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ABSTRACT

Class incremental learning (CIL) aims to learn a model that can not only incre-
mentally accommodate new classes, but also maintain the learned knowledge of
old classes. Out-of-distribution (OOD) detection in CIL is to retain this incremen-
tal learning ability, while being able to reject unknown samples that are drawn
from different distributions of the learned classes. This capability is crucial to
the safety of deploying CIL models in open worlds. However, despite remarkable
advancements in the respective CIL and OOD detection, there lacks a systematic
and large-scale benchmark to assess the capability of advanced CIL models in
detecting OOD samples. To fill this gap, in this study we design a comprehen-
sive empirical study to establish such a benchmark, named OpenCIL, offering
a unified protocol for enabling CIL models with different OOD detectors using
two principled OOD detection frameworks. One key observation we find through
our comprehensive evaluation is that the CIL models can be severely biased to-
wards the OOD samples and newly added classes when they are exposed to open
environments. Motivated by this, we further propose a novel approach for OOD
detection in CIL, namely Bi-directional Energy Regularization (BER), which is
specially designed to mitigate these two biases in different CIL models by having
energy regularization on both old and new classes. Extensive experiments show
that BER can substantially improve the OOD detection capability across a range of
CIL models, achieving state-of-the-art performance on the OpenCIL benchmark.

1 INTRODUCTION

Training of deep neural networks (DNNs) heavily relies on large-scale data on a fixed set of classes
(Russakovsky et al., 2015; Krizhevsky et al., 2017), but data in real-world applications is constantly
changing, leading to continuous new classes in training data. Continual learning (CL) enables DNNs
to continuously learn a sequence of tasks, with each task consisting of a set of unique classes. The
samples for the learned/old tasks are assumed to be not accessible in such dynamic environments.
Class incremental learning (CIL) is one type of CL where task identifiers are not known at testing
time. Compared to another type of CL, task-incremental learning, CIL is often considered a more
practical setting in real applications (Rebuffi et al., 2017; Li & Hoiem, 2017). Thus, we focus on
CIL in this study.

Many CIL methods have been introduced over the years to overcome Catastrophic Forgetting (CF)
of the knowledge learned on old classes, i.e., degraded classification accuracy on old classes due
to model updating on new classes (Xiao et al., 2023; Wang et al., 2022a; Niu et al., 2024). They
have shown remarkable performance on the in-distribution (ID) classes in incremental tasks, but lack
the capability to recognize and reject out-of-distribution (OOD) samples that are drawn from non-
training datasets during incremental learning (Huang & Li, 2021; Wang et al., 2020) (i.e., no class
overlapping between ID and OOD samples). Such a capability is crucial to the safety of deploying
CIL models in open environments in real-world application systems such as autonomous systems
(Kendall & Gal, 2017; Leibig et al., 2017). For example, in Unmanned Aerial Vehicles (UAVs), the
DNNs are initially trained using a limited set of available trajectories and then continuously updated
based on newly available trajectories. Meanwhile, these DNNs need to be capable of recognizing
OOD data to handle unexpected situations in every ongoing trajectory.
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(a) (b)

Figure 1: Results of the CIL model iCaRL (Rebuffi et al., 2017) on CIFAR100 (Krizhevsky et al.,
2009). (a) Mean prediction confidence of iCaRL on test samples from all incremental classes. (b)
Mean prediction confidence of iCaRL classifying six OOD datasets into one of the ID classes based
on the final incremental task. (see Appendix D for the results of other CIL models)

Numerous OOD detection methods have been proposed (Sun et al., 2021; Wang et al., 2023b;
Li et al., 2024b; Miao et al., 2024), but these OOD methods are focused on static environments,
where the samples of all tasks are accessible during training, making them ineffective in dynamic
CIL environments. Therefore, it is non-trivial to combine the off-the-shelf CIL and OOD models.
To justify this difficulty, a plausible evaluation protocol is needed to assess the OOD detection
capability of different CIL models with the support of different types of OOD detectors. There are
such protocols on the respective CIL and OOD detection areas, e.g., OpenOOD (Yang et al., 2022;
Zhang et al., 2023) for OOD detection and FACIL (Masana et al., 2022) for CIL, but no work has
been done on a systematic and large-scale benchmarking study to evaluate the synergy of existing
state-of-the-art (SOTA) CIL models and OOD detection methods.

To bridge this gap, we design a performance benchmark for OOD detection in CIL, called Open-
CIL, offering a unified protocol for different CIL models with diverse OOD detectors. To achieve
this, OpenCIL introduces two principled frameworks for incorporating diverse OOD detection meth-
ods into CIL models and also introduces a new evaluation pipeline that enables fair comparison of
not only the OOD detection capability for different CIL models but also the ability of different OOD
detectors in the presence of CF. In particular, OpenCIL accommodates four representative CIL mod-
els with 15 diverse OOD detection methods, resulting in 60 baseline models on two popular CIL
datasets and six commonly-used near/far OOD datasets. Based on the large-scale experiments on
OpenCIL, we provide a number of important observations, offering crucial insights into the design
of CIL models for open-world applications.

One key observation we find is that compared to OOD detection in static environments, the dynamic
environments in the CIL setting can lead to increasing biases towards OOD samples and newly
added classes with the growth of incremental learning steps. The underlying reasons are two-fold.
One main reason is that due to the CF problem, CIL models often have lower prediction confidence
for samples of old ID classes (i.e., classes seen in the old tasks), compared to new ID classes, as
illustrated in Fig. 1a. This leads to a difficulty in distinguishing between old ID class samples and
OOD samples. Furthermore, as illustrated in Fig. 1b, DNN-based CIL models typically exhibit an
over-confident prediction on OOD samples, causing the misclassification of the OOD samples into
not only the old ID classes but also the new ID classes. Increasing the incremental learning steps
results in a larger classification semantic space and more severe CF, which continually amplifies the
biases towards the OOD samples and newly added classes. Motivated by these issues, we propose
a new approach for OOD detection in CIL, namely Bi-directional Energy Regularization (BER),
which jointly optimizes two energy regularization terms to modulate the energy prediction of OOD
samples w.r.t. samples of old and new class samples, respectively. This effectively reduces these
two biases, improving the OOD detection capability across a range of CIL models.

In summary, our main contributions are as follows:
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• We investigate the synergy between CIL and OOD detection models, and establish the
first benchmark, OpenCIL, for evaluating the OOD detection capability of CIL models and
promoting the development of more advanced methods for this under-explored problem.

• We further introduce BER, a novel approach that provides an effective framework for mit-
igating increasing biases of CIL models towards OOD samples and newly added classes
with the growth of incremental steps. This helps largely improve the OOD detection capa-
bility of a wide range of CIL models.

• Extensive experiments show that BER achieves state-of-the-art performance on the Open-
CIL benchmark under varying incremental step sizes on popular CIL and OOD datasets.

2 RELATED WORK

Out-of-distribution (OOD) Detection. The objective of this task is to determine whether a
given input sample belongs to the learned classes (in-distribution) or unknown classes (out-of-
distribution). In recent years, OOD detection has been extensively developed, including Post-hoc-
based methods (Sun et al., 2021; Wang et al., 2023b; Zhang & Xiang, 2023) and fine-tuning-based
methods (Liu et al., 2020; Wei et al., 2022; Tian et al., 2022; Yu et al., 2023; Li et al., 2023; Liu
et al., 2023b; Miao et al., 2024; Li et al., 2024b;a). The post-hoc methods focus on devising new
OOD scoring functions in the inference stage. The fine-tuning-based methods focus on separating
OOD samples from ID samples by training a strong classifier as OOD detector. However, all these
methods are applied to non-CIL models. There lacks of exploration of their capability on CIL mod-
els, resulting in poor performance when there is catastrophic forgetting. Our BER is a fine-tuning
method that can be applied to different CIL models to improve their OOD detection performance.

Class Incremental Learning (CIL). CIL performs the learning procedure in an incremental man-
ner with growing data samples. It focuses on alleviating the catastrophic forgetting problem, in
which the CIL models are required to remember the knowledge of the learned classes from old tasks
while learning the discriminative information for the newly coming classes. There are three main
lines of work in this area (Luo et al., 2023; Xiao et al., 2023). Regularization-based methods focus
on applying discrepancy (between old and new models) as penalization terms in their objective func-
tions (Liu et al., 2021; Rebuffi et al., 2017; Xiao et al., 2023). Parameter-isolation-based methods
aim to increase the model parameters in each new incremental step to prevent knowledge forgetting
caused by parameter overwritten when learning new tasks (Xu & Zhu, 2018; Yan et al., 2021; Wang
et al., 2022a). Replay-based algorithms assume there is a memory budget allowing a handful of
old class examples in the memory. These memory examples can be used to re-train/fine-tune the
CIL model in each new incremental step (Rebuffi et al., 2017; Wu et al., 2019; Luo et al., 2023;
Niu et al., 2024). However, all these methods focus on tackling the CIL problem in a closed world,
failing to take into account distinguishing ID data from unknown samples (e.g., OOD data), Our
BER baselines can be applied to different pre-trained CIL models, in which all new class data and
old class memory are used for fine-tuning a new OOD detector for the CIL models. It effectively
equips the CIL models with significantly improved capability for OOD detection.

3 EQUIPPING CIL MODELS WITH OOD DETECTION CAPABILITY

This section investigates the effectiveness of two principled OOD detection frameworks in enabling
CIL models to reject unknown samples.

Problem Statement. Our goal is to equip CIL models with the capability of rejecting OOD sam-
ples. In this setting, a model is required to learn a sequence of tasks during training. At testing time,
the model is used to classify samples into old/new classes while also rejecting unknown samples
at each incremental step. The model is evaluated based on its effectiveness in preventing the CF
problem and distinguishing samples of old/new classes from OOD data.

Formally, CIL models are learned from a sequence of c tasks ID data T = {T1, T2, ..., Tc}. For each
t-th (1 ≤ t ≤ c) task, we have Tt = (Xtrain

t , Xtest
t , Yt), where Xtrain

t denotes the training ID
data, Xtest

t denotes the testing ID data, and Yt denotes the classification semantic space consisting
of a set of unique classes, i.e., the label spaces between any two incremental tasks have no class

3
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Figure 2: Left: Two principled frameworks are used in OpenCIL to incorporate OOD detection
methods into the different CIL models. Both frameworks are performed on pre-trained CIL models
θ(·), i.e., θ(·) is a composition of ϕ(·) and h(·), which keep frozen throughout, ensuring that their
CIL classification performance is not affected. Post-hoc-based OOD methods are directly applied
to pre-trained CIL models. Fine-tuning-based OOD methods train an additional classifier f(·), and
apply OOD detection based on this new classifier. Right: Our proposed BER aims to leverage
two sample synthesis methods to better train f(·), including interpolating samples of new classes to
synthesize the pseudo OOD samples for enlarging their decision boundary margin to mitigate bias
towards new classes, and interpolating samples of new and old classes to synthesize enhanced old
samples for expanding old class decision boundary to mitigate bias towards OOD samples.

overlapping: when i ̸= j, Yi ∩ Yj = ∅. Thus, the set of all seen classes at task t can be denoted
as Qt = ∪t

i=1Yi. CIL assumes that data samples of the old classes are not accessible. Many
CIL methods, such as the replay-based methods, assume the availability of a memory buffer, in
which a memory block is assigned to each task to store a very small set of samples for the task,
i.e., Bi ⊆ (Xtrain

i , Yi) is a small subset of training ID data sampled from task Ti. Thus, we
have the memory Mt = ∪t−1

i=1Bi that includes replay data from all t tasks. Let θt(·) be the CIL
model at the incremental learning step t, then the memory and the training data of task t form
the training ID data: T train

t = (Xtrain
t , Yt) ∪ Mt for training θt(·) at the learning step t. For

replay-free CIL methods, θt(·) is trained with (Xtrain
t , Yt) only. During testing time at task t, let

T test
t = Xtest

1 ∪Xtest
2 ∪ ... ∪Xtest

t be the testing ID data from all t tasks, θt(·) is used to classify
samples in T test

t into one of the classes in Qt. This is the setting for the conventional CIL problem.

For OOD detection in CIL, in addition to T test
t , the CIL model θt(·) is also presented with an

OOD dataset Xood
t at task t, which is a set of samples of unknown classes drawn from a different

distribution as the ID data in Tt. Then given test data x ∈ T test
t ∪Xood

t , the goal of the CIL model
θt(·) is to either classify x into the correct ID class from old/new tasks, or detect it as OOD data.

