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Abstract

A major challenge of the long measurement times in magnetic resonance imaging
(MRI), an important medical imaging technology, is that patients may move during
data acquisition. This leads to severe motion artifacts in the reconstructed images
and volumes. In this paper, we propose MotionTTT a deep learning-based test-
time-training (TTT) method for accurate motion estimation. The key idea is that a
neural network trained for motion-free reconstruction has a small loss if there is no
motion, thus optimizing over motion parameters passed through the reconstruction
network enables accurate estimation of motion. The estimated motion parameters
enable to correct for the motion and to reconstruct accurate motion-corrected
images. Our method uses 2D reconstruction networks to estimate rigid motion
in 3D, and constitutes the first deep learning based method for 3D rigid motion
estimation towards 3D-motion-corrected MRI. We show that our method can
provably reconstruct motion parameters for a simple signal and neural network
model. We demonstrate the effectiveness of our method for both retrospectively
simulated motion and prospectively collected real motion-corrupted data. Code is
available at https://github.com/MLI-lab/MRI_MotionTTT.

1 Introduction

Magnetic resonance imaging (MRI) is one of the most important medical imaging technologies
due to its non-invasiveness and ability to foster diagnosis of a wide range of diseases. However, its
inherently long scan times make MRI susceptible to motion artifacts caused by patient movement
during the scan. Repeating scans corrupted by motion artifacts causes additional costs and reduces
patient through-put, and unnoticed artifacts can lead to misdiagnosis [2, 36].

We consider the problem of imaging under motion and propose an algorithmic solution to correct for
the motion based only on the measurements acquired during the scan, without requiring additional
hardware or changing the measurement process, or interrupting the clinical workflow.

A traditional approach to algorithmic motion reconstruction is to jointly estimate the motion parame-
ters and motion-corrected reconstruction [7, 6, 15], but those methods are slow and can be inaccurate
in particular for severe motion.

Deep learning based approaches have been proposed to accelerate reconstruction and potentially
allow to account for more severe motion. However, most existing data driven methods correct for
in-plane motion within 2D MRI (see the review Spieker et al. [38]), as 3D data for training 3D models
is only scarcely available and computationally expensive to handle [18]. In practice, however, motion
occurs in 3D and not in-plane. Moreover, the duration of a scan in 3D is significantly longer than in
2D making motion more likely and thus motion reconstruction more important. Finally, data-driven

∗Shared first authors in alphabetic order. †Corresponding author: reinhard.heckel@tum.de

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/MLI-lab/MRI_MotionTTT


approaches so far often rely on simulated motion artifacts and hence are specific to the type of motion
they have been trained on [14, 16, 34].

In this work, we propose a novel approach for rigid motion estimation and reconstruction in 3D MRI
that is based on first estimating the motion parameters that describe the map from the motion-free
image to the motion-corrupted measurement and second reconstructing the image or volume with
the estimated motion parameters. Estimating the motion parameters is the critical step, once we
know the motion parameters, reconstruction essentially amounts to reconstructing from a motion-free
measurement, and a variety of approaches work well for that.

For motion estimation, we utilize a neural network trained to reconstruct motion-free undersampled
2D MRI images. The network only requires 2D motion-free data for training, and does not require
3D or motion-corrupted data which is difficult to come by. The neural network for reconstruction
depends on the forward model which in turn depends on the motion parameters. We construct a data-
consistency loss and optimize over the motion parameters at test-time. The data consistency loss is
small only for the correct motion parameters, as the model was trained for motion-free reconstruction.

In each iteration the model reconstructs the 3D data slice-wise along a random axis. Since motion
artifacts occur globally in the image domain it is sufficient to compute gradients only for a small
random subset of slices keeping the computational and memory cost manageable. The estimated
motion parameters are then used to reconstruct a clean volume. To summarize, our contributions are:

• We propose MotionTTT, the first deep learning-based method for 3D rigid motion estimation
for 3D motion-corrected MRI. MotionTTT exploits the prior knowledge of a pre-trained
neural network for motion-free 2D MRI reconstruction.

• We theoretically justify our method by proving for a simple theoretical signal and neural
network model that the loss function has a global minimum at the correct motion parameters.

• We use retrospectively simulated motion to demonstrate the ability of our method to ac-
curately estimate motion over a wide range of motion severities. Combined with a L1-
minimization reconstruction module we achieve effective 3D imaging under motion and
outperform a classical alternating optimization baseline [7] in terms of estimation speed and
estimation performance under severe motion and a deep learning based end-to-end motion
correction baseline Al-Masni et al. [1] in terms of reconstructed image quality.

• We demonstrate the potential of our method on prospectively acquired real motion-corrupted
data achieving significant improvements in terms of visual image quality.

2 Related work

Approaches for retrospective rigid-motion correction for MRI can be categorized into supervised
deep learning-based approaches, model-based optimization approaches, and combinations thereof.

Supervised deep-learning based approaches learn a mapping from undersampled measurements
corrupted with simulated motion to the motion-free reference image and have been proposed for
2D [21, 24, 42, 35] and 3D MRI [18, 10, 1]. However, as demonstrated in our work the images
produced by those end-to-end approaches are often blurry and the methods pertain to the type of
motion simulated during training [23, 14, 16].

Alternating optimization [7] is a classical model-based approach for joint motion estimation and
correction in 3D MRI, where every iteration alternates between optimizing over the motion parameters
while fixing the estimated reconstruction and vice versa. However, jointly optimizing over both
unknowns without any prior information is a highly complex optimization problem resulting in long
run times and errors in the presence of more severe motion as demonstrated in our work.

The speed and robustness of alternating optimization can be improved through augmenting either
the reconstruction step or the motion estimation step with deep learning [14, 16]. However, both
methods have so far only been proposed for 2D in-plane motion correction and rely on synthetic
motion simulation during training, which makes them specific to the type of simulated motion. In
practice, motion always occurs in 3D.

For motion estimation, Singh et al. [34] pre-trains a neural network to predict a motion-free image
from the motion-corrupted measurements conditioned on the true motion parameter. At inference
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Figure 1: Panel a): magnitude of a 3D volume; panel b): the corresponding 3D k-space data. Panels
c)/d) show examples of undersampling masks used for the simulated and real data. The color coding
illustrates an interleaved c) and a random d) sampling trajectory indicating which lines along the
readout dimension kz are sampled within the same out of 50 shots.

the data consistency loss is optimized only over the motion parameters. However, the motion
estimation relies on learning the characteristic of motion-corruptions. Hence, the model operates in
the measurement space in which the corruptions occur, which in multi-coil MRI is of much higher
dimension than the corresponding image space, thus making an extension of this approach to 3D very
challenging. Our method relies on learning the characteristics of motion-free data in the image space
and thus is efficent for 3D imaging as we show.

Levac et al. [22] proposes a method based on diffusion models trained on generating motion-free
images for 2D motion reconstruction, that also does not rely on motion simulation during training. At
inference, sampling based reconstruction [17, 5] with joint motion trajectory estimation is performed.

While our approach as well as the aforementioned works correct motion artifacts solely based
on the acquired MRI measurements, another line of research corrects for motion prospectively or
retrospectively based on additional data collected during the scan via, e.g., external detectors [30, 27]
or navigator sequences [40, 43, 11]. However, those methods usually require interference with the
standard clinical measurement process and are often tailored to a specific measurement sequence or
setup limiting their broad applicability in practice.

3 Problem statement: 3D MRI imaging under motion

A 3D multi-coil accelerated MRI measurement y ∈ CC×kx×ky×kz is obtained by

y = Ax+ z, (1)

where A = MFE is the forward model, x ∈ Crx×ry×rz the object of interest, and z measurement
noise. The measurement y consists of C-many k-space measurements collected by C coils. The
expand operator is defined as Ex = [S1x, . . . ,SCx] with coil sensitivity maps Sj . The 3D Fourier
transform F and undersampling mask M are applied coil-wise. We consider 3D Cartesian undersam-
pling, where undersampling takes place in the plane of the two phase encoding dimensions kx × ky
and the frequency encoding dimension kz is fully sampled (see Figure 1).

