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Abstract

Knowledge distillation is an efficient strategy to use data generated by large teacher1

language models to train smaller “capable” student models, but selecting the2

optimal teacher for a specific student-task combination requires expensive trial-3

and-error. We propose a lightweight score called GRACE to quantify how effective4

a teacher will be when post-training a student model to solve math problems.5

GRACE efficiently measures distributional properties of student gradients, and it6

can be computed without access to a verifier, teacher logits, teacher internals, or test7

data. From an information-theoretic perspective, GRACE measures leave-one-out8

stability in gradient-based algorithms, directly connecting it to the generaliza-9

tion performance of distilled student models. On GSM8K and MATH, GRACE10

correlates strongly (up to 86%) with the performance of the distilled Llama and11

OLMo students. In particular, training on GRACE-selected teacher provides at12

least a 6% improvement over naively using the best-performing teacher. We further13

demonstrate the utility of GRACE in providing guidance on crucial design choices14

in distillation, including (1) the best temperature to use when generating from the15

teacher, (2) the best teacher to use given a size constraint, and (3) the best teacher16

to use within a specific model family. Altogether, our findings demonstrate that17

GRACE can efficiently and effectively identify the most compatible teacher for a18

given student and provide fine-grained guidance on how to perform distillation.19

1 Introduction20

Distillation is a powerful way to train small models from large teachers. We study the case of training21

autoregressive language models on teacher-generated text. Choosing the right teacher is challenging:22

stronger models are not always better teachers, as shown in both classic classification/regression23

settings (Mirzadeh et al., 2019; Harutyunyan et al., 2023; Panigrahi et al., 2025) and recent language24

models (Zhang et al., 2023b,a; Peng et al., 2024; Razin et al., 2025). With many potential teachers,25

the current guess-and-check approach is costly, requiring collecting generations from teacher and26

retraining. Further, hyperparameters in both stages strongly influence outcomes, demanding repeated,27

careful experimentation. As such, the current work seeks to address the following question:28

Given a pool of candidates, can we efficiently identify the best teacher for a given student and task?29

We propose a score “GRACE” (GRAdient Cross-validation Evaluation) that measures the distribu-30

tional properties of the student’s gradients to identify the most compatible teacher efficiently and31

effectively (Section 2.1). Motivated by prior data selection and distillation works, GRACE unifies32

data diversity and student-teacher alignment desiderata into a single score that is efficient to compute33

and does not require access to an external verifier, teacher logits, teacher representations, or test34

data. Computing GRACE requires relatively few samples from each teacher, because it uses a35

cross-validation structure. Extensive experiments on math-related datasets show:36

• GRACE correlates strongly with the student’s distillation performance (Figure 1), outperforming37

baselines such as G-Vendi (Jung et al., 2025).38



Figure 1: GRACE correlates most strongly with student performance after distillation on
math-related reasoning tasks. Results in this figure are for a LLaMA-1B-Base student on GSM8K
and MATH using 15 teachers of different sizes across the LLaMA, Gemma, Qwen, OLMo, and
phi families. (Left) We compare the Spearman correlations between final student performance and
four candidate scores: the student’s loss on teacher generations, the teacher’s performance on the
task, G-Vendi (Jung et al., 2025), and our score GRACE. (Right) We plot how our score GRACE
compares to the final student performance on GSM8K, measured by the average accuracy of 16
response attempts on each prompt in the test set.

• Selecting teachers using GRACE yields more than 6% improvement in student accuracy compared39

to using the best-performing teacher, on both GSM8K and MATH. Moreover, students trained on40

teachers selected by GRACE reach within 1% of the absolute best outcome.41

• GRACE offers actionable insights to practitioners. It helps identify 1) the optimal generation42

temperature for a given teacher model, 2) the best model up to a certain size across model families,43

and 3) the best size within a model family.44

These results indicate that GRACE reliably identifies the most suitable teacher for a given student45

and offers precise guidance for effective distillation on math-related tasks.46

2 GRACE: Gradient Cross-Validation Evaluation47

We study distillation for fine-tuning a pre-trained student model on downstream tasks. For each of48

the N prompts x ∈ X , we sample M responses y1, . . . , yM from a teacher distribution πT (with49

sampling temperature). The student is then fine-tuned with the standard autoregressive cross-entropy50

loss L on the resulting datasetDdistill
T of N×M teacher generations. Student and teacher performance51

is measured by average accuracy over k sampled responses (average-at-k). We denote the student as52