3.1 OPENCIL BENCHMARK: ENABLING CIL MODELS WITH EXISTING OOD DETECTORS

It is challenging for CIL models to recognize OOD samples and to conduct a fair comparison of
OOD detection capabilities, given the diverse types of OOD detectors, the significant differences of
two settings, and the various incremental steps involved. Therefore, we introduce OpenCIL, the first
large-scale and systematic benchmark designed to enable CIL models with existing OOD detectors.
There are two types of OOD detection methods: post-hoc-based and fine-tuning-based methods.
Post-hoc methods calculate OOD scores based on features/logits derived from the pre-trained model,
which can be used for different pre-trained classification models. Fine-tuning methods require the
fine-tuning of part or all layers of the pre-trained models, and then calculating the OOD score based
on the fine-tuned models. Below we introduce two principled frameworks that OpenCIL uses to
incorporate these two types of OOD methods into CIL models, as also illustrated in Fig. 2 Left.

CIL models with post-hoc-based OOD detection methods. A SOTA CIL algorithm is first ap-
plied to learn the c-tasks stream of ID data in an incremental manner, resulting in the standard CIL
model θ(·) = {θ1(·), θ2(·), ..., θc(·)}. Subsequently, we directly perform the post-hoc OOD scoring
function on the features/logits extracted from the well-trained CIL model θt(·), t ∈ {1, 2, ..., c} at
each incremental step to calculate the OOD score, without having any effect on the CIL models.

4
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CIL models with fine-tuning-based OOD detection methods. Similar to the previous frame-
work, fine-tuning-based OOD methods also apply a SOTA CIL algorithm to obtain the standard CIL
model θ(·) = {θ1(·), θ2(·), ..., θc(·)} in the first place. As shown in Fig. 2, for each incremental
step, the well-trained CIL model θt(·), t ∈ {1, 2, ..., c} contains a feature extractor ϕt(·) and a clas-
sifier ht(·), i.e., θt(·) is a composition of ϕt(·) and ht(·). Then we freeze both ϕt(·) and ht(·), and
fine-tune an additional classifier ft(·) only on top of ϕt(·) to avoid intensifying the catastrophic for-
getting problem. This means that the fine-tuned CIL model contains the same feature extractor ϕt(·)
and classifier ht(·) as the standard pre-trained CIL model for incremental ID classification, but it
also has the additional fine-tuned classifier ft(·) for OOD detection at each incremental step t, with-
out affecting any of the learning procedures of the CIL model θt(·) (i.e., ϕt(·) and ht(·)). Notably,
the fine-tuning of ft(·) is applied to each incremental step only with training ID data T train

t .

With these two principled frameworks, different OOD detection methods can be easily incorporated
into three different types of CIL models without impairing the incremental learning accuracy at all.
The overall algorithm of these two principled frameworks is provided in Appendix F.

3.1.1 BENCHMARK SETUP

CIL Datasets. Following (Wang et al., 2022a; Wu et al., 2019; Wang et al., 2023a; Luo et al.,
2023), we use two popular CIL datasets as the ID data in our benchmark: CIFAR100 (Krizhevsky
et al., 2009) and large-scale ImageNet1k (Russakovsky et al., 2015). Besides, these two datasets are
also widely used as ID datasets in the area of OOD detection. Following (Rebuffi et al., 2017; Wang
et al., 2022a; Wu et al., 2019), the splits of the two ID datasets are as follows. 1) For CIFAR100,
we train the CIL model gradually with k classes per incremental step with a fixed memory size of
2,000 exemplars. We respectively evaluate the performance with the step size k ∈ {5, 10, 20}. 2)
For ImageNet1K, since it is a much larger dataset, we train the CIL model gradually with a larger
number of k classes per step that k ∈ {50, 100, 200} with a fixed memory size of 20,000 exemplars.

OOD Datasets. Following the recent large-scale solely OOD detection benchmark OpenOOD
(Yang et al., 2022; Zhang et al., 2023), we select six datasets as OOD data for each ID dataset
respectively. 1) For the ID dataset CIFAR100, the OOD data includes two near OOD datasets
– CIFAR10 (Krizhevsky et al., 2009) and Tiny-ImageNet (TIN) (Le & Yang, 2015) – and four
far OOD datasets: MNIST (LeCun et al., 2010), Texture (Cimpoi et al., 2014), SVHN (Netzer
et al., 2011) and Places365 (Zhou et al., 2017). 2) For ImageNet1k, the OOD data includes four
near OOD datasets – ImageNet O (Hendrycks et al., 2021), iNaturalist (Van Horn et al., 2018),
OpenImage O (Wang et al., 2022b) and Species (Basart et al., 2022) – and two far OOD datasets:
MNIST (LeCun et al., 2010) and Texture (Cimpoi et al., 2014).

It is notable that, although these datasets have been widely used in the CIL and OOD detection com-
munity respectively, there is still no readily accessible and unified protocol for combining them into
one experimental setting. Our OpenCIL benchmark offers one way to unify them into a systematic
evaluation setting, facilitating the application of diverse OOD detectors under different CIL models.

Evaluation Metrics. To fairly compare the OOD detection performance among different incre-
mental steps, we keep the ratio of testing OOD data Xood

t to testing ID data T test
t fixed at each

incremental step t. Specifically, we control the test OOD data fed into the CIL model in an incre-
mental manner during the inference stage, increasing the number of testing OOD data Xood

t with
increasing number of tasks proportionally. Formally, the number of OOD samples for each OOD
dataset at step t is defined as:

|Xood
t | = |Xood| × t

|T |
, (1)

where |Xood| and |Xood
t | denote the number of OOD samples in the full OOD dataset and in the

testing OOD data used at step t respectively, and T is the total number of CIL tasks/steps. In this
way, the number of testing ID and OOD data grows at the same speed, keeping the ratio of them
identical across all incremental steps, supporting the fair comparison of OOD detection performance
among different incremental steps. Following average incremental accuracy (Rebuffi et al., 2017),
a popular metric in the standard CIL evaluation that assesses the average classification accuracy
across all incremental steps, we report the average OOD performance across all incremental steps.

More details about the datasets used and the performance metrics are provided in Appendix A.
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(a) (b) (c)

Figure 3: (a) All four representative OOD detection methods experience a decreased AUC perfor-
mance with increasing incremental steps, compared to themselves working on the full training data
of all steps. (b) ACC performance decreases quickly throughout all incremental steps, while the
AUC performance of all four OOD methods decreases slowly and then levels off. Both (a) and (b)
are average performance on six OOD datasets at each incremental step, where the CIL model iCaRL
(Rebuffi et al., 2017) is used. ACC is the accuracy of iCaRL on CIFAR100 at each step. The results
for the other three CIL models are provided in Appendix D. (c) Average performance of CIL models
with the OOD detector REGMIX (Pinto et al., 2023) on six OOD datasets at each incremental step
on CIFAR100. The results for the other OOD methods are provided in Appendix D.

3.1.2 BASELINE LIBRARY

15 OOD detection methods are used in OpenCIL, including nine post-hoc methods – MSP
(Hendrycks & Gimpel, 2017), ODIN (Liang et al., 2018), Energy (Liu et al., 2020), MaxLogit
(Basart et al., 2022), GEN (Liu et al., 2023a), ReAct (Sun et al., 2021), KLM (Basart et al., 2022),
Relation (Kim et al., 2023), and NNGuide (Park et al., 2023) and six fine-tuning-based methods –
LogitNorm (Wei et al., 2022), T2FNorm (Regmi et al., 2023), AUGMIX (Hendrycks et al., 2020),
REGMIX (Pinto et al., 2023), VOS (Du et al., 2022) and our proposed BER. OpenCIL is based
on four CIL models, including two regularization-based methods – iCaRL (Rebuffi et al., 2017)
and WA (Zhao et al., 2020), one replay-based method BiC (Wu et al., 2019), and one parameter-
isolation-based method FOSTER (Wang et al., 2022a). More details are presented in Appendix
B.

To ensure a fair comparison across methods originating from different areas, we use unified settings
with common hyperparameters and architecture choices. Following the most commonly used archi-
tecture for the respective ID dataset in the CIL community (Wang et al., 2022a; Zhao et al., 2020),
the backbone ResNet32 is used when CIFAR100 is used as the ID dataset, and ResNet18 is used
whenever ImageNet1K is the ID dataset. All results are averaged over three independent runs using
different random seeds. More details are presented in Appendix C.

3.2 MAIN FINDINGS

We summarize our main findings and justification based on our OpenCIL benchmarking as follows.

OOD detectors suffer from catastrophic forgetting as well when applied to CIL models. This is
illustrated in Fig. 3a, where the performance of different OOD detection methods decreases signif-
icantly with increasing incremental steps. This is because, with more incremental steps, more old
class samples are wrongly detected as OOD samples, while at the same time, more OOD samples
are misclassified into new classes, leading to fast downgraded OOD detection performance.

However, catastrophic forgetting is more persistent in CIL models than OOD detection methods. As
shown in Fig. 3b, the AUC performance for OOD detection drops fast in early incremental steps, and
then it slows down and levers off, but the ACC performance for CIL has a continuous, fast decrease
throughout all incremental steps. This is because remembering the forgotten ID samples is more
difficult than distinguishing them from OOD data. Also, after the CIL models reach a certain level
of forgetting for some ID classes, the performance of distinguishing them from OOD data tends to be
stable, resulting in relatively stable OOD detection performance at the end of incremental learning.

6
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Consequently, CIL models are prone to misclassifying OOD samples into new classes. This is also
shown in Fig. 1b, where the CIL models often yield significantly higher prediction confidence on
misclassifying the OOD samples into the new classes than the old classes, due to the presence of
large samples from these new classes at each incremental step. The reason is that due to more severe
catastrophic forgetting in CIL, the CIL models predict the ID samples as the new classes with higher
confidence than that for the old classes and the OOD samples.

In addition to catastrophic forgetting, CIL models need to handle new issues in the presence of OOD
samples, since they exhibit stronger prediction confidence on OOD samples than Old class samples.
As shown in Figs. 1a and 1b, the ID samples from old classes/tasks often have lower prediction
confidence than different OOD samples, thereby being misclassified as the OOD samples. This
phenomenon becomes more severe with an increasing number of incremental steps. This is because
the CIL models tend to be less confident when predicting the samples of old classes due to the CF
problem, making their OOD scores lower than samples from the OOD data.

On the other hand, CIL models with fine-tuning-based OOD methods show to be more advantageous
than those with post-hoc-based methods. This can be observed by looking at the average AUC
and FPR results of each CIL model for the nine post-hoc-based and the five previous fine-tuning
methods in Tables 1, 2, and 3. The observation holds for both ID datasets. This demonstrates the
advantage of tuning an additional classifier for OOD detection, but note that it is at the expense
of some computational overhead. Besides, CIL models with higher CIL accuracy often gain better
OOD detection performance. This can be observed in Tables 1, 2, and 3, where, when averaged
over all the existing OOD methods used, the CIL models with higher CIL accuracy, e.g., WA and
FOSTER, often achieve better AUC and FPR performance than the other two CIL models, especially
on CIFAR100. This observation is consistent with the performance at each incremental step, as
shown in Fig. 3c. This is because better CIL algorithms can keep more essential information about
ID data to improve ID classification, which can also prevent OOD data from being misclassified into
ID classes.

4 OUR PROPOSED APPROACH BER

As summarized above, one key issue for the CIL models in the presence of OOD samples is the in-
creasing biases of the CIL models towards OOD samples and newly added classes with the growth
of incremental steps due to more severe catastrophic forgetting. Further, fine-tuning-based OOD
methods are generally more effective than the post-hoc methods. Therefore, we introduce the novel
approach, Bi-directional Energy Regularization (BER), a fine-tuning-based OOD detection ap-
proach, to tackle this bias issue, i.e., avoiding the classification of the old and new class samples as
OOD samples. BER consists of two components, namely New Task Energy Regularization (NTER)
and Old Task Energy Regularization (OTER). NTER is designed to distinguish OOD data from sam-
ples of new task classes, while OTER is designed to distinguish OOD data from samples of old task
classes. Below we introduce each component in detail.

