and held-out validation set
(cf. Tab. 1). Tab. 2 presents domain-wise few-shot performance of BASELINE, RKD, SALT, and
SALTDS (see Tab. 5 Appendix G for per-task performance ). Both SALT and SALTDS consistently
outperform BASELINE (as well as RKD) at the end of training, i.e., @100% steps or 208K steps. In par-
ticular, SALTDS outperforms BASELINE in 6 out of 7 domains as well as the overall average; similarly,
SALT improves upon BASELINE in 5 out of 7 domains as well as the overall average,establishing the
utility of SALT approaches in successfully leveraging SLMs to boost the quality of LLMs.

Training efficiency realized via SALT. As per Tab. 2, SALT surpasses BASELINE at 146K steps on
average few-shot performance, suggesting a savings of 30% training compute cost. While nKD = 36K
out of those 146K steps involve KD which is typically computationally costlier than standard training,
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Table 2: Domain-wise few-shot performance of pre-trained LMs. SALT and SALTDS already
outperform BASELINE in terms of average few-shot performance at 70% of their training step budget,
thereby improving both training efficiency and model quality. RKD (i.e., naively distilling from SLM
throughout pre-training) performs much worse than BASELINE. The best and second-best results for
each domain are boldfaced and underlined, respectively.

Domain # Tasks SLM BASELINE RKD SALT SALTDS

@100% @100% @70% @100% @70% @100%
steps steps steps steps steps steps

World Knowledge 4 15.90 22.19 18.69 21.59 22.70 20.64 21.72
Reading Comprehension 4 46.30 53.00 51.00 53.55 54.55 54.35 54.93
Commonsense Reasoning 7 57.76 61.99 58.30 61.27 61.67 62.00 62.10
LAMBADA 1 26.90 36.20 31.10 50.70 48.30 48.00 53.00
SuperGLUE 8 61.59 65.53 62.91 66.30 65.28 65.99 65.58
NLG 3 3.13 4.60 3.40 4.63 4.73 4.80 4.83
MBPP 1 9.60 16.20 11.40 15.60 17.00 16.60 17.80
Average 28 42.56 47.32 44.39 47.86 47.94 47.89 48.26

as we argue next, the fact that our teacher is a SLM ensures that we still realize efficiency gains via
SALT. In particular, the additional compute cost in KD is one forward pass of SLM per training step.
As a rule of thumb, a forward pass constitutes 1/4th cost of a training step (which comprises both
forward and backward passes). In our setup, a forward pass of SLM is approximately half as expensive
as that for the LLM. Thus, KD from SLM adds a factor of 1/8 to the cost of the training step of the
standard training. (Our implementation verifies this as we observe 12.0% slow down during KD
compared to standard training.) Since KD lasts for nKD = 36K out 146K training steps, the training
cost required by SALT to surpass BASELINE is approximately equivalent to that of (146 + 36/8)K
steps of the standard training. This translates to an efficiency gain of ∼ 28% compared to the 208K
steps taken by BASELINE.

5.3 IMPROVED DOWNSTREAM PERFORMANCE REALIZED VIA SALT POST SFT

Table 1: Accuracy and log-perplexity on a held-
out set of Pile. We evaluate the models at an early
and the final checkpoint. At the end of pre-training
(208K steps), both SALT and SALTDS improve
upon BASELINE in terms of both next-token pre-
diction accuracy and log-perplexity. RKD is identi-
cal to SALT during its first stage, hence they have
the same performance at nKD = 36K steps.

Model Evaluation stage
(steps) Accuracy (↑) Log (↓)

perplexity
SLM Final (208K) 57.70 1.951

BASELINE

Early (36K)

56.68 2.011
RKD 57.21 2.160
SALT 57.21 2.160
SALTDS 56.47 2.188

BASELINE

Final (208K)

58.99 1.868
RKD 58.46 2.071
SALT 59.10 1.863
SALTDS 59.17 1.857

Tab. 2 already showcases that SALT can lever-
age SLMs to obtain large pre-trained LMs
that out-perform widely adopted standard pre-
training (BASELINE). That said, all the pre-
trained models (including BASELINE) exhibit
relatively poor few-shot performance on certain
benchmarks, e.g., NLG or summarization task
(in Tab. 2) and also MATH (Hendrycks et al.,
2021) and ANLI (Nie et al., 2020) benchmarks.
This raises the question of whether SALT is ben-
eficial for downstream application performance.

Supervised fine-tuning (SFT) is a standard ap-
proach to convert a pre-trained LM into a
domain-specific proficient model. We employ
SFT on a range of downstream tasks cover-
ing three domains, namely arithmetic reason-
ing, NLG or summarization, and NLI. For each
downstream benchmark, we perform SFT on the
pre-trained LMs obtained via BASELINE, SALT,
and SALTDS. During SFT, we train each pre-
trained LM for 10K steps with Adafactor algorithm (Shazeer & Stern, 2018). We utilize cosine
learning rate schedule (Loshchilov & Hutter, 2017) with a peak learning rate of 1e-4 and linear warm-
up phase consisting of 200 steps. These hyperparameters were optimized for the BASELINE; and
we did not conduct hyperparameter tuning for the pre-trained LMs resulting from SALT approaches.
Finally, we employ greedy decoding during the evaluation of the fine-tuned LMs. Tab. 3 presents
SFT performance on six benchmarks covering the aforementioned three downstream domains. SALT
consistently outperforms BASELINE on all benchmarks and, in most cases, SALTDS performs the
best. This showcases that SALT (with or without data selection) enables significant improvements for
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Table 3: Supervised fine-tuning (SFT) results. Performance of various pre-trained checkpoints on
downstream tasks after SFT. For each benchmark, pre-trained 2.8B models are fine-tuned on the
corresponding train split and evaluated on the validation split (test split in case of GSM8K). Acc, Rg1,
Rg2, and RgL represent the Accuracy, Rouge-1, Rouge-2, and Rouge-Lsum metrics, respectively.

GSM8K XSum CNN/DailyMail ANLI-R1 ANLI-R2 ANLI-R3
Acc Rg1 Rg2 RgL Rg1 Rg2 RgL Acc Acc Acc

BASELINE 31.84 43.39 21.09 35.91 42.84 20.43 40.38 63.70 56.90 57.83

SALT 34.87 43.45 21.21 36.04 43.19 20.65 40.74 67.00 57.80 59.67
SALTDS 35.25 43.77 21.44 36.24 43.41 20.87 40.95 67.30 57.70 59.58

a range of difficult downstream domains even when the corresponding pre-trained LMs exhibits only
a small performance gains over BASELINE.

5.4 SLM ENABLES FAST LEARNING ON EASY EXAMPLES

Table 4: Few-shot evaluation on different buck-
ets of XLSum-EN. Each number shows average
Rouge-2 scores on the corresponding bucket. We
use gray , green , and red to highlight the re-
sults similar to, better than, and worse than BASE-
LINE performance, respectively.

Evaluation stage
(steps)

Easy Medium Hard

SLM Final (208K) 8.04 0.43 0.00

BASELINE
Early (36K)

6.15 1.61 0.71
RKD 6.76 1.40 0.58
SALT 6.76 1.40 0.58

BASELINE
Final (208K)

8.80 2.52 0.97
RKD 7.87 1.68 0.74
SALT 9.68 2.67 0.99

Recall that SALT aims to realize quality and ef-
ficiency gains for LLM pre-training by quickly
transferring the predictive distribution of an
SLM to the LLM via KD, focusing on the ‘easy’
regions of the data distribution where the SLM
performs well. Subsequently, SALT falls back
on ground truth next-token-based supervision to
refine LLM’s performance on the ‘hard’ regions
where the SLM fares poorly. Here, we set out to
empirically demonstrate that this key intuition
behind SALT is indeed borne out in practice.
Focusing on various few-shot eval benchmarks,
we partition instances in each benchmark into
‘easy’, ‘medium’, and ‘hard’ buckets based on
the teacher SLM’s performance (see Appendix J
for details). We then evaluate BASELINE, SALT,
and RKD pre-trained LLMs on these individual
buckets after nKD = 36K training steps when

the KD phase of SALT ends as well as at the end of the pre-training, i.e., after 208K steps. Tab. 4
presents these results on the XLSum-EN task (see Appendix J for results on other benchmarks),
which validate: (1) KD from SLM quickly enables LLM to perform well on ‘easy’ instances; and
(2) standard pre-training after KD phase ending at nKD-th step helps LLM performance on ‘hard’
instances the most.

6 RELATED WORK

Here, we provide a brief account of related work, focusing on the prior work on assisting large model
training via small models, data selection, and theoretical treatment of KD. Due to the page limit, we
defer the discussion on various KD methods for language modeling that are not pertinent to the main
objective of this work to Appendix A.

Aiding large model training with small models. Small models often help identify good hyper-
parameters that can be utilized for large model training with minimal modifications (Yang et al.,
2021). Progressive or stage-wise training methods (Gong et al., 2019; Gu et al., 2020; Reddi et al.,
2023; Yao et al., 2023; Li et al., 2023) train a large model in stages where the parameters for the model
at a given stage get initialized based on the parameters of a smaller model from the previous stage.
Another related line of work simply informs the large model initialization based on a smaller model
without resorting to progressive stage-wise training (Trockman & Kolter, 2023; Wang et al., 2023;
Samragh et al., 2024). Most of these works crucially depend on the architectural overlaps between
the small and large models, e.g., requiring them to share same depth, width, or more generally same
model family. In contrast, one can distill from a smaller model to a larger model without such
constraints. Furlanello et al. (2018) study self-distillation to iteratively train a model, with the final
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model from an iteration acting as a teacher for the next iteration. More closer to the setting studied
in this work, albeit in image classification setting, Yuan et al. (2020); Xie et al. (2020) consider
distillation from a weaker model. In the work that is closest to our proposal, Qin et al. (2022) distill
an LM from a smaller LM. Moreover, they also distill during the early phase of larger student LM
pre-training to avoid negative impact on large LM’s final performance. We demonstrate the utility
of such an approach with larger LMs as well as larger pre-training corpus, with a wider range of
evaluation benchmarks. Furthermore, we provide a statistical framework to rigorously justifies the
utility of a seemingly weaker teacher during LLM pre-training. Other recent efforts on using smaller
LMs to boost larger LMs have primarily focused on fine-tuning (Yang et al., 2024; Mitchell et al.,
2024) or alignment (Burns et al., 2023), while we focus on pre-training which is the most compute
and data intensive phase of LLM development.