We focus on rigid motion, where the i-th motion state is defined by three translation and three rotation
parameters mi = [ti1, t

i
2, t

i
3, ϕ

i
1, ϕ

i
2, ϕ

i
3]. MRI acquisition under motion can be described as

y = A(T ,m)x+ z, (2)

where the forward model A is a function of the unknown motion states m = [m1, . . . ,mb], where b
is the number of motion states, and of the known MRI sequence specific sampling trajectory T that
specifies which part of the k-space data y is acquired when.

The goal of this work is to reconstruct the volume x from the undersampled, motion-corrupted
measurement y without knowledge of the motion states. We do so by estimating the motion states m
from the measurement y and sampling trajectory T and use the estimated parameters to reconstruct a
motion-corrected volume x̂.

Parameterization of the forward model under motion. In practice, a measurement is acquired in
batches of lines in the k-space along the frequency encoding dimension kz . A batch, referred to as
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Figure 2: Illustration of the MRI forward models and zero-filled (ZF) reconstructions without (left)
and with (right) motion for the 2D single-coil setup. Rotations are implemented with the NUFFT
N(T ,ϕ) and adjoint NUFFT Nadj(T ,−ϕ), and translations with linear phase shifts L(T , t). During
acquisition under rotations areas of the k-space are sampled multiple times while others are not
sampled at all, resulting in additional undersampling artifacts in the corrected ZF image compared to
the motion-free ZF image.

shot, is acquired within a short time window followed by a pause before the next subsequent shot. It
is popular to assume that a subject’s position is constant during one shot and motion happens during
the pause between shots. This is known as inter-shot motion [7, 6, 18, 22, 34, 16]. For inter-shot
motion, the number of motions states b is equal to the number of shots and the sampling trajectory T
maps the lines in the k-space acquired during the i-th shot to the i-th motion state. See Figure 1 (c,d)
for examples of sampling trajectories used in practice.

However, in practice, motion can occur anytime, and thus the inter-shot motion introduces an
approximation error. Motion during the acquisition of one shot is referred to as intra-shot motion [14].
Then, each k-space line acquired during such a shot can have a a distinct motion state. In this work,
we investigate the capabilities of our method under both inter- and intra-shot simulated motion.

Within the forward model A(T ,m), motion corruption can be applied in the image or in the k-
space [25], since rotations and translations in the image space translate to rotations and linear phase
shifts in the Fourier space. We apply motion corruption in the k-space, because it is computationally
more efficient for our setup (see Appendix A). We use the non-uniform FFT (NUFFT) N(T ,ϕ) to
sample fully-sampled k-space data at the rotated coordinates for each shot. Translations are applied
via linear phase shifts L(T , t) to obtain motion-corrupted k-space data.

As a starting point for reconstructing the volume x from an undersampled measurement y with
zero-filled (ZF) missing entries, it is common to compute a ZF reconstruction x† = A†y, where
A†y =

∑C
j=1 S

∗
jF

−1yj . If the measurement y is motion corrupted, a corrected ZF reconstruction
based on motion parameters m is x† = A†(T ,−m)y. First, translations are reverted with a phase
shift in the opposite direction L(T ,−t). Then, rotations are corrected for via the adjoint NUFFT
Nadj(T ,−ϕ). See Figure 2 for an illustration of the forward model and ZF reconstruction.

4 MotionTTT

The proposed MotionTTT consists of: 1) pre-training a neural network for 2D motion-free image
reconstruction, 2) test-time-training to estimate motion parameters of the motion-corrupted 3D
k-space data and 3) reconstructing the motion-corrected 3D image based on the estimated motion.

Step 1: Pre-training. Given motion-free data {(x1,y1), . . . , (xN ,yN )} consisting of pairs of 2D
reference images x ∈ Crx×ry and undersampled k-space data y ∈ CC×kx×ky , we train a U-net [32]
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fθ with weights θ to map a ZF reconstruction A†yi to the image xi by minimizing the loss

Ltrain(θ) =

N∑
i=1

(∥∥|fθ(A†yi)| − |xi|
∥∥
1
/∥xi∥1 +

∥∥FEfθ(A
†yi)− FExi

∥∥
1
/∥FExi∥1

)
. (3)

We use this combined training loss between magnitude images and k-space data since it leads to better
performance for motion-free reconstruction than using one of the individual losses (see Appendix C).

Step 2: Test-time-training for motion estimation. Given an undersampled and potentially motion
corrupted 3D measurement y and a sampling trajectory T we freeze the weights θ̂ of the trained
network fθ̂ and estimate the motion parameters m by minimizing the data consistency loss

LTTT(m) =
∥∥A(T ,m)fθ̂

(
A†(T ,−m)y

)
− y

∥∥
1
/∥y∥1, (4)

with Adam [19]. The idea behind minimizing this loss is as follows. If applied to motion-corrupted
data, at initialization with m = 0 the motion correction A†(T ,−m) has no effect and the motion-
corrupted network input results in a large loss as the network was trained on reconstructing motion-free
data. Contrary, when the motion parameters are chosen correctly the network input is a motion-
corrected ZF image, which is similar to a motion-free ZF image and results in a small loss. See
Figure 2 for example images. In Section 5 below we study this loss theoretically.

We call this approach test-time-training, since the adjoint A†(T ,−m) can be considered to be part of
the network, and by optimizing over the motion states m we are optimizing over part of the network’s
parameters. Methods that optimize a network at inference are referred to as test-time-training methods,
and are successful at prediction under distribution shifts [39, 9].

In every iteration, the network reconstructs the entire 3D input volume slice-wise, where the slicing
direction is sampled uniformly at random to be either in the rx × ry, rx × rz or ry × rz image
plane. We compute gradients only for a subset (of size 5, limited by GPU memory) of slices sampled
independently in every iteration. While motion has a local effect in the k-space, the artifacts spread
globally in the image space hence computing gradients with respect to a single slice can contain
signal about all motion parameters.

In order to minimize the loss (4) reliably over different levels of motion severity the optimization
scheme is important. We take a three-phase optimization approach.

Phase 1 optimizes over one motion state per acquired shot. We start with a large initial learning
rate in order to explore the non-convex loss landscape. Especially for strong motion initializing all
parameters with 0 can lead to a large distance to the true motion parameters. During phase 1 the
learning rate is decayed twice in order to converge to a stable first estimate of the motion parameters.

At the start of phase 2 we compute the DC loss (4) for every estimated motion state m̂i

LTTT(m̂i) =
∥∥A(T , m̂i)fθ̂

(
A†(T ,−m̂)y

)
−Mm̂i

y
∥∥
1
/∥Mm̂i

y∥1, (5)
where the mask Mm̂i

keeps only the part of the k-space acquired during the i-th state. Motion states
with a loss larger than a certain threshold are likely estimated poorly and we reset them to the average
between the previous and next motion state that fall below the threshold. Phase 2 then only optimizes
over the motion states that have been reset. For intra-shot motion, a thresholded motion state is not
only reset, but Nsplits additional motion states up to the number of acquired k-space lines per shot can
be introduced in order to estimate a more resolved motion trajectory for this shot.

Phase 3 again optimizes jointly over all motion states with a small learning rate to converge to a final
estimate of the motion trajectory.

Step 3: Reconstruction. Using the estimated motion parameters m̂, we can obtain an estimate
of the motion-corrected image directly from the network output fθ̂(A

†(T ,−m̂)y), and apply a
data-consistency step to improve performance (U-net-DCLayer). This step moves the frequencies
of the reconstructed image closer to the given frequencies, and is used for example by Chen et al.
[4]. Alternatively, we can use any reconstruction method for motion-free data, such as a classi-
cal L1-minimization-based reconstruction [26]. We refer to L1 or U-net reconstruction based on
motion parameters estimated by MotionTTT as MotionTTT-L1 and MotionTTT-U-net-DCLayer
and their respective performance with the oracle known motion parameters as KnwonMotion-L1
and KnownMotion-U-net-DCLayer. We refer to the reconstruction after DC loss thresholding that
excludes motion states with a large DC loss from the reconstruction as MotionTTT+Th-L1.
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This minima turns out to be unique under certain conditions. In our theory we consider discrete shifts,
indicated by crosses.