4.1 NEW TASK ENERGY REGULARIZATION (NTER)

Due to the overwhelming presence of new class samples, CIL models typically demonstrate a
strongly biased prediction on the OOD samples towards the new classes, i.e., they have high predic-
tion confidence on classifying OOD samples into the classes in the new task, as illustrated in Fig.
1b. To address this issue, NTER synthesizes the pseudo OOD samples that are distributed on the de-
cision boundary of different new classes, and further utilizes them to enlarge the decision boundary
margin, as illustrated in Figure 2 Right. Specifically, NTER first randomly mixes up samples of dif-
ferent new classes as the pseudo-OOD samples. Formally, let xt = {x1

t , x
2
t , ..., x

b
t , },xt ∈ Xtrain

t
be one training batch of ID data from new classes at task t, where task t is the new task and b is
the batch size, yt = {y1t , y2t , ..., ybt , } and yt ∈ Yt be the corresponding class label of xt, then a
pseudo-OOD sample x̄t is synthesized as follows:

x̄t = βxi
t + (1− β)xj

t , y
i
t ̸= yjt , (2)

where β ∈ [0, 1] is sampled from Beta distribution. Motivated by the success of energy-based meth-
ods (Liu et al., 2020), we further utilize these pseudo-OOD samples to regularize the classification
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of new class samples via the following energy loss function:

Ln = Ext∼Xtrain
t

[(max(0, pin − E(xt)))
2] + E(xi

t,x
j
t)∼Xtrain

t
[(max(0, E(x̄t)− pout))

2], (3)

where E(x; f) = −τ · log(
∑Qt

j=1 e
fj(x)/τ ), Qt is the whole label space that the class set of all seen

classes at task t, and τ is a temperature scaling hyperparameter. Note that we do not combine all
possible pairs of (xi

t, x
j
t ) in the full training dataset Xtrain

t to form x̄t, which are produced within
the mini-batches for efficiency consideration (Zhou et al., 2021). As a result, the time complexity
is of the same magnitude as vanilla training, having minimal computational overhead.

4.2 OLD TASK ENERGY REGULARIZATION (OTER)

Due to the severe catastrophic forgetting problem, as illustrated in Fig. 1a, the CIL models exhibit
significantly lower prediction confidence on samples of old classes than new classes. As a result,
the CIL models often misclassify the old class samples as the OOD samples. To address this issue,
OTER performs a different mixup operation from NTER to generate more samples of old classes.
In particular, it randomly mixes up new class samples with old class samples to synthesize old
class samples. This mixup operation not only increases the diversity of the small-sized old class
samples but also transfers information from new class samples to old class samples. Then using
these mixup samples in the fine-tuning stage largely enhances the prediction confidence of the old
class samples and expands their decision boundary, as illustrated in Figure 2 Right. Formally, let
xt = {x1

t , x
2
t , ..., x

b
t , },xt ∈ Xtrain

t be one training batch of ID data from new classes at task t,
where task t is the new task and b is the batch size, Mt = {m1

t ,m
2
t , ...,m

s
t} be the samples of

old classes in the memory bank for task t, and s is the memory size, then the synthesize old class
samples m̄t are generated via:

m̄t = λxt + (1− λ)mt, (4)
where λ is a mixup hyperparameter, similar to β in Eq. 2. We further leverage these augmented
ID samples to boost the prediction confidence of old class samples via the following energy loss
function:

Lo = E(xt,mt)∼(Xtrain
t ,Mt)[(max(0, E(m̄t)− pin))

2], (5)

where E(x; f) = −τ · log(
∑Qt

j=1 e
fj(x)/τ ), Qt is the whole label space that the class set of all seen

classes at task t, and τ is the temperature scaling. Note that we only apply energy regularization
to the ID data in OTER, without the energy regularization term on the pseudo-OOD samples in
Eq. 3. The old class samples cannot be used for synthesizing the pseudo-OOD samples via, e.g.,
mixup between old and new class samples, or mixup between samples of different old classes. This
is because, as the samples stored in the data replay memory, these old task samples are the most
representative samples of the old classes, which are typically located near the class center in their
respective belonging classes in the feature space. Therefore, generating pseudo-OOD samples using
these old class samples will severely compress the decision boundary of old task classes, resulting
in a significant adverse impact on the OOD detection performance.

Lastly, we utilize the cross-entropy loss, together with the two energy regularization losses, to fine-
tune the extra classifier ft(·) for the CIL models following the fine-tuning OOD detection frame-
work. Thus, the overall optimization objective of our BER approach at each task t is as follows:

L = E(x,y)∼(T train
t ,Qt)[ℓ(f(x), y] + α(Ln + Lo), (6)

where ℓ is a cross-entropy loss, α is the hyperparameter, Ln is as defined in Eq. 3, and Lo is as
defined in Eq. 5. During inference, BER utilizes the Energy Score defined in (Liu et al., 2020) as
the OOD score. The overall algorithm of our proposed BER is provided in Appendix F.

4.3 EMPIRICAL EVALUATION

We perform large-scale experiments that evaluate the composition of the proposed BER-based OOD
detection method and four CIL models using three different incremental step sizes based on two
ID datasets CIFAR100 and ImageNet1K. To ensure a fair comparison, BER is incorporated into the
four CIL models in exactly the same way as the other fine-tuning-based methods. Due to the space
limitation, we only report the average OOD detection metric values (AUC, FPR) on all six OOD
datasets for each ID dataset, more fine-grained results (on near-OOD datasets and far-OOD datasets,
respectively) and more OOD detection metric AP values are presented in Appendix E.
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Table 1: Main results on OpenCIL benchmark for the step size of k = 5 for CIFAR 100 and
the step size of k = 50 for ImageNet1K. The results are average over six OOD datasets and all
incremental steps. Either the post-hoc-based or fine-tuning-based OOD methods do not affect the
original CIL performance, so their average CIL accuracy on the ID data remains the same. The best
and second-best performance per dataset in the fine-tuning-based methods are highlighted.

ID Dataset: CIFAR100 ID Dataset: ImageNet1K
iCaRL BiC WA FOSTER Average iCaRL BiC WA FOSTER Average

AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓
Average CIL accuracy

58.20 55.87 61.44 63.51 59.76 40.86 42.26 45.99 45.96 43.77
Post-hoc-based OOD methods

MSP 66.89 87.86 68.66 87.22 69.19 86.11 70.01 85.68 68.69 86.72 61.87 91.03 63.06 92.46 61.69 92.85 65.45 90.89 63.02 91.81
ODIN 70.26 79.60 70.78 78.54 71.70 80.09 72.89 75.48 71.41 78.43 66.00 88.90 67.62 90.54 63.47 91.07 69.16 87.58 66.56 89.52
Energy 70.23 81.17 69.55 82.78 71.99 82.53 73.89 76.34 71.41 80.70 62.97 91.95 65.61 92.43 62.43 92.94 67.46 90.94 64.62 92.06

MaxLogit 70.16 81.87 69.87 83.31 71.89 82.96 73.82 77.34 71.44 81.37 63.94 91.58 64.67 93.32 63.51 91.44 67.31 91.30 64.86 91.91
GEN 70.39 82.07 70.89 79.54 72.22 82.14 74.21 76.95 71.93 80.17 55.67 93.51 60.65 92.82 61.27 93.38 59.94 94.26 59.38 93.49

ReAct 70.21 81.26 69.86 84.89 73.54 82.15 74.29 76.97 71.97 81.32 55.67 93.51 60.64 92.82 61.27 93.37 59.94 94.26 59.38 93.46
KLM 66.21 88.89 67.53 86.71 68.19 87.70 69.38 86.36 67.83 87.42 63.34 89.99 62.93 89.79 63.18 89.52 66.33 87.95 63.95 89.31

Relation 66.33 78.06 70.64 81.42 71.89 77.19 72.49 75.74 70.34 78.10 63.13 89.86 66.39 93.63 63.11 95.41 63.48 90.83 64.03 92.43
NNGuide 70.27 78.83 70.70 79.64 71.60 79.00 73.68 75.96 71.56 78.36 63.00 89.47 69.87 85.81 62.61 90.30 68.63 88.54 66.03 88.53
Average 68.99 82.18 69.83 82.67 71.36 82.21 72.74 78.54 70.73 81.40 62.58 90.70 64.86 91.18 62.72 91.83 66.01 90.03 64.04 90.94

Fine-tuning-based OOD methods
LogitNorm 70.21 81.18 69.22 83.39 71.13 82.65 73.31 76.78 70.97 81.00 62.02 92.73 66.30 91.20 61.58 93.94 65.87 93.26 63.94 92.78
T2FNorm 70.45 81.50 69.59 83.29 70.90 83.26 73.26 77.35 71.05 81.35 62.82 92.12 65.80 92.30 62.40 92.84 66.55 92.01 64.39 92.32
AUGMIX 70.27 81.22 68.65 83.16 71.11 82.93 73.12 76.98 70.79 81.07 62.19 90.86 65.97 89.82 62.88 90.12 67.53 89.45 64.64 90.06
REGMIX 70.92 81.33 68.99 83.65 71.44 84.30 73.78 77.56 71.28 81.71 63.93 91.20 66.24 90.29 62.96 91.64 67.84 91.56 65.24 91.17

VOS 71.54 79.83 67.63 77.80 66.73 81.28 72.70 77.08 69.65 79.00 61.33 89.74 65.74 90.22 62.08 89.98 66.73 90.14 63.97 90.02
BER (Ours) 72.75 77.59 71.47 77.82 72.47 78.69 74.20 74.93 72.72 77.26 63.45 89.53 67.72 88.61 64.09 89.15 69.34 88.39 66.15 88.92

Average 70.68 81.01 68.82 82.26 70.26 82.88 73.23 77.15 70.75 80.83 62.46 91.33 66.01 90.77 62.38 91.70 66.90 91.28 64.44 91.27
Average (All) 69.59 81.76 69.47 82.52 70.97 82.45 72.91 78.04 70.74 81.20 62.54 90.92 65.27 91.03 62.60 91.78 66.33 90.48 64.18 91.06

Table 2: Main results on OpenCIL benchmark for the step size of k = 10 for CIFAR 100 and
the step size of k = 100 for ImageNet1K. The results are averaged over six OOD datasets and all
incremental steps. Either the post-hoc-based or fine-tuning-based OOD methods do not affect the
original CIL performance, so their average CIL accuracy on the ID data remains the same. The best
and second-best performance per dataset in the fine-tuning-based methods are highlighted.

ID Dataset: CIFAR100 ID Dataset: ImageNet1K
iCaRL BiC WA FOSTER Average iCaRL BiC WA FOSTER Average

AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓
Average CIL accuracy

60.08 61.68 65.88 66.01 63.41 44.44 49.63 52.22 52.29 49.65
Post-hoc-based OOD methods

MSP 67.77 88.33 66.67 86.98 70.49 86.04 71.69 84.94 69.16 86.57 63.84 89.81 67.45 91.80 65.97 89.17 67.64 89.32 66.23 90.03
ODIN 70.05 81.93 69.76 80.52 71.86 80.18 74.70 75.68 71.59 79.58 68.41 87.91 71.09 87.45 67.86 89.08 70.24 88.15 69.40 88.15
Energy 70.35 83.74 69.76 82.01 73.03 81.22 75.76 77.24 72.23 81.05 65.64 91.88 70.16 89.57 66.57 92.22 69.39 90.49 67.94 91.04

MaxLogit 70.34 84.45 69.54 82.78 72.98 82.33 75.71 78.11 72.14 81.92 65.83 91.38 69.93 89.42 66.75 92.03 69.56 90.02 68.02 90.71
GEN 70.86 84.31 69.87 82.51 73.30 81.42 76.11 77.64 72.54 81.47 66.89 90.78 69.51 89.77 68.55 88.54 69.74 89.91 68.67 89.75

ReAct 68.79 84.43 70.62 82.60 74.87 81.82 76.15 78.03 72.61 81.72 55.66 94.47 66.57 89.86 63.85 90.94 65.15 91.16 62.81 91.61
KLM 67.51 88.00 66.27 87.66 69.89 87.65 71.34 85.90 68.75 87.30 66.48 88.28 67.32 87.17 65.24 89.59 70.23 88.45 67.32 88.37

Relation 64.40 89.57 65.48 80.85 76.12 88.37 72.17 75.29 69.54 83.52 66.38 89.92 69.10 89.63 67.51 94.59 67.93 88.99 67.73 90.78
NNGuide 72.14 79.65 68.74 78.79 75.60 76.00 75.90 74.70 73.09 77.28 66.53 89.88 70.64 87.33 68.69 88.82 67.63 88.32 68.37 88.59
Average 69.13 84.93 68.52 82.74 73.13 82.78 74.39 78.61 71.29 82.27 65.07 90.48 69.09 89.11 66.78 90.55 68.61 89.42 67.39 89.89

Fine-tuning-based OOD methods
LogitNorm 70.44 83.78 70.64 82.46 72.04 81.33 74.74 78.28 71.97 81.46 65.15 92.51 69.54 87.26 66.30 93.16 67.84 92.39 67.21 91.33
T2FNorm 70.65 84.14 71.75 82.72 71.98 82.33 74.65 78.83 72.26 82.00 66.09 91.58 69.53 89.09 67.39 91.83 68.19 90.95 67.80 90.86
AUGMIX 70.72 83.91 70.78 82.94 72.11 81.53 74.75 78.62 72.09 81.75 68.60 87.98 70.83 87.85 68.10 89.37 69.62 88.53 69.29 88.43
REGMIX 71.47 84.53 71.43 82.23 72.01 82.95 75.26 79.35 72.54 82.26 66.41 90.69 69.83 89.68 67.45 90.69 69.43 90.78 68.28 90.46