Data Selection. Ankner et al. (2024) select examples with reference model sequence-level log-
perplexities in a specified range. They aggregate per-token log-perplexities by taking the mean,
whereas, we take the median and also zero out noisy tokens. Mindermann et al. (2022) select
examples and Lin et al. (2024) select tokens for training based on excess training loss over a reference
model. While we perform offline data selection before training, these two works select data from
training batches on the fly. Methods which encourage diversity through semantic embeddings (e.g.,
Abbas et al. (2023); Tirumala et al. (2024)) can yield a better final model when employed in SALTDS.
Please refer to Albalak et al. (2024) for a comprehensive survey of data selection techniques for LMs.

Theoretical understanding of knowledge distillation. Focusing on (deep) linear networks, Phuong
& Lampert (2019) study the generalization bounds for KD and relate its success to various factors
including data geometry and optimization bias. Menon et al. (2021); Ren et al. (2022b) show that
KD leads to reduced variance of the training objective, thereby improving generalization, while also
relating the effectiveness of KD to teacher’s ability to approximate Bayes class probabilities. Cotter
et al. (2021) argue that KD can improve generalization as long as teacher approximates a suitable
transformation of Bayes class probabilities. Dao et al. (2021b) study KD from the perspective of
semiparameteric inference to analyze the excess risk of distilled student. Focusing on self-distillation
for kernel ridge regression, Mobahi et al. (2020) show that distillation can enhance regularization.
Allen-Zhu & Li (2023) explain the utility of distillation via better feature learning. Xu et al. (2020)
study the interplay between optimization and label smoothing via teacher-provided soft labels.
Focusing on linearized neural networks, Harutyunyan et al. (2023) attribute the success of KD to
the reduced supervision complexity. More recently, Safaryan et al. (2023) argue that KD can act as
a form of partial variance reduction, thereby improving convergence. We would like to highlight
that the existing literature does not provide generalization bounds for KD in a sequence learning
setting such as language modeling, and we provide the first statistical treatment of KD for language
modeling. Notably, similar to our work, Xu et al. (2020); Nagarajan et al. (2023) also explore the
utility of KD only during an early-phase of student training, albeit not in a language modeling setting.

7 CONCLUSION

We conduct a systematic study of the utility of SLMs to improve both training efficiency and
performance of LLM pre-training. Towards this, we introduce a novel statistical framework for KD in
the context of language modeling, which guides the design of SALT – a simple KD-based approach
that selectively transfers predictive distribution from an SLM to an LLM. We further enhance SALT
and perform explicit data selection via SLMs to effectively transfer knowledge from SLMs to LLMs.
SALT significantly reduces the pre-training time for LLMs while ensuring good overall quality as
measured by the LLM’s few-shot performance as well as downstream performance after fine-tuning.

While SALT can play a crucial role in efficiently sustaining the trend of developing LLMs with
increasing capabilities, it also has the potential to help institutions train proficient lightweight LMs.
Conventionally, one distills a large powerful model into a lightweight model with good quality.
However, given that many LLMs are proprietary, such strong-to-weak distillation is not feasible at
many institutions. Our proposed approach can leverage even smaller LMs to enhance the quality of
a small LM with acceptable inference cost. Exploring if our proposed approach can introduce new
capabilities in a general-purpose small LM with the help of one or multiple smaller LMs that are
experts in their respective domains is an interesting avenue for future work. Interestingly, our data
selection approach in SALTDS demonstrates that it is indeed possible to leverage data selection to
improve KD for language modeling. Building on this initial investigation and further exploring and
extending data selection approaches tailored to SALTDS is another interesting line of future work.
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A Little Help Goes a Long Way: Efficient LLM Training
by Leveraging Small LMs

Appendix

A LANGUAGE MODELING AND KNOWLEDGE DISTILLATION

A.1 LANGUAGE MODELING VIA TRANSFORMER-BASED MODELS

Here, we briefly discuss how Transformers are typically employed for language modeling in modern
systems. Given a context x≤t = [x1, . . . , xt] ∈ Vt, a Transformer-based LM first produces a
sequence of d-dimensional token embeddings E(x≤t) = [e>x1

, e>x2
, . . . , e>xt ] ∈ Rd×t, where ev ∈ Rd

denotes the token embedding for v ∈ V . A Transformer network fψ then processes E(x≤t) to
produce a target embedding fψ

(
E(x≤t)

)
∈ Rd, which is multiplied by W ∈ RV×d, namely a

classification layer, to obtain a logit vector ux≤t := Wfψ
(
E(x≤t)

)
∈ RV . Accordingly, we have

θ = {E,ψ,W} as the parameters of the LM. Applying softmax operation on the logit vector
produces the probability that the LM assigns to each token in V as the possible continuation (also
known as next token) to the context x≤t:

Pθ(v|x≤t) =
exp(ux≤t(v)/τ)∑

v′∈V exp(ux≤t(v
′)/τ)

, ∀v ∈ V. (12)

Here, τ denotes the (inverse) temperature associated with the softmax operation. Unless stated
otherwise, we assume that τ = 1.

A.2 OTHER COMMON VARIANTS OF KNOWLEDGE DISTILLATION FOR LM

Top-k token-level KD. Instead of aligning the teacher and student’s full per-token prediction distri-
butions, one could only match these distribution on T ⊂ V , e.g., k � V elements of V that receive
the highest scores from the teacher:

`(x; ζ → θ) = −
T∑
t=1

(∑
v∈T

P Tζ (v|x≤t−1) · logP Tθ (v|x≤t−1)
))
, (13)

where P T denotes the restriction of P (defined over V) to T :

P T (v) =

{
P (v)∑

v′∈T P (v′) if v ∈ T ,
0 otherwise.

(14)

Sequence-level KD. Unlike token-level KD, sequence-level KD aims to align teacher and student’s
distributions on all sequences up to sequence length T . In particular, the sequence-level KD loss
takes the form:

`seq(x; ζ → θ) = −
∑

x̃∈V≤n
Pζ(x̃) · logPθ(x̃) (15)

In practice, it’s natural to focus on a subset of all candidate target sequences U ⊂ V≤T :

`seq(x; ζ → θ) = −
∑
x̃∈U

Pζ(x̃) · logPθ(x̃)

A common choice for U is the set of say k most likely sequences under the teacher’s distribution Pζ .

A.3 RECENT LITERATURE ON KNOWLEDGE DISTILLATION (KD) FOR LANGUAGE MODELING

A large body of literature focuses on utilizing KD (Bucilǎ et al., 2006; Hinton et al., 2015) as a core
technique to improve LMs (Kim & Rush, 2016; Gou et al., 2021; Xu et al., 2024). For instance, Sanh
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et al. (2019); Turc et al. (2019); Wang et al. (2020); Sun et al. (2019); Jiao et al. (2019) relied on KD
to compress BERT-style LMs during pre-training, fine-tuning, or both. More recently, KD has been
primarily employed in the instruction-tuning or fine-tuning phase where a general purpose LM is
adapted to a specific collection of tasks (Xu et al., 2024). Black-box KD methods for LM only assume
access to training sequences sampled from a teacher LM (Taori et al., 2023; Fu et al., 2023; Peng
et al., 2023). With access to token-level distributions from teacher LM, token-level distillation from
teacher LM to student LM is possible (Kim & Rush, 2016). In contrast, sequence-level distillation
involves sampling training sequences from the teacher LM, the student LM, or both before aligning
teacher and student’s predictive distribution on such sequences (Kim & Rush, 2016; Agarwal et al.,
2024; Gu et al., 2024; Wen et al., 2023).

B DEFERRED PROOFS FROM SECTION 3

B.1 PROOF OF THEOREM 3.3

Before stating the formal version of Theorem 3.3 and its proof, let us recall the necessary notation.
Given a function class for student LMs Θ, θ̂ denotes the LM obtained by minimizing the training
objective for KD in (6), i.e.,

θ̂ := arg min
θ∈Θ

RωN (θ). (16)

Further, θ∗ represents the optimal or best performing LM in Θ, i.e.,

θ∗ = arg min
θ∈Θ

R(θ). (17)

Finally, recall our assumption regarding the bounded loss values.

Assumption B.1. Given a function class Θ for (student) LM, the per-token log-loss with at most
T -token long sequences for the underlying function class Θ is bounded by M , i.e.,

sup
θ∈Θ;x∈V≤T−1

max
v∈V
| logPθ(v|x)| ≤M. (18)

Towards establishing Theorem 3.3, we first state the following intermediate result.

Proposition B.2. Let θ̂ and θ∗ be as defined in (16) and (17), respectively. Then, under Assump-
tion B.1, the excess surrogate risk for θ̂ satisfies the following.

R(θ̂)−R(θ∗) ≤ 4Mω

T
·
T∑
t=1

Ex≤t−1∼DDTV

(
Pζ,ρ(·|x≤t−1),D(·|x≤t−1)

)
+
(
Rω(θ̂)−RωN (θ̂)

)
+ (RωN (θ∗)−Rω(θ∗)) , (19)

where DTV(·, ·) denotes the total-variation distance between two probability distributions.