5 Theory for motion TTT

We consider the following model to illustrate the principle of our method. We consider a signal
x ∈ Rn the lies in a d dimensional subspace described by the matrix U ∈ Rn×d, i.e., there is a
coefficient vector c ∈ Rd so that x = Uc. We take the matrix U as a random Gaussian matrix with
iid N (0, 1/

√
n) entries, so that the columns of the matrix are approximately orthonormal.

Let FT be the Fourier matrix with rows chosen in the set T ⊆ {0, . . . , n− 1}. We assume a measure-
ment model where the signal x is shifted by unknown discrete integer parameters m∗

1, . . . ,m
∗
b ∈ Z,

and for each shifted version of the signal, a set of measurements is collected according to

yℓ = Dm∗
ℓ ,Tℓ

FTℓ
x, (6)

where Dm,Tℓ
is a diagonal matrix with ei2πmj/n, j ∈ Tℓ on its diagonal. Note that this multiplication

with complex exponentials in the frequency domain implements a circular shift in the time domain.
In this measurement model, the signal is assumed motion-free while the measurements in the set FTℓ

are collected. The frequencies in the set Tℓ are chosen by sampling each frequency independently
with probability k/n. So in expectation, k frequencies are included in the set Tℓ.
We consider the network f(x) = n

bkUUTx for reconstructing a clean signal, where bk is the total
number of measurements collected. This choice of network is motivated by the fact that if the
measurement is not motion corrupted, then we have that (see Appendix B.3)

f(F∗
T y) ≈ x, (7)

where T = T1 ∪ . . . ∪ Tb is the set of all measurements collected and (·)∗ denotes the complex
conjugate. We consider our test-time-training loss for this model, which is

L(m) = ∥DmFT f(F
∗
T D

∗
my)− y∥22. (8)

Below, we show that for our model, under certain conditions and with high probability, the loss has a
unique minimum at L(m∗). Before stating our result, we visualize the loss in Figure 3. It can be
seen that the loss is not convex in m which makes it difficult to optimize.

Theorem 1 Consider the model introduced above, and assume that the signal x = Uc is chosen
randomly by drawing the entries of c iid from a zero-mean unit-variance Gaussian distribution. Let
a(m) be the number of values of m1, . . . ,mb that are non-equal to m∗

1, . . . ,m
∗
b . The following

statement holds for all m ∈ {0, . . . , n− 1} \ {m∗} simultaneously with high probability: If

(1− a(m)/b)
2
> c

b2 log(n)2 (b+ d)

n

n2

k2b2
+ c

√
d

bk
, (9)

then L(m) > L(m∗), where c is a numerical constant.

The theorem implies that if the subspace dimension, d, and the number of shifts, b, are sufficiently
small relative to the number of measurements, bk, then the loss has a global minimum at the true
shift m∗.
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6 Experiments

We demonstrate quantitatively and qualitatively on simulated data the ability of our method to
accurately reconstruct images for a wide range of levels of motion severity in the presence of
inter- and intra-shot motion. Moreover, on prospectively acquired real motion-corrupted data, we
demonstrate that our method achieves significant gains in terms of visual reconstruction quality.

6.1 Simulated inter-shot motion experiments

We start with experiments with simulated inter-shot motion as described in Section 3. The model,
data, and baselines considered for both inter- and intra-shot motion experiments are as follows.

Model. We use a 17.5M parameter U-net [32] fθ, a common baseline with good performance on
image-to-image tasks [46, 3, 13], training details are in Appendix D.

Data. We train the U-net fθ on motion-free data and evaluate MotionTTT with simulated motion-
corrupted data sourced from the Calgary Campinas Brain MRI Dataset [37] (license CC BY-ND)
consisting of 3D scans of size kx×ky ×kz = 218× 170× 256 and C = 12 receiver coils. We select
40 subjects for training from the training set, 4 subjects for validation and hyperparameter tuning,
and 10 subjects for testing from the validation set. We train and test with an undersampling factor of
4 using the mask from Figure 1 (c). For training, we slice each 3D zero-filled reconstruction A†y
and the corresponding 3D reference volume x along all three dimensions resulting in about 25k pairs
of 2D network inputs and targets. We compute sensitivity maps from 24× 24× 24 auto-calibration
lines of the originally fully-sampled motion-free k-space with ESPIRiT [41].

Motion simulation. We set the number of shots to B = 50 similar to how our own real data was
acquired in the upcoming Section 6.3, and we use an interleaved sampling trajectory T (Figure 1 (c)),
where every 50-th line in the k-space is acquired within one shot and the 3× 3 center of the k-space
containing the largest energy is sampled in the first shot. Without loss of generality, we assume the
subject to be in zero-motion state at the first shot and hence do not simulate and estimate motion
parameters for the first shot.

As the characteristics of patient motion vary widely, synthetic rigid body motion is often simulated
as random motion with rotations and translations drawn uniformly from some range, or from a
Gaussian [7, 22, 16, 34].

We simulate random motion with different levels of severity by varying the number of motion events
Ne ∈ {1, 5, 10} per scan and the maximum possible rotations/translations Mmax ∈ {2, 5, 10} in
degrees/mm. The shots between which a motion event occurs are sampled uniformly at random,
and for each event translation and rotation parameters are sampled uniformly from [−Mmax,Mmax].
After a motion event the subject stays in this position until the next motion event occurs. This yields
10 different levels of motion severity including the motion free case.

Baselines. We compare to alternating optimization by Cordero-Grande et al. [7], which is one of
very few approaches for retrospective motion estimation in 3D MRI. The method alternates between
two steps of L1-minimization reconstruction with wavelet regularization while fixing the motion
parameters and four steps of motion parameter estimation while fixing the reconstruction. For the final
reconstruction we perform L1-minimization from scratch based on the estimated motion parameters
(AltOpt-L1) and with additional DC loss thresholding based on the estimated motion parameters
(AltOpt+Th-L1), to ensure a fair comparison to our method. We also perform L1-minimization
without any motion estimation (L1). We further compare to the E2E stacked U-net with self-assisted
priors [1], a method for end-to-end (E2E) motion artifact reduction in 3D MRI. The model from Al-
Masni et al. [1] is trained with pairs of motion-free images and undersampled images corrupted by
motion simulated as described above to predict the motion-corrected image with a single pass trough
the network at inference.

Hyperparameters for MotionTTT and the baselines are in Appendix D.

MotionTTT accurately estimates motion over a wide range of motion severities. The results in
Figure 4 show the reconstruction performance in PSNR as a function of motion severity averaged
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Figure 4: Reconstruction performance in PSNR as a function of the level of simulated inter-shot
motion severity defined by (number of motion events, maximum rotation/translation in degrees/mm).
We consider L1-minimization or U-net based reconstruction combined with either known motion, no
motion-correction or motion estimated with MotionTTT or alternating optimization. Error bars are
the standard deviation over test examples and randomly sampled motion trajectories.

Figure 5: Reconstructions and difference images for simulated motion of severity level 5 for all
methods in Figure 4.

over the test set and over two independently sampled motion trajectories per example. Figure 5 and
Appendix E.1.1 contain example reconstructions. For both small and large motion severities, the
PSNRs for reconstruction with known and estimated motion parameters is the same for MotionTTT,
indicating that the motion parameters are estimated very well. Reconstruction results for the motion
parameters itself are in Appendix E.1.1.

For AltOpt this is only true for small motion severities, for large ones MotionTTT significantly
outperforms AltOpt. In addition, MotionTTT is about 6x faster than AltOpt for this problem, see
Appendix E.1.2.

The performance of E2E stacked U-net lies significantly below the performance of methods that obtain
a reconstruction based on explicitly estimating motion like MotionTTT or AltOpt. With increasing
motion severity E2E methods suffer from the severe degradations in their network inputs, which can
not be resolved without knowledge of the motion resulting in overly smooth reconstructions.

For the results in Figure 4 we used the fixed undersampling mask from Figure 1 (c) with acceleration
factor 4. In Appendix E.1.3 we additionally ablate over acceleration factors 2 and 8 showing robust
performance across acceleration factors and levels of motion severity.