VOS 72.31 82.53 66.66 79.03 68.49 78.15 74.58 77.71 70.51 79.36 66.28 91.67 66.67 89.47 65.41 89.92 68.98 88.74 66.83 89.95
BER (Ours) 74.17 78.87 71.83 77.76 76.77 75.58 76.40 74.58 74.79 76.70 68.80 87.51 71.94 86.80 69.06 87.59 70.54 87.44 70.09 87.33

Average 71.12 83.78 70.25 81.88 71.33 81.26 74.80 78.56 71.87 81.37 66.51 90.89 69.28 88.67 66.93 90.99 68.81 90.28 67.88 90.21
Average (All) 69.84 84.52 69.14 82.43 72.49 82.24 74.54 78.59 71.50 81.95 65.58 90.63 69.16 88.95 66.83 90.71 68.68 89.73 67.56 90.00

Performance of BER. We compare the OOD detection capability of our proposed BER with the
five fine-tuning-based OOD detectors among four CIL models based on two ID datasets CIFAR100
and ImageNet1K. Tables 1, 2, and 3 present the comparisons at the step size of k = {5, 10, 20} for
CIFAR100 on left side and at the step size of k = {50, 100, 200} for ImageNet1K on right side,
respectively. For the two metrics of four CIL models on CIFAR100 across three steps, there are 24
possible combinations for each OOD detector. In 23 out of 24 cases, BER achieves the best OOD
detection performance across the combination of four representative CIL models and three types
of step sizes in AUR and FPR. As for ImageNet1K, BER also achieves the best OOD detection
performance in 21 out of 24 cases. Note that the other three best performers on ImageNet1K are
achieved by three different previous OOD detectors combined with different CIL models. BER also
achieves the second-best performance in the cases where it is not the best performer. This demon-
strates the strong robustness of our proposed BER under diverse combined CIL and OOD dataset
and model scenarios. Furthermore, BER also achieves the best performance in the average results
across four CIL models for all three types of step sizes in AUC and FPR on both the CIFAR100 and
ImageNet1K datasets. This consistent improvement indicates that our energy regularization on both
the old and new classes helps effectively mitigate biases towards the OOD samples and new classes
in the use of fine-tuning-based OOD detection methods in CIL models.
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Table 3: Main results on OpenCIL benchmark for the step size of k = 20 for CIFAR 100 and
the step size of k = 200 for ImageNet1K. The results are averaged over six OOD datasets and all
incremental steps. Either the post-hoc-based or fine-tuning-based OOD methods do not affect the
original CIL performance, so their average CIL accuracy on the ID data remains the same. The best
and second-best performance per dataset in the fine-tuning-based methods are highlighted.

ID Dataset: CIFAR100 ID Dataset: ImageNet1K
iCaRL BiC WA FOSTER Average iCaRL BiC WA FOSTER Average

AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓
Average CIL accuracy

62.65 64.14 68.05 68.75 65.90 48.85 53.30 58.42 57.84 54.60
Post-hoc-based OOD methods

MSP 68.38 87.19 69.72 87.75 72.46 84.74 72.10 85.02 70.66 86.17 66.83 87.47 71.39 86.68 70.73 87.12 71.57 84.44 70.13 86.43
ODIN 71.34 81.20 71.46 80.62 74.27 78.08 74.45 76.73 72.88 79.16 71.36 83.61 75.27 82.55 71.69 84.60 73.56 82.93 72.97 83.42
Energy 72.38 81.99 71.48 82.45 75.22 79.00 76.14 78.54 73.81 80.50 69.52 88.30 74.36 84.92 70.56 87.73 72.67 87.09 71.78 87.01

MaxLogit 72.32 82.20 71.60 83.73 75.22 80.02 76.08 78.84 73.80 81.20 69.62 87.90 74.17 85.99 71.08 87.26 73.15 85.57 72.00 86.68
GEN 72.73 82.44 71.92 83.00 75.36 79.38 76.55 78.39 74.14 80.80 70.16 87.60 74.19 85.84 71.68 85.67 73.84 84.30 72.47 85.85

ReAct 71.59 82.99 73.69 82.87 76.82 78.49 77.33 78.85 74.86 80.80 59.48 92.57 69.67 85.93 63.12 88.28 64.82 89.13 64.27 88.98
KLM 69.10 85.53 70.19 86.76 72.47 86.06 72.47 84.39 71.06 85.69 69.51 84.99 70.55 85.72 69.61 87.49 73.55 82.10 70.81 85.07

Relation 65.37 80.08 69.10 79.46 76.23 77.46 71.27 76.53 70.49 78.38 71.24 87.09 75.12 83.34 71.45 92.75 73.27 83.31 72.77 86.62
NNGuide 74.14 77.05 71.24 78.89 76.28 73.78 76.20 76.13 74.47 76.46 71.41 88.03 77.95 86.53 71.90 86.90 73.27 82.74 73.63 86.05
Average 70.82 82.30 71.16 82.84 74.93 79.67 74.73 79.27 72.91 81.02 68.79 87.51 73.63 85.28 70.20 87.53 72.19 84.62 71.20 86.24

Fine-tuning-based OOD methods
LogitNorm 72.41 82.32 71.27 83.80 74.29 79.49 75.38 79.28 73.34 81.22 69.40 89.17 73.18 84.05 69.14 89.57 71.62 89.30 70.84 88.02
T2FNorm 72.67 82.39 71.51 83.79 74.38 80.66 75.70 79.60 73.56 81.61 70.45 87.47 74.21 82.17 70.95 87.36 71.64 87.72 71.81 86.18
AUGMIX 72.50 82.62 70.70 84.33 74.35 79.97 75.54 79.61 73.27 81.63 71.32 87.91 76.72 84.63 70.84 87.20 72.81 83.66 72.92 85.85
REGMIX 72.74 82.81 71.62 84.65 74.78 80.45 75.69 80.09 73.71 82.00 69.56 89.61 72.78 87.57 70.68 88.13 71.84 88.85 71.22 88.54

VOS 72.93 81.39 68.77 78.28 72.21 76.57 75.07 78.52 72.24 78.69 62.94 89.63 64.19 88.20 62.86 89.02 65.61 88.09 63.90 88.73
BER (Ours) 74.55 76.75 71.90 77.97 76.64 71.72 76.52 75.04 74.90 75.37 71.88 87.00 76.46 83.01 71.98 86.24 73.95 82.66 73.57 84.73

Average 72.65 82.31 70.77 82.97 74.00 79.43 75.48 79.42 73.22 81.03 68.73 88.76 72.22 85.32 68.89 88.26 70.70 87.52 70.14 87.46
Average (All) 71.47 82.30 71.02 82.89 74.60 79.58 75.00 79.32 73.02 81.02 68.77 87.96 73.13 85.29 69.73 87.79 71.66 85.66 70.82 86.68

Table 4: Ablation study of our proposed BER based on the CIFAR100 ID dataset with the step size
of k = 10. Energy (Liu et al., 2020) is used as the baseline that does not use both NTER and OTER.

Loss Component Near OOD Datasets Far OOD Datasets
CIFAR10 TIN MNIST SVHN Texture Places365

NTER OTER AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓
✗ ✗ 70.70 84.86 72.74 83.12 86.63 62.37 62.56 96.81 56.18 92.92 73.31 82.33
✓ ✗ 71.31 84.16 73.64 82.37 89.93 52.73 65.63 95.93 59.66 91.15 75.33 79.72
✗ ✓ 70.77 83.84 73.80 82.10 88.65 55.36 64.67 95.80 59.26 91.94 74.35 81.34
✓ ✓ 71.60 83.17 75.84 81.06 91.56 46.02 67.52 93.08 62.59 90.52 75.90 79.35

Ablation Study. This section evaluates the importance of the two key components of BER, New
Task Energy Regularization (NTER) and Old Task Energy Regularization (OTER). Table 4 presents
the results of the ablation study conducted on these two components using six OOD datasets individ-
ually based on the CIFAR100 ID dataset with the step size of k = 10 using Energy (Liu et al., 2020)
as the baseline. The results show that either NTER or OTER helps boost the AUC performance and
reduce the FPR on both near and far OOD datasets, and they can achieve the best performance when
the two components are combined. Since NTER is designed to alleviate the misclassification of
OOD samples into new classes while OTER is designed to reduce the misclassification of old class
samples as OOD samples, their combination results in a detection model that largely reduces both
types of detection errors.

5 CONCLUSION

In this paper, we introduce OpenCIL, the first large-scale and systematic benchmark designed to
enable CIL models with existing OOD detectors, regarding the CIL models in open world applica-
tions. OpenCIL introduces two principled frameworks for incorporating diverse OOD detectors into
CIL models and a new evaluation pipeline for fairly evaluating the capability of OOD detectors in
incremental learning. In particular, OpenCIL accommodates four representative CIL models with
15 diverse OOD detection methods, resulting in 60 baseline models on two popular CIL datasets and
six commonly-used near/far OOD datasets. Based on our large-scale experiments on OpenCIL, we
offer several important insights into the design of CIL models for open-world applications. We fur-
ther propose a novel approach, namely Bi-directional Energy Regularization (BER), which utilizes
energy regularization based on two types of sample synthesis to effectively mitigate the increasing
bias of CIL Models towards OOD samples and newly added classes with the growth of incremen-
tal steps. Extensive experiments demonstrate that BER achieves state-of-the-art performance on
the OpenCIL benchmark under varying incremental step sizes on popular CIL and OOD datasets,
improving the OOD detection capability of a wide range of CIL models.
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A MORE EVALUATION SETTING DETAILS

A.1 DATASETS

The in-distribution (ID) datasets for class incremental learning (CIL) include two datasets. 1) CI-
FAR100 (Krizhevsky et al., 2009) contains 50, 000 training images and 10, 000 test images of size
32× 32 with 100 classes, and 2) ImageNet (Russakovsky et al., 2015) is a large-scale classification
dataset, which contains 1.28M training images and 50K testing images with 1, 000 classes sampled
from nature images.

We select six commonly used out-of-distribution (OOD) datasets for OOD detection on CIFRA100.
Following the recent large-scale OOD detection benchmark OpenOOD (Yang et al., 2022), our
OOD datasets include two near OOD datasets: CIFAR10 (Krizhevsky et al., 2009) and Tiny-
ImageNet (TIN) (Le & Yang, 2015), and four far OOD datasets: MNIST (LeCun et al., 2010),
Texture (Cimpoi et al., 2014), Places365 (Zhou et al., 2017), and SVHN (Netzer et al., 2011).
CIFAR10 (Krizhevsky et al., 2009) contains 10, 000 images with 10 classes. TIN (Le & Yang,
2015) contains 7, 498 images, which removes the 2, 502 images that have overlapping semantics
(Yang et al., 2021) with CIFAR100 classes. MNIST (LeCun et al., 2010) contains 10, 000 images
with 10 classes. Texture (Cimpoi et al., 2014) contains 5, 640 images with 47 classes. Places365
(Zhou et al., 2017) contains 33, 773 images, which removes the 2, 727 images that have overlapping
semantics (Yang et al., 2021) with CIFAR100 classes. SVHN (Netzer et al., 2011) contains 26, 032
images with 10 class.

We also select six commonly used OOD datasets for OOD detection on ImageNet1k. Following
OpenOOD (Yang et al., 2022), these includes four near OOD datasets: ImageNet O (Hendrycks
et al., 2021), iNaturalist (Van Horn et al., 2018), OpenImage O (Wang et al., 2022b) and Species
(Basart et al., 2022), and two far OOD datasets: MNIST (LeCun et al., 2010) and Texture (Cimpoi
et al., 2014). ImageNet O (Hendrycks et al., 2021) contains 2, 000 images from categories not
found in the ImageNet1k dataset. We use a 10, 000 image subset of iNaturalist (Van Horn et al.,
2018), which is based on 110 manually selected plant classes not present in ImageNet1k. The OOD
samples are randomly sampled images from these 110 classes (Huang & Li, 2021). All images are
resized to have a max dimension of 800 pixels. OpenImage O (Wang et al., 2022b) contains 15, 869
images with the support of a manual filter. We use a 10, 000 subset of 713K images Species (Basart
et al., 2022) with 10 classes. Two far OOD datasets are the same as CIFAR100. Near OOD datasets
mean that their OOD samples have small semantic shifts compared with the ID samples, while
far OOD datasets mean that their OOD samples are very different from the ID samples, typically
containing obvious covariate (domain) shift (Yang et al., 2022). A summary of the CIL ID and
OOD datasets is presented in Table 5.

Table 5: Key statistics of used CIL ID datasets and OOD datasets.

Benchmark CIFAR100 ImageNet
Dataset Images Class Dataset Images Class

ID data (Training) CIFAR100 50,000 100 ImageNet 1.28M 1000
ID data (Testing) CIFAR100 10,000 100 ImageNet 50,000 1000

OOD data

CIFAR10 10,000 10 ImageNet O 2,000 /
TinyImageNet 7,498 / iNaturalist 10,000 110

MNIST 10,000 10 OpenImage O 15,869 /
Texture 5,640 47 Species 10,000 10

Places365 33,773 / MNIST 10,000 10
SVHN 26,032 10 Texture 5,640 47

A.2 PERFORMANCE METRICS

This section provides more introduction to the performance measures used in our experiments. (1)
FPR is the false positive rate of OOD examples when the true positive rate of ID examples is at
95%. It measures the portion of falsely recognized OOD when most of the ID samples are recalled.
(2) AUC computes the area under the receiver operating characteristic curve of detecting OOD
samples, evaluating the OOD detection performance. (3) AP measures the area under the precision-
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recall curve, in which the OOD samples are treated as positive samples. (4) ACC calculates the
classification accuracy of the ID data for the CIL models. Among all these metrics, only FPR95 is
expected to have a lower value for a better model. Higher values indicate better performance for the
other three metrics.

B BASELINE LIBRARY.

We include four different popular CIL models. iCaRL (Rebuffi et al., 2017) and WA (Zhao et al.,
2020) are the regularization-based algorithms, BiC (Wu et al., 2019) is a replay-based algorithm, and
FOSTER (Wang et al., 2022a) is a parameter-isolation-based method but it also uses data replay.

For OOD methods, there are two main categories, post-hoc-based and fine-tuning-based methods.
For post-hoc-based methods, we include nine OOD detection methods: MSP (Hendrycks & Gim-
pel, 2017), ODIN (Liang et al., 2018), Energy (Liu et al., 2020), MaxLogit (Basart et al., 2022),
and GEN (Liu et al., 2023a) use the statistic based on prediction output of each test samples without
using any training ID information, while the other four methods: ReAct (Sun et al., 2021), KLM
(Basart et al., 2022), Relation (Kim et al., 2023), and NNGuide (Park et al., 2023) need the posterior
information of training ID samples to obtain the OOD score. Therefore, if they need a whole label
space of training ID data, we feed T train

t to them, which is the combination of memory data and cur-
rent task training data. For fine-tuning-based methods, we include five methods: LogitNorm (Wei
et al., 2022) and T2FNorm (Regmi et al., 2023) are the regularization-based methods that apply the
normalization to calibrate the loss function, AUGMIX (Hendrycks et al., 2020) and REGMIX (Pinto
et al., 2023) are the augmentation-based methods that apply the data augmentation to ID samples
for enhancing the ID data training, while VOS (Du et al., 2022) are synthesis-based methods that
generate pseudo-OOD samples to assist the detector training. Notably, VOS focuses on outlier syn-
thesis, but applying their original training method to fine-tune the extra classifier is difficult since it
was originally designed without the final linear classifier. Thus, to have a fair comparison, we apply
the same energy regularization as our BER for them, which replaces our synthesized pseudo-OOD
samples x̄t with their synthesized outlier samples.

C IMPLEMENTATION DETAILS.

For the CIL pre-training, we employ default hyperparameters of these CIL models as stated in their
original papers. For OOD fine-tuning, following (Yang et al., 2022; Zhang et al., 2023), we use
the common setting with SGD optimizer, using a learning rate of 0.1, a momentum of 0.9, a weight
decay of 0.0005, and adjusting the learning rate using a cosine annealing learning rate schedule.
The batch size is fixed at 128 for all experiments. We freeze the feature extractor and original
classifier, fine-tune the extra classifier for 10 epochs, and keep other hyperparameters the same as
the original paper. For our proposed BER baseline, following (Liu et al., 2020) , we set τ = 1,
α = 0.1, pin = −5 and pout = −27 by default. λ = 0.002 is used throughout the experiments. All
results are averaged over three independent runs using different random seeds. All experiments are
performed using 8 NVIDIA RTX 3090.

D MORE RESULTS W.R.T. INCREASING INCREMENTAL STEPS

In this section, we provide more results for the different baselines w.r.t. increasing incremental steps
in our paper. Particularly, following the results of iCaRL (Rebuffi et al., 2017) with CIFAR100
(Krizhevsky et al., 2009) in our paper, we provide the results based on Bic (Wu et al., 2019) in Fig.
4, WA (Zhao et al., 2020) in Fig. 5, FOSTER (Wang et al., 2022a) in Fig. 6. Furthermore, we show
the relationship between ACC and OOD detection performance on these three CIL models in Fig.
7. We also show the average performance of all four CIL models with more OOD detectors (GEN
(Liu et al., 2023a), KLM (Basart et al., 2022), and VOS (Du et al., 2022)) in Fig. 8.
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(a) (b) (c)

Figure 4: Qualitative results of the CIL model BiC with CIFAR100. (a) All four representative OOD
detection methods experience a decreased AUC performance with increasing incremental steps,
compared to themselves working on the full training data of all steps. (b) Mean prediction con-
fidence of BiC on test samples from all incremental classes. (c) Mean prediction confidence of BiC
classifying six OOD datasets into one of the ID classes based on the final incremental task.

(a) (b) (c)

Figure 5: Qualitative results of the CIL model WA with CIFAR100. (a) All four representative OOD
detection methods experience a decreased AUC performance with increasing incremental steps,
compared to themselves working on the full training data of all steps. (b) Mean prediction con-
fidence of WA on test samples from all incremental classes. (c) Mean prediction confidence of WA
classifying six OOD datasets into one of the ID classes based on the final incremental task.

(a) (b) (c)

Figure 6: Qualitative results of the CIL model FOSTER with CIFAR100. (a) All four representa-
tive OOD detection methods experience a decreased AUC performance with increasing incremental
steps, compared to themselves working on the full training data of all steps. (b) Mean prediction
confidence of FOSTER on test samples from all incremental classes. (c) Mean prediction confidence
of FOSTER classifying six OOD datasets into one of the ID classes based on the final incremental
task.
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(a) BiC (b) WA (c) FOSTER

Figure 7: Average performance of four representative OOD methods on six OOD datasets at each
incremental step, where the different CIL models are used. ACC is the accuracy of CIL models on
CIFAR100 at each step.

(a) GEN (b) KLM (c) VOS

Figure 8: Average performance of CIL models with different OOD detectors on six OOD datasets
at each incremental step on CIFAR100.
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E FINE-GRAINED EXPERIMENTAL RESULTS ON NEAR- AND FAR-OOD
DETECTION DATASETS

Following the experiment results in our paper, we provide more fine-grained results (on near-OOD
datasets and far-OOD datasets, respectively) at different step sizes in Tables 6, 7, and 8, in which we
also add the AP results of the OOD detection performance.

Table 6: Detailed results for those in Table 1 on near- and far-OOD detection datasets at the step
size of k = 5 for CIFAR 100 and at the step size of k = 50 for ImageNet1K. The best and
second-best performance per dataset in the fine-tuning-based methods are highlighted. The upper,
middle, lower parts of the table are for AUC, AP, and FPR performance, respectively.

AUC↑
ID Dataset: CIFAR100 ID Dataset: ImageNet1K

iCaRL BiC WA FOSTER Average iCaRL BiC WA FOSTER Average
Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far

Average CIL accuracy
58.20 55.87 61.44 63.51 59.76 40.86 42.26 45.99 45.96 43.77

-Post-hoc-based OOD methods
MSP 67.21 66.73 67.69 69.15 70.22 68.68 70.14 69.94 68.81 68.62 61.82 61.98 65.12 58.92 62.50 60.07 64.12 68.12 63.39 62.27
ODIN 70.97 69.91 69.22 71.56 72.98 71.06 72.25 73.21 71.36 71.44 64.80 68.40 68.11 66.65 63.29 63.83 66.19 75.10 65.60 68.50
Energy 71.23 69.73 68.56 70.05 73.19 71.38 72.98 74.34 71.49 71.38 62.62 63.07 67.58 63.37 62.00 63.50 64.59 73.29 64.20 65.81

MaxLogit 71.16 69.66 68.85 70.38 73.16 71.26 72.98 74.25 71.54 71.39 62.87 63.17 67.11 62.62 62.65 62.01 65.02 72.34 64.41 65.03
GEN 71.18 69.99 69.44 71.61 73.30 71.68 73.34 74.65 71.81 71.98 63.55 64.72 65.69 62.61 64.69 61.15 65.23 71.47 64.79 64.99

ReAct 68.67 70.98 66.29 71.65 72.30 74.16 70.81 76.03 69.52 73.20 57.92 51.17 63.42 55.09 62.11 59.59 59.26 61.31 60.68 56.79
KLM 66.78 65.92 66.44 68.09 68.55 68.01 69.47 69.35 67.81 67.84 63.29 63.46 63.62 61.55 63.40 62.74 65.93 67.15 64.06 63.73

Relation 61.30 68.85 65.38 73.27 67.53 74.07 68.42 74.52 65.66 72.68 58.73 69.95 66.19 66.80 63.22 62.87 61.05 68.37 62.30 67.00
NNGuide 67.33 71.73 66.81 72.65 68.53 73.13 68.97 76.03 67.91 73.38 61.20 66.61 70.63 68.36 58.74 70.33 63.94 78.02 63.63 70.83
Average 68.43 69.28 67.63 70.93 71.08 71.49 71.04 73.59 69.55 71.32 61.87 63.61 66.39 62.89 62.51 62.90 63.93 70.57 63.67 64.99

-Fine-tuning-based OOD methods
LogitNorm 71.22 69.70 68.28 69.70 72.11 70.64 72.59 73.66 71.05 70.93 61.49 63.09 66.52 65.86 61.25 62.25 63.53 70.53 63.20 65.43
T2FNorm 71.37 69.99 68.03 70.37 71.45 70.62 72.50 73.64 70.84 71.16 62.65 63.16 66.47 64.45 62.00 63.21 64.16 71.34 63.82 65.54
AUGMIX 71.47 69.67 68.12 68.92 72.15 70.58 72.74 73.32 71.12 70.62 62.79 60.99 67.43 63.05 61.96 64.72 65.97 71.09 64.54 64.96
REGMIX 71.99 70.38 68.08 69.44 72.94 70.69 73.56 73.90 71.64 71.10 66.05 59.70 68.13 62.45 64.26 60.36 67.13 69.27 66.39 62.94

VOS 71.96 71.33 61.91 70.48 62.23 68.98 72.18 72.96 67.07 70.94 62.17 59.65 67.03 63.16 61.48 63.28 65.24 69.71 63.98 63.95
BER (Ours) 72.54 72.85 69.87 72.28 68.21 74.60 73.60 74.49 71.06 73.55 64.04 62.29 68.96 65.25 64.00 64.30 67.16 73.70 66.04 66.38

Average 71.60 70.21 66.88 69.78 70.18 70.30 72.71 73.50 70.34 70.95 63.03 61.32 67.12 63.79 62.19 62.76 65.21 70.39 64.39 64.56
Average (All) 69.56 69.61 67.36 70.52 70.76 71.06 71.64 73.56 69.83 71.19 62.28 62.79 66.65 63.21 62.40 62.85 64.39 70.51 63.93 64.84

AP↑ iCaRL BiC WA FOSTER Average iCaRL BiC WA FOSTER Average
Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far

Average CIL accuracy
58.20 55.87 61.44 63.51 59.76 40.86 42.26 45.99 45.96 43.77

-Post-hoc-based OOD methods
MSP 62.73 77.05 62.57 76.91 65.46 77.77 65.08 78.70 63.96 77.61 22.90 20.01 24.27 16.79 22.30 18.64 23.44 23.64 23.23 19.77
ODIN 66.72 76.69 64.51 77.01 68.34 77.22 67.73 78.80 66.83 77.43 24.11 26.47 26.44 20.77 22.84 21.73 24.24 31.43 24.41 25.10
Energy 66.91 76.88 63.27 76.01 68.42 77.48 68.44 79.37 66.76 77.44 22.40 21.21 25.73 17.93 21.63 19.61 22.91 27.15 23.17 21.48

MaxLogit 66.79 76.94 63.73 76.48 68.34 77.69 68.38 79.46 66.81 77.64 22.70 21.16 25.32 17.72 22.10 19.25 23.25 26.18 23.34 21.08
GEN 66.82 77.17 64.69 77.14 68.47 77.76 68.63 79.70 67.15 77.94 23.10 21.71 23.77 18.57 24.54 18.68 23.54 24.96 23.74 20.98

ReAct 65.35 78.84 61.33 77.20 67.66 79.19 66.75 80.90 65.27 79.03 21.14 15.51 23.59 15.14 23.24 16.84 21.55 17.84 22.38 16.33
KLM 62.17 76.80 62.02 78.65 62.92 78.44 64.09 79.07 62.80 78.24 24.13 20.25 23.96 19.58 23.91 21.54 26.15 23.51 24.54 21.22

Relation 61.13 78.48 61.63 80.21 64.64 82.66 65.50 84.27 63.23 81.41 25.75 20.03 26.93 21.43 22.16 19.27 22.46 25.88 24.33 21.65
NNGuide 66.45 80.63 62.47 78.56 67.86 81.45 66.92 78.62 65.93 79.81 24.47 18.74 21.35 23.34 23.98 25.34 25.62 30.94 23.86 24.59
Average 65.01 77.72 62.91 77.57 66.90 78.85 66.84 79.88 65.41 78.50 23.41 20.57 24.60 19.03 22.97 20.10 23.68 25.73 23.66 21.36

Fine-tuning-based OOD methods
LogitNorm 66.92 76.86 63.39 76.09 67.54 77.16 68.07 79.06 66.48 77.29 21.68 20.97 25.67 19.59 21.05 19.16 22.21 23.25 22.65 20.74
T2FNorm 67.03 77.10 63.24 76.85 66.88 77.44 67.93 79.19 66.27 77.64 22.44 21.16 24.99 18.61 21.71 19.77 22.82 24.41 22.99 20.99
AUGMIX 67.12 76.84 63.17 75.63 67.52 77.13 68.22 78.88 66.51 77.12 24.63 19.31 23.96 20.14 23.79 18.54 24.83 22.17 24.30 20.04
REGMIX 67.65 77.26 63.17 75.92 68.31 77.23 69.22 79.32 67.09 77.43 25.98 17.61 27.59 17.62 24.36 17.61 25.92 20.54 25.96 18.34

VOS 67.50 77.56 58.66 77.45 59.23 77.19 67.59 78.69 63.24 77.72 23.73 19.60 26.89 20.23 23.48 19.63 24.86 24.53 24.74 21.00
BER (Ours) 67.81 78.63 64.43 79.57 69.56 81.00 68.89 79.69 67.67 79.72 26.86 22.65 27.04 22.05 26.54 22.23 27.46 24.02 26.98 22.74

Average 67.24 77.12 62.33 76.39 65.90 77.23 68.21 79.03 65.92 77.44 23.69 19.73 25.82 19.24 22.88 18.94 24.13 22.98 24.13 20.22
Average (All) 65.81 77.51 62.70 77.15 66.54 78.27 67.33 79.58 65.59 78.12 23.51 20.27 25.04 19.11 22.94 19.69 23.84 24.75 23.83 20.95

FPR↓ iCaRL BiC WA FOSTER Average iCaRL BiC WA FOSTER Average
Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far

Average CIL accuracy
58.20 55.87 61.44 63.51 59.76 40.86 42.26 45.99 45.96 43.77

-Post-hoc-based OOD methods
MSP 87.34 88.12 88.23 86.72 85.16 86.59 86.10 85.47 86.71 86.72 91.12 90.83 91.25 94.89 92.70 93.14 91.83 89.02 91.72 91.97
ODIN 83.67 77.57 85.70 74.96 82.91 78.69 83.14 71.65 83.86 75.72 90.89 84.91 89.34 92.93 91.66 89.91 90.92 80.90 90.70 87.16
Energy 83.78 79.86 87.19 80.57 83.40 82.10 82.72 73.14 84.27 78.92 92.65 90.98 90.53 95.36 92.95 93.25 92.54 87.43 92.17 91.76

MaxLogit 83.91 80.85 86.80 81.57 83.07 82.90 82.94 74.54 84.18 79.97 92.46 90.94 91.00 95.30 92.92 92.97 92.41 88.00 92.20 91.80
GEN 83.84 81.19 85.88 76.37 82.77 81.82 82.56 74.14 83.76 78.38 92.12 90.50 92.30 95.37 90.40 93.52 92.00 89.90 91.71 92.32

ReAct 83.83 79.97 88.95 82.85 83.64 81.41 83.63 73.64 85.01 79.47 92.98 94.57 91.42 95.62 92.18 95.77 93.90 94.98 92.62 95.23
KLM 87.94 89.37 88.13 86.00 87.78 87.66 87.06 86.00 87.73 87.26 89.88 90.20 89.77 89.84 90.59 87.38 88.30 87.25 89.64 88.67

Relation 85.39 74.39 88.48 77.88 84.44 73.56 84.10 71.57 85.60 74.35 91.78 86.00 92.85 95.19 95.52 95.19 92.56 87.38 93.18 90.94
NNGuide 85.66 75.41 87.97 75.47 86.10 75.44 87.47 70.20 86.80 74.13 90.00 88.40 84.14 89.16 90.30 90.30 89.94 85.73 88.59 88.40
Average 85.04 80.75 87.48 80.27 84.36 81.13 84.41 75.59 85.32 79.44 91.54 89.70 90.29 93.74 92.14 92.38 91.60 87.84 91.39 90.91

Fine-tuning-based OOD methods
LogitNorm 83.77 79.88 86.75 81.70 83.71 82.11 83.01 73.66 84.31 79.34 93.23 91.73 89.61 94.38 93.92 93.98 93.39 93.03 92.54 93.28
T2FNorm 83.69 80.39 86.75 81.55 83.97 82.91 82.95 74.56 84.34 79.85 92.62 91.12 90.77 95.36 92.97 92.58 92.67 90.70 92.26 92.44
AUGMIX 83.69 79.98 86.92 81.28 83.71 82.55 82.53 74.20 84.21 79.50 90.16 92.26 89.24 90.98 90.73 88.90 90.02 88.31 90.04 90.11
REGMIX 83.47 80.26 87.06 81.94 83.31 84.80 81.93 75.38 83.94 80.59 89.56 94.48 88.16 94.54 90.30 94.34 89.97 94.73 89.50 94.52

VOS 83.67 77.91 89.30 72.05 88.44 77.70 83.55 73.84 86.24 75.38 89.43 90.36 89.65 91.36 90.74 88.46 89.66 91.10 89.87 90.32
BER (Ours) 82.78 75.00 86.44 73.51 83.02 76.52 82.81 70.98 83.76 74.00 88.42 91.78 87.48 90.87 88.28 90.88 87.29 90.58 87.87 91.03

Average 83.66 79.68 87.36 79.70 84.63 82.01 82.79 74.33 84.61 78.93 91.00 91.99 89.49 93.32 91.73 91.65 91.14 91.57 90.84 92.13
Average (All) 84.55 80.37 87.44 80.07 84.46 81.44 83.83 75.14 85.07 79.26 91.35 90.52 90.00 93.59 91.99 92.12 91.44 89.17 91.19 91.35
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Table 7: Fine-grained results on near- and far-OOD detection datasets at the step size of k =
10 for CIFAR 100 and at the step size of k = 100 for ImageNet1K. The best and second-best
performance per dataset in the fine-tuning-based methods are highlighted. The upper, middle, lower
parts of the table are for AUC, AP, and FPR performance, respectively.

AUC↑
ID Dataset: CIFAR100 ID Dataset: ImageNet1K

iCaRL BiC WA FOSTER Average iCaRL BiC WA FOSTER Average
Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far

-Average CIL accuracy
60.08 61.68 65.88 66.01 63.41 44.44 49.63 52.22 52.29 49.65

-Post-hoc-based OOD methods
MSP 67.99 67.66 71.12 64.45 71.82 69.83 71.24 71.92 70.54 68.47 63.57 64.36 67.76 66.81 66.64 64.66 66.59 69.75 66.14 66.40
ODIN 71.10 69.53 73.95 67.67 74.18 70.69 73.37 75.37 73.15 70.81 67.06 71.13 70.54 72.19 67.62 68.34 67.61 75.49 68.21 71.79
Energy 71.72 69.67 74.01 67.63 74.62 72.23 74.12 76.54 73.62 71.52 64.87 67.17 69.35 71.79 65.96 67.78 66.80 74.59 66.75 70.33

MaxLogit 71.65 69.69 74.04 67.29 74.62 72.16 74.23 76.45 73.64 71.40 65.13 67.22 69.50 70.81 66.80 66.64 67.36 73.94 67.20 69.65
GEN 71.82 70.39 74.12 67.75 74.73 72.58 74.51 76.92 73.80 71.91 65.95 68.78 69.43 69.66 69.07 67.52 67.92 73.40 68.09 69.84

ReAct 67.63 69.38 73.24 69.31 73.54 75.54 75.16 76.64 72.39 72.72 58.88 49.21 66.53 66.63 65.11 61.31 65.10 65.25 63.90 60.60
KLM 67.82 67.36 69.91 64.45 70.46 69.61 70.98 71.52 69.79 68.23 65.77 67.91 68.62 64.72 65.99 63.72 69.18 72.31 67.39 67.16

Relation 58.11 67.55 67.34 64.55 72.13 78.12 67.40 74.55 66.25 71.19 63.33 72.47 68.51 70.30 67.61 67.31 65.67 72.42 66.28 70.62
NNGuide 68.34 74.04 67.37 69.43 72.53 77.13 74.45 76.63 70.67 74.31 64.88 69.85 69.43 73.05 66.06 73.97 63.58 75.72 65.99 73.15
Average 68.46 69.47 71.68 66.95 73.18 73.10 72.83 75.17 71.54 71.17 64.38 66.46 68.85 69.55 66.76 66.81 66.65 72.54 66.66 68.84

-Fine-tuning-based OOD methods
LogitNorm 71.88 69.72 73.52 69.20 73.56 71.28 73.86 75.18 73.20 71.34 64.30 66.85 68.25 72.13 65.31 68.28 66.36 70.78 66.06 69.51
T2FNorm 71.90 70.03 72.63 71.30 72.93 71.50 73.75 75.09 72.80 71.98 65.19 67.91 68.18 72.23 66.08 70.00 66.10 72.36 66.39 70.62
AUGMIX 72.50 69.82 73.19 69.58 73.63 71.35 74.33 74.96 73.41 71.43 64.94 75.91 67.75 76.97 65.71 72.87 67.23 69.06 66.41 73.70
REGMIX 73.12 70.64 72.97 69.91 73.81 71.11 74.74 75.51 73.66 71.79 67.86 63.51 69.41 70.68 67.70 66.97 68.96 70.36 68.48 67.88

VOS 73.41 71.76 67.55 66.23 65.31 70.08 73.80 74.97 70.02 70.76 63.69 71.47 64.94 70.13 64.14 67.94 67.19 72.57 64.99 70.53
BER (Ours) 73.72 74.39 75.08 70.20 75.43 77.44 75.20 77.00 74.86 74.76 67.40 71.60 70.94 73.94 68.51 70.16 68.10 75.41 68.74 72.78

Average 72.56 70.39 71.97 69.24 71.85 71.06 74.10 75.14 72.62 71.46 65.20 69.13 67.71 72.43 65.79 69.21 67.17 71.03 66.47 70.45
Average (All) 69.92 69.80 71.78 67.77 72.71 72.37 73.28 75.16 71.93 71.27 64.67 67.41 68.44 70.58 66.41 67.67 66.84 72.00 66.59 69.42

AP↑ iCaRL BiC WA FOSTER Average iCaRL BiC WA FOSTER Average
Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far

-Average CIL accuracy
60.08 61.68 65.88 66.01 63.41 44.44 49.63 52.22 52.29 49.65

-Post-hoc-based OOD methods
MSP 62.92 77.47 66.42 75.73 66.93 78.47 66.22 79.97 65.62 77.91 24.27 21.29 26.87 22.73 25.14 19.96 25.38 25.00 25.41 22.24
ODIN 66.69 76.57 69.50 75.62 69.80 77.20 68.69 80.05 68.67 77.36 26.30 27.44 28.84 26.58 26.27 23.63 26.08 30.71 26.87 27.09
Energy 67.16 76.79 69.45 75.66 70.12 78.12 69.40 80.78 69.03 77.84 23.79 22.11 26.69 25.28 24.12 21.18 24.37 27.24 24.74 23.95

MaxLogit 67.02 76.91 69.47 75.73 70.03 78.37 69.41 80.90 68.98 77.98 24.18 22.41 27.17 24.60 24.90 20.69 25.00 26.82 25.31 23.63
GEN 67.18 77.32 69.52 75.81 70.16 78.40 69.61 81.13 69.12 78.16 24.77 23.06 27.41 23.32 28.65 21.59 25.54 26.09 26.59 23.52

ReAct 64.32 78.22 68.84 77.00 69.24 80.52 67.72 82.49 67.53 79.56 21.25 13.04 25.82 20.62 25.94 18.00 25.85 20.11 24.72 17.94
KLM 62.71 78.06 64.73 77.12 64.53 79.28 65.79 80.35 64.44 78.70 26.60 24.14 28.25 21.19 25.73 20.66 30.06 27.00 27.66 23.25

Relation 58.70 79.28 65.41 78.51 68.32 80.80 65.20 80.88 64.41 79.87 27.17 30.24 28.16 25.52 28.12 24.41 24.89 27.99 27.09 27.04
NNGuide 66.33 78.44 69.36 78.26 70.19 80.44 68.32 80.14 68.55 79.32 27.25 28.60 28.61 28.19 28.16 24.66 27.96 30.08 27.99 27.88
Average 64.78 77.67 68.08 76.60 68.81 79.07 67.82 80.74 67.37 78.52 25.06 23.59 27.54 24.23 26.34 21.64 26.13 26.78 26.27 24.06

Fine-tuning-based OOD methods
LogitNorm 67.34 76.81 69.06 76.32 69.11 77.66 69.05 80.11 68.64 77.72 23.42 21.69 26.54 29.55 23.43 21.51 24.01 23.52 24.35 24.07
T2FNorm 67.28 77.07 68.19 77.89 68.33 78.02 68.92 80.24 68.18 78.30 24.12 22.60 25.87 27.36 24.15 22.77 24.25 24.90 24.60 24.41
AUGMIX 67.89 76.84 68.75 76.51 69.13 77.69 69.52 79.90 68.82 77.74 26.98 33.75 26.75 34.07 25.41 26.99 25.46 27.22 26.15 30.51
REGMIX 68.56 77.26 68.57 76.82 69.36 77.65 69.12 80.13 68.90 77.97 27.42 18.63 27.65 22.81 26.48 19.82 27.03 21.45 27.14 20.68

VOS 67.64 77.73 67.63 75.52 61.74 77.84 69.02 80.09 66.51 77.80 21.51 22.55 25.32 27.85 24.27 23.24 24.12 26.19 23.80 24.96
BER (Ours) 68.85 79.73 70.81 78.81 69.84 80.53 69.64 81.39 69.78 80.12 28.78 30.85 28.62 27.81 28.38 25.27 28.45 30.63 28.56 28.64

Average 67.74 77.14 68.44 76.61 67.53 77.77 69.13 80.09 68.21 77.91 24.69 23.84 26.43 28.33 24.75 22.87 24.97 24.66 25.21 24.93
Average (All) 65.84 77.48 68.21 76.60 68.35 78.61 68.29 80.51 67.67 78.30 24.93 23.68 27.14 25.69 25.77 22.08 25.72 26.02 25.89 24.37

FPR↓ iCaRL BiC WA FOSTER Average iCaRL BiC WA FOSTER Average
Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far

-Average CIL accuracy
60.08 61.68 65.88 66.01 63.41 44.44 49.63 52.22 52.29 49.65

-Post-hoc-based OOD methods
MSP 88.31 88.34 85.34 87.80 85.38 86.37 85.97 84.43 86.25 86.73 90.01 89.42 89.26 88.99 91.20 93.00 90.37 87.20 90.21 89.65
ODIN 84.48 80.66 82.06 79.75 81.78 79.37 82.86 72.09 82.80 77.97 88.87 84.20 87.74 86.88 89.16 88.91 89.57 82.31 88.83 85.58
Energy 83.99 83.61 82.41 81.82 81.75 80.95 82.58 74.57 82.68 80.24 92.13 91.38 90.36 87.98 91.81 93.03 91.78 87.91 91.52 90.07

MaxLogit 84.57 84.39 82.26 83.04 82.12 82.44 82.72 75.80 82.92 81.42 91.72 90.72 89.80 88.68 91.53 93.03 91.26 87.53 91.08 89.99
GEN 84.26 84.33 82.57 82.48 81.81 81.22 82.52 75.20 82.79 80.81 91.18 89.97 89.21 90.88 87.00 91.62 90.64 88.47 89.51 90.24

ReAct 85.04 84.12 82.62 82.59 82.22 81.62 83.73 75.17 83.40 80.88 93.09 97.23 89.67 90.24 90.02 92.80 90.45 92.61 90.81 93.22
KLM 88.24 87.89 86.78 88.09 88.03 87.46 86.18 85.76 87.31 87.30 88.79 87.27 86.30 88.93 89.25 90.26 88.33 88.69 88.17 88.79

Relation 90.91 88.90 84.06 79.24 90.86 87.12 84.22 70.82 87.51 81.52 91.68 86.41 89.85 89.19 94.14 95.47 89.79 87.38 91.37 89.61
NNGuide 84.23 77.32 82.26 77.06 82.06 72.97 83.57 70.27 83.03 74.41 91.40 86.84 87.44 87.11 89.02 88.42 89.17 86.63 89.26 87.25
Average 86.00 84.40 83.37 82.43 84.00 82.17 83.82 76.01 84.30 81.25 90.99 89.27 88.85 88.76 90.35 91.84 90.15 87.64 90.08 89.38

Fine-tuning-based OOD methods
LogitNorm 83.94 83.70 82.26 82.56 82.37 80.81 82.88 75.98 82.86 80.76 92.56 92.39 89.75 82.28 92.84 93.78 92.58 92.02 91.93 90.12
T2FNorm 84.16 84.13 83.15 82.50 83.16 81.91 82.75 76.87 83.31 81.35 91.88 91.00 90.87 85.53 91.79 91.92 91.57 89.71 91.53 89.54
AUGMIX 83.61 84.07 82.48 83.17 82.33 81.14 82.47 76.70 82.72 81.27 89.26 85.42 89.94 83.66 89.29 89.55 89.42 86.75 89.48 86.34
REGMIX 83.62 84.98 82.70 83.49 82.20 83.32 82.25 77.89 82.69 82.42 88.88 94.31 88.86 91.31 89.25 93.57 89.35 93.62 89.09 93.20

VOS 83.34 82.12 85.81 75.64 84.71 74.86 82.75 75.18 84.15 76.95 92.36 90.29 91.35 85.71 90.14 89.48 90.24 85.72 91.02 87.80
BER (Ours) 83.61 76.49 85.30 73.99 80.94 72.89 82.17 70.78 83.00 73.54 88.31 85.91 85.32 89.75 87.18 88.40 88.45 85.39 87.31 87.36

Average 83.73 83.80 83.28 81.47 82.95 80.41 82.62 76.52 83.15 80.55 90.99 90.68 90.15 85.70 90.66 91.66 90.63 89.56 90.61 89.40
Average (All) 85.19 84.19 83.34 82.09 83.62 81.54 83.39 76.19 83.89 81.00 90.99 89.77 89.31 87.67 90.46 91.78 90.32 88.33 90.27 89.39
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Table 8: Detailed results for those in Table 3 on near- and far-OOD detection datasets at the step
size of k = 20 for CIFAR 100 and at the step size of k = 200 for ImageNet1K. The best and
second-best performance per dataset in the fine-tuning-based methods are highlighted. The upper,
middle, lower parts of the table are for AUC, AP, and FPR performance, respectively.

AUC↑
ID Dataset: CIFAR100 ID Dataset: ImageNet1K

iCaRL BiC WA FOSTER Average iCaRL BiC WA FOSTER Average
Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far

Average CIL accuracy
62.65 64.14 68.05 68.75 65.90 48.85 53.30 58.42 57.84 54.60

-Post-hoc-based OOD methods
MSP 69.42 67.86 71.44 68.87 73.14 72.11 72.33 71.99 71.58 70.21 66.14 68.23 70.66 72.84 69.22 73.77 69.35 76.01 68.84 72.71
ODIN 72.67 70.68 74.14 70.11 75.06 73.87 74.02 74.67 73.97 72.33 69.56 74.95 72.70 80.40 69.88 75.29 70.83 79.00 70.74 77.41
Energy 73.62 71.75 74.19 70.13 75.32 75.17 75.64 76.39 74.69 73.36 67.58 73.41 71.44 80.20 68.36 74.95 69.92 78.17 69.33 76.68

MaxLogit 73.58 71.69 74.31 70.25 75.45 75.10 75.65 76.30 74.75 73.33 67.88 73.09 71.87 78.76 69.29 74.66 70.50 78.46 69.89 76.24
GEN 73.74 72.22 74.56 70.59 75.58 75.25 75.88 76.88 74.94 73.73 68.77 72.94 72.27 78.04 70.97 73.09 71.27 79.00 70.82 75.77

ReAct 70.33 72.22 73.64 73.72 74.16 78.15 74.81 78.60 73.23 75.67 60.87 56.69 68.14 72.73 63.74 61.87 66.82 60.83 64.89 63.03
KLM 69.38 68.96 71.08 69.75 72.76 72.33 72.62 72.40 71.46 70.86 68.67 71.19 71.37 68.92 69.94 68.94 72.37 75.89 70.59 71.23

Relation 60.26 67.92 67.36 69.97 72.90 77.89 66.61 73.61 66.78 72.35 69.03 75.66 72.58 80.21 69.52 75.30 69.76 80.29 70.22 77.87
NNGuide 71.30 75.56 71.33 71.20 73.40 77.72 72.02 78.30 72.01 75.69 68.64 76.97 75.00 83.84 68.53 78.64 70.03 79.75 70.55 79.80
Average 70.48 70.98 72.45 70.51 74.20 75.29 73.29 75.46 72.61 73.06 67.46 71.46 71.78 77.33 68.83 72.95 70.09 76.38 69.54 74.53

-Fine-tuning-based OOD methods
LogitNorm 74.05 71.59 73.34 70.23 74.81 74.03 75.63 75.25 74.46 72.78 68.55 71.11 70.12 79.30 67.75 71.92 70.00 74.85 69.11 74.29
T2FNorm 74.00 72.01 72.31 71.12 74.69 74.23 75.80 75.65 74.20 73.25 68.68 73.98 70.42 81.78 69.08 74.69 69.34 76.24 69.38 76.67
AUGMIX 74.65 71.43 73.06 69.52 75.30 73.87 76.22 75.20 74.81 72.50 67.42 79.12 71.80 86.56 67.22 78.09 68.86 80.72 68.83 81.12
REGMIX 74.54 71.84 72.97 70.94 75.19 74.57 76.00 75.53 74.67 73.22 69.64 69.41 70.05 78.26 69.44 73.16 70.85 73.83 70.00 73.67

VOS 74.16 72.31 70.53 67.89 69.55 73.55 75.17 75.01 72.35 72.19 60.12 68.59 59.60 73.36 60.57 67.45 61.50 73.81 60.45 70.80
BER (Ours) 74.03 74.81 70.73 72.49 74.36 77.78 75.07 77.24 73.55 75.58 69.39 76.87 73.15 83.08 70.61 74.72 70.89 80.07 71.01 78.69

Average 74.28 71.84 72.44 69.94 73.91 74.05 75.76 75.33 74.10 72.79 66.88 72.44 68.40 79.85 66.81 73.06 68.11 75.89 67.55 75.31
Average (All) 71.84 71.29 72.45 70.31 74.10 74.85 74.17 75.41 73.14 72.96 67.25 71.81 70.57 78.23 68.11 72.99 69.38 76.20 68.83 74.81

AP↑ iCaRL BiC WA FOSTER Average iCaRL BiC WA FOSTER Average
Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far

Average CIL accuracy
62.65 64.14 68.05 68.75 65.90 48.85 53.30 58.42 57.84 54.60

-Post-hoc-based OOD methods
MSP 64.69 77.88 66.09 77.36 68.06 79.42 67.19 79.81 66.51 78.62 26.39 25.10 29.95 27.19 27.46 28.99 28.24 33.60 28.01 28.72
ODIN 68.22 76.99 68.99 75.95 70.69 78.59 69.52 79.47 69.35 77.75 29.08 32.24 31.33 37.17 29.02 31.30 29.01 36.89 29.61 34.40
Energy 69.22 77.93 68.94 76.22 70.91 79.51 71.12 80.44 70.05 78.53 25.81 28.64 28.82 35.39 26.01 29.60 27.01 32.20 26.91 31.46

MaxLogit 69.11 78.06 68.98 76.48 70.94 79.75 71.03 80.58 70.02 78.72 26.38 28.39 29.68 32.27 27.10 29.57 27.87 33.98 27.76 31.05
GEN 69.27 78.40 69.25 76.53 71.05 79.60 71.25 80.91 70.20 78.86 27.02 27.81 30.20 31.68 30.52 27.10 28.67 36.42 29.10 30.75

ReAct 66.69 79.64 68.56 78.62 70.19 81.96 70.37 82.46 68.95 80.67 22.29 17.14 28.76 26.53 25.82 20.59 28.13 18.63 26.25 20.72
KLM 65.01 79.43 65.97 79.45 67.14 80.87 67.58 81.20 66.42 80.24 29.76 26.16 30.73 24.36 29.31 23.31 34.15 28.59 30.99 25.61

Relation 58.89 81.39 65.14 80.71 69.00 85.23 65.80 82.40 64.71 82.43 28.20 32.80 31.11 30.76 33.80 27.37 28.26 28.12 30.34 29.76
NNGuide 69.13 82.22 69.16 79.13 71.16 83.33 71.80 82.63 70.31 81.83 31.55 28.89 25.52 29.69 32.09 29.09 33.44 29.75 30.65 29.36
Average 66.69 79.10 67.90 77.83 69.90 80.92 69.52 81.10 68.50 79.74 27.39 27.46 29.57 30.56 29.01 27.44 29.42 30.91 28.85 29.09

Fine-tuning-based OOD methods
LogitNorm 69.65 77.80 68.22 76.29 70.29 78.78 71.03 79.71 69.80 78.14 26.76 26.25 27.62 37.77 25.39 27.70 27.39 27.84 26.79 29.89
T2FNorm 69.53 78.22 67.29 77.07 70.04 79.23 71.12 80.11 69.50 78.66 26.88 29.40 27.96 41.73 26.59 30.40 27.04 29.86 27.12 32.85
AUGMIX 70.16 77.73 67.84 76.12 70.68 78.69 71.57 79.62 70.06 78.04 29.41 31.62 28.77 28.31 27.78 27.66 29.20 29.28 28.79 29.22
REGMIX 70.27 78.14 68.12 76.98 71.06 79.33 71.58 79.97 70.26 78.60 28.46 22.69 28.06 29.67 27.67 25.48 29.05 24.29 28.31 25.53

VOS 69.66 78.12 66.03 75.72 65.00 79.31 70.44 79.58 67.78 78.18 22.86 26.04 21.60 31.07 22.16 26.43 23.24 29.48 22.46 28.25
BER (Ours) 70.63 81.41 68.86 79.98 71.41 83.73 72.86 82.60 70.94 81.93 30.26 31.87 30.71 36.50 29.82 33.39 30.66 32.12 30.36 33.47

Average 69.85 78.00 67.50 76.44 69.41 79.07 71.15 79.80 69.48 78.32 26.87 27.20 26.80 33.71 25.92 27.53 27.18 28.15 26.69 29.15
Average (All) 67.82 78.71 67.76 77.33 69.72 80.26 70.10 80.64 68.85 79.23 27.20 27.37 28.58 31.68 27.91 27.47 28.62 29.92 28.08 29.11

FPR↓ iCaRL BiC WA FOSTER Average iCaRL BiC WA FOSTER Average
Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far

Average CIL accuracy
62.65 64.14 68.05 68.75 65.90 48.85 53.30 58.42 57.84 54.60

-Post-hoc-based OOD methods
MSP 86.59 87.49 86.66 88.30 84.62 84.80 85.18 84.94 85.76 86.38 88.25 85.89 86.92 86.19 89.12 83.14 87.95 77.41 88.06 83.16
ODIN 83.94 79.84 84.45 78.70 82.02 76.10 82.65 73.77 83.26 77.10 85.99 78.86 85.81 76.03 86.75 80.31 87.37 74.06 86.48 77.31
Energy 82.74 81.62 84.56 81.39 82.06 77.47 81.72 76.95 82.77 79.36 90.62 83.67 88.72 77.34 90.36 82.46 90.03 81.20 89.93 81.17

MaxLogit 82.62 81.99 84.72 83.23 81.85 79.10 81.44 77.54 82.66 80.47 89.86 84.00 87.78 82.40 89.54 82.69 89.14 78.44 89.08 81.88
GEN 82.86 82.23 84.43 82.28 81.67 78.23 81.24 76.96 82.55 79.92 89.24 84.32 87.31 82.91 85.46 86.07 88.44 76.02 87.61 82.33

ReAct 84.18 82.40 84.02 82.30 81.51 76.98 81.86 77.35 82.89 79.76 92.37 92.98 86.31 85.15 88.68 87.47 87.89 91.61 88.81 89.30
KLM 86.34 85.12 86.48 86.89 86.24 85.97 84.75 84.21 85.95 85.55 84.68 85.60 85.24 86.67 86.42 89.64 80.57 85.16 84.23 86.77

Relation 87.14 76.55 84.52 76.94 83.35 74.51 83.91 72.84 84.73 75.21 89.50 82.30 86.36 77.31 93.46 91.33 88.11 73.72 89.36 81.16
NNGuide 82.70 74.23 84.31 76.17 81.69 69.83 85.19 71.60 83.47 72.96 91.91 80.27 91.24 77.11 91.99 76.72 87.52 73.19 90.66 76.82
Average 84.35 81.27 84.91 81.80 82.78 78.11 83.10 77.35 83.78 79.63 89.16 84.21 87.30 81.23 89.09 84.43 87.45 78.98 88.25 82.21

Fine-tuning-based OOD methods
LogitNorm 82.61 82.17 84.77 83.31 82.23 78.12 81.87 77.98 82.87 80.40 90.18 87.16 89.59 72.99 91.49 85.73 90.31 87.28 90.39 83.29
T2FNorm 82.63 82.28 85.28 83.05 82.63 79.67 81.59 78.60 83.03 80.90 89.78 82.85 89.25 68.00 90.11 81.85 89.61 83.92 89.69 79.16
AUGMIX 82.34 82.77 84.96 84.02 81.91 78.99 81.34 78.74 82.64 81.13 89.08 85.59 88.27 77.35 92.17 77.26 88.27 74.44 89.45 78.66
REGMIX 81.88 83.27 85.08 84.43 81.84 79.75 81.07 79.61 82.47 81.77 88.40 92.04 88.75 85.22 88.44 87.50 87.88 90.78 88.37 88.88

VOS 82.83 80.67 85.24 74.80 86.31 71.70 82.50 76.54 84.22 75.93 91.28 86.32 88.06 88.46 91.31 84.44 90.04 84.19 90.17 85.85
BER (Ours) 82.70 73.77 85.96 73.97 81.59 66.79 81.14 71.99 82.85 71.63 87.71 85.57 86.06 76.91 85.40 87.91 87.63 72.72 86.70 80.78

Average 82.46 82.23 85.07 81.92 82.98 77.65 81.67 78.29 83.05 80.03 89.74 86.79 88.78 78.40 90.70 83.36 89.22 84.12 89.61 83.17
Average (All) 83.67 81.61 84.97 81.84 82.85 77.95 82.59 77.69 83.52 79.77 89.37 85.13 87.83 80.22 89.66 84.05 88.08 80.82 88.74 82.55
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F THE OPENCIL BENCHMARK FRAMEWORK AND THE BER ALGORITHM

The full framework of the OpenCIL Benchmark for post-hoc-based OOD methods are given in
Algorithm 1, and that for the fine-tuning-based OOD methods is given in Algorithm 2 below. Fur-
thermore, the algorithm of our proposed method BER is given in Algorithm 3.

Algorithm 1 : Post-hoc-based OOD Detection Framework in the OpenCIL Benchmark
Class Incremental Training
Data: A data memory M ; A sequence of c tasks ID data T = {T1, T2, ..., Tc}, Tt =
(Xtrain

t , Xtest
t , Yt)

1: for each task do
2: Obtain t-th (1 ≤ t ≤ c) task training ID data T train

t = (Xtrain
t , Yt) ∪M

3: for each iteration do
4: Sample a mini-batch of ID training data from T train

t
5: Perform different CIL algorithms
6: end for
7: Update data memory M //*for replay-based CIL models only*
8: Save current CIL model θt(·)
9: end for

Output: A well-trained CIL model θ(·) = {θ1(·), θ2(·), ..., θc(·)}

Inference
Input: A well-trained CIL model θ(·) = {θ1(·), θ2(·), ..., θc(·)}
Data: A sequence of c tasks OOD data Xood = {Xood

1 , Xood
2 , ..., Xood

c }; A sequence of c tasks ID
data T = {T1, T2, ..., Tc}, Tt = (Xtrain

t , Xtest
t , Yt)

1: for each task do
2: Obtain t-th (1 ≤ t ≤ c) task testing ID data T test

t = Xtest
1 ∪Xtest

2 ∪ ... ∪Xtest
t

3: Obtain t-th (1 ≤ t ≤ c) task testing OOD data Xood
t

4: Perform ID classification on CIL model θt(·) based on T test
t

5: Perform different post-hoc OOD detection methods on CIL model θt(·) based on T test
t ∪Xood

t
6: end for

Output: Average incremental accuracy; Average OOD detection performance
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Algorithm 2 : Fine-tuning-based OOD Detection Framework in the OpenCIL Benchmark
Class Incremental Training
Data: A data memory M ; A sequence of c tasks ID data T = {T1, T2, ..., Tc}, Tt =
(Xtrain

t , Xtest
t , Yt)

1: for each task do
2: Obtain t-th (1 ≤ t ≤ c) task training ID data T train

t = (Xtrain
t , Yt) ∪M

3: for each iteration do
4: Sample a mini-batch of ID training data from T train

t
5: Perform different CIL algorithms
6: end for
7: Update data memory M //*for replay-based CIL models only*
8: Save current CIL model θt(·)
9: end for

Output: A well-trained CIL model θ(·) = {θ1(·), θ2(·), ..., θc(·)}

OOD Method - Fine-tuning
Input: A well-trained CIL model θ(·) = {θ1(·), θ2(·), ..., θc(·)}
Data: A data memory M ; A sequence of c tasks ID data T = {T1, T2, ..., Tc}, Tt =
(Xtrain

t , Xtest
t , Yt)

1: for each task do
2: Obtain t-th (1 ≤ t ≤ c) task training ID data T train

t = (Xtrain
t , Yt) ∪M

3: Obtain t-th CIL model θt(·) = {ϕt(·), ht(·)} which is composed of a feature extractor ϕt(·)
and a original classifier ht(·)

4: Initialize an extra classifier ft(·)
5: for each iteration do
6: freeze the ϕt(·) and ht(·)
7: Sample a mini-batch of ID training data from T train

t
8: Perform different training-time OOD detection method to finetune this extra classifier ft(·)

only on top of ϕt(·).
9: end for

10: Update data memory M //*for replay-based CIL models only*
11: Save current CIL model θt(·) with extra classifier ft(·)
12: end for
Output: A well-trained CIL model (the same as Input) with a finetuned classifier (θ(·), f(·)) =
{(θ1(·), f1(·)), (θ2(·), f2(·)), ..., (θc(·), fc(·))}

Inference
Input: A finetuned CIL model (θ(·), f(·)) = {(θ1(·), f1(·)), (θ2(·), f2(·)), ..., (θc(·), fc(·))}
Data: A sequence of c tasks OOD data Xood = {Xood

1 , Xood
2 , ..., Xood

c }; A sequence of c tasks ID
data T = {T1, T2, ..., Tc}, Tt = (Xtrain

t , Xtest
t , Yt)

1: for each task do
2: Obtain t-th (1 ≤ t ≤ c) task testing ID data T test

t = Xtest
1 ∪Xtest

2 ∪ ... ∪Xtest
t

3: Obtain t-th (1 ≤ t ≤ c) task testing OOD data Xood
t

4: Perform ID classification on original CIL model θt(·) = {ϕt(·), ht(·)} based on T test
t

5: Perform different post-hoc OOD scoring function on finetuned classifier {ϕt(·), ft(·)} based
on T test

t ∪Xood
t

6: end for
Output: Average incremental accuracy; Average OOD detection performance
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Algorithm 3 : Bi-directional Energy Regularization (BER)
Input: A well-trained CIL model θ(·) = {θ1(·), θ2(·), ..., θc(·)}
Data: A data memory M ; A sequence of c tasks ID data T = {T1, T2, ..., Tc}, Tt =
(Xtrain

t , Xtest
t , Yt)

1: for each task do
2: Obtain t-th (1 ≤ t ≤ c) task training ID data T train

t = (Xtrain
t , Yt) ∪M

3: Obtain t-th CIL model θt(·) = {ϕt(·), ht(·)} which is composed of a feature extractor ϕt(·)
and a original classifier ht(·)

4: Initialize an extra classifier ft(·)
5: for each iteration do
6: Freeze the ϕt(·) and ht(·)
7: Sample a mini-batch of current task ID training data

{
(xi

t, y
i
t)
}B

i=1
from (Xtrain

t , Yt)
8: Separate the current task batch into two identical parts with equal size
9: Conduct mixup on the second part based on Eq.1

10: Apply energy regularization on these two parts based on Eq.2 with extra classifier ft(·)
11: Sample a mini-batch of old task ID training data

{
(xi

o, y
i
o)
}B

i=1
(1 ≤ o < t) from M

12: Conduct mixup between the old task and current task ID training data based on Eq.3
13: Apply energy regularization on this mixed data based on Eq.4 with extra classifier ft(·)
14: end for
15: Update data memory M
16: Save current CIL model θt(·) with extra classifier ft(·)
17: end for
Output: A well-trained CIL model (the same as Input) with a finetuned classifier (θ(·), f(·)) =
{(θ1(·), f1(·)), (θ2(·), f2(·)), ..., (θc(·), fc(·))}
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