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Abstract
We theoretically analyzed the convergence behavior of Riemannian stochastic gradient de-
scent (RSGD) and found that using an increasing batch size leads to faster convergence
than using a constant batch size, not only with a constant learning rate but also with a
decaying learning rate, such as cosine annealing decay and polynomial decay. The con-
vergence rate improves from O(T→1 + C) with a constant batch size to O(T→1) with an
increasing batch size, where T denotes the total number of iterations and C is a constant.
Using principal component analysis and low-rank matrix completion, we investigated, both
theoretically and numerically, how an increasing batch size a!ects computational time as
quantified by stochastic first-order oracle (SFO) complexity. An increasing batch size was
found to reduce the SFO complexity of RSGD. Furthermore, an increasing batch size was
found to o!er the advantages of both small and large constant batch sizes.
Keywords: Batch Size; Stochastic First-order Oracle Complexity; Learning Rate; Rie-
mannian Optimization; Riemannian Stochastic Gradient Descent

1. Introduction

Stochastic gradient descent (SGD) (Robbins and Monro, 1951) is a basic algorithm, widely
used in machine learning (Liu et al., 2021; He et al., 2016; Krizhevsky et al., 2012). Rieman-
nian stochastic gradient descent (RSGD) was introduced in Bonnabel (2013). Riemannian
optimization (Absil et al., 2008; Boumal, 2023), which addresses RSGD and its variants,
has attracted attention due to its potential application in various tasks, including many ma-
chine learning tasks. For example, it has been used in principal components analysis (PCA)
(Breloy et al., 2021; Liu and Boumal, 2020; Roy et al., 2018), low-rank matrix completion
(Vandereycken, 2013; Boumal and Absil, 2015; Kasai and Mishra, 2016), convolutional neu-
ral networks (Wang et al., 2020; Huang et al., 2017), and graph neural networks (Zhu et al.,
2020; Chami et al., 2019; Liu et al., 2019). It has also been used in applications of opti-
mal transportation theory (Lin et al., 2020b; Weber and Sra, 2023). It is well established
that the performance of Euclidean SGD strongly depends on both the batch size (BS) and
learning rate (LR) settings (Goyal et al., 2017; Smith et al., 2018; Zhang et al., 2019; Lin
et al., 2020a). In the context of Riemannian SGD, Ji et al. (2024); Bonnabel (2013); Kasai
et al. (2019, 2018) addressed the use of a constant BS, and Sakai and Iiduka (2025); Han
and Gao (2022) addressed the use of an adaptive BS, although the latter did not consider
RSGD specifically. In parallel, various decaying LR strategies, including cosine annealing
(Loshchilov and Hutter, 2017) and polynomial decay (Chen et al., 2018), have been devised,
and their e!ectiveness has been demonstrated for the Euclidean case. Motivated by these
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Study/Theorem Batch Size Learning Rate Convergence Analysis
Bonnabel (2013) – s.a. LR lim

t↑↓
E[gradf(xt)] = 0 a.s.

Zhang and Sra (2016) – ωt = O((Lr +
→
t)→1) E[f(xT )↑ f

ω] = O(
→
T (C + T )→1)

Tripuraneni et al. (2018) Constant ωt = O(t→ε) E↓”T ↓ = O(T→ 1
2 )

Hosseini and Sra (2020) Constant ω = O(T→ 1
2 ) ↓GT ↓2 = O(T→ 1

2 )
Durmus et al. (2021) Constant Constant E[f(xT )↑ f

ω] = O(CT
1 + C2)

Sakai and Iiduka (2024) Constant ωt = O((t+ 1)→
1
2 ) ↓GT ↓2 = O(T→ 1

2 log T )
Sakai and Iiduka (2025) Increasing Constant ↓GT ↓2 = O(T→1)

Theorem 5 Constant Constant and Decay ↓GT ↓2 = O(T→1 + C)
Theorem 6 Increasing Constant and Decay ↓GT ↓2 = O(T→1)
Theorem 7 Increasing Warm-up ↓GT ↓2 = O((T ↑ Tw)→1)
Theorem 8 Constant Warm-up ↓GT ↓2 = O((T ↑ Tw)→1 + C)

Table 1: Comparison of RSGD convergence analyses, where ε ↔ (12 , 1), C1 ↔ (0, 1), C2 and
C are constants, and (xt) is a sequence generated by RSGD. The usual stochastic
approximation LR (s.a. LR) is defined as

∑→
t=0 ωt = ↗,

∑→
t=0 ω

2
t < ↗. E[↓”T ↓] :=

E[↓R↑1
xω (xT )↓]. T is the total number of iterations, and Tw is the number of warm-

up iterations (see Section 3.3). ↓GT ↓2 := mint↓{0,··· ,T↑1} E[↓gradf(xt)↓2xt
]. ‘Decay’

includes LR schedules of the form ωt = O(t↑
1
2 ). More detailed explanations of the

convergence criteria are provided in Appendix F.

previous studies, we developed a novel convergence analysis of RSGD, proved that the con-
vergence rate is improved with an increasing BS, and showed that the stochastic first-order
oracle (SFO) complexity is reduced with an increasing BS. Our numerical results support
our theoretical results.