Reconstruction module. Figure 4 shows that for no motion, U-net based reconstruction
(KnownMotion-U-net-DCLayer) outperforms L1-based reconstruction (KnownMotion-L1), as ex-
pected, but for larger levels of motion severity L1-based reconstruction performs slightly better. A
likely reason for this is a distribution shift, which is known to result in worse performance [8]: Ac-
quiring MRI measurements under motion typically leads to some parts of the k-space being sampled
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more than once, while parts that would be sampled if there were no motion are not sampled. This
results in a change of effective undersampling mask and a motion-specific increase of the effective
undersampling factor, which suggests why the reconstruction quality decays for all methods with
increasing levels of motion even if motion parameters are known. This problem, illustrated in Figure 2,
is well known [45, 12]. However, L1-based reconstruction is not as sensitive to changes in the mask
as the U-net based reconstruction, which is trained with a fixed mask. Due to this distribution shift,
the performance of U-net might degrade stronger than for L1-based reconstruction.

Finally, we note that, comparing MotionTTT-L1 and MotionTTT+Th-L1 Figure 4 shows that for
strong motion, DC loss thresholding essentially closes the gap to KnownMotion-L1. This indicates
that the thresholding does not unnecessarily exclude motion states for moderate motion, but reliably
detects incorrectly estimated motion states for severe motion.

6.2 Simulated intra-shot motion experiments

Next, we study the performance of our method for intra-shot motion. As mentioned before, the model,
data, and baselines are the same as for the inter-shot experiments in Section 6.1.

Motion simulation. We again set the number of shots to B = 50. We use a random sampling
trajectory (Figure 1 (d)), where the 3 × 3 center is acquired first and all other k-space lines are
acquired at a random order, and again assume the subject to be in zero-motion state at the first shot.
We randomly select ⌈Ne/2⌉ of the motion events to take place during the acquisition of one shot.
Intra-shot motion is simulated by assigning a distinct motion state to each of the 182 k-space lines
acquired during this shot such that the intra-shot motion trajectory connects the motion parameters
from the previous to the next shot, where start and end point as well as the presence of up to two
peaks due to over- and/or under-shooting within the intra-shot trajectory is randomized.

Choice of the parameter Nsplits. As explained in Section 4, MotionTTT estimates intra-shot motion
by splitting motion states that exhibit a large DC loss after phase 1 of the optimization scheme into
Nsplits motion states. Since ground truth intra-shot motion is simulated with a distinct motion state
for each of the 182 k-space lines acquired during one shot, choosing the parameter Nsplits < 182
results in a discretization error. On the other hand, choosing Nsplits large increases the difficulty
of the estimation problem because the number of k-space lines corresponding to one motion state,
decreases. We found Nsplits = 10, i.e., about 18 k-space lines per motion state, to be a good trade-off,
see Appendix E.2.1 for an ablation study.

Sampling order. The sampling order within a shot is crucial for the ability to estimate intra-shot
motion as estimating a motion state corresponding to a batch consisting of only high-frequency and
low-energy components is difficult. In Appendix E.2.2 we ablate over different sampling orders and
find that acquiring all k-space lines at a random order works well.

MotionTTT with intra-shot motion estimation improves performance over discarding mea-
surements corrupted by intra-shot motion. Figure 6 shows the reconstruction performance as
a function of motion severity, where half of the motion events exhibit intra-shot motion. Recall
that after phase 1 of the optimization scheme outlined in Section 4 MotionTTT converged to one
estimated motion state per shot. MotionTTT-L1 (Phase 1) is based on those motion states and hence
does not estimate intra-shot motion. Consequently, even for the lowest level of motion considered
here, MotionTTT+Th-L1 (Phase 1) improves the performance as shots corrupted by intra-shot motion
are discarded during DC loss thresholding before reconstruction.

In contrast, MotionTTT-L1 (Phase 3) achieves on par performance with MotionTTT+Th-L1 (Phase 3)
for moderate motion levels indicating that intra-shot motion has been estimated successfully so that
motion states are below the threshold we set for DC loss thresholding. Nevertheless, a performance
gap remains relative to KnownMotion-L1, which results from the irreducible discretization error.

For severe motion the gap between MotionTTT-L1 (Phase 3) and MotionTTT+Th-L1 (Phase 3)
increases as more motion states are estimated incorrectly and have to be discarded. However,
MotionTTT with only Phase 1 continues to be outperformed indicating the benefit of performing
intra-shot motion estimation over discarding measurements corrupted by intra-shot motion.
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Figure 6: Reconstruction performance in PSNR as a function of the simulated motion severity defined
as in Figure 4 only that here half of the motion events exhibit intra-shot motion. We consider L1-
minimization based on known motion, motion estimated with MotionTTT after phase 1 (no intra-shot
motion estimation) and after phase 3 (with intra-shot motion estimation) of the optimization scheme.
Error bars are the standard deviation over test examples and randomly sampled motion trajectories.

Figure 11 in Appendix E contains a qualitative comparison, where especially in the case without DC
loss thresholding the difference in reconstruction quality between phase 1 and 3 is clearly visible.
After thresholding the differences are less visible, however that depends on the amount of intra-shot
motion that we simulate as with more intra-shot motion the difference in undersampling factor
between discarding and estimating intra-shot motion becomes larger and differences more visible.

6.3 Experiments with real motion

We now apply MotionTTT to real motion data. We use pre-trained model fθ from Section 6.1, and
the implementation details are described in Appendix D.

Data. We acquired four scans from one subject. To obtain motion-free reference data, mildly
motion-corrupted, and strongly motion-corrupted data the subject was instructed to not move at all or
move 1-3 times at distinct time points during the acquisition. The performed motions include nodding,
head rotations, and either with or without returning to the original position. Sequence parameters
(see Appendix D.4) were chosen to match those in the Calgary Campinas Brain MRI Dataset [37] as
close as possible. Data was acquired with an undersampling factor of 4.94 and a random sampling
trajectory (similar to Figure 1 (d)) with B = 52 shots. The acquisition of one shot lasts 1.3s followed
by a pause of 1.6s resulting in a total scan duration of about 150s.

Results. We find that MotionTTT achieves significantly improved visual reconstruction quality
compared to no motion-correction. Applying MotionTTT results in a significant reduction of motion
artifacts for both mild and strong motion (reconstructed images are in Appendix E.3).

7 Limitations and future work

In this paper, we proposed the first deep-learning-based 3D rigid motion estimation method for 3D
MRI and have demonstrated that it is effective and computationally managable at estimating motion
and correcting for it.

As discussed in Section 6.1 our reconstruction module (Step 3) has room for improvement. We
currently use L1-minimization, but a deep-learning method, e.g., regularization with diffusion models
should yield further improvements.

Finally, the model used to perform MotionTTT can be improved in principle. Currently it is trained
on fully-sampled data, which is scarce especially for 3D at high resolutions. It might be possible to
train this module well with self-supervised training losses that require only undersampled data [44,
28, 20]. Moreover, as mentioned, there is a distribution shift in the mask and networks that work well
with such distribution shifts might yield improvements.
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A Computational aspects of simulating motion in the image or k-space

As mentioned in the Problem Statement Section 3, we simulate motion in the k-space rather than in
the image domain because it is computationally more efficient if the number of motion states b is
larger than the number of coils C. Here, we elaborate on this statement.

In our work the MRI forward model under motion is implemented with the NUFFT, which for each
shot in the sampling trajectory first computes the rotated coordinates based on the k-space data and
the motion parameters of this shot. Then the k-space values at those coordinates for all shots can be
obtained from a single application of the NUFFT. This requires us to compute a single interpolated
version of the k-space data, which consists of C-many 3D coil volumes, thus C-many interpolated
volumes need to be computed.

In contrast, simulating motion in the image domain required computing a transformed 3D image
volume for each motion state, which then is expanded to the coil dimension and transformed to
the k-space with the forward model (1). Hence, b many interpolated volumes need to be computed.
As in our work the number of coils C = 12 is smaller than the number of motion states b it is
computationaly more efficient to simulate motion in the k-space than in the image space.