Proof of Proposition B.2. For convenience, recall that

Rω(θ) = Ex

[
(1− ω) · `(x;θ) + ω · `(x; ζρ → θ)

]
= Ex∼D

[
1

T

T∑
t=1

CE
(
P

(xt,ω)
ζ,ρ , Pθ(·|x≤t−1)

)]

=
1

T

T∑
t=1

Ex≤t−1∼D
[
CE
(

(1− ω) ·D(·|x≤t−1) + ω · Pζ,ρ(·|x≤t−1)︸ ︷︷ ︸
P

(D,ω)
ζ,ρ (·|x≤t−1)

, Pθ(·|x≤t−1)
)]

=
1

T

T∑
t=1

Ex≤t−1∼D
[
CE
(
P

(D,ω)
ζ,ρ (·|x≤t−1), Pθ(·|x≤t−1)

)]
.
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Note that we have

R(θ̂)−R(θ∗)

(i)
= R(θ̂)−R(θ∗)−

(
Rω(θ̂)−Rω(θ∗)

)
+
(
Rω(θ̂)−Rω(θ∗)

)
(ii)
=

1

T

T−1∑
t=0

Ex1:t∼D

[∑
v∈V

(
P

(D,ω)
ζ,ρ (v|x1:t)−D(v|x1:t)

)
·
(

logPθ̂(v|x1:t)− logPθ∗(v|x1:t)
)]

+

Rω(θ̂)−Rω(θ∗)

(iii)

≤ 1

T

T−1∑
t=0

Ex1:t∼D

[∥∥∥P (D,ω)
ζ,ρ (·|x1:t)−D(·|x1:t)

∥∥∥
1
·
∥∥∥ logPθ̂(·|x1:t)− logPθ∗(·|x1:t)

∥∥∥
∞

]
+

Rω(θ̂)−Rω(θ∗)

(iv)

≤ 4Mω

T
·
T−1∑
t=0

Ex1:t∼D

[
DTV

(
Pζ,ρ(·|x1:t),D(·|x1:t)

)]
+Rω(θ̂)−Rω(θ∗)︸ ︷︷ ︸

(I)

, (20)

where (i) follows from adding and subtracting Rω(θ̂) − Rω(θ∗); (ii) employs the definition of
R(θ̂), R(θ∗), Rω(θ̂), and Rω(θ∗); (iii) invokes Hölder’s inequality; and (iv) follows from the
definition of total-variation distance DTV(·, ·) and the fact that underlying per-token loss terms are
bounded by M .

Next, we focus on the term (I) in (20):

Rω(θ̂)−Rω(θ∗)
(i)
= Rω(θ̂)−RωN (θ̂) +RωN (θ̂)−RωN (θ∗) +RωN (θ∗)−Rω(θ∗)

=
(
Rω(θ̂)−RωN (θ̂)

)
+
(
RωN (θ∗)−Rω(θ∗)

)
+RωN (θ̂)−RωN (θ∗)

(ii)

≤
(
Rω(θ̂)−RωN (θ̂)

)
+
(
RωN (θ∗)−Rω(θ∗)

)
(21)

where (i) follows by adding and subtractingRωN (θ̂) andRωN (θ∗); and (ii) holds as θ̂ is the minimizer
of RωN (·) in Θ which implies that RωN (θ̂) − RωN (θ∗) ≤ 0. Now, the statement in Proposition B.2
follows by combining (20) and (21).

Note that the bound on excess surrogate risk in Proposition B.2 decomposes into three terms:

• First term captures the divergence between the ground truth per-token distribution and the
teacher-induced per-token distribution leveraged during KD; and

• The last two terms corresponds to the deviation between empirical and population surrogate
risks for the empirical risk minimizer θ̂ and population risk minimzer θ∗ within the function
class Θ. Note that since, θ̂ is a a random variable in itself (which depends on the training
sample SN ), one typically needs to bound the deviation uniformly over all functions θ ∈ Θ. As
we will see next, one can bound these deviations in terms of the properties of both model class
Θ as well as the teacher-induced per-token distributions.

In order to make the excess surrogate risk bound in Proposition B.2 explicit, we need to bound the
third term via a computable quantity. We apply sample variance-based bounds from Maurer & Pontil
(2009) to get the following result.
Theorem B.3 (Formal version of Theorem 3.3). Suppose Assumption B.1 holds. Let Fζ,ρ,ω be a
function class that maps elements in VT to [0,M ] as defined below:

Fω := Fζ,ρ,ω ,

{
x 7→ 1

T

T∑
t=1

CE
(
P

(D,ω)
ζ,ρ (·|x≤t−1), Pθ(·|x≤t−1)

)
, ∀x ∈ VT ,θ ∈ Θ

}
. (22)

For ε > 0, let N∞(ε,Fζ,ρ,ω, N) denote the growth function for the function class Fζ,ρ,ω , i.e.,

N∞(ε,Fζ,ρ,ω, N) , sup
X=(x(1),...,x(N))∈VT×N

N (ε,Fζ,ρ,ω(X), ‖ · ‖∞), (23)
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where N (ε,Fζ,ρ,ω(X), ‖ · ‖∞) denotes the smallest ε-cover of the set

Fζ,ρ,ω(X) =
{(
f(x(1)), f(x(2)), . . . , f(x(N))

)
: f ∈ Fζ,ρ,ω

}
⊆ RN

with respect to ‖ · ‖∞ norm. Then, with probability at least 1− δ, for all θ ∈ Θ, we have

R(θ̂)−R(θ∗) ≤ 4Mω

T
·
T∑
t=1

Ex≤t−1∼DDTV

(
Pζ,ρ(·|x≤t−1),D(·|x≤t−1)

)

+

√√√√18VN (f θ̂, SN ) log
(

2M(N)
δ

)
N

+
15M log

(
2M(N)

δ

)
N − 1

+

√
2VN (fθ∗ , SN ) log

(
4
δ

)
N

+
7M log

(
4
δ

)
3(N − 1)

, (24)

whereM(N) , 10 · N∞(1/N,Fζ,ρ,ω, 2N); fθ denotes the function in Fζ,ρ,ω that corresponds to
θ, as per (22); and VN (fθ, SN ) denotes the sample variance

VN (fθ, SN ) =
1

N(N − 1)

∑
1≤i<j≤N

(
fθ(x(i))− fθ(x(j))

)2
. (25)

Proof of Theorem B.3. As discussed earlier, in light of Proposition B.2, we only need to bound two
terms Rω(θ̂)−RωN (θ̂) and RωN (θ∗)−Rω(θ∗) to obtain the desired result. Now utilizing Theorem 6
and Theorem 4 (with δ replaced with δ/2) in Maurer & Pontil (2009) to bound the two terms,
respectively, completes the proof of Theorem B.3.

B.2 TOKEN-LEVEL GENERALIZATION BOUND

Before providing a proof of Theorem 3.5, we first introduce some intermediate results that are needed
to prove the theorem. Recall that our training sample SN = {x(i) = [x

(i)
1 , . . . , x

(i)
T ]}i∈[N ] comprises

N independent sequences such that x(i) ∼ D,∀i ∈ [N ]. With `ω(x(i);θ) representing the KD loss
on i-th sequence, we define the random variables

Z
(i)
0 = E[`ω(x(i);θ)],

Z
(i)
t = E

[
`ω(x(i);θ) | x(i)

≤t

]
, for 1 ≤ t ≤ T, (26)

where Z
(i)
T = E

[
`ω(x(i);θ) | x(i)

]
= `ω(x(i);θ). Note that {Z(i)

t }0≤t≤T is a Doob mar-

tingale sequence with respect to the natural filtration {F (i)
t }0≤t≤T of the random variables

{x(i)
1 , . . . , x

(i)
t } (Ross, 1983, pg 297). Accordingly, we define a martingale difference sequence

{ξ(i)
t ,F (i)

t }t∈[T ] such that for t ∈ [T ],

ξ
(i)
t := ξt(x

(i);θ) = Z
(i)
t−1 − Z

(i)
t = E

[
`ω(x;θ)|x(i)

≤t−1

]
− E

[
`ω(x;θ)|x(i)

≤t

]
. (27)

As per Assumption 3.4, the following holds for each t ∈ [T ]:

|ξ(i)
t (x;θ)| ≤ Ct ≤ C, (28)

E
[(
ξ

(i)
t

)2

|x≤t−1

]
≤ Vt. (29)

We are ready to state the first intermediate result which bounds the moment generating function for
the following random variable associated with the KD loss on the i-th training sequence:

Z
(i)
0 − Z

(i)
T = E

[
`ω(x(i);θ)

]
− `ω(x(i);θ).
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Lemma B.4. Under Assumption 3.4, the following holds for each i ∈ [N ]:

E
[
eλ·(Z

(i)
0 −Z

(i)
T )/C

]
≤ exp

(
T · f

(
λ,

1

T

T∑
t=1

Vt
C2

))
, (30)

where, for λ ≥ 0 and s ≥ 0,

f(λ, s) , log

(
1

1 + s
· exp(−λs) +

s

1 + s
· exp(λ)

)
. (31)

Proof. Note that

E
[
eλ·(Z

(i)
0 −Z

(i)
T )/C

]
= E

[
eλ·
∑T
t=1 ξ

(i)
t /C

]
= E

[
E
[
eλ·
∑T
t=1 ξ

(i)
t /C |x(i)

≤T−1

]]
(i)
= E

[
eλ·
∑T−1
t=1 ξ

(i)
t /C · E

[
eλ·ξ

(i)
T /C |x(i)

≤T−1

]]
(ii)

≤ E

[
eλ·
∑T−1
t=1 ξ

(i)
t /C · e

f
(
λ, 1

C2 ·E
[(
ξ
(i)
T

)2
|x(i)
≤T−1

])]
(iii)

≤ E
[
eλ·
∑T−1
t=1 ξ

(i)
t /C · ef(λ,

VT
C2 )
]

= E
[
eλ·
∑T−1
t=1 ξ

(i)
t /C

]
· ef(λ,

VT
C2 ) (32)

where (i) follows as eλ·
∑T−1
t=1 ξ

(i)
t is F (i)

T−1-measurable; (ii) follows from (Fan et al., 2012, Lemma
3.1); and (iii) follows from Assumption 3.4 and the fact that, for λ > 0 and s ≥ 0, f(λ, s) is an
increasing function in its second argument (Fan et al., 2012, Lemma 3.2). By following the similar
steps in (32) for ξi,T−1, ξi,T−2, . . . , ξi,1, we obtain that

E
[
eλ·(Z

(i)
0 −Z

(i)
T )/C

]
≤ e

∑T
t=1 f(λ,

Vt
C2 ). (33)

According to (Fan et al., 2012, Lemma 3.2) that, for λ ≥ 0 and s ≥ 0, f(λ, s) is a concave function
in its second argument. Thus, it follows from Jensen’s inquality that

1

T

T∑
t=1

f

(
λ,
Vt
C2

)
≤ f

(
λ,

1

T

T∑
t=1

Vt
C2

)
. (34)

By combining (33) and (34), we have

E
[
eλ·(Z

(i)
0 −Z

(i)
T )/C

]
≤ eT ·f

(
λ, 1T

∑T
t=1

Vt
C2

)
, (35)

which completes the proof.