πS , with parameters ΘS ∈ RD.53

Gradient-Based Scores. Selecting a teacher for distillation parallels data selection: choosing a54

teacher’s generations is equivalent to selecting a subset from the union of all teachers, with the55

constraint that each subset comes from one teacher. While data selection methods for language56

models often use first- or second-order gradient information to score individual datapoints, our goal57

is to evaluate entire data distributions (teachers). Thus, we adapt gradient-based measures to capture58

distributional quality. For a teacher πT , we assume access only to a subsampled evaluation set59

Deval
T ⊂ Ddistill

T of size n×m, which may be much smaller than the full N ×M (in our experiments,60

60× smaller; see Section 3).61

We establish some useful notations first. Let g(x,y) := ∇L(y|x; ΘS) be the student’s gradient on62

the response y conditioned on prompt x. Since all gradients are computed with respect to the student63

model’s parameters, we omit the explicit dependency on ΘS for notational clarity. For efficiency, we64

use a random projection Π ∈ {±1/
√
D}d×D (Park et al., 2023) and rescale by log |y| to correct the65

∼ 1/ log T decay of gradient norms with sequence length (Xia et al., 2024). The processed gradient66

is h(x,y) := log(|y|) ·Πg(x,y).67

For a dataset D of generations, we also define the matrix consisting of processed gradients (h) as68

G(D) ∈ Rnm×d and processed and normalized gradients (h̃ = h/∥h∥) as G̃(D) ∈ Rnm×d. We69

then define Σ̃(D) := 1
nmG̃(D)⊤G̃(D), and µ(D) := 1

nmG(D)⊤1.70
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Figure 2: GRACE achieves 86% Spearman correlation to Llama-1B’s post-distillation perfor-
mance on GSM8K, much higher than G-Var (55%) and G-Vendi (44%).

Directional coverage and variance. We consider two key distributional properties for optimization.71

The first is a notion of diversity, or directional coverage of the gradients, which measures how spread72

out the spectrum of Σ̃ is. For example, the G-Vendi score proposed in (Jung et al., 2025) computes73

the effective rank of the Σ̃, where a larger score is better. However, we find that G-Vendi is not74

sufficient for selecting a teacher. For instance, self-distillation leads to a high G-Vendi score but poor75

performance. This motivates us to consider additional properties orthogonal to the notion of coverage.76

We find gradient variance to be importance, which we denote by G-Var; a smaller G-Var is better.77

Empirically, we find that G-Var provides different distinctions than G-Vendi, but it is insufficient78

itself. This motivates us to combine the two into a unified score. We provide more details for G-Vendi79

and G-Var in Appendix D, and introduce the unified score next.80

2.1 The GRACE Score81

GRAdient Cross-validation Evaluation, or GRACE, computes the gradient variance weighted under82

the spectrum of the normalized gradient Gram matrix.83

GRACE. For a dataset D of teacher generations containing n×m prompt-generation pairs, and84

a choice of hyperparameter C, construct C partitions of the prompts in the dataset D, denoted85

{Di}Ci=1, each containing n/C prompts and their generations. Let D−i denote the concatenation of86

all partitions except the partition Di. Then, GRACE is defined as87

GRACE(D) = 1

nm

C∑
i=1

Tr
(
Gµ(Di)M(D−i)

−1Gµ(Di)
⊤) (1)

=
1

nm

C∑
i=1

∑
(x,y)∈Di

∥M(Di)
−1/2(h(x,y)− µ(D))∥2, (2)

where M(D−i) = Σ̃(D−i) +
ν
d I with smoothing parameter ν > 0 for numerical stability.88

A smaller GRACE score indicates a better distillation teacher. GRACE combines the spectral89

information of G-Vendi with the variance computation in G-Var. In particular, we can interpret90

GRACE as spectral-weighted gradient variance: for a random partition (D1,D2), if {λj ,uj}j∈[d]91

denote the set of eigenvalues and eigenvectors for Σ̃(D2), then GRACE computes the following92

for the given partition, i.e.
∑

j∈[d]
1

σj+
ν
d

(
1

|D1|
∑

(x,y)∈D1
(h(x,y)⊤uj)

2
)
. A small GRACE score93

requires the gradients to have a small variance along all eigenvectors of Σ̃, and it penalizes the94

variances in directions where the eigenvalue is small more heavily. Variance along such high-signal95

directions is more harmful, because even small amounts of noise can induce instability or poor96

generalization. We consider the spectrum of the normalized gradients, since direction of the gradients97

is more relevant than scale with the use of adaptive optimizers and normalization layers (Loshchilov &98