B Proof of Theorem 1

In this appendix, we prove Theorem 1 from the theory Section 5. To prove the result, we upper
bound the loss for the correct motion parameters, L(m∗) and lower bound the loss L(m) for all other
motion parameters m ̸= m∗.

Assume without loss of generality that the ground-truth shift is equal to m∗ = 0. We have that
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where D∗ is the Hermitian transpose of the matrix D. Here, equation i follows from the assumption
that the optimal motion parameters are zero, thus Dm∗ = I, and equation ii follows from the entries
of Dm having absolute value one, and DmD∗

m = I.

We first upper bound L(m∗) = L(0). We have that
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For the last inequality, we used that d/bk ≤ 1/4 by assumption. According to Theorem 2.6
in Rudelson and Vershynin [33], the second to last inequality holds on the events
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and
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}
, (13)

with β =
√
n. Those events hold with the probabilities, for all β > 0

P [E1] ≥ 1− 2e−d/2, (14)
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. (15)

Next, we lower-bound L(m) for m ̸= 0. Let a be the number of individual motion parameters in the
vector m that are non-equal to the true motion parameters m∗ = 0. We have
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where the last inequality holds with probability at least 1− e−cα + 2d(d+ b)e−cβ2 − 3e−cd which
follows from the bounds
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Thus, we have with probability at least 1− e−cα + 2d(d+ b)e−cβ2 − 3e−cd − 4e−cd that L(m) >
L(m∗) = L(0) if
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By a union bound over all motion parameter m ∈ {0, . . . , n− 1} \ {m∗} (there are nb many), we
have that
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which concludes the proof. It remains to prove the intermediate results, which we do next.
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B.1 Lower bounding the first term, proof of equation (17):

Since the entries of D∗
m have absolute value one, and a/b ∈ [0, 1], we have∥∥∥(FT U
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where the second to last inequality holds with probability at least 1−3e−cd according to equations (14)
and (15), and where we used that d

bk ≤ 1/64 and d
n ≤ 1

64 .

B.2 Lower-bounding the second term, proof of equation (16)
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We next prove the bound (21). We start with upper bounding the Frobenius norm of the matrix A. We
split the squared Frobenius norm into a sum of the squared diagonal entries and squared off-diagonal
entries according to
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The last inequality follows from
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and
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∗
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∗
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n

]
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. (23)

Bounding a diagonal entry, proof of inequality (22): First, consider a diagonal element and let
Zℓ ∈ Rn×n be the mask that selects the frequencies in the set Tℓ, and recall that F ∈ Rn×n is the
Fourier transform. With a slight abuse of notation, we let Dm be the diagonal matrix that contains
the frequencies that matrix the Fourier matrix it is multiplied with, i.e., in DmF, the matrix Dm is
the n× n diagonal matrix with entries ei2πmℓ/n, ℓ = 0, . . . , n− 1, and in DmFT , the matrix Dm is
the |T | × |T | diagonal matrix with entries ei2πmℓ/n, ℓ ∈ T . For convenience, we drop the index i
and write u = ui. With this we have
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Here, the entries of ũ = Fu ∈ Rn are iid CN (0, 1/
√
n) distributed, since the DFT matrix F has

orthonormal columns.

Thus, by a union bound
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where we used that, for all β > 0,
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and
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This concludes the proof of inequality (22). It remains to proof equations (26) and (27).

Proof of equation (26): Note that
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ũ∗
i ũie
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Since zb,i − k
n is a sub-Gaussian zero mean random variable a concentration inequality for sub-

Gaussians yields
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Here, we used that ũ∗ ·ũ is the entrywise product, and the random variable ∥ũ∗ · ũ∥22 =
∑n

i=1(ũ
∗
i ũi)

2

concentrates around its expectation n3σ4 = n3/n2 = 3/n.

Thus we have shown that the random variables sℓ = ũ∗ (Zℓ − k
nI
)
D∗

b ũ (conditioned on ũ) are
sub-Gaussian. The random variables are also zero-mean and independent (if conditioned on ũ), and
thus by concentration of sub-Gaussian random variables we get
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.

This concludes the proof of equation (26).

Proof of equation (27): Next, consider the random variable u∗F∗D∗
mℓ

Fu = ũ∗D∗
mℓ

ũ in equa-
tion (24). If mℓ = 0, i.e., there is no shift, we have D0 = I, and thus the random variable becomes
ũ∗ũ which is a sum of sub-exponential random variables and concentrates around 1. In case mℓ is an
integer non-equal to zero, we have that u∗F∗D∗

mℓ
Fu = uTumℓ

, where umℓ
is a vector circularly

shifted by mℓ. We can write uTumℓ
as two sums of independent Gaussians, to see this consider the

case mℓ = 1 and note that for this case we have

uTumℓ
= (u1u2 + u3u4 + . . .)︸ ︷︷ ︸

S1
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.

By the union bound and by Hoeffding’s inequality, we get that
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. (30)

Combining this via a union bound for all summands ℓ = 1, . . . , b yields the bound in equation (27).

Bounding an off-diagonal element, proof of inequality (23): Now consider an off-diagonal
element ũ∗

iD
∗
mũj . Since ũi and ũj are independent and the entries have zero mean and variance 1/n,

this is a sum of Gaussian random variables with variance 1/n. Thus, by sub-Gaussian concentration
or Hoeffding’s inequality, we have that

P

[
|ũ∗

iD
∗
mũj | ≥

β√
n

]
≤ 3e

− cβ2

∥D∗
mũj∥2

2 = 2e−cβ2

, (31)

where we used that ∥D∗
mũj∥22 = ∥ũj∥22 concentrates around 1.

B.3 Comment on Equation (7):

In the main body, we stated Equation (7), i.e.,

f(F∗
T y) ≈ x, (32)

where T = T1 ∪ . . . ∪ Tb is the set of all measurements collected.

To see that this approximation is accurate, note that for the noiseless case with a known shift, where
y = DmUc the network approximately reconstructs the signal since

f((DmFT )
†
y) = f(F∗

T D
∗
my) (33)

= UUTF∗
T D

∗
mDmFT Uc (34)

= UUTF∗
T FT Uc (35)

≈ Uc = x, (36)

where the first equality follows because the matrix DmFT has orthonormal rows, and the approxima-
tion holds since UTF∗

T FT U concentrates around n
kb if U is a random subspace, and if the number

of measurements, T is sufficiently large relative to the dimension of the subspace, d.
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C Ablation Study on Pre-training Loss

In Section 4, we stated that using a training loss that consists of the two losses, one computed in
the image domain and one in the measurement domain, is beneficial over using only a loss in the
measurement domain. In this section, we conduct the corresponding ablation study. We evaluate three
distinct loss functions: image domain loss, k-space loss, and a combined loss. The image domain
loss is as follows:

Ltrain(θ) =

N∑
i=1

∥∥fθ(A†yi)− |xi|
∥∥
1
/∥xi∥1, (37)

and the k-space loss is

Ltrain(θ) =

N∑
i=1

∥∥FEfθ(A
†yi)− FExi

∥∥
1
/∥FExi∥1. (38)

To compare which of two loss functions or the combination of them is best, we trained three U-Net
models with each loss function. All models were trained under identical settings, as detailed in
Appendix D, with the exception that the model trained with magnitude loss had a single output layer
representing the magnitude of the MRI image.

We evaluate the performance of the models in terms of their reconstruction quality as well as as a
component of MotionTTT. First, we measure the reconstruction quality on motion free data. Second,
we apply the U-Net within the MotionTTT-Th-L1 framework on data with interleaved inter-shot motion
at severity level 9, following the same setup as described in Section 6.1. Due to the requirement for a
complex-valued U-Net in the MotionTTT framework, the magnitude-only U-Net can not be used
within MotionTTT. The results are presented in the table below and show that the combined loss
function provides the best performance for both motion-free reconstructions and when used within
the MotionTTT-Th-L1 framework for correcting motion-corrupted data.

U-Net Training Loss Image Domain Loss k-space Loss Combined Loss
Motion-free PSNR 36.64 36.59 36.73

MotionTTT-Th-L1 (Severity 9) PSNR Not Applicable 35.23261 35.23587

D Hyperparameter configurations and implementation details

In this section we provide additional information for the experiments presented in Section 6 including
hyperparameter configurations and implementation details for our proposed MotionTTT and the
baselines alternating optimization and E2E stacked U-net and the MRI sequence parameters used to
acquire the data for our real motion experiments.