Now we can leverage Lemma B.4 to obtain the following concentration inequality for the KD training
objective.

Lemma B.5. Let ζ and θ ∈ Θ denote the teacher and student LM, respectively. Then, for ε > 0, the
following holds under Assumption 3.4.

P

(
N∑
i=1

(
E
[
`ω(x(i);θ)

]
− `ω(x(i);θ)

)
/C ≥ Nε

)
≤ exp

(
− Nε2

2(
∑
t
Vt
C2 + 1

3ε)

)
. (36)

Proof. Recall that, as per our notation, we have

E
[
`ω(x(i);θ)

]
− `ω(x(i);θ) = Z

(i)
0 − Z

(i)
T .
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Thus,

P

(
N∑
i=1

(
E
[
`ω(x(i);θ)

]
− `ω(x(i);θ)

)
/C ≥ Nε

)
= P

(
N∑
i=1

(
Z

(i)
0 − Z

(i)
T

)
/C ≥ Nε

)
. (37)

It follows from Markov’s inequality that, for λ ≥ 0,

P

(
N∑
i=1

(
Z

(i)
0 − Z

(i)
T

)
/C ≥ Nε

)
= P

(
eλ·
∑N
i=1

(
Z

(i)
0 −Z

(i)
T

)
/C ≥ eNλε

)

≤
E
[
eλ·
∑N
i=1

(
Z

(i)
0 −Z

(i)
T

)
/C

]
eNλε

(i)
=

∏
i∈[N ] E

[
eλ·
(
Z

(i)
0 −Z

(i)
T

)
/C

]
eNλε

, (38)

where (i) follows as {Z(i)
0 − Z

(i)
T

}
i∈[N ]

are independent random variables. By combining (38) with
Lemma B.4, we obtain that

P

(
N∑
i=1

(
Z

(i)
0 − Z

(i)
T

)
/C ≥ Nε

)
≤ e−N ·

(
λε−T ·f(λ, 1T

∑T
t=1

Vt
C2 )
)
. (39)

Since (39) holds for each λ ≥ 0, we have

P

(
N∑
i=1

(
Z

(i)
0 − Z

(i)
T

)
/C ≥ Nε

)
≤ inf
λ≥0

e−N ·
(
λε−T ·f(λ, 1T

∑T
t=1

Vt
C2 )
)

(40)

Now as argued in the Proof of Remark 2.1 in Fan et al. (2012), for 0 ≤ λ < 3, s ≥ 0, we have

f(λ, s) ≤ (eλ − 1− λ)s ≤ λ2s

2(1− 1
3λ)

. (41)

Thus, it follows from (40) that

P

(
N∑
i=1

(
Z

(i)
0 − Z

(i)
T

)
/C ≥ Nε

)
≤ inf

0≤λ<3
exp

(
−N ·

(
λε− λ2

2(1− 1
3λ)
·
∑
t

Vt
C2

))

≤ exp

(
− Nε2

2(
∑
t
Vt
C2 + 1

3ε)

)
. (42)

This completes the proof.

Equipped with Lemma B.5, we are now ready to prove Theorem 3.5 below.

Proof of Theorem 3.5. Note that

R(θ̂)−RωN (θ̂) = R(θ̂)−Rω(θ̂)︸ ︷︷ ︸
(I)

+ Rω(θ̂)−RωN (θ̂)︸ ︷︷ ︸
(II)

. (43)

Following the similar analysis used in the proof of Theorem 3.3, we can bound the term (I) to obtain
the following.

R(θ̂)−Rω(θ̂) ≤ 4Mω

T
·
T∑
t=1

Ex≤t−1∼DDTV

(
Pζ,ρ(·|x≤t−1),D(·|x≤t−1)

)
. (44)

Next, we focus on bounding the term (II). As per notation, for any θ ∈ Θ, we have

Rω(θ)−RωN (θ) =
1

N

N∑
i=1

(
E
[
`ω(x(i);θ)

]
− `ω(x(i);θ)

)
. (45)
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Thus, for a fixed θ ∈ Θ, we have

P (R(θ)−RωN (θ) ≥ γ) = P

(
1

N

N∑
i=1

(
E
[
`ω(x(i);θ)

]
− `ω(x(i);θ)

)
≥ γ

)

= P

(
N∑
i=1

(
E
[
`ω(x(i);θ)

]
− `ω(x(i);θ)

)
/C ≥ N · γ

C

)
(i)

≤ exp

(
− Nγ2

2(
∑
t Vt + 1

3Cγ)

)
, (46)

where (i) follows from (36) with ε = γ
C . With some algebra, one can see that the right hand side of

(46) is bounded by δ/|Θ| when

γ ≥ 2C

3N
· log (|Θ|/δ) +

√
2

N
·
∑
t

Vt · log (|Θ|/δ). (47)

(To see this, set the right hand side of (46) to δ/|Θ| to get a quadratic of the form γ2 = aγ + b with
a, b ≥ 0 and note that its non-negative root is ≤ a+

√
b. All γ ≥ a+

√
b will make the right hand

side of (46) ≤ δ/|Θ|.)
Now, by taking union bound, with probability at least 1− δ, for all θ ∈ Θ, we have the following.

Rω(θ)−RωN (θ) ≤ 2C

3N
· log (|Θ|/δ) +

√
2

N
·
∑
t

Vt · log (|Θ|/δ). (48)

Since the minimizer of the KD training objective θ̂ is in Θ, with probablity at least 1− δ, we have

(II) = Rω(θ̂)−RωN (θ̂) ≤ 2C

3N
· log (|Θ|/δ) +

√
2

N
·
∑
t

Vt · log (|Θ|/δ). (49)

Now, the statement of Theorem 3.5 follows by combining (43), (44), and (49).

C KD CAN IMPROVE GENERALIZATION VIA VARIANCE REDUCTION

Here, we leverage our novel generalization bounds to provide a theoretical justification for why KD
can result in better generalization behavior compared to standard pre-training. In particular, we will
focus on our bound in Theorem 3.5.3 Note that, besides |Θ|, N , and T which are independent of the
underlying training approach, there are three key quantities that dictate the generalization gap: (1)∑
t Vt which is related to the loss variance; (2) C which is related to the extreme values that loss can

take; and (3) the divergence between the teacher-provided next-token predictive distribution and the
ground truth next-token distribution:

DIV(ζ, ω) := ω ·
T∑
t=1

E [DTV (Pζ,ρ(·|x≤t−1),D(·|x≤t−1))] .

Note that, under Assumption 3.1, both KD and standard pre-training loss terms are bounded by M ,
allowing us to provide the same C (as a function of M and T ) for both KD and standard pre-training.
Thus, we focus on the remaining two terms which relate to

∑
t Vt and DIV(ζ, ω).

Note that standard pre-training, i.e., training without KD, corresponds to ω = 0, which leads to
DIV(ζ, ω = 0) = 0. In contrast, with ω > 0, KD would incur a non-zero value for DIV(ζ, ω). On
the other hand, as we will argue next, KD can lead to smaller value of the variance term

∑
t Vt. Thus,

as long as the underlying teacher LM approximates the true next-token distribution well enough, it
can lead to improved (student) performance or equivalently smaller generalization gap by striking a
balance between the divergence (or bias) DIV(ζ, ω) and variance

∑
t Vt; as a result, realizing a form

of bias vs. variance trade-off for LM pre-training.
3One could draw similar conclusion from Theorem 3.3 by extending the arguments from Menon et al. (2021)

to the language modeling setting.
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The variance reduction in the case of KD is the cleanest to observe by focusing on the last summand
in
∑
t Vt, i.e., VT . Towards this, recall from Assumption 3.4 that, for each θ ∈ Θ, VT bounds the

second-order moment of ξT (x;θ). Define the short-hand

P
(xt,ω)
ζ,ρ (·|x≤t−1) := (1− ω) · 1xt(·) + ω · Pζ,ρ(·|x≤t−1) (50)

and write

ξT (x;θ) = E [`ω(x;θ)|x≤T−1]− E [`ω(x;θ)|x≤T ]

= E

[
1

T

T∑
t=1

CE
(
P

(xt,ω)
ζ,ρ (·|x≤t−1), Pθ(·|x≤t−1)

)
|x≤T−1

]
−

E

[
1

T

T∑
t=1

CE
(
P

(xt,ω)
ζ,ρ (·|x≤t−1), Pθ(·|x≤t−1)

)
|x≤T

]
(i)
=

1

T

T−1∑
t=1

CE
(
P

(xt,ω)
ζ,ρ (·|x≤t−1), Pθ(·|x≤t−1)

)
+ E

[
1

T
CE
(
P

(xT ,ω)
ζ,ρ (·|x≤T−1), Pθ(·|x≤T−1)

)
|x≤T−1

]

− 1

T

T∑
t=1

CE
(
P

(xt,ω)
ζ,ρ (·|x≤t−1), Pθ(·|x≤t−1)

)
(ii)
= E

[
1

T
CE
(
P

(xT ,ω)
ζ,ρ (·|x≤T−1), Pθ(·|x≤T−1)

)
|x≤T−1

]
− 1

T
CE
(
P

(xT ,ω)
ζ,ρ (·|x≤T−1), Pθ(·|x≤t−1)

)
= (1− ω) ·

(
E
[
− 1

T
· logPθ(xT |x≤t−1)|x≤T−1

]
+

1

T
· logPθ(xT |x≤T−1)

)
(51)

where (i) follows we can remove expectation for those terms that are functions of those random
variables that we condition on; and (ii) follows by removing the terms that cancel each other; and the
last line follows as we have

P
(xT ,ω)
ζ,ρ (·|x≤T−1) = (1− ω) · 1xT (·) + ω · Pζ,ρ(·|x≤T−1).