Hutter, 2017; Ba et al., 2016; Li et al., 2022). Please refer to Appendix E, where we show connection99
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Figure 3: GRACE achieves > 80% correlation with the performance of Llama-1B on GSM8K
and Llama-3B on MATH. Teacher performance and the pre-trained student’s loss on teacher
generations show only weak correlations.

to leave-one-out conditional mutual information, a commonly used tool to study generalization (Xu100

& Raginsky, 2017; Steinke & Zakynthinou, 2020; Rammal et al., 2022).101

3 Experiments102

Experiment details: We compare G-Var, G-Vendi, and GRACE on two math reasoning benchmarks,103

GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021), which offer many strong teacher104

models. Performance is measured as average-at-k: the mean binary correctness across k sampled105

responses per prompt.106

Student model is taken to be Llama-1B-base or OLMo-1B-base on GSM8K (Cobbe et al., 2021),107

and Llama-3B-base on MATH (Hendrycks et al., 2021). We compare 15 teachers: Llama-(3.2/3.3)108

3/8/70B Instruct models, Qwen-2.5 1.5/3/7/14B Instruct models, Qwen-2.5 Math 1.5/7B Instruct109

models, Gemma-2 2/9/27B Instruct models, OLMo 7/13B Instruct models, and Phi-4 on both MATH110

and GSM8K (Dubey et al., 2024; Abdin et al., 2024; Yang et al., 2024; Qwen et al., 2025; Team,111

2024). The teacher’s generation temperature is varied from 0.3 to 1.0 at 0.1 intervals. Experiment112

details are in sec.B and details of our additional baselines in sec.G.1.113

Experiment results: Figure 2 shows that for a Llama-1B model trained on GSM8K, GRACE114

achieves the best Spearman correlation with the student performance on (0.86) when compared115

against G-Var (0.55) and G-Vendi (0.44). Additional experiments with an OLMo-1B model trained116

on GSM8K (Figure 4) and with a Llama-3B model trained on MATH (Figure 8) verify the utility of117

GRACE. In addition to G-Vendi and G-Var, we also compare against other data selection baselines118

(Figure 3); a full list is provided in Appendix G.1. Among all scores, GRACE is the only one to119

achieve consistently high correlation (> 85%) with student performance on both GSM8K and MATH.120

In contrast, two intuitive baselines fail to reflect the student’s distillation performance. The first is121

the teacher’s own performance, measured in terms of its Average-at-16 performance, which only122

shows a weak correlation of 11% for Llama-1B on GSM8K, in agreement with findings in prior123

work (Mirzadeh et al., 2019; Harutyunyan et al., 2023; Panigrahi et al., 2025; Zhang et al., 2023b,a;124

Peng et al., 2024; Razin et al., 2025). As an example, Llama-70B Instruct has the best performance125

among all teachers, yet a student trained with Llama-70B Instruct reaches only 46% Average-at-k126

performance. This is a 6.5% gap to the best performing student which has 52.5% accuracy. Similarly,127

the student’s loss on teacher’s generations, measured on the base student, is also poorly correlated128

with the student’s post-distillation performance (44% with Llama-1B training on GSM8K).129

Discussion and Conclusion: We give additional experiments in Appendix C. Primarily, we show130

that GRACE can be used to predict (1) the best temperature to use when generating from the teacher,131

(2) the best teacher to use given a size constraint, and (3) the best teacher to use within a specific132

model family. Thus, GRACE provides a reliable metric to select the best teacher to distil to a student133

on math-related tasks.134
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A Related work279

Knowledge distillation Knowledge distillation is a classic method used to improve the optimization280

and generalization of a small model (Hinton et al., 2015). A counterintuitive finding is that a better-281

performing model is not necessarily a better teacher, which has been observed in both classic282

classification or regression settings (Mirzadeh et al., 2019; Jafari et al., 2021; Harutyunyan et al.,283

2023) and more recently in language models (Zhang et al., 2023a,b; Xu et al., 2024; Panigrahi et al.,284

2025). For language models, one can distill from either the logits of the teacher or the generated285

texts. 1 While the former can lead to better student performance, it is more computationally costly,286

requires higher access, and is less flexible due to tokenizer choices. We hence focus on distilling from287

generated texts (Eldan & Li, 2023; Li et al., 2023; Busbridge et al., 2025). Recent work by Guha et al.288