D.1 MotionTTT - Implementation details

In this section we discuss implementation details for the three components of MotionTTT pre-training,
test-time-training for motion estimation and reconstruction together with some computational aspects.

D.1.1 Pre-training

We train the standard U-net from the fastMRI repository [46] (MIT license) with 48 channels in the
first layer and 4 blocks in the down-/up-sampling part resulting in 17.5M network parameters. The
real and imaginary parts of the complex valued input and output images are processed in two network
channels. We train for 240 step with the Adam optimizer with learning rate 0.001 which is decayed
once by a factor of 10 after 200 steps. In every step one of the 40 training volumes is loaded and
in each plane rx × ry, rx × rz and ry × rz 20 random slices are backpropagated in three separate
batches, i.e., 3 gradient steps per step. The model was trained for 17h on a Nvidia RTX A6000 GPU.

Throughout (pretraining and test-time-training) the sensitivity maps for the experiments with simu-
lated motion are compute from 24× 24× 24 auto-calibration lines of the originally fully-sampled
motion-free k-space using ESPIRiT [41] with the BART toolbox.
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D.1.2 Test-time-training for motion estimation

To perform motion parameter estimation as outlined in Section 4 we use gradient based optimization
with the Adam [19] optimizer. Phase 1 runs for 70 iterations with an initial learning rate of 4.0, which
is decayed twice by a factor of 4 at iterations 40 and 60. The DC loss threshold used to determine
incorrectly estimated motion states after phase 1 is set to 0.575. If no motion states fall above the
threshold, the optimization continues for another 30 iterations with one additional learning rate decay
after 10 iterations. If motion states fall above the threshold, phase 2 runs for 30 iterations with a
learning rate of 0.5. Finally, phase 3 runs for another 30 iterations with a leraning rate of 0.05.

For severe motion we found that optimizing only over rotation parameters for the first few steps facili-
tates their correct estimation. To avoid single motion parameters to get stuck at a large value early dur-
ing the optimization we clamp the estimated motion parameters at [5,8,10,12,15] degrees/millimeters
for steps smaller than [15,30,45,60,150].

We use TorchKbNufft (MIT license), an implementation of the NUFFT from Muckley et al. [29] and
use the option for density compensation based on the method of Pipe [31] when applying the adjoint
NUFFT. To allow differentiation with respect to the input coordinates we build on the extension
Bindings-NUFFT-pytorch from Alban Gossard (MIT license).

D.1.3 Computational aspects

We run MotionTTT on a Nvidia L40 GPU with 46GB memory or on a Nvidia A100 GPU with 80GB
memory. Within our implementation there are three hyperparameters that control the required GPU
memory. Recall that in every iteration of MotionTTT the entire 3D volume is reconstructed slice-wise.
However, gradients are only computed for a subset of randomly selected slices of size 5 as described
in Section 4. The size of this subset is the first hyperparameter that we can control.

The second parameter is the batch size of the NUFFT. As described in Appendix A the NUFFT is
applied for each of the C coils. The TorchKbNufft package allows batch wise computation at the
cost of increased GPU memory utilization.

As in our 3D setup we have to deal with a lot more motion states (B = 50) than previous work that
studied the 2D setup, we implemented a third option to reduce GPU memory consumption. To this
end, we split the estimated motion states into two batches of size of, e.g., 25 each and backpropagate
the gradients subsequently before performing a single optimizer step that updates the estimated
motion states.

Note that hyperparameters batch size of NUFFT and of motion states per backpropagation only
affect the run time but do not change the optimization problem, where the cost of the latter could be
compensated by increasing the number of GPUs accordingly. Hence, at the cost of prolonged run
times or a larger GPU cluster MotionTTT can be applied with any number of motion states. With our
hardware and for our C = 12-many coils we could use a NUFFT batch size of 12 (4) and a batch of
50 (25) motion states for backpropagation in case of the A100 (L40) GPU.

D.1.4 Reconstruction

We perform DC loss thresholding for excluding the k-space data acquired during the i-th shot from
the reconstruction based on its estimated motion state m̂i and the DC loss (5) LTTT(m̂i) > δ with a
threshold of δ = 0.575.

We perform L1-minimization with wavelet regularization based on the estimated motion parameters.
We run 50 steps with SGD and a learning rate of 5× 107 and regularization weight λ = 10−3.

The U-Net reconstruction given the true motion parameters KnownMotion-U-net-DCLayer from
Figure 4, is obtained by fine-tuning a DCLayer as proposed in Chen et al. [4]. If the U-Net
reconstruction is xU-Net = fθ̂

(
A†(T ,−m̂)y

)
, then the reconstruction of the DCLayer is:

x̂ = argmin
x

∥A(T , m̂)x− y∥1
∥y∥1

+ λ
∥x− xU-Net∥1
∥xU-Net∥1

In the experiments, we set λ = 0.1. The choice of learning rate and number of steps is critical for
optimizing the DCLayer. After a grid searching, we identified the optimal learning rate and steps for
various severity levels, which are summarized in the following table:
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Severity Level 0, 1 2, 3, 4, 5 6, 7 8, 9
Learning Rate 1× 1010 1× 1010 1× 1010 5× 1010

Steps 20 50 100 50

D.1.5 Hyperparameters for real motion experiments

For applying MotionTTT to the real motion-corrupted data in Section 6.3 we use the same hyper-
parameter configuration as described above up to choosing a slightly smaller initial learning rate
of 1.0 during phase 1 to explore the space of motion parameters more slowly and set the threshold
parameter to 0.70 due to a generally higher DC loss level of the scanner data compared to the data
used for the simulation.

For obtaining the final reconstruction with L1-minimization based on the motion parameters estimated
with MotionTTT we set the hyperparameters learning rate to 10−8 and regularization weight to
λ = 3× 10−8.

D.2 Alternating optimization - Implementation details

To perform alternating optimization as described in Section 6.1 we run SGD with a learning rate of
5× 107 and regularization weight λ = 10−4 during the reconstruction steps and a learning rate of
5× 10−11 during the motion estimation step. In both steps the loss is the MSE between predicted
and given measurement. The optimization process is capped at 500 iterations, but it terminates early
if the reconstruction loss falls below the threshold of e13.

After alternating optimization we perform L1-minimization from scratch based on the estimated
motion parameters. We run 50 steps with SGD and a learning rate of 5 × 107 and regularization
weight λ = 10−3.

D.3 E2E stacked U-net - Implementation details

We train the stacked U-net with self-assisted priors proposed in Al-Masni et al. [1] as an example
from the class of methods for end-to-end motion correction for 3D MRI. Their method consists of a
stack of two U-nets that are trained to map the absolute value of a zero-filled (ZF) reconstruction
of the motion corrupted and undersampled measurement to the absolute value of the motion-free
image enabling end-to-end motion correction with a single forward pass through the network. The
network operates slice-wise however neighboring slices are provided as context at the network input
to account for the 3D nature of the problem.

We train the E2E stacked U-net on the same dataset and in a similar way as we trained the U-net
on motion-free data in Section D.1.1. In every step one of the 40 3D training volumes is loaded
from which the fully sampled target volume is computed as well as three different input volumes -
the motion-free undersampled ZF reconstruction and two different motion-corrupted undersampling
ZF reconstructions generated with the inter-shot motion simulation described in Section 6.1 with a
random level of motion severity and a fixed motion severity of level 1 respectively. For each training
example and level of motion severity a fixed set of three different motion trajectories is considered
during training.

We include the task of motion-free and motion severity of level 1 reconstruction in every training
step to ensure that the model does not loose too much performance when reconstructing motion-free
data compared to a model trained only for motion-free reconstruction and to bias the model towards
performing well for very mild motion artifacts as it is the regime in which end-to-end methods can
still provide reasonably good results, whereas for severe motion the reconstruction results are far
from a potential use for medical diagnosis. See Figure 7 for examples of mild and very severe motion.