It follows from (51) that, for any θ ∈ Θ, we have

E
[
ξ2
T (x;θ, ζ)

]
= (1− ω) ·Var

[
1

T
· logPθ(xT |x≤t−1)

∣∣∣ x≤T−1

]
, (52)

where Var [·|·] denotes conditional variance. Note that (52) shows that VT decreases with ω in [0, 1].
This highlights that KD, i.e., ω > 0, would realize a smaller variance than standard pre-training, i.e.,
ω = 0. Thus, to realize improved generalization via KD, one needs to select the distillation weight
ω so that the variance reduction via KD offsets the divergence term DIV(ζ, ω). In particular, when
the teacher LM approximates the ground truth next-token distribution very well, i.e., DIV(ζ, ω) term
is small even for a relatively large value of ω, the variance reduction via KD becomes prominent,
ensuring significant improvement over standard pre-training in terms of generalization performance.

D BOUNDING EXCESS RISK FOR KD

Different from the surrogate (empirical or population) risks utilized in the main text (cf. Sec-
tion 3),which utilize the cross-entropy loss as a surrogate loss, one could directly work with the risk
defined with respect to a particular evaluation metric (and the corresponding loss) that one cares
about. Since our training focuses on correct next-token prediction, we can focus on the accuracy of
the next-token prediction under greedy-decoding as one such metric. This amounts to the following
(population) risk with respect to 0/1-loss.

R0/1(θ) := Ex∼D

[ T∑
t=1

1{arg max
v

Pθ(v|x≤t−1) 6= xt

]
=

T∑
t=1

Ex≤t−1∼D

[∑
v∈V

D(v|x≤t−1) · 1{arg max
v′

Pθ(v′|x≤t−1) 6= v}
]
. (53)
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A large body of literature (see, e.g., Bartlett et al., 2006; Zhang, 2004; Steinwart, 2007; Pires &
Szepesvári, 2016, and references therein) has studied calibration functions that enable converting
bounds on excess surrogate risk to control the excess risk. Applying the calibration functions for the
cross-entropy loss (Pires & Szepesvári, 2016), we obtain the following bound on the excess risk for
next-token prediction:

R0/1(θ̂)−R0/1(θ∗) ≤ g−1
(
R(θ̂)−R(θ∗)

)
, (54)

where g−1(·) denotes the inverse of the function g : ε 7→ 1
2

(
(1− ε) log(1− ε) + (1 + ε) log(1 + ε)

)
.

E EXPERIMENTAL SETUP DETAILS

Model architectures and pre-training data. We work with standard decoder-only Transformer-
based LMs. Our small model (SLM) has 1.5B parameters. It comprises a 44 layer Transformer
network with model dimension 1024, MLP hidden dimension 8192, and 4 attention heads. For the
larger LM, we employ 2.8B parameter models consisting of 92 layer Transformer networks with
model dimension 1024, MLP hidden dimension 8192, and 4 attention heads based on multi-query
attention (Shazeer, 2019). We use a SentencePiece tokenizer (Kudo & Richardson, 2018) from Du
et al. (2022) with a vocabulary size of 256K. We employ weight tying (Press & Wolf, 2017), i.e., the
same vocabulary embedding parameters are used for input token embedding and output embedding
layers.

We pre-train all LMs on the Pile dataset (Gao et al., 2020) by minimizing the UL2 objective (Tay
et al., 2023) with a mixture of four tasks: (1) causal LM task; (2) prefix LM task with mean prefix
length of 1/4th the sequence length, (3) span corruption task with r = 15% of the tokens corrupted
and mean corrupted span length µ = 3; and (4) span corruption task with r = 50% of the tokens
corrupted and mean corrupted span length µ = 32. The four tasks are mixed at a ratio of 6:2:1:1. We
pre-train LMs for approximately 545 billion tokens, with a batch size of 2048 and input sequence
length of 1280. This translates to a little over two epochs on the Pile data. As for the optimization
method, we utilize Adafactor algorithm (Shazeer & Stern, 2018). We use a cosine learning rate decay
schedule with a peak learning rate of 0.001, 4000 warmup steps and final learning rate of 0.0001.
Training is done on 1024 TPU-v5e chips with JAX (Bradbury et al., 2018) and SeqIO (Roberts et al.,
2022).

F FEW-SHOT EVALUATION TASKS

We performed a comprehensive few-shot evaluation of pre-trained LMs on 28 benchmarks. Below,
we list these by organizing them according to the corresponding domain.

World Knowledge: NQ-Open (Lee et al., 2019), TriviaQA (Joshi et al., 2017), TyDiQA-NoContext
(English)(Clark et al., 2020), Web Questions (Berant et al., 2013).

Reading Comprehension: RACE-M, RACE-H (Lai et al., 2017), SQuADv2 (Lee et al., 2020),
TyDiQA-GoldP (English)(Clark et al., 2020).

Commonsense Reasoning: ARC (Easy) and ARC (Challenge) (Clark et al., 2018), HellaSwag
(Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018), PiQA (Bisk et al., 2020), StoryCloze
(Mostafazadeh et al., 2016), Winogrande (Sakaguchi et al., 2020).

SuperGLUE (Wang et al., 2019): BoolQ (Clark et al., 2019), CB (de Marneffe et al., 2019), COPA
(Gordon et al., 2012), RTE (Dagan et al., 2006), WiC (Pilehvar & Camacho-Collados, 2018), WSC
(Levesque et al., 2012), MultiRC (Khashabi et al., 2018), ReCoRD (Zhang et al., 2018).

Natural Language Generation (NLG): English portions of the three benchmarks – XLSum (Hasan
et al., 2021), XSum (Narayan et al., 2018) and WikiLingua (Ladhak et al., 2020).

Open-ended Cloze task: LAMBADA Paperno et al. (2016).

Code generation: Mostly Basic Python Problems (MBPP) (Austin et al., 2021).
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G ADDITIONAL FEW-SHOT EVALUATION RESULTS

Table 5 is an expansion of Table 2 in the main text. All evaluations are 1-shot, except for MBPP which
is 3-shot. In the metric column, EM, Acc, and Rg2 are abbreviations for Exact Match, Accuracy, and
Rouge2, respectively. For MBPP, the metric is the fraction of success ignoring challenge problems.
As mentioned in Section 5.1, for each benchmark, we typically report the corresponding prevalent
metric in the literature. For TyDiQA benchmarks, we report the F1 score as opposed to EM as it is
the primary metric in Clark et al. (2020). For MultiRC in SuperGLUE, we report F1 metric as per Du
et al. (2022).
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Table 5: Comprehensive few-shot performance of pre-trained LMs. SLM serves as the teacher
LM for SALT & SALTDS during the KD phase of their pre-training and for RKD throughout its
pre-training. BASELINE employs standard pre-training without KD from SLM. SALT and SALTDS
already outperform BASELINEin terms of average few-shot performance at 70% of their training step
budget, thereby improving both training efficiency and model quality. RKD, i.e., naively preforming
KD from the small model through the pre-training, performs much worse than BASELINE. The best
and second-best results for each domain are boldfaced and underlined, respectively.

Domain Dataset Metric SLM BASELINE RKD SALT SALTDS

@100% @100% @70% @100% @70% @100%
steps steps steps steps steps steps

W
or

ld
K

no
w

le
dg

e NaturalQuestions-Open EM 5.90 8.70 6.70 9.40 10.10 8.40 9.00
TriviaQA EM 30.09 43.15 34.87 39.87 43.71 39.37 41.27

TyDiQA-NoContext F1 22.20 28.20 26.10 27.90 27.10 25.90 27.20
WebQuestions EM 5.40 8.70 7.10 9.20 9.90 8.90 9.40

Domain average 15.90 22.19 18.69 21.59 22.70 20.64 21.72

R
ea

di
ng

C
om

pr
eh

en
si

on RACE-M Acc 52.60 57.00 54.00 58.60 58.90 57.90 58.40
RACE-H Acc 37.50 42.30 39.70 42.20 42.30 42.10 42.30

SQuADv2 EM 43.30 54.80 50.90 54.60 55.90 57.60 57.90
TyDiQA-GoldP F1 51.80 57.90 59.40 58.80 61.10 59.80 61.10

Domain average 46.30 53.00 51.00 53.55 54.55 54.35 54.93

C
om

m
on

se
ns

e
R

ea
so

ni
ng

ARC-E Acc 64.60 68.40 66.00 67.60 67.60 69.40 69.00
ARC-C Acc 32.40 37.10 33.70 38.00 38.40 38.10 37.30

HellaSwag Acc 56.00 62.80 56.20 62.00 63.30 63.10 63.80
OpenBookQA Acc 48.00 50.00 45.80 47.20 48.20 47.60 48.20

PiQA Acc 72.00 75.40 72.60 73.20 73.70 74.10 73.90
StoryCloze Acc 73.10 77.20 73.70 76.90 76.80 77.00 77.10

WinoGrande Acc 58.20 63.00 60.10 64.00 63.70 64.70 65.40
Domain average 57.76 61.99 58.30 61.27 61.67 62.00 62.10

LAMBADA Acc 26.90 36.20 31.10 50.70 48.30 48.00 53.00

Su
pe

rG
L

U
E

BoolQ Acc 63.40 64.30 62.50 64.10 62.30 65.50 64.30
CB Acc 37.50 58.90 50.00 60.70 53.60 55.40 53.60

COPA Acc 77.00 79.00 71.00 76.00 77.00 81.00 77.00
MultiRC F1 53.80 54.20 53.50 57.50 58.60 50.70 53.00

RTE Acc 55.20 55.60 59.90 57.80 58.50 54.20 58.50
ReCoRD Acc 84.80 87.10 85.20 86.60 86.90 87.20 87.30

WiC Acc 48.40 47.20 47.20 49.80 48.10 50.00 50.90
WSC Acc 72.60 77.90 74.00 77.90 77.20 83.90 80.00

Domain average 61.59 65.53 62.91 66.30 65.28 65.99 65.58

N
L

G

GEM-XLSum Rg2 2.80 4.10 3.40 4.40 4.40 4.60 4.60
GEM-XSum Rg2 2.80 5.10 3.20 5.00 5.10 5.40 5.40
WikiLingua Rg2 3.80 4.60 3.60 4.50 4.70 4.40 4.50

Domain average 3.13 4.60 3.40 4.63 4.73 4.80 4.83

MBPP Acc 9.60 16.20 11.40 15.60 17.00 16.60 17.80

Average (28 tasks) 42.56 47.32 44.39 47.86 47.94 47.89 48.26
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H ABLATION STUDY OF VARIOUS DESIGN CHOICES IN SALT

In this section, we explore how various design choices pertaining SALT affect its final performance.

Distillation from a better quality small model. So far we assumed that SLM is also pre-trained
for the same number of tokens as the LLM. Since training for SLM is relatively cheaper, one could
consider a scenario where one invests more compute resources in improving the small model if it can
eventually be beneficial in improving the LLM quality via SALT. Towards this, we employ a small
LM that is trained ∼ 2.5 times longer – 498K steps vs. 208K steps in Section 5.2.4 As evident in
Table 6, SALT is indeed able to utilize the better small model as a teacher in the KD phase to further
improve the LLM quality, as measured by the average few-shot performance.

Varying transition point. A key design choice for SALT is the selection of the transition point nKD

from KD phase (first stage) to standard training (second stage). Table 7 shows few-shot performance
of SALT as we vary the transition point. Note that SALT ensures quality gains for LLM with a
wide range of values for nKD while demonstrating an inverted U-shape for LLM quality. We see
consistent performance improvement from nKD = 0 (equivalent to BASELINE) to nKD = 60K which
eventually degrades at nKD = 208K (equivalent to RKD). Given the training overhead of KD phase
(see discussion in Section 5.2), smaller value of nKD helps ensure training efficiency gains via SALT.
Thus, we worked with nKD = 36K in Section 5.2 as nKD = 60K only provides marginal quality
gains if one takes into account the increased training cost due to longer KD phase.

Different transition strategies. In our study thus far, we have worked with Step transition between
the two training stages in SALT where we abruptly stop performing KD after nKD training steps.
Looking at Figure 2, this causes an abrupt change in the model behavior during training, as observed
in the next-token prediction accuracy curve for the training set (see similar behavior for log-perplexity
in Figure 3). This raises a question if a smoother transition between the two stages can improve
the training stability and thereby ensure higher final LLM quality. While there is a large space of
potential choices of such smooth transition strategies, here we explore two natural candidates: (1)
Linear decay where we linearly decrease the distillation loss weight to 0 between nKD,1 = 32K and
nKD = 36K steps; and (2) Linear ratio decay where we linearly decrease the ratio of distillation
loss weight and standard loss weight ω

1−ω to 0 between nKD,1 = 32K and nKD,2 = 36K training
steps. As recorded in Table 8, the step transition constitutes a reasonable design choice for SALT
as it outperforms both the considered alternatives in terms of average few-shot performance of the
resulting pre-trained LLM.

4This approach aligns with the recent studies (Touvron et al., 2023; Gadre et al., 2024) that train small LMs
well beyond the their optimal compute budget as predicted by neural scaling laws (Hoffmann et al., 2022).
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Table 6: Effect of improved SLM(comprehensive few-shot evaluation). SALT with a better teacher
– a SLM trained for 498K steps as opposed to 208K steps – yields LLM with better average few-shot
performance. For each benchmark, the best and second best results are boldfaced and underlined,
respectively.

Domain Dataset Metric
SLM trained

for
208K steps

SLM trained
for

498K steps

SALT w/ KD from
SLM trained for

208K steps

SALT w/ KD from
SLM trained for

498K steps

W
or

ld
K

no
w

le
dg

e NaturalQuestions-Open EM 5.90 6.30 10.10 9.00
TriviaQA EM 30.09 31.74 43.71 41.61

TyDiQA-NoContext F1 22.20 23.80 27.10 26.20
WebQuestions EM 5.40 7.60 9.90 9.10

Domain average 15.90 17.36 22.70 21.48

R
ea

di
ng

C
om

pr
eh

en
si

on RACE-M Acc 52.60 54.40 58.90 57.00
RACE-H Acc 37.50 39.40 42.30 42.00

SQuADv2 EM 43.30 49.00 55.90 57.90
TyDiQA-GoldP F1 51.80 55.90 61.10 56.80

Domain average 46.30 49.67 54.55 53.43

C
om

m
on

se
ns

e
R

ea
so

ni
ng

ARC-E Acc 64.60 65.50 67.60 69.30
ARC-C Acc 32.40 34.30 38.40 39.10

HellaSwag Acc 56.00 57.80 63.30 63.20
OpenBookQA Acc 48.00 46.40 48.20 49.00

PiQA Acc 72.00 72.90 73.70 74.60
StoryCloze Acc 73.10 75.00 76.80 76.90

WinoGrande Acc 58.20 59.40 63.70 63.80
Domain average 57.76 58.76 61.67 62.27

LAMBADA Acc 26.90 37.80 48.30 47.80

Su
pe

rG
L

U
E

BoolQ Acc 63.40 61.40 62.30 65.80
CB Acc 37.50 42.90 53.60 73.20

COPA Acc 77.00 78.00 77.00 79.00
MultiRC F1 53.80 48.40 58.60 53.20

RTE Acc 55.20 52.30 58.50 61.70
ReCoRD Acc 84.80 85.50 86.90 87.10

WIC Acc 48.40 47.30 48.10 49.20
WSC Acc 72.60 72.30 77.20 79.30

Domain average 61.59 61.01 65.28 68.56

N
L

G

GEM-XLSum Rg2 2.80 3.50 4.40 4.30
GEM-XSum Rg2 2.80 3.10 5.10 5.60
WikiLingua Rg2 3.80 3.80 4.70 4.40

Domain average 3.13 3.47 4.73 4.77

MBPP Acc 9.60 12.80 17.00 17.40

Average (28 tasks) 42.56 43.88 47.94 48.70
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Table 7: Effect of varying transitions step (comprehensive few-shot evaluation). The perfor-
mance improvement via SALT over BASELINE is stable in a wide range of nKD (20k to 60k steps).
Eventually, with much larger nKD, SALT performance degrades significantly (208k steps). For each
benchmark, the best and second best results are boldfaced and underlined, respectively.

Domain Dataset Metric SLM BASELINE
SALT w/

nKD = 20K
SALT w/

nKD = 36K
SALT w/

nKD = 60K

SALT w/
nKD = 208K

(RKD)

W
or

ld
K

no
w

le
dg

e NaturalQuestions-Open EM 5.90 8.70 8.90 10.10 9.30 6.70
TriviaQA EM 30.09 43.15 41.52 43.71 42.84 34.87

TyDiQA-NoContext F1 22.20 28.20 26.40 27.10 26.60 26.10
WebQuestions EM 5.40 8.70 8.20 9.90 8.60 7.10

Domain average 15.90 22.19 21.26 22.70 21.83 18.69

R
ea

di
ng

C
om

pr
eh

en
si

on RACE-M Acc 52.60 57.00 58.70 58.90 58.60 54.00
RACE-H Acc 37.50 42.30 41.00 42.30 42.10 39.70

SQuADv2 EM 43.30 54.80 55.30 55.90 55.50 50.90
TyDiQA-GoldP F1 51.80 57.90 56.50 61.10 59.30 59.40

Domain average 46.30 53.00 52.88 54.55 53.88 51.00

C
om

m
on

se
ns

e
R

ea
so

ni
ng

ARC-E Acc 64.60 68.40 67.80 67.60 68.40 66.00
ARC-C Acc 32.40 37.10 38.10 38.40 38.70 33.70

HellaSwag Acc 56.00 62.80 62.80 63.30 62.90 56.20
OpenBookQA Acc 48.00 50.00 48.00 48.20 48.20 45.80

PiQA Acc 72.00 75.40 75.40 73.70 74.40 72.60
StoryCloze Acc 73.10 77.20 76.90 76.80 76.50 73.70

WinoGrande Acc 58.20 63.00 63.40 63.70 62.00 60.10
Domain average 57.76 61.99 61.77 61.67 61.59 58.30

LAMBADA Acc 26.90 36.20 44.70 48.30 53.30 31.10

Su
pe

rG
L

U
E

BoolQ Acc 63.40 64.30 63.90 62.30 63.80 62.50
CB Acc 37.50 58.90 60.70 53.60 55.40 50.00

COPA Acc 77.00 79.00 76.00 77.00 77.00 71.00
MultiRC F1 53.80 54.20 53.80 58.60 55.20 53.50

RTE Acc 55.20 55.60 52.30 58.50 59.90 59.90
ReCoRD Acc 84.80 87.10 86.90 86.90 86.70 85.20

WIC Acc 48.40 47.20 51.30 48.10 50.00 47.20
WSC Acc 72.60 77.90 77.50 77.20 77.90 74.00

Domain average 61.59 65.53 65.30 65.28 65.74 62.91

N
L

G

GEM-XLSum Rg2 2.80 4.10 4.50 4.40 4.70 3.40
GEM-XSum Rg2 2.80 5.10 5.80 5.10 4.80 3.20
WikiLingua Rg2 3.80 4.60 4.30 4.70 4.60 3.60

Domain average 3.13 4.60 4.87 4.73 4.70 3.40

MBPP Acc 9.60 16.20 16.60 17.00 16.40 11.40

Average (28 tasks) 42.56 47.32 47.40 47.94 47.99 44.39

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 8: Effect of different transition strategies (comprehensive few-shot evaluation. The Step
transition used in this work (cf. Algorithm 1) performs well compared to two natural alternative
strategies. For each benchmark, the best and second best results are boldfaced and underlined,
respectively.