1.1. Previous Results and Our Contributions

Constraint: Bonnabel (2013); Zhang and Sra (2016); Durmus et al. (2021); Sakai and
Iiduka (2024) considered Hadamard manifolds or their submanifolds. Tripuraneni et al.
(2018) treated Riemannian manifolds that satisfy the condition required to ensure a unique
geodesic connecting any two points, including Hadamard manifolds. Sakai and Iiduka (2025)
addressed embedded submanifolds of Euclidean space. In contrast, we considered general
Riemannian manifolds that encompass all of the above conditions.
Learning rate: Bonnabel (2013) considered s.a. LRs, and Zhang and Sra (2016); Tripura-
neni et al. (2018); Sakai and Iiduka (2024) considered diminishing LRs of the form ωt =

1
ta .

Hosseini and Sra (2020); Durmus et al. (2021) considered constant LRs. Sakai and Iiduka
(2025) used both constant and diminishing LRs. We considered constant, diminishing,
cosine annealing, and polynomial decay LRs, as well as their warm-up versions.
Batch size: Because Bonnabel (2013) considered expected risk minimization using expec-
tation instead of sample mean—as is customary in empirical risk minimization—the concept
of BS is not generally applicable in the expected-risk-minimization setting. Zhang and Sra
(2016); Tripuraneni et al. (2018); Hosseini and Sra (2020); Durmus et al. (2021); Sakai and
Iiduka (2024) considered a constant BS. Sakai and Iiduka (2025) and this study considered
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an increasing BS. Furthermore, we numerically and theoretically compared using a constant
BS with using an increasing BS on the basis of SFO complexity. Our contributions are as
follows: (i) we theoretically showed that using an increasing BS yields a more favorable SFO
complexity of O(ϑ↑2), whereas using a constant BS equal to the critical BS yields a rate
of O(ϑ↑4); (ii) we numerically observed that an increasing BS yields both a better optimal
solution—in terms of attaining a smaller gradient norm—and a shorter computational time
than either a small or a large constant BS (see Section 4.3 for more details).

Objective function: Bonnabel (2013) considered three times continuously di!erentiable
functions, with both the gradient and Hessian uniformly bounded. Tripuraneni et al. (2018)
treated functions that are twice continuously di!erential, subject to additional conditions
on the Hessian. Other studies considered only once continuously di!erentiable functions.
Zhang and Sra (2016) addressed convex and smooth functions, while Durmus et al. (2021)
considered strongly convex and smooth functions. Hosseini and Sra (2020); Sakai and Iiduka
(2024, 2025) treated more general classes of functions, specifically nonconvex functions with
bounded gradients. We treated nonconvex functions without bounded gradients.

Convergence rate: A comparison of the previous and current RSGD convergence analyses
is presented in Table 1; here we outline the key results. Tripuraneni et al. (2018) obtained

a convergence rate of O(T↑ 1
2 ) (with a criterion other than the gradient norm) using an

LR of ω = O(T↑ 1
2 ); however, this rate decays to zero as T ↘ ↗, making it unsuitable for

practical use. Durmus et al. (2021) attained exponential convergence under strong convexity
and smoothness assumptions. Sakai and Iiduka (2025) attained a rate of O(T↑1) for several
adaptive methods, including RSGD. Our work di!ers from Sakai and Iiduka (2025) in
four key aspects : (i) we provide both theoretical and numerical evidence—based on SFO
complexity—that using an increasing BS leads to better performance than using a constant
BS; (ii) in addition to a constant LR and a diminishing LR, we addressed cosine annealing,
polynomial decay, and warm-up LRs; (iii) Sakai and Iiduka (2024) focused on embedded
submanifolds of Euclidean space unlike us; (iv) we do not assume bounded gradient norms,
thereby expanding the range of applicable scenarios.

Contributions:

• We developed a convergence analysis of RSGD that incorporates an increasing BS,
a cosine annealing LR, and a polynomial decay LR, under assumptions more gen-
eral than those used in prior work. Our analysis shows that using an increasing BS
improves the convergence rate of RSGD from O(T↑1 + C) to O(T↑1).