For each of the three degraded volumes 20 random slices are selected in each plane rx × ry , rx × rz
and ry × rz resulting in 3 ∗ 3 ∗ 20 = 180 pairs of undersampled and potentially motion corrupted
training inputs and motion-free fully-sampled training targets per training step. As we train with a
batch size of 20, network parameters are updated 9 times per training step and 40 ∗ 9 = 360 times
per epoch.
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We train the model for 230 epochs with the L1 loss from equation (37) and the Adam optimizer with
a learning rate of 3× 10−4 which is decayed twice by a factor of 10 at epochs 200 and 220 and pick
the model from the epoch with the highest reconstruction PSNR for motion-free reconstruction on
the validation set.

We adopt the network design from Al-Masni et al. [1], where we set the number of channels in first
layer of both U-nets to 64 resulting in a total of 15.9M network parameters. We used instance norm
instead of batch norm in our network as we found it to give more stable results across levels of motion
severity.

The final motion-corrected reconstructions are obtained by reconstructing the 3D volume slice-wise
in the axial rx×ry plane. Before the PSNR scores shown in Figure 4 are computed the reconstruction
is aligned with the motion-free reference volume.

D.4 MRI sequence parameters for real motion experiments

In this section we provide additional information regarding the acquisition of our own data used in
Section 6.3. This study was exempt from Institutional Review Board (IRB), but potential risks were
disclosed to the subject and experiments were conducted with informed consent. Data was acquired
on a Ingenia Elition 3.0T X scanner (Philips Healthcare, Best, The Netherlands) using the standard
16-channel dStream HeadSpine coil array, where C = 13 channels were used during acquisition. We
perform 3D T1-weighted Ultra-fast Gradient-echo (TFE) imaging with a 1mm isotropic resolution
and a matrix-size of kx × ky × kz = 222× 236× 512, an undersampling factor of 4.94 and a linear
sampling trajectory illustrated in Figure 1 (d). We subsample the data by a factor of two along the
fully-sampled frequency encoding dimension kz to obtain a similar field of view as in our training
data with kz = 256. In one shot 204 lines in the k-space are acquired resulting in a total number of
52 shots. See Table 1 for an overview of all sequence parameters.

Table 1: Sequence parameters used in the real motion experiments.
Parameter Value

Sequence 3D T1-TFE
Flip angle (deg) 8
TR (ms) 6.7
TE (ms) 3.0 (shortest)
TFE prepulse / delay (ms) non-selective invert / 1060 ms
Min. TI delay (ms) 707
TFE factor 204
TFE shots 52
TFE dur. shot / acq (ms) 1742 / 1347
Shot interval (ms) 3000
Sampling Cartesian
Under-sampling factor 4.94
Half-scan factor Y / Z 1 / 0.85
Number of auto-calibration lines 37
Profile order random
FOV (FH x AP x RL, mm) 256 x 221 x 170
Acquisition matrix 256 x 221
Fold-over direction AP
Fat shift direction F
Water-fat shift (pixels) 1.6

E Additional experimental results

In this section we provide additional ablation studies and further qualitative examples to complement
the experimental results presented in Sections 6.1, 6.2, and 6.3 on simulated inter-/intra-shot motion
and real-motion respectively.
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Figure 7: Visual comparison with reconstructions and difference images for simulated motion of
severity level 1 (first two rows) and severity level 9 (last two rows) for all methods presented in
Figure 4.

E.1 Additional inter-shot results

We present additional results on inter-shot motion estimation, analysing reconstructions at different
levels of motion severity. Qualitative comparisons for mild and severe cases highlight the strengths
and limitations of the motion estimation methods used.

E.1.1 Additional qualitative results

Figure 5 in Section 6.1 in the main body shows reconstructed images for a simulated motion severity
level 9.

Figure 7 shows additional reconstruction results at a lower severity level (level 3); for this lower
motion severity level both MotionTTT+Th-L1 and AltOpt+Th-L1 achieve results comparable to
KnownMotion-L1.

Figure 8 shows an example of predicted motion and corresponding DC loss for a simulated inter-shot
motion scenario at severity level 9. The DC loss effectively detects incorrectly estimated motion
states, highlighting their locations. This capability is particularly useful for DC thresholding, which
improves robustness, as discussed in Section 6.1. In this scenario, MotionTTT failed in only one
shot, whereas the AltOpt method failed in 12 shots, further demonstrating the effectiveness of the
MotionTTT approach.

E.1.2 Comparison of Computational Time

Beyond reconstruction performance, computational time is an important factor for real-world applica-
tions. If the reconstruction process is too slow, the algorithm may be impractical for clinical use. The
following table summarizes the average computational times for the AltOpt and MotionTTT methods,
tested on an Nvidia A100 GPU. As shown in the table, our MotionTTT method is approximately 6
times faster than AltOpt when early stopping is applied. Without early stopping, AltOpt is even 10
times slower than MotionTTT.
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Figure 8: Example of a simulated inter-shot motion trajectory (GT motions) for severity level 9
corresponding to the example in Figure 5. Our MotionTTT (first row) estimation fails only for a
single motion state, whereas alternating optimization (second row) fails at recovering several motion
states. The corresponding DC losses and the DC threshold indicate which shots are excluded from
the reconstruction.

Method AltOpt(full run) AltOpt (early stopping) MotionTTT
Average Running Time 4 hours 15 minutes 2 hours 39 minutes 25 minutes

E.1.3 Ablation studies on the acceleration factor

In this section we investigate the role of the undersampling factor on the ability of MotionTTT to
estimate inter-shot motion. We re-train the U-net on two additional Cartesian undersampling masks
with acceleration factors R = 2, 8 in addition to the existing results with acceleration factor R = 4
(see Figure 9 a,b,c for the masks). Figure 10 shows the reconstruction performance in PSNR based on
motion parameters estimated by our MotionTTT compared to ground truth motion over three levels
of motion severity and the three acceleration factors.

As expected, the overall performance decays with increasing acceleration factors and motion severities.
For mild and moderate motion, MotionTTT achieves highly accurate motion estimation for all
acceleration factors indicated by the vanishing performance gap relative to using ground truth motion.

For the most severe motion, a small performance gap exists for all acceleration factors due to
incorrectly estimated motion states that are discarded from the final reconstruction via DC loss
thresholding. In fact, under severe motion an average of 2.5/100, 2.0/50 and 0.12/25 shots have to be
discarded for acceleration factors 2,4 and 8.

We conclude that MotionTTT can achive highly accurate motion parameter estimation robustly
across different acceleration factors. We attribute the slight increase in discarded motion states for
smaller acceleration factors to the increased complexity of the optimization problem as the number of
unknown motion states to be estimated increases linearly in the number of acquired shots.

E.2 Ablation studies for intra-shot motion estimation

In this section we present addition ablation studies for the choice of the number of motion states Nsplits
estimated per shot and the sampling order used in our experimental results on simulated intra-shot
motion estimation in Section 6.2. We also show reconstruction results from the experiments in the
main body in Figure 11.

E.2.1 Number of motion states per shot

We start with an ablation study on the choice of the hyperparameter Nsplits that determines the number
of motion states that are introduced at the end of phase 1 of MotionTTT’s optimization scheme
outlined in Section 4 for each shot that exhibits a data consistency loss larger than a certain threshold.
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a) Interleaved, R = 2 b) Interleaved, R = 8 c) Interleaved, R = 4

d) Random, R = 4 e) Linear, R = 4 f) Determinsitc, R = 4

Figure 9: Undersampling masks used in the ablation studies in Appendix E for different acceleration
factors R ∈ {2, 4, 8} with corresponding number of shots {25, 50, 100} such that a constant number
of k-space lines is acquired per shot. The color coding illustrates the sampling trajectory (interleaved,
random or linear) indicating which k-space lines are sampled within the same shots.
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KnownMotion-L1, R = 2
MotionTTT+Th-L1, R = 2
KnownMotion-L1, R = 4
MotionTTT+Th-L1, R = 4
KnownMotion-L1, R = 8
MotionTTT+Th-L1, R = 8

(10,2) (10,5) (10,10)

Figure 10: Performance of L1-minimization with known motion versus with motion estimated by
MotionTTT over three different levels of motion severity (defined in Figure 4) for acceleration factors
R = 2/4/8. Results are averaged over 4 validation examples with 2 motion trajectories each.