Domain Dataset Metric SLM BASELINE SALT w/ SALT w/ SALT w/
Step Linear decay Linear ratio decay

W
or

ld
K

no
w

le
dg

e NaturalQuestions-Open EM 5.90 8.70 10.10 8.20 8.10
TriviaQA EM 30.09 43.15 43.71 43.46 43.51

TyDiQA-NoContext F1 22.20 28.20 27.10 28.40 27.20
WebQuestions EM 5.40 8.70 9.90 8.20 8.40

Domain average 15.90 22.19 22.70 22.07 21.80

R
ea

di
ng

C
om

pr
eh

en
si

on RACE-M Acc 52.60 57.00 58.90 57.90 57.40
RACE-H Acc 37.50 42.30 42.30 42.10 43.50

SQuADv2 EM 43.30 54.80 55.90 56.40 57.10
TyDiQA-GoldP F1 51.80 57.90 61.10 58.30 57.80

Domain average 46.30 53.00 54.55 53.68 53.95

C
om

m
on

se
ns

e
R

ea
so

ni
ng

ARC-E Acc 64.60 68.40 67.60 68.60 68.70
ARC-C Acc 32.40 37.10 38.40 38.60 39.80

HellaSwag Acc 56.00 62.80 63.30 63.30 63.50
OpenBookQA Acc 48.00 50.00 48.20 48.00 47.40

PiQA Acc 72.00 75.40 73.70 74.60 73.90
StoryCloze Acc 73.10 77.20 76.80 76.60 76.50

WinoGrande Acc 58.20 63.00 63.70 62.70 63.10
Domain average 57.76 61.99 61.67 61.77 61.84

LAMBADA Acc 26.90 36.20 48.30 40.50 42.60

Su
pe

rG
L

U
E

BoolQ Acc 63.40 64.30 62.30 67.90 66.50
CB Acc 37.50 58.90 53.60 44.60 46.40

COPA Acc 77.00 79.00 77.00 79.00 81.00
MultiRC F1 53.80 54.20 58.60 53.90 61.60

RTE Acc 55.20 55.60 58.50 56.30 55.20
ReCoRD Acc 84.80 87.10 86.90 87.00 87.30

WIC Acc 48.40 47.20 48.10 46.60 50.50
WSC Acc 72.60 77.90 77.20 78.60 78.90

Domain average 61.59 65.53 65.28 64.24 65.92

N
L

G

GEM-XLSum Rg2 2.80 4.10 4.40 4.70 4.50
GEM-XSum Rg2 2.80 5.10 5.10 4.60 5.10
WikiLingua Rg2 3.80 4.60 4.70 4.80 4.60

Domain average 3.13 4.60 4.73 4.70 4.73

MBPP Acc 9.60 16.20 17.00 15.20 17.00

Average (28 tasks) 42.56 47.32 47.94 47.11 47.75
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I LOG PERPLEXITY OF THE MODELS

Figure 3 shows the log perplexity of the SALT and RKD pre-trained models along with BASELINE
and SLM. The log perplexity for RKD stays at a higher level than even SLM. Recall that RKD optimizes
a sum of two losses – KD loss with weight ω = 0.667 and the standard one-hot training loss with
weight 1 − ω. As the training log perplexity plotted in Figure 3 is the same as the standard hot
training loss, the methods which directly optimize for that alone (BASELINE, SLM and in the second
stage, SALT) have lower log perplexity on training set than RKD which optimizes additionally for
distillation loss.
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Figure 3: Log perplexity for different models during their pre-training, as measured on a subset of
the Pile training set.
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J ADDITIONAL RESULTS: LEARNING EASY VS. HARD INSTANCE VIA SALT

Creation of different hardness buckets. For each evaluation benchmark, we first assign a relative
rank to each test instance/example in the benchmark, representing its degree of difficulty. A test
example with the lowest rank (easiest) is the one on which the small teacher LM achieves the largest
task evaluation score, e.g., Rouge-2 metric for the XLSum task. Similarly, subsequent test examples
are assigned ranks in descending order of the task evaluation score achieved by the small teacher
LM. If two examples have the same evaluation score, the one with higher confidence score from the
teacher (on its generated output) is deemed to have a lower rank. Each test example is assigned to
one of the three buckets: ‘easy‘, ‘medium‘, or ‘hard‘, according to whether its difficulty rank is in the
first, second, or third tertile, respectively.

In Tables 9, 10 and 11, we report the results for SQuAD-v2, TriviaQA and LAMBADA respectively,
sliced by difficulty level.

Table 9: Few-shot evaluation on different buckets of SQuAD-v2. Each number shows average
Exact Match scores on the corresponding bucket. We use gray , green , and red to highlight the
results similar to, better than, and worse than BASELINE performance, respectively.

Evaluation stage (steps) Easy Medium Hard
SLM Final (208K) 1.00 0.30 0.00

BASELINE
Early (36K)

0.86 0.41 0.23
RKD 0.86 0.37 0.17
SALT 0.86 0.37 0.17

BASELINE
Final (208K)

0.89 0.47 0.28
RKD 0.91 0.42 0.20
SALT 0.89 0.50 0.29

Table 10: Few-shot evaluation on different buckets of TriviaQA. Each number shows average
Exact Match scores on the corresponding bucket. We use gray , green , and red to highlight the
results similar to, better than, and worse than BASELINE performance, respectively.

Evaluation stage (steps) Easy Medium Hard
SLM Final (208K) 0.90 0.00 0.00

BASELINE
Early (36K)

0.63 0.11 0.08
RKD 0.67 0.10 0.06
SALT 0.67 0.10 0.06

BASELINE
Final (208K)

0.80 0.28 0.22
RKD 0.79 0.14 0.11
SALT 0.81 0.27 0.23

Table 11: Few-shot evaluation on different buckets of LAMBADA. Each number shows average
Accuracy on the corresponding bucket. We use gray , green , and red to highlight the results
similar to, better than, and worse than BASELINE performance, respectively.

Evaluation stage (steps) Easy Medium Hard
SLM Final (208K) 0.87 0.00 0.00

BASELINE
Early (36K)

0.47 0.12 0.12
RKD 0.56 0.11 0.12
SALT 0.56 0.11 0.12

BASELINE
Final (208K)

0.70 0.29 0.28
RKD 0.65 0.17 0.17
SALT 0.78 0.38 0.36
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K NEW RESULTS FOR 8.6B PARAMETER MODEL PRE-TRAINING

In order to further validate the utility of the proposed SALT framework, we utilize it train even larger
LM. In particular, we train a 8.6B parameter LM on the Pile dataset with the help of a 2.8B parameter
small LM via SALT. In addition, we also explore SALTDS in this setting where, as per the discussion
in Section 4, we utilize an early checkpoint (corresponding to n0 = 26K steps) of the 2.8B parameter
model for data selection with k = 10 in (11).

As described in Appendix E, the 2.8B parameter model consists of a narrow and deep 92 layer
Transformer network with model dimension 1024, MLP hidden dimension 8192, and 4 attention
heads based on multi-query attention (Shazeer, 2019). As for the 8.6B parameter LM, it is based on a
shallow and wide 32 layer Transformer network with model dimension 4096, MLP hidden dimension
16384, and 32 attention heads based on multi-query attention. Similar to the rest of the experiments
in this work, we use a SentencePiece tokenizer (Kudo & Richardson, 2018) from Du et al. (2022)
with a vocabulary size of 256K. For the rest of the hyperparameters, we follow the setup described
in Appendix E.

Next, focusing on the tasks listed in Appendix F, we present the few-shot performance for the 8.6B
LMs trained via SALT and SALTDS and contrast that with the performance of the natural baseline –
an 8.6B LM trained via the standard pre-training approach. Subsequently, Section K.2 explores the
post-SFT performance for 8.6B parameter LMs on the same tasks considered in Section 5.3.

K.1 FEW-SHOT EVALUATIONS FOR 8.6B MODELS PRE-TRAINED VIA 2.8B SLM TEACHER

Table 12: Domain-wise few-shot performance of pre-trained 8.6B parameter LMs. SALT and
SALTDS utilize a 2.8B parameter SLM during their pre-training. Note that SALT and SALTDS already
outperform BASELINE in terms of average few-shot performance at 70% of their training step budget,
thereby improving both training efficiency and model quality. RKD (i.e., naively distilling from SLM
throughout pre-training) performs much worse than BASELINE. The best and second-best results for
each domain are boldfaced and underlined, respectively.

Domain # Tasks SLM BASELINE SALT SALTDS

@100% @70% @100% @70% @100%
steps steps steps steps steps

World Knowledge 4 22.19 26.91 27.66 28.97 28.04 28.47
Reading Comprehension 4 53.00 56.40 56.83 57.42 56.10 57.48
Commonsense Reasoning 7 61.99 66.01 66.89 67.09 66.61 67.24
LAMBADA 1 36.20 58.70 65.50 64.80 54.30 55.00
SuperGLUE 8 65.53 69.69 69.19 70.38 71.06 71.26
NLG 3 4.60 5.40 5.97 5.97 5.23 5.30
MBPP 1 16.20 20.80 19.80 22.00 22.80 23.20
Average 28 47.32 51.73 52.24 52.96 52.29 52.81

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 13: Comprehensive few-shot performance of pre-trained 8.6B parameter LMs. SLM is a
2.8B parameter model that serves as the teacher LM for SALT & SALTDS during the KD phase of
their pre-training and for RKD throughout its pre-training. BASELINE employs standard pre-training
without KD from SLM. SALT and SALTDS already outperform BASELINEin terms of average few-shot
performance at 70% of their training step budget, thereby improving both training efficiency and
model quality. The best and second-best results for each domain are boldfaced and underlined,
respectively.

Domain Dataset Metric SLM BASELINE SALT SALTDS

@100% @70% @100% @70% @100%
steps steps steps steps steps

W
or

ld
K

no
w

le
dg

e NaturalQuestions-Open EM 8.70 10.50 11.80 11.50 12.00 12.30
TriviaQA EM 43.15 54.86 55.16 57.07 56.85 58.99

TyDiQA-NoContext F1 28.20 30.40 29.70 32.30 32.00 30.60
WebQuestions EM 8.70 11.90 14.00 15.00 11.30 12.00

Domain average 22.19 26.91 27.66 28.97 28.04 28.47

R
ea

di
ng

C
om

pr
eh

en
si

on RACE-M Acc 57.00 60.70 61.70 62.40 59.60 60.70
RACE-H Acc 42.30 45.40 44.90 45.70 43.30 44.20

SQuADv2 EM 54.80 61.20 56.50 57.00 56.90 61.50
TyDiQA-GoldP F1 57.90 58.30 64.20 64.60 64.60 63.50

Domain average 53.00 56.40 56.83 57.42 56.10 57.48

C
om

m
on

se
ns

e
R

ea
so

ni
ng

ARC-E Acc 68.40 73.30 74.10 74.60 73.00 74.00
ARC-C Acc 37.10 42.70 45.00 46.20 43.90 44.50

HellaSwag Acc 62.80 70.40 70.00 70.80 70.70 71.60
OpenBookQA Acc 50.00 51.20 53.40 53.20 53.00 52.80

PiQA Acc 75.40 77.30 76.60 76.40 76.80 77.70
StoryCloze Acc 77.20 80.00 80.20 80.00 80.20 80.30

WinoGrande Acc 63.00 67.20 68.90 68.40 68.70 69.80
Domain average 61.99 66.01 66.89 67.09 66.61 67.24

LAMBADA Acc 36.20 58.70 65.50 64.80 54.30 55.00

Su
pe

rG
L

U
E

BoolQ Acc 64.30 70.70 74.20 74.70 76.80 76.00
CB Acc 58.90 60.70 53.60 58.90 64.30 64.30

COPA Acc 79.00 87.00 87.00 84.00 85.00 86.00
MultiRC F1 54.20 55.90 52.60 55.80 59.90 61.70

RTE Acc 55.60 61.40 64.60 67.10 62.50 62.50
ReCoRD Acc 87.10 89.20 89.40 89.30 89.50 89.20

WIC Acc 47.20 50.50 50.00 50.00 47.30 47.20
WSC Acc 77.90 82.10 82.10 83.20 83.20 83.20

Domain average 65.53 69.69 69.19 70.38 71.06 71.26

N
L

G

GEM-XLSum Rg2 4.10 4.90 5.30 5.40 4.80 4.70
GEM-XSum Rg2 5.10 6.10 7.20 7.00 6.00 6.20
WikiLingua Rg2 4.60 5.20 5.40 5.50 4.90 5.00

Domain average 4.60 5.40 5.97 5.97 5.23 5.30

MBPP Acc 16.20 20.80 19.80 22.00 22.80 23.20

Average (28 tasks) 47.32 51.73 52.24 52.96 52.29 52.81
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K.2 POST SFT RESULTS FOR 8.6B MODELS PRE-TRAINED VIA 2.8B SLM TEACHER

Table 14: Supervised fine-tuning (SFT) results. Performance of various pre-trained checkpoints
on downstream tasks after SFT. For each benchmark, pre-trained 8.6B models are fine-tuned on the
corresponding train split and evaluated on the validation split (test split in case of GSM8K). Acc, Rg1,
Rg2, and RgL represent the Accuracy, Rouge-1, Rouge-2, and Rouge-Lsum metrics, respectively.

GSM8K XSum CNN/DailyMail ANLI-R1 ANLI-R2 ANLI-R3
Acc Rg1 Rg2 RgL Rg1 Rg2 RgL Acc Acc Acc

BASELINE 41.85 45.10 22.68 37.36 43.73 21.19 41.29 68.80 58.90 60.58

SALT 42.84 45.37 23.04 37.69 43.69 21.16 41.22 70.20 59.30 63.25
SALTDS 42.23 45.81 23.34 38.14 43.80 21.28 41.35 69.30 59.50 62.17

L DISTRIBUTION OF ξt
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Figure 4: Histograms of ξ̂t, for prefix lengths t ∈ [1, 5, 10, 30, 100, 300, 640] for BASELINE 2.8B
parameter model, estimated with ncom = 64 completions for each expectation in (55). The sequence
length is 1280. The distribution gets concentrated around 0 as t increases. In the bottom histograms,
we reduce the x-axis range to about one-fourth that of the top histograms, to focus on the trend within
the bottom row. In the rightmost plot, the mean of |ξ̂t| over validation set decreases rapidly with t.
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Figure 5: Histograms of ξ̂t, t ∈ [1, 5, 10, 30, 100, 300, 640] for BASELINE 1.5B parameter model,
estimated with ncom = 64 completions for each expectation in (55). The sequence length is 1280.
The distribution gets concentrated around 0 as t increases. In the bottom histograms, we reduce the
x-axis range to about one-fourth that of the top histograms, to focus on the trend within the bottom
row. In the rightmost plot, the mean of |ξ̂t| over validation set decreases rapidly with t.

In this section, we attempt to understand the distribution of ξt(x;θ) as x ∼ D for a learned model
parameterized by θ. Recall from (8) that

ξt(x;θ) = Ez∼D [`ω(z;θ)|z≤t−1 = x≤t−1]− Ez∼D [`ω(z;θ)|z≤t = x≤t] , t ∈ [T ]. (55)

In order to estimate ξt(x;θ), we intend to use a plugin estimator for the two expectations in this
equation. To estimate, say, the second expectation above with a Monte-Carlo average, we need
to be able to sample completions of x≤t so that x follows the distribution D. The best access to
data distribution D is via the training data; however, it is generally not possible to sample multiple
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T t = 1 t = 5 t = 10 t = 30 t = 100 t = 300 t = 640

64 0.338 0.133 0.106 0.087 − − −
128 0.261 0.099 0.074 0.057 0.042 − −
256 0.188 0.082 0.060 0.044 0.033 − −
512 0.134 0.071 0.053 0.039 0.031 0.019 −

1280 0.109 0.058 0.041 0.031 0.027 0.023 0.016

Table 15: Mean |ξ̂t| for 2.8B parameter model decreases as we increase the sequence length T .
Conversely, for a fixed sequence length T , mean |ξ̂t| decreases with prefix length t. “−” indicates
that the entry is not meaningful because the prefix length t is more than the sequence length.

T t = 1 t = 5 t = 10 t = 30 t = 100 t = 300 t = 640

64 0.345 0.135 0.108 0.087 − − −
128 0.267 0.102 0.076 0.058 0.042 − −
256 0.194 0.085 0.062 0.045 0.033 − −
512 0.138 0.074 0.055 0.040 0.032 0.019 −

1280 0.113 0.061 0.043 0.032 0.028 0.024 0.017

Table 16: Mean |ξ̂t| for 1.5B parameter model decreases as we increase the sequence length T .
Conversely, for a fixed sequence length T , mean |ξ̂t| decreases with prefix length t. “−” indicates
that the entry is not meaningful because the prefix length t is more than the sequence length.

completions starting with the same prefix x≤t from the training data. Due to this difficulty, we sample
completions from an oracle language model, as an approximation to the true data distribution. We
use the BASELINE 8.6B model described in Appendix K as our oracle.

For a sequence x and prefix length t ∈ [T ], we employ a plugin estimate

ξ̂t(x;θ) :=
1

ncom

ncom∑
i=1

`ω([x1:t−1,y
i(x1:t−1)];θ)− 1

ncom

ncom∑
i=1

`ω([x1:t,y
i(x1:t)];θ) (56)

where yi(x1:s), s ∈ [T ] is a completion of x1:s, generated by the oracle, with a length of
|yi(x1:s)| = (T − s) so that the concatenation [x1:s,y

i(x1:s)] has length T . ncom denotes the
number of completions sampled from the oracle for estimating the expectations.

We compute ξ̂t(x;θ) for two models: BASELINE 1.5B and BASELINE 2.8B LMs. As for x, we
employ sequences in the validation set (held out from training any model, including the oracle). The
number of completions is ncom = 64. The validation set size is ∼ 200K.

In Figure 4, we observe that for 2.8B LM the estimates of ξ̂t increasingly concentrate around 0 as t
increases. Further, the mean |ξ̂t| decreases quickly with t. For the first few tokens of the sequence,
it is hard to predict the next token, because the context is not sufficient to make a good prediction.
These observations suggest that the magnitude of ξt decreases with t. Intuitively, the upper bounds
Ct and Vt defined in Assumption 3.4 should also decrease with t. (Similar results hold for 1.5B LM
in Figure 5.)

Table 15 shows that for the 2.8B LM, the mean |ξ̂t| decreases as the sequence length T increases
from 64 to 1280. For modern LMs configured to train on much longer sequences, the table indicates
that the mean |ξt| are likely to be small. Table 16 shows similar behavior for 1.5B LM.
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