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Abstract

We consider statistical inference under privacy constraints. In particular, we
give differentially private algorithms for estimating coverage probabilities and
computing valid confidence sets, and prove upper bounds on the error of our
estimates and the length of our confidence sets. Our bounds apply to broad classes
of data distributions and statistics of interest, and for fixed ε we match the higher-
order asymptotic accuracy of the standard (non-private) non-parametric bootstrap.

1 Introduction

The goal of statistical machine learning is to make inferences on parameters of the underlying
population from which observed data has been drawn. Obtaining confidence sets for a statistic of
interest is among the most basic of inferential tasks. Particularly in safety-critical applications such
as healthcare, it is essential to be able to rigorously and accurately quantify uncertainties around point
estimates or predictions.

To the extent that such applications often involve sensitive data, it is also crucial that any inferential
procedure not compromise the privacy of the individuals from whom the data has been collected. Over
the last decade plus, differential privacy [3] has emerged as the de facto framework for specifying
such privacy constraints.

In this work, we aim to compute confidence sets for statistics of general (e.g., non-Gaussian)
distributions while maintaining (pure) differential privacy. Building on the simplicity, generality
and accuracy—at least in the absence of privacy considerations—of simulation-based inferential
procedures such as the bootstrap, we propose private mechanisms for estimating the coverage of
user-specified confidence sets, as well as computing valid confidence sets given a user-specified target
coverage probability.

Notably, for fixed privacy parameter ε = Ω(1), our estimated coverage probabilities match the accu-
racy of the standard non-private nonparametric percentile-t bootstrap, which itself is asymptotically
optimal, i.e. achieves the Cramér-Rao bound.

1.1 Preliminaries

Let P be a collection of distributions on a set X ⊆ R, and consider a statistic θ : P → R of interest.
We have an estimator, typically the plug-in estimator, θ̂n : Xn → R of θ(P ), which converges at a
rate rn to θ(P ), that is,

rn(θ(P )− θ̂n)
d→T (1)

for some random variable T .

We aim to estimate the cumulative distribution function (CDF) of the estimator, that is, for t ∈ R to
estimate

Jn(t, P ) := P(rn(θ(P )− θ̂n) ≤ t), 1 (2)

1For a set S ⊆ R, we use the notation Jn(S, P ) := P(rn(θ(P )− θ̂n) ∈ S).
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so that we may ultimately compute valid confidence sets, defined as follows.

Definition 1.1. (adapted from Definition 2 in [9]). Let α ∈ (0, 1) and X1:n
i.i.d.∼ P . A valid (1− α)-

level confidence set2 for a statistic θ(P ) is a (possibly randomized) function Cα : Xn → B(R) such
that for all P ∈ P we have

P (θ(P ) ∈ Cα(X)) ≥ 1− α,

where the probability is taken over the randomness of both C and P .

We consider Cα that satisfy differential privacy.

Definition 1.2. (Differential privacy) For ε, δ ≥ 0, a mechanismM : Xn → O is (ε, δ) differentially
private if for any measurable O ∈ O and X,X ′ ∈ Xn that differ in at most one element we have

P (M(X) ∈ O) ≤ eε · P (M(X ′) ∈ O) + δ.3

The results given in Section 2 are contingent on various (mild) regularity conditions on the data
distribution and estimator under consideration, which are standard in the classical bootstrap literature.
See Hall [7] for a canonical reference. Owing to space constraints, we defer stating these assumptions
explicitly and instead present the results non-rigorously.

1.2 Related work

Whereas the principal focus of much early work on differential privacy was on on the design and
analysis of algorithms for privately querying data and computing sample statistics, in recent years
a growing body of work has sought to marry differential privacy and statistical inference—that
is, to design differentially private procedures for inferring population parameters from sample
statistics, with both the usual distribution-free privacy guarantees and also statistical guarantees under
distributional assumptions on the given data.

Notably, Smith [11] showed that a large class of (asymptotically normal) statistical estimators ad-
mit private counterparts that asymptotically converge to the same Gaussian distribution. Perhaps
motivated by this phenomenon, much of the emphasis of existing work on differentially private confi-
dence sets has been on private mechanisms for covariance estimation—e.g., for univariate Gaussian
[9], multivariate Gaussian [8] and sub-Gaussian data [2]; for private empirical risk minimization
[1, 12]; and under the local model [6]—so that the normal approximation may then be applied to
estimate coverage probabilities. Karwa and Vadhan [9] give matching upper and lower bounds, up to
logarithmic factors, on the length of valid confidence sets for Gaussian mean estimation.

For non-Gaussian statistics, however, the normal approximation is merely first-order accurate. Indeed,
it is well known in the non-private setting that data-driven, simulation-based inferential procedures
such as the bootstrap are generally asymptotically more accurate than the normal approximation,
i.e. higher-order accurate, in estimating the coverage of confidence sets, under suitable regularity
conditions. Ferrando et al. [5] propose mechanisms for privatizing the parametric bootstrap, but
do not provide quantitative error bounds. Our proposed mechanisms are similar to the frameworks
proposed by Evans et al. [4], though we again distinguish ourselves via our emphasis on quantitative
upper bounds on the error of our procedures.

2 Main Results

As a point of departure, consider the setting of mean estimation, with θ̂n(X1:n) := X . Algorithm 1
prescribes a natural first attempt at privatizing the standard nonparametric bootstrap, wherein each

2We will sometimes also use the term “confidence set" to refer to the output of Cα.
3We sometimes will refer to a mechanism as ε differentially private for δ = 0.

2



time we compute our statistic on resampled data we add suitable noise to ensure the privacy of the
statistic, assuming the domain X is bounded by an interval of width R,

Algorithm 1: Private bootstrap
Input : data X1:n, threshold t
Output :estimate of Jn(t, P )

1 T ← b
√
nεc, θ̃ ← θ̂n(X1:n) + ξ for ξ ∼ Lap

(
0, Rnε

)
2 for i ∈ 1, ..., T do
3 Sample X ′1, ..., X

′
n uniformly with replacement from X1:n

4 θ̃i ← θ̂n(X ′1:n) + ξi for ξi ∼ Lap
(
0, R

n3/4ε

)
5 end
6 Ĵn(t, P )←

∑T
i=1 1

{√
n
(
θ̃ − θ̃i

)
≤ t
}

7 return Ĵn(t, P )

2.1 Upper bounds for estimating CDFs

Together with its simplicity and general applicability, the non-private bootstrap is typically more
accurate than the normal approximation in estimating Jn(t, P ), under suitable regularity conditions
on the distribution P . However, the usual pecking order flips under privacy constraints; whereas the
normal approximation can be privatized in a manner that yields Õ(ε−1n−1/2) error [9], Algorithm 1
achieves a corresponding rate of just O(ε−1/2n−1/4).

Proposition 1. (informal) For any δ > 0, Algorithm 2 is (εδ, δ) differentially private for εδ := Õ(ε),4

and estimates Ĵn(t, P ) with OP (ε−1/2n−1/4) error.

Motivated by the failure of Algorithm 1 to match even the normal approximation, we propose
Algorithm 2, a straightforward privatized variant of the bag of little bootstraps procedure [10], as a
private mechanism for aggregating the results of multiple bootstrap procedures run on partitions of
the data to estimate Jn(t, P ) to within O(ε−1/2n−1/2) error.

Algorithm 2: Private bootstrap ensemble
Input : data X1:n, threshold t, ensemble size s
Output :estimate of Jn(t, P )

1 b← bn/sc, Xi ← Xπ(i) for random permutation π of [n] (i.e. shuffle the data)
2 for k ∈ 1, ..., s do
3 for i ∈ 1, ..., T do
4 Sample Xi

1, ..., X
i
n uniformly with replacement from X(k−1)b:kb

5 end
6 Ĵkn(t, P )←

∑T
i=1 1

{√
n
(
θ̂n(X(k−1)b:kb)− θ̂n(Xi

1:n)
)
≤ t
}

7 end
8 Ĵn(t, P )← 1

s

∑s
k=1 Ĵ

k
n(t, P ) + ξ for ξ ∼ Lap(0, 1/sε)

9 return Ĵn(t, P )

Theorem 1. (informal) For ε > 1/
√
n, setting s =

√
n
ε we have that Algorithm 2 is ε differentially

private and estimates Jn(t, P ) with OP (ε−1/2n−1/2) error.

Note that Algorithm 2 achieves lower error than Algorithm 1 while also satisfying a more stringent
privacy constraint, i.e. pure ε differential privacy. But while Algorithm 2 does better than Algorithm 1
in estimating Jn(t, P ) for a single fixed query t, one apparent advantage retained by Algorithm 1 is
that we can reuse the resampled statistics to release the full histogram of the plug-in estimator while
incurring no further privacy loss.

4We have hidden the usual logarithmic factors in δ, n and ε that result from advanced composition
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Fortunately however, drawing inspiration from standard techniques for private histogram estimation,
we can obtain a similar uniform approximation result from Algorithm 2 while maintaining the same
error rate up to logarithmic factors.

Theorem 2. (informal) We can construct an ε differentially private estimate Ĵn(·, P ) such that
||Ĵn(·, P )− Jn(·, P )||∞ = ÕP (ε−1/2n−1/2).

While we have thus far limited the scope of our discussion to mean estimation, analogous results
for Algorithm 2 can be shown for general statistics under suitable regularity conditions, including
statistics which converge to a non-Gaussian random variable T , in which case the error in estimating
Jn(t, P ) is typically determined by the rate of convergence, where we may have rn 6= n−1/2.

Finally, turning our attention to the studentized sample mean, define

J st
n :=:= P

(√
n(θ̂n − θ(P ))

σ̂
≤ t

)
, (3)

where σ̂ is the usual unbiased empirical estimate of the standard deviation of P .

Whereas the error of the (non-private) normal approximation in estimating J st
n remains Ω(n−1/2),

using a minor variation of Algorithm 2, wherein we truncate the s independent bootstrap estimates
around their median before averaging we can achieve a significantly improved dependence on the
sample size n, matching the rate of the standard non-private bootstrap.5

Theorem 3. (informal) We can estimate J st
n (t, P ) with ε differential privacy and OP (1/εn) error.

Studentization also allows us to improve upon the uniform bound in Theorem 2.

Theorem 4. (informal) We can construct an ε differentially private estimate Ĵ st
n (·, P ) of J st

n (·, P )

such that ||Ĵ st
n (·, P )− J st

n (·, P )||∞ = Õ(1/ε1/2n3/4).

2.2 From CDFs to confidence sets

In computing a confidence set, one generally aims to minimize the expected size of the set while
maintaining the desired coverage probability, i.e. validity. Assuming certain regularity conditions, we
can obtain such a confidence set given a uniformly good estimate of Jn(·, P ) such as described in the
statement of Theorem 2, thus further motivating the results in Section 2.

Theorem 5. (informal) Given Ĵn(·, P ) satisfying ||Ĵn(·, P )− Jn(·, P )||∞ ≤ ξ and the existence of
S ⊆ R with Jn(S, P ) ≥ 1− α, we can return S ′ ⊆ R such that |S ′| ≤ |S|+ σξ and Jfn (S ′, P ) ≥
1− α.

For f : R→ R—e.g., f could be a private mechanism for releasing θ̂n6—let

Jfn (t, P ) := P(rn(f(θ̂n − θ(P )) ≤ t). (4)

We can convert any estimate Ĵn of Jn into an estimate of Jfn by simulating a random variable with
CDF Ĵn and applying f to repeated draws from the simulation. The following result bounds the error
of such an estimate.
Proposition 2. (informal) Given Ĵn(·, P ), we can construct an estimate Ĵfn (·, P ) of Jfn (·, P ) such
that ||Ĵfn (·, P )− Jfn (·, P )||∞ ≤ ||Ĵn(·, P )− Jn(·, P )||∞.

After normalizing by the
√
n scaling, Proposition 2 and Theorem 5 together imply for mean estimation

that if there exists S such that Jfn (S, P ) ≥ 1 − α, then we can construct, from the output of
Algorithm 2, an interval around f(θ̂n) of width at most |S|+O(σ/ε1/2n) such that this interval is
guaranteed to be a valid 1− α confidence set.

Taking f as an ε differentially private mechanism for releasing θ̂n, we thus obtain a 2ε differentially
private 1− α confidence set.

5In particular, the non-parametric bootstrap achieves O(1/
√
n) error without studentization and O(1/n)

error with studentization.
6Note that restricting the domain of f to be R is a strong assumption, as generally private mechanisms can

be functions of the data itself, i.e. X1:n. However, many common mechanisms such as the Laplace mechanism
do satisfy this assumption.
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