Figure 11: Reconstructions and difference images for simulated intra-shot motion of severity level 6.
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Table 2: Reconstruction performance of MotionTTT+Th-L1 in PSNR averaged over four validation
examples and five randomly generated motion trajectories per example together with the average
number of discarded k-space lines due to DC loss thresholding before the final reconstruction. We
compare the performance of four different sampling orders random, deterministic, interleaved and
linear for intra-shot motion correction.

Sampling order Random Deterministic Interleaved Linear

PSNR (dB) 36.05 36.06 35.67 33.52
# of discarded lines 197 177 516 3389

As discussed in Section 6.2, the choice of this hyperparameter trades off the irreducible discretization
error versus the available signal per estimated motion state and the computational complexity.

The discretization error results from estimating only Nsplits-many motion states for a shot that when
affected by intra-shot motion exhibits a distinct motion state for each k-space line (182 in our setup)
acquired within this shot. The error decreases with increasing Nsplits and depends on severity of
motion as fast movements with a large amplitude result into a large discretization error.

On the other hand, increasing Nsplits decreases the amount of k-space signal per estimated motion
state potentially leading to more incorrectly estimated motion states. Additionally, doubling the
number of motion states Nsplits doubles the computational complexity of phase 2 if the available
hardware does not allow for parallelization (see Appendix D.1.3 for a discussion of computational
aspects).

To find the value for Nsplits that trades off those two effects, we conduct the following experiment.
We simulate motion trajectories containing 5 intra-shot motion events following Section 6.2 with
maximal motion Mmax = 5. We assume that all motion parameters are known except the ones during
the intra-shot events. We then apply MotionTTT+Th-L1 with a random sampling order to estimate
the motion states during intra-shot motion for different levels of discretization defined by the number
of motion states per shot Nsplits ∈ {5, 10, 20}. This simulates the case where phase 1 of the intra-shot
motion estimation scheme perfectly estimates the inter-shot motion parameters and detects all shots
corrupted by intra-shot motion for which then motion parameters are estimated during phase 2. This
allows us to focus the evaluation solely on the ability of the method to perform intra-shot motion
estimation independently from the performance in phase 1.

We obtain PSNRs averaged over the four examples in the validation set and five simulated motion
trajectories per example as 35.84, 36.05 and 36.07 for Nsplits = 5, 10 and 20. Further, the average
numbers of k-space lines that are discarded due to DC loss thresholding before the final reconstruction
are 289, 197 and 302 out of 5 ∗ 182 = 910 lines affected by intra-shot motion.

For Nsplits = 5 we obtain the lowest performance, which we attribute to a large discretization error,
which even results into more motion states with a DC loss above the threshold than for Nsplits = 10.
For Nsplits = 10, 20 we obtain the same performance, however due to different reasons. While
for Nsplits = 20 a smaller discretization error can be achieved, more motion states are estimated
incorrectly and are discarded due to a more difficult optimization problem as more motion states are
estimated with less signal per motion state. We use Nsplits = 10 for our experiments in Section 6.2 as
it corresponds to smaller computational costs for the same performance.

E.2.2 Sampling order

Next, we present an ablation study on the role of the sampling order for the ability of MotionTTT to
estimate intra-shot motion as in Section 6.2.

In order to focus our evaluation on the performance for intra-shot motion estimation, we consider the
same experimental setup as in Appendix E.2.1, where we simulate motion trajectories containing
5 intra-shot events with maximal motion Mmax = 5, apply MotionTTT only to the motion states
affected by intra-shot motion and assume all other motion states to be known. We fix the number
of motion states per shot to Nsplits = 10 and report the performance for different sampling orders
including the interleaved and random sampling orders used for the inter- and intra-shot motion
experiments, as well as a linear and a deterministic order. See Figure 9 masks c)-e) for visualizations.
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The linear order acquires k-space lines according to their ky index from low to high. Hence, all
shots towards the start and end of the scan only contain high-frequency components. The interleaved
order distributes high-/low-frequency components evenly across shots, but within one shot the order
follows the kx index from low to high. Hence, all k-space lines acquired towards the start and end of
one shot are high-frequency components. The random order acquires all k-space lines at a random
order. The deterministic order we designed such that the average distance to the center of the k-space
of two k-space lines acquired after each other is approximately constant, which ensures that after the
acquisition of a high-frequency components a low-frequency component is acquired. The random,
interleaved and deterministic orders all start by sampling the 3× 3 center of the k-space.

Table 2 shows the average performance of MotionTTT+Th-L1 in PSNR for each sampling order as
well as the average number of k-space lines that are discarded due to the DC loss thresholding before
the final reconstruction.

While random and deterministic orders perform equally, the interleaved order results in more in-
correctly estimated motion states. For the linear order we obtain a significant loss in performance,
and over a third of the 9078 lines acquired in total are discarded including many lines that are not
affected by intra-shot motion and for which we assume knowledge of the true motion state in this
experiments. In fact, under the linear order entire shots at the start and end of acquisition are discarded
due to their large DC loss despite assuming knowledge of the motion states. We attribute this to
the U-net used during MotionTTT reconstructing high-frequency components not as faithfully as
low-frequency components, and conclude that in order to reliably estimate the motion state of a batch
of measurements the batch needs to contain low-frequency components.

The deterministic order fulfills this requirement by design and the random order with high probability
as for the number of motion states per shot Nsplits = 10 the smallest batch of measurements we
consider consists of about 18 k-space lines, which is large enough to contain both high- and low-
frequency components especially as the center of the k-space is much more densely sampled than
towards the edge. In our experiments we hence use a random sampling scheme due to its ease of
implementation on top of any arbitrary design of the undersampling mask.

E.3 Results from Real Motion Experiments

We now discuss the real motion experiments from Section 6.3 in more detail.

Visual reconstruction analysis. Figure 12 shows the reconstruction of the volume in three orthog-
onal planes (axial, sagittal, and coronal). For mild motion, artifacts are still noticeable, particularly in
the ky-kz plane. However, the MotionTTT-L1 method effectively mitigates most of these artifacts,
resulting in a much clearer reconstruction than the other methods. For strong motion, many details
across all three planes are entirely occluded, yet the MotionTTT-L1 method significantly improves
image quality, restoring visibility to numerous details that would otherwise be lost due to severe
motion.

Estimated motion parameters and DC loss. Figure 13 shows the estimated motion parameters as
well as the DC loss (5) per state for the strong motion example. The number of motion states is 69,
which results from starting phase 1 of MotionTTT with 52 motion states (one per shot), of which four
exceeded the threshold after phase 1. As the number of additional motion states per corrupted shot is
Nsplits = 10, phase 2 and 3 continue with 92 motion states from which 23 were discarded during the
final DC loss thresholding resulting in the 69 motion states depicted in Figure 13. The areas shaded
in gray correspond to the motion states that were added after phase 1, i.e., intra-shot motion states,
whereas the white areas correspond to motion states each pertaining a single shot. Consequently,
the predicted motion and the DC loss of MotionTTT (phase 1) is constant within the gray areas as
intra-shot motion estimation is performed starting from phase 2. As we can see intra-shot estimation,
i.e., MotionTTT (phase 3) significantly reduced the DC loss compared to phase 1 and the estimated
motion is reasonably smooth, indicating the benefit of estimating intra-shot motion in practice.
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Figure 12: Visual comparison in three planes of reconstructed data corrupted with real mild/strong
motion and no motion. Our MotionTTT-L1 achieves significant gains in image quality compared to
L1 without any motion correction.
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the experiments?

Answer: [Yes]

Justification: Training costs are stated in Appendix D and the run times of our MotionTTT
and the baseline in Section E.1.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

32

https://neurips.cc/public/EthicsGuidelines


Justification: The proposed method is targeted at the specific problem of correcting motion
artifacts in MRI, which potentially improves the quality of medical diagnosis and increases
the effective patient throughput of the MRI machine as discussed in Section 1. We can not
see any negative societal impacts arising from the proposed approach.
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