• We numerically and theoretically demonstrated—using PCA and low-rank matrix
completion (LRMC) tasks—the advantage of an increasing BS in reducing compu-
tational time, as quantified by SFO complexity. Specifically, we observed that an
increasing BS yields a better optimal solution (compared with a small constant BS)
in terms of attaining a smaller gradient norm and a shorter computation time (com-
pared with a large constant BS). These findings are consistent with our theoretical
analysis, which shows that an increasing BS reduces the SFO complexity for achieving
↓GT ↓2 ≃ ϑ

2 from O(ϑ↑4)—with a constant BS set equal to the critical BS—to O(ϑ↑2)
in the experimental setting.
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2. Preliminaries

Let M be a Riemannian manifold and TxM denote the tangent space at x ↔ M. On
TxM, the inner product of M is denoted by ⇐·, ·⇒x and induces the norm ↓ · ↓x. For a
smooth map f : M ↘ R, we can define gradient gradf as a unique vector field that satisfies
⇑v ↔ TxM : Df(x)[v] = ⇐gradf(x), v⇒x. A Riemannian manifold is generally not equipped
with vector addition, whereas in Euclidean space iterative methods are updated by addition.
Iterative updates are instead performed using alternative operations—such as retraction.

Definition 1 (Retraction) Let 0x denote the zero element of TxM. A map R : TM ⇓
(x, v) ⇔↘ Rx(v) ↔ M is called a retraction on M if it satisfies the two following conditions
for all x ↔ M. (I) Rx(0x) = x; (II) with the canonical identification T0xTxM ↖ TxM,
DRx(0x) = idTxM, where idTxM : TxM ↘ TxM denotes the identity map.

Iterative methods on Riemannian manifold are defined by xt+1 = Rxt(ωtdt) generally. Ex-
ponential maps are often used as retractions. The following assumption plays a central role
in Lemma 4.

Assumption 2 (Retraction Smoothness) Let f : M ↘ R be a smooth map. Then
there exists Lr > 0, such that ↔

x ↔ M,
↔
v ↔ TxM, f(Rx(v)) ≃ f(x) + ⇐gradf(x), v⇒x +

Lr
2 ↓v↓2x.

In the Euclidean space setting, L-smoothness implies a property similar to retraction
smoothness. The property corresponding to L-smoothness in Euclidean space is defined
for f : M ↘ R as ↗

L > 0,↔ x, y ↔ M : ↓gradf(x) ↑ #x
ygradf(y)↓x ≃ Lrd(x, y), where # is

the parallel transport from TyM to TxM, and d(·, ·) is the Riemannian distance. This con-
dition is su$cient for Assumption 2 with R := Exp (see Boumal (2023, Corollary 10.54)).
This case is frequently used (e.g., Zhang and Sra (2016); Criscitiello and Boumal (2023);
Kim and Yang (2022); Liu et al. (2017)). Other su$cient conditions for Assumption 2 were
identified by Kasai et al. (2018, Lemma 3.5) and Sakai and Iiduka (2025, Proposition 3.2).
Now, we consider the empirical risk minimization problem such that

minimize f(x) :=
1

N

N∑

j=1

fj(x) subject to x ↔ M,

where each fj : M ↘ R is smooth and lower bounded. Therefore, f is also smooth and lower
bounded. This assumption is often made for both Euclidean space and Riemannian space.
The lower boundedness of f is essential for analyses using optimization theory because
unbounded f may not have optimizers. We denote an optimal value of f by f

ω and let N
denote the size of the dataset. In many machine learning tasks, either the dimension of
model parameters x or the size of dataset N is large. Hence, we use the following minibatch
gradient to e$ciently approximate the gradient of f : gradfB(x) := 1

b

∑b
j=1 gradfεj (x),

where B represents a minibatch with size b, and (ϖj)bj=1 is a sequence of {1, · · · , N}-valued
i.i.d. random variables distributed as %. That is, the gradient of fB(x) =

1
b

∑b
j=1 fεj (x) is

used instead of gradf(x). The following assumption is reasonable given this situation.

Assumption 3 (Bounded Variance Estimator) The stochastic gradient given by a
distribution % is an unbiased estimator of the full gradient and has bounded variance: (I)
↔
x ↔ M : Eε↘! [gradfε(x)] = gradf(x); (II) ↗

ϱ > 0,↔ x ↔ M : Vε↘!(gradfε(x)) ≃ ϱ
2.
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For example, if f is lower bounded, satisfies Assumption 2, and % is taken to be the
uniform distribution over {1, . . . , N}, then Assumption 3 holds. RSGD is defined by xt+1 =
Rxt(↑ωtgradfBt(xt)), and is a generalization of Euclidean SGD. Because (ϖi,t)i,t are i.i.d.
samples, ωT := (ϖ1,T , · · · , ϖbT ,T )≃ is independent of (xt)Tt=0. Note that the BS (bt)t may vary
at each iteration. The detailed definitions of Eε↘!,Vε↘!, and E can be found in Appendix
D.

3. Convergence Analysis

We begin by presenting a lemma that will be used in the convergence analysis of RSGD.
Lemma 4 plays a central role is the following convergence analyses; its proof is provided in
Appendix D.1.

Lemma 4 (Underlying Analysis) Let (xt)t be a sequence generated by RSGD and let
ωmax > 0. Consider a positive-valued sequence (ωt)t such that ωt ↔ [0, ωmax] ↙ [0, 2

Lr
). Then,

under Assumptions 2 and 3, we obtain

min
t↓{0,··· ,T↑1}

E[↓gradf(xt)↓2xt
] ≃ 2(f(x0)↑ f

ω)

2↑ Lrωmax

1
∑T↑1

t=0 ωt

+
Lrϱ

2

2↑ Lrωmax

∑T↑1
t=0 ω

2
t b

↑1
t∑T↑1

t=0 ωt

.

3.1. Case (i): Constant BS; Constant or Decaying LR

In this case, we consider a BS (bt)t and an LR (ωt)t such that bt = b and ωt+1 ≃ ωt. In
particular, we present the following examples with constant or decaying LRs.

Constant LR: ωt = ωmax, (1)

Diminishing LR: ωt =
ωmax→
t+ 1

, (2)

Cosine Annealing LR: ωt := ωmin +
ωmax ↑ ωmin

2

(
1 + cos

t

T
ς

)
, (3)

Polynomial Decay LR: ωt := ωmin + (ωmax ↑ ωmin)

(
1↑ t

T

)p

, (4)

where ωmax and ωmin are positive values satisfying 0 ≃ ωmin ≃ ωmax <
2
Lr . Note that ωmax

(resp. ωmin) becomes the maximum (resp. minimum) value of ωt; namely, ωt ↔ [ωmin, ωmax] ↙
[0, 2

Lr
).

Theorem 5 We consider LRs (1), (2), (3), and (4) and a constant BS bt = b > 0 under
the assumptions of Lemma 4. Then, we obtain

Diminishing LR (2) : min
t↓{0,··· ,T↑1}

E[↓gradf(xt)↓2xt
] ≃ Q1 +Q2ϱ

2
b
↑1 log T→

T
= O

(
log T→

T

)
,

Otherwise (1), (3), (4) : min
t↓{0,··· ,T↑1}

E[↓gradf(xt)↓2xt
] ≃ Q̃1

T
+

Q̃2ϱ
2

b
= O

(
1

T
+

1

b

)
,

where Q1, Q2, Q̃1, and Q̃2 are constants that do not depend on T .
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3.2. Case (ii): Increasing BS; Constant or Decaying LR

In this case, we consider a BS (bt)t and an LR (ωt)t such that bt ≃ bt+1 and ωt+1 ≃ ωt. We
use the same examples as in Case (i) [(1), · · · , (4)], again with constant or decaying LRs,
and a BS that increases every K ↔ N steps, where N is the set of positive integers. We
let T denote the total number of iterations and define M := ∝ T

K ′ to represent the number
of times the BS is increased. The BS, which takes the form of φmb0 or (am + b0)p every
K steps, is an example of an increasing BS. We can formalize the resulting BSs: for every
m ↔ {0, . . . ,M ↑ 1}, t ↔ Sm := [mK, (m+ 1)K) ∞ N0,

Exponential Growth BS: bt := b0φ
m
⌈

t
(m+1)K

⌉

, (5)

Polynomial Growth BS: bt :=

(
am

⌈
t

(m+ 1)K

⌉
+ b0

)c

, (6)

where φ, c > 1, a > 0, and N0 := N ∈ {0}.

Theorem 6 We consider BSs (5) and (6) together with LRs (1), (2), (3) and (4) under
the assumptions stated in Lemma 4. Then, the following results hold for both constant and
increasing BSs.

Diminishing LR (2) : min
t↓{0,··· ,T↑1}

E[↓gradf(xt)↓2xt
] ≃ Q1 +Q2ϱ

2
b
↑1
0→

T
= O

(
1→
T

)
,

Otherwise (1), (3), (4) : min
t↓{0,··· ,T↑1}

E[↓gradf(xt)↓2xt
] ≃ Q̃1 + Q̃2ϱ

2
b
↑1
0

T
= O

(
1

T

)
,

where Q1, Q2, Q̃1, and Q̃2 are constants that do not depend on T .

3.3. Case (iii): Increasing BS; Warm-up Decaying LR

In this case, we consider a BS (bt)t and an LR (ωt)t such that bt ≃ bt+1 and ωt ≃ ωt+1

for (t ≃ Tw ↑ 1) and ωt+1 ≃ ωt for (t ∋ Tw). As examples of an increasing warm-up
LR, we consider an exponential growth LR and a polynomial growth LR, both increas-
ing every K

⇐ steps. We set K, as defined in Case (ii), to be lK
⇐, where l ↔ N (thus

K > K
⇐). Namely, we consider a setting in which the BS is increased every l times

the LR is increased. To formulate examples of an increasing LR, we define M
⇐ := ∝ T

K→ ′
and formalize the LR: for every m ↔ {0, . . . ,M ⇐ ↑ 1}, t ↔ S

⇐
m := [mK

⇐
, (m + 1)K ⇐) ∞ Z,

Exponential Growth LR: ωt := ω0↼
m

⌈
t

(m+1)K→

⌉

,

(7)

Polynomial Growth LR: ωt :=

(
sm

⌈
t

(m+ 1)K ↔

⌉
+ ω0

)q

,

(8)
where s > 0 and q > 1. Furthermore, we choose φ, ↼ > 1, and l ↔ N such that ↼2l < φ holds.
Additionally, we set lw ↔ N such that T ∋ Tw := lwK

⇐ ∋ lK
⇐. The examples of an increasing

BS used in this case are an exponential growth BS (5) and a polynomial growth BS (6). As
examples of a warm-up LR, we use LRs that are increased using the exponential growth LR
(7) and the polynomial growth LR (8) corresponding respectively to the exponential and
polynomial growth BSs for the first Tw steps and then decreased using the constant LR (1),
the diminishing LR (2), the cosine annealing LR (3), or the polynomial decay LR (4) for
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the remaining T ↑ Tw steps. Note that ωmax := ωTw↑1. A more detailed version of Theorem
7 is provided in Appendix D.4.

Theorem 7 We consider BSs (5) and (6) together with warm-up LRs (7) and (8) with
decay parts given by (1), (2), (3), or (4) under the assumptions stated in Lemma 4. Then,
the following results hold for both constant and increasing BSs: (I) Decay part [Diminish-
ing (2)]: ↓GT ↓2 = O((

→
T + 1 ↑

→
Tw + 1)↑1); (II) Decay part [Otherwise (1), (3), (4)]:

↓GT ↓2 = O((T ↑ Tw)↑1).

3.4. Case (iv): Constant BS; Warm-up Decaying LR

We consider a BS (bt)t and an LR (ωt)t such that bt = b and ωt ≃ ωt+1 for (t ≃ Tw ↑ 1) and
ωt+1 ≃ ωt for (t ∋ Tw). As examples of a warm-up LR, we use the exponential growth LR
(7) and the polynomial growth LR (8) for the first Tw steps and then the constant LR (1),
the diminishing LR (2), the cosine annealing LR (3), or the polynomial decay LR (4) for
the remaining T ↑ Tw steps. The other conditions are the same as those in Case (iii). A
more detailed version of Theorem 8 is provided in Appendix D.5.

Theorem 8 We consider a constant BS bt = b > 0 and warm-up LRs (7) and (8) with
decay parts given by (1), (2), (3), or (4) under the assumptions stated in Lemma 4. Then, we
obtain the following results: (I) Decay part [Diminishing (2)]: ↓GT ↓2 = O(log T

Tw
(
→
T + 1↑→

Tw + 1)↑1), (II) Decay part [Otherwise (1), (3), (4)]: ↓GT ↓2 = O((T ↑ Tw)↑1 + b
↑1).

4. Numerical Experiment

We experimentally evaluated the performance of RSGD for the two types of BSs and various
types of LRs introduced in Section 3. The experiments were run on an iMac (Intel Core
i5, 2017) running the macOS Ventura operating system (ver. 13.7.1). The algorithms were
written in Python (3.12.7) using the NumPy (1.26.0) and Matplotlib (3.9.1) packages. The
Python code is available at https://github.com/iiduka-researches/RSGD_acml2025.

git. We set p = 2.0 in (4) and ωmin := 0. In Cases (i) and (ii), we used an initial LR
ωmax selected from {0.5, 0.1, 0.05, 0.01, 0.005}. In Case (ii), we set K = 1000, φ = 3.0,
and a = c = 2.0. All the plots of the objective function values presented in this section
are provided in Appendices A.2 and E. Those for Cases (iii) and (iv) are provided in
Appendix G.

4.1. Principal Component Analysis

We can formulate the PCA problem as an optimization problem on the Stiefel manifold (Ka-
sai et al., 2019); for a given dataset {xj}j=1,...,N ↙ Rn and r (≃ n), minimizeU↓St(r,n)f(U) :=
1
N

∑N
j=1 ↓xj ↑ UU

≃
xj↓2, where St(r, n) := {U ↔ Rr⇒n | U≃

U = In}. We set r = 10 and
used the COIL100 (Nene et al., 1996) and MNIST (LeCun et al., 1998) datasets. The
Columbia Object Image Library (COIL100) dataset contains 7200 color camera images of
100 objects (72 poses per object) taken from di!erent angles. We resized the images to
32 △ 32 pixels and transformed each one into a 1024 (= 322) dimensional vector. Hence,
we set (N,n, r) = (7200, 1024, 10). The MNIST dataset contains 60, 000 28 △ 28-pixel
grayscale images of handwritten digits 0 to 9. We transformed each image into a 784

https://github.com/iiduka-researches/RSGD_acml2025.git
https://github.com/iiduka-researches/RSGD_acml2025.git
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Figure 1: Norm of the gradient of the objective function versus the number of iterations for
LRs (1), (2), (3), and (4) on COIL100 dataset (PCA).

Figure 2: Norm of the gradient of the objective function versus the number of iterations for
LRs (1), (2), (3), and (4) on MNIST dataset (PCA).

(= 282) dimensional vector and normalized each pixel to the range [0, 1]. Hence, we set
(N,n, r) = (60000, 784, 10). Furthermore, we used a constant BS with bt := 210, an expo-
nential growth BS with an initial value b0 := 35, and a polynomial growth BS with an initial
value b0 := 30.

4.2. Low-rank Matrix Completion

The LRMC problem involves completing an incomplete matrix Z = (z1, . . . , zN ) ↔ Rn⇒N ;
& denotes a set of indices for which we know the entries in Z. For a ↔ Rn, we define P”i(a)
such that the j-th element is aj if (i, j) ↔ & and 0 otherwise. For U ↔ Rn⇒r

, z ↔ Rn,
qj(U, z) := argmina↓Rr↓P”j (Ua ↑ z)↓. We can now formulate the LRMC problem as the
following optimization problem on the Grassmann manifold (Boumal and Absil, 2015):

Figure 3: Norm of the gradient of the objective function versus the number of iterations for
LRs (1), (2), (3), and (4) on MovieLens-1M dataset (LRMC).
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Figure 4: Norm of the gradient of the objective function versus the number of iterations for
LRs (1), (2), (3), and (4) on Jester dataset (LRMC).

COIL100 (PCA) MNIST (PCA) MovieLens-1M (LRMC) Jester (LRMC)
Large constant BS 1411.37 2697.24 4482.41 5432.54
Full constant BS 1488.34 2719.66 12947.91 6816.28
Increasing BS 468.53 745.13 1133.92 1695.85

Table 2: Computational time [s] (CPU time) for large-constant, full-constant and increasing
batch sizes.

minimizeU↓Gr(r,n)f(U) := 1
N

∑N
j=1 ↓P”j (Uqj(U, zj)↑ zj)↓2, where Gr(r, n) := St(r, n)/O(r).

We set r = 10 and used the MovieLens-1M (Harper and Konstan, 2016) and Jester datasets
(Goldberg et al., 2001). The MovieLens-1M dataset contains 1, 000, 209 ratings given by
6040 users on 3952 movies. Every rating lies in [0, 5]. We normalized each rating to the
range [0, 1]. Hence, we set (N,n, r) = (3952, 6040, 10). The Jester dataset contains ratings
of 100 jokes from 24, 983 users. Every rating is bounded by the range [↑10, 10]. Hence, we
set (N,n, r) = (24983, 100, 10). Furthermore, we used a constant BS bt := 28, an exponential
growth BS with an initial value of b0 := 34, and a polynomial growth BS with an initial
value of b0 := 14.

The performances in terms of the gradient norm of the objective function versus the
number of iterations for LRs (1), (2), (3), and (4) on the COIL100, MNIST, MovieLens-
1M, and Jester datasets are plotted in Figures 1, 2, 3, and 4, respectively. Achieving a
small gradient norm was better with an increasing BS than with a constant BS. Among
the increasing BSs, the exponential growth BS outperformed the polynomial BS. Because
the magnitude of increase in the exponential BS is O(φm) and that in the polynomial BS is
O(m), these numerical results indicate that a larger rate of increase in BS leads to better
performance.

4.3. Comparison of Computational Time between Constant BS and Increasing
BS versus SFO Complexity

What are the di!erences between using a large constant BS, a small constant BS, and an
increasing BS? We numerically investigated this question on the basis of SFO complexity,
defined as the number of stochastic gradient evaluations executed over T iterations (Agarwal
and Bottou, 2015; Shallue et al., 2019; Sato and Iiduka, 2023). For a constant BS b, SFO
complexity is represented by bT . For other BSs, it can be computed numerically, serves as



Oowada Iiduka

Figure 5: Norm of objective function gradient versus SFO complexity. Datasets used were
COIL100 (PCA), MNIST (PCA), MovieLens-1M (LRMC), and Jester (LRMC)
in order from left to right. A cosine annealing LR was used except for COIL100,
for which a constant LR was used. For ‘BS increases= 0,’ a constant BS b = b0

was used. For ‘BS increases= 3’ and ‘BS increases= 6,’ the BS was increased 3
and 6 times, respectively, in accordance with the exponential growth BS.

a proxy for computational time. Figure 5 plots the gradient norm of the objective function
versus SFO complexity for PCA and LRMC. Each curve corresponds to RSGD for 3000
steps under one of the following settings: constant BS, BS tripled every 1000 steps (three
increases in total), or BS tripled every 500 steps (six increases in total). These settings
follow the update formula for constant or exponential growth BS. Additional experimental
details are provided in the caption of Figure 5. As shown in the figure, an increasing BS
combines the advantages of both small and large BSs—namely shorter computational time
and convergence to a solution with a smaller final gradient norm.

As shown in Figure 5, although both full and large constant BSs lead to optima achieving
a small gradient norm, they require more SFO complexity. In contrast, while small constant
BSs require less SFO complexity, they do not lead to optima achieving a small gradient norm.
As shown in Table 2, the computational time (CPU time) of an increasing BS is shorter
than that of both large and full constant BSs. Between small and large constant BSs, there
is a trade-o! between convergence to a solution with a smaller final gradient norm and a
shorter computational time. Our results show that an increasing BS balances this trade-o!
e!ectively.

Why is increasing BS better? Our theoretical analyses provide an answer to this
question. From Theorem 5, the SFO complexity of a constant BS with the critical BS for
achieving ↓GT ↓2 ≃ ϑ

2 is O(ϑ↑4). From Theorem 6, the SFO complexity of an exponential
growth BS for achieving ↓GT ↓2 ≃ ϑ

2 is O(φϑ
↑2
), where φ := 3 in this experiment. Although

O(φϑ
↑2
) is inferior to O(ϑ↑4) in our strict theoretical setting—with fixed K (number of steps

for each BS) and dynamic M (number of BS increases)—the assumptions in this experiment
di!er. Specifically, K depended on the value assigned to M , and our analysis can be applied
to this experimental setting. Under these conditions, the SFO complexity of an exponential
growth BS for achieving ↓GT ↓2 ≃ ϑ

2 is O(ϑ↑2), which is superior to O(ϑ↑4) and consistent
with our experimental results. This provides our theoretical justification: increasing BS
achieves lower SFO complexity than a constant BS. Summarizing the above, we obtain the
following theorem. The derivation is provided in Appendix A.
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Figure 6: The plot on the far left depicts the objective function value (loss) for MNIST
(PCA) under the same setting as in Figure 5. The plot in the middle left (resp.
right) depicts the objective function value (loss) for our proposed optimization
problem when (N,n) = (7200, 1024) (resp. (60000, 1024)). The plot on the far
right depicts the trade-o! with respect to the setting of φ.

(b0,M) (27,0) (243, 0) (6561, 0) (7200, 0) (27, 3) (729, 3) (800, 3) (27, 6) (30, 6)

x (COIL100) 2.233 1.055 0.903 0.902 1.173 0.911 0.902 0.973 0.951

(b0,M) (243, 0) (2187, 0) (59049, 0) (60000, 0) (243, 3) (2223, 3) (6561, 3) (243, 6) (247, 6)

y (MNIST) 4.846 2.292 4.847 5.332 1.141 -4.622 2.134 4.247 -4.139

Table 3: Let UEVD be the solution to PCA by eigenvalue decomposition, and let URSGD be
the solution to PCA by RSGD. Then, the di!erences between the representations
of the subspaces spanned by the principal components of UEVD and URSGD are
given by l := ↓UEVDU

≃
EVD ↑ URSGDU

≃
RSGD↓. For comparison with the results for

COIL100, we introduce x such that l = 9.487 + x △ 10↑3, and for MNIST, we
introduce y such that l = 0.4 + y △ 10↑4. M is the number of BS increments.

Theorem 9 Let ϑ > 0, and consider an LR scheduler other than the diminishing LR one.
Under the assumptions of Theorems 5 and 6, the SFO complexity for achieving ↓GT ↓2 < ϑ

2

is O(ϑ↑4) for a constant BS and O(ϑ↑2) for an increasing BS.

Remark 10 Under the rigorous conditions of our theory, M ↘ ↗ implies that T = MK+
const. ↘ ↗ with fixed K. In contrast, the conditions of our experiment do not permit an
increase in BS to achieve T ↘ ↗ because it would require K ↘ ↗ for T to diverge with
fixed M , which means that the number of steps for the initial BS is infinite. However, as
is done in many experimental setups, including ours, T is predetermined as a finite value
before conducting the experiment. This setting is equivalent to using the number of steps
as the stopping criterion. Under this practical setting, the conditions of our experiment
are meaningful because T < ↗ implies K < ↗ with a fixed M . On the other hand,
by considering the conditions of our proofs, our theoretical analysis can also be applied
to calculate SFO complexities, even within our experimental setting. From these reasons,
our theoretical analysis can support the numerical results. To enhance understanding, the
derivation of the SFO complexity for an increasing BS can be found in Appendix A.

Objective Function Values: Generalization performance is an important issue, and
the objective function value serves as a criterion for measuring it. As shown in part of
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Appendix A.2, although the exponential growth BS performed better than or equal to
the constant BS with respect to the objective function values, the di!erences in the val-
ues were small. One possible reason for this is that the objective function may be flat
around the optimal solution. To test this hypothesis, we conducted an experiment com-
paring the solution obtained by RSGD with that obtained by eigenvalue decomposition in
PCA. When the data dimensionality is not large, PCA can obtain the exact solution by
eigenvalue decomposition, and the di!erence from the approximate solution obtained by
RSGD can be used as a measure of generalization. As shown in Table 3, the di!erence is
small, which indicates that the objective functions of PCA with COIL100 and MNIST are
flat around the optimal (exact) solution. Conversely, by considering optimization problems
in which the objective functions do not have this property, the superiority of an increas-
ing BS in terms of generalization performance can be revealed more clearly. In fact, this
has already been demonstrated in LRMC with MovieLens-1M, as shown at the far left of
Figure 6 (the corresponding results for the other datasets are provided in Appendix A.2).
For further verification of this, we formulated a new optimization problem on the sphere
Sn↑1: minimizew↓Sn↑1f(w) := 1

N

∑N
j=1

√
|⇐xj , w⇒|, where {xj}Nj=1 is a dataset uniformly

sampled from Sn↑1 (see Appendix C for more details). We set (N,n) = (7200, 1024) and
(60000, 1024) and used the cosine annealing LR with an initial LR ωmax = 0.01. The BS
was configured in exactly the same way as that for the COIL100 and MNIST datasets in
Section 4.3. As in the two central graphs of Figure 6, an increasing BS achieved superior
performance in terms of the objective function value for this proposed problem. Although
the order of the di!erences (vertical axis) O(10↑2)↑O(10↑1) may appear small, it is 10–100
times larger than that observed for PCA because the di!erences in the values shown in Ta-
ble 3 are on the order of O(10↑4) ↑ O(10↑3). These results further confirm the validity
of our hypothesis for this problem. Given these results, we suggest that an increasing BS
should also improve generalization performance. Turning to a di!erent topic, the objective
function of our proposed optimization problem has an unbounded gradient norm (see Ap-
pendix C), and the corresponding experiments numerically confirmed that our theoretical
results are applicable even in this case. The graphs of the gradient norm for our proposed
problem are provided in Appendix C.1.

Guidelines for setting φ, b0 and M in the exponential growth BS : From Theorem
6, ↓GT ↓2 = O(1+ ϖ

ϖ↑1) = O(1+b
↑1
0 ) = O(M↑1) and SFOincr

ϑ = O(φM ) = O((b20↑1)↑1
b
3
0) =

O(φMM
↑1) hold. These theoretical results suggest a trade-o!: for smaller gradient norm,

φ, b0, and M should be assigned larger values while for smaller SFO complexity, φ, b0, and
M should be assigned smaller values. The far-right plot in Figure 6 illustrates the trade-o!
between the gradient norm and SFO complexity achieved experimentally on MNIST (PCA)
using the cosine annealing LR with an initial LR ωmax = 0.01, where (b0,M) = (247, 6),
while varying φ among {2.0, 2.5, 3.0, 3.5, 4.0}. For b0, this trade-o! can be observed by
comparing the three entries under ‘BS increases= 3’ or the two entries under ‘BS increases=
6’ in Figure 5. For M , which represents the value ‘BS increases’, this trade-o! can be
observed by comparing the purple entry with the pink entry in Figure 5. From these results,
we were able to show, both theoretically and experimentally, that for each hyperparameter
the trade-o! between the gradient norm and SFO complexity holds. Figure 5 shows that
an increasing BS with small b0 and large M (= 6) leads to multiple optima characterized
by a small gradient norm and relatively low SFO complexity, indicating that well-balanced
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configurations were achieved by taking into account the trade-o!s inherent in b0 and M

individually. The relevant derivation is provided in Appendix B.

5. Conclusion

Our theoretical analysis, conducted with several learning rate schedules, including cosine
annealing and polynomial decay, demonstrated that using an increasing batch size rather
than a constant batch size improves the convergence rate of Riemannian stochastic gradient
descent. This result is supported by our experimental results. Furthermore, an increasing
batch size yields optima characterized by a smaller gradient norm within a shorter com-
putational time owing to reductions in the stochastic first-order oracle complexity. These
findings indicate that an increasing batch size combines the advantages of both small and
large constant batch size. Due to the nature of the experimental tasks, we were unable to
directly investigate the e!ect on generalization performance. However, evaluation via the
objective function value suggests that an increasing batch size also enhances generaliza-
tion performance. We believe our results, which clarify one aspect of the e!ectiveness of
an increasing batch size for generalization performance, provide valuable insight into this
topic.
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