(2025) supports our findings: they demonstrate that a weaker teacher can yield a stronger distilled289

model, that distillation benefits from increased sample size, and that filtering has little impact on the290

resulting student’s performance.291

Data selection For text-based distillation, selecting the best teacher can be considered as the292

problem of choosing the most useful subset of samples from the generations of all teachers. This293

aligns with the broad task of data selection, which aims to identify subsets of data that maximize294

certain utility (Sorscher et al., 2022; Albalak et al., 2024). Many approaches leverage gradient295

information (Mirzasoleiman et al., 2019; Killamsetty et al., 2020; Pruthi et al., 2020; Xia et al.,296

2024), including some that directly rely on notions of coverage (Ash et al., 2019; Jung et al., 2025).297

Directional coverage also ties to the notion of coverage in reinforcement learning. Specifically,298

autoregressive training on teacher generations can be viewed as a form of behavior cloning, for which299

increasing the coverage is provably beneficial (Song et al., 2024; Huang et al., 2025; Rohatgi et al.,300

2025). Despite these similarities, distillation differs from standard data selection in that it allows301

generating new data and offers a richer design space (Peng et al., 2024). An effective teacher-selection302

score should therefore be versatile and broadly applicable across scenarios, a property that GRACE303

demonstrates as shown in Appendix C.1.304

B Additional experiment details305

To compute our scores, we use a subset of n = 512 randomly selected training prompts from the306

training set, with m = 4 generations per prompt. For GRACE, we use C = 10-way cross validation.307

The student gradients are randomly projected to dimension d = n = 512; we provide ablation results308

on these hyperparameter choices in Appendix C.2.309

Each distillation training run uses learning rate2 10−5 and 4 epochs over the training set. We use310

the cosine learning rate schedule with 5% warmup, 0 weight decay, and batch size 64. We generate311

M = 16 responses per prompt from each teacher and fine-tune the student on all generations without312

filtering for correctness of the final answer.3 We compare correlations of our metric to average-at-16313

performance for the trained student model when responses are generated at temperature 1.0. 4 We314

discuss later in Appendix C.2 the results change when we look at other performance metrics. The315

computation costs for computing GRACE are provided in Appendix G.3.316

C Additional Experiments317

Teacher selection requires balancing directional coverage and variance. As a case study, we com-318

pare different teachers under a fixed generation temperature of 0.6 (Figure 5). G-Var clearly separates319

Qwen-Instruct from Llama-Instruct teachers but fails to distinguish between Qwen, Phi-Instruct, and320

Qwen-Math-Instruct, suggesting that a low gradient variance alone is insufficient to identify the best321

teacher. On the other hand, although G-Vendi provides better separation among teachers with low322

G-Var, it also assigns higher scores to sub-optimal teachers, indicating that directional coverage by323

1We consider generations following standard next-token distributions, as opposed to antidistillation sam-
pling (Savani et al., 2025).

2We searched over learning rates {5× 10−5, 10−5, 5× 10−6} and found 10−5 to be consistently the best.
3Surprisingly, our ablations in Appendix H.1 show that our results are not significantly affected if we filter by

correctness.
4Results for greedy decoding is included in Figure 11 in appendix.
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Figure 4: GRACE achieves 74% Spearman correlation to OLMo-1B’s post-distillation perfor-
mance on GSM8K, significantly outperforming G-Var (43%) and G-Vendi (48%).

Figure 5: GRACE can effectively correlate with student performance when compared across
different teacher choices. Here, we report Llama-1B performance on GSM8K across different
teacher choices at a generation temperature 0.6. GRACE achieves 90% correlation with student
performance after training, while also predicting Qwen-3B-Instruct to be the optimal teacher. The
black triangles mark the best teacher selected by each score. Gap denotes the performance gap
between the best performing student and student trained under the best teacher selected by each score.

itself is also inadequate. In contrast, GRACE achieves the strongest correlation (92%) and correctly324

identifies Qwen-3B-Instruct as the optimal teacher.325

C.1 Guiding distillation practice with GRACE326

GRACE can go beyond identifying the best teacher and inform distillation practices. Below we327

discuss how GRACE provides guidance under common scenarios.328

Selecting generation temperature. The temperature τ used to rescale the teacher’s logits when gen-329

erating responses is known to have a strong influence on student performance after distillation (Zheng330

& Yang, 2024; Peng et al., 2024). However, there hasn’t been a principled approach to choose the331

temperature. We show in Figure 6 that GRACE can identify such a good generation temperature for332

two Qwen teachers: it closely predicts the optimal generation temperature for Llama-1B training,333

which are 0.8 (vs. predicted 0.9) with the 3B teacher and 0.4 (vs. predicted 0.5) with the 1.5B teacher.334

In comparison, G-Var and G-Vendi tend to increase monotonically with the temperature, even though335

the student’s performance shows an inverse U-shape in temperature. In Figure 7 (left), when averaged336

across all temperatures, we find that GRACE achieves 75% correlation with the student performance,337

outperforming the 53% and 59% correlations by G-Var and G-Vendi.338

Selecting a teacher under a size budget. In practice, one common resource constraint for distillation339

is the compute required to locally host open-source teachers. Motivated by this, we test whether340

GRACE can be used to select a teacher under a given size. Specifically, we evaluate three scale341

constraints: (1) 3B and below, (2) 10B and below, and (3) 30B and below. As shown in Figure 7342

(right), GRACE is highly effective, reaching more than 75% correlations and consistently identifying343

the best teacher under all three size budgets, while the baseline scores are much less reliable. Such344
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Figure 6: GRACE can identify a good generation temperature. Results are shown for Llama-
1B trained with Qwen-2.5-1.5B-Instruct and Qwen-2.5-3B-Instruct teachers on GSM8K. GRACE
correctly identifies that (1) a lower temperature is optimal for Qwen-2.5-1.5B-Instruct, and (2) a
higher temperature is effective for Qwen-2.5-3B-Instruct. In contrast, G-Var can only identify (1)
and G-Vendi can only identify (2).

Figure 7: GRACE is effective at predicting behavior of student performance with teacher
generation temperature (left) and the best teacher up to a certain size (right)). Results are for
Llama-1B on GSM8K. (Left) When varying the generation temperature for a fixed teacher, GRACE
gets a consistent strong negative correlation (75%). In contrast, all other scores do not show consistent
trends across teachers. Violin plots show the distribution over teachers. (Right) GRACE achieves
high correlation (75% and above) to performance for teachers under various size constraints.

difference is also reflected by the performance gap between the student trained by the ground truth345

best teacher, and the student trained by the teacher selected by each score. The gaps for GRACE are346

under 1% across all groups, indicating that it is often close to selecting the optimal teacher, whereas347

G-Vendi and G-Var can induce performance gaps of at least 5% for teacher sizes below 10B.348

Selecting teachers within a model family Another practical limitation is the family of models that349

one can access, motivating us to test GRACE against models within each model family. We split350

the teacher models by model family and consider all generation temperatures. Since some families351

include only a small number of teachers, the Spearman correlations can be unreliable. We hence352

report the performance gap between learning from the true best teachers and from the teacher selected353

by a score. As shown in Figure 13, when averaged across all families, GRACE achieves a gap of just354

1%, whereas other metrics yield average gaps of at least 3% or more. Moreover, we note that it is not355

always preferred to choose teacher from the same family as the student. For example, a Llama-1B356

base student learns better from a Qwen-Instruct teacher than any of Llama-Instruct teachers.357

C.2 Ablations358

We test the effect of various hyperparameters used in the GRACE computation. We vary the number359

of prompts (n), the number of generations per prompt (m), and the dimension of the gradient random360

projection (d). For the Llama-1B student on GSM8K, we find that GRACE is generally robust to361

these hyperparameter choices, and the default values (m = d = 512, m = 4) work well (see details362

in Appendix H.3). We also vary the number of cross-validation splits used in GRACE. For both363

GSM8K and MATH, the correlation with student performance remains fairly stable once C >= 6364

(Figure 20), so we set C = 10 for our experiments.365
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To test the robustness with respect to teacher selection, we evaluate correlations on random subsets366

of teachers. In addition to the case studies in Appendix C.1, we repeatedly compute scores over367

random subsets of teachers. As shown in Figure 22 and Figure 23, GRACE consistently maintains368

high correlations across these subsets (see details in Appendix H.5).369

We further examine how correlations change when replacing Average-at-k with other evaluation370

metrics. For GSM8K, we find that Spearman correlation drops when switching from Average-at-k371

to either greedy or best-of-k accuracy, even though GRACE still identifies the best teacher model372

(Figures 11 and 12). Greedy reflects performance from a single generation at temperature 0.0, and373

best-of-k measures whether the student answers correctly at least once over k responses at generation374

temperature 1.0. A deeper investigation into the discrepancy between Average-at-k and these discrete375

performance metrics is left to future work.376

D Key properties: G-Vendi and G-Var377

G-Vendi (Jung et al., 2025). One natural distributional measure of data quality is diversity. Along378

these lines, Jung et al. (2025) propose the G-Vendi score, which measures the directional coverage of379

D as the entropy of the eigenvalues of the gradient Gram matrix.380

G-Vendi(D) := Entropy(λ(Σ̃(D))) = −
∑

λ∈λ(Σ̃(D))

λ log λ, (3)

where λ(Σ̃(D)) denotes the eigenvalues of the normalized gradient gram matrix with |λ(Σ̃(D))| =381

min{nm, d}. A larger G-Vendi score is better. Jung et al. (2025) use G-Vendi to select an optimal382

subset of training dataD from a full dataset generated by a single teacher. However, using G-Vendi to383

select a teacher out of many candidates may yield suboptimal choices. For example, when performing384

self-distillation, where the student serves as its own teacher, we find that the G-Vendi score for GSM8K385

(5.93) is higher than all other teacher models, even though the resulting student’s performance is as386

low as 4%. This observation leads us to investigate another gradient-based distributional score.387

G-Var. Prior works have shown that reducing gradient variance can boost generalization perfor-388

mance (Wang et al., 2013; Keskar et al., 2016; Wang et al., 2021; Feng & Tu, 2021). As such, we389

also compute the gradient variance (G-Var) as390

G-Var(D) := 1

nm
Tr

(
Gµ(D)Gµ(D)⊤

)
=

1

nm

∑
(x,y)∈D

∥h(x,y)− µ(D)∥2, (4)

where Gµ(D) = G(D) − 1µ(D)⊤ denotes the centered processed gradient matrix. A smaller391

G-Var score is considered better. Though G-Var alone is also insufficient. For example, on GSM8K,392

G-Var’s value is largely determined by the model family and not reflecting the student’s performance393

(Figure 2).394

G-Var and G-Vendi together capture complementary distributional properties and can sometimes395

trend in different directions. For instance, we find that increasing the teacher’s generation temperature396

increases G-Var, suggesting that higher temperatures induce worse data, but also increases G-Vendi,397

indicating higher diversity (Figure 6).398

E Connecting GRACE to leave-one-out CMI399

GRACE connects naturally to leave-one-out conditional mutual information (CMI), a frequently400

used concept in studying generalization (Xu & Raginsky, 2017; Steinke & Zakynthinou, 2020;401

Rammal et al., 2022). At a high level, CMI captures how much gradient updates are sensitive to402

removal of a sample and how much of this sensitivity can be tracked to the dropped sample. A403

higher sensitivity suggests necessary memorization to reduce loss on the training set D, which can404

lead to low generalization to unseen test examples. Under this framework, we show that GRACE405

successfully unifies G-Var and G-Vendi.406

Formally, we overload g(D; Θ) = 1
|D|

∑
(x,y)∈D g(x,y; Θ) to denote the gradient update on a dataset407

D. To keep our discussion general, we consider g(D; Θ) that uses gradients and a preconditioner408
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matrix M:409

g(D,Θ) = M(D; Θ)g(D; Θ) + ϵ,

where ϵ ∼ N (0, σ2I) denotes the gradient noise. Setting M as identity recovers gradient descent,410

and setting M as a function of gradient second moments recovers various adaptive algorithms in411

practice.412

Let Θ′
D denote the resulting parameters after a gradient update with D, and Θ′

D\{(x,·)} denote413

the parameters from a set where all training data connected to a uniformly sampled prompt x are414

dropped from the training set D, then CMI measures the mutual information between the parameters415

Θ′
D\{(x,·)} and the dropped prompt x. We show that CMI can be bounded as follows:416

Lemma E.1 (Informal). Let C = n, then for any D′, take M(Θ,D′) := Σ(D′)−1/2, then CMI is417

bounded by 1
σ2n2 GRACE(D).418

Choice of M for GRACE: We defined GRACE based on a particular choice of the pre-conditioner419

matrix in the definition of CMI. This is motivated by the adaptive optimization algorithms used in420

practice (Kingma, 2014; Loshchilov & Hutter, 2017; Duchi et al., 2011). In principle, one could421

obtain sharper predictions by choosing M optimally. We leave a more thorough exploration of this422

direction to future work.423

(TODO: smooth out the writing here)424

E.1 Informal discussion425

All our discussion assumes that we don’t apply a pre-processing function h and we look into the426

original gradient space in this section.427

Suppose the parameters of the student model are denoted by ΘS ∈ RD. For theoretical presentation428

purposes, we collect 1 response per prompt from the teacher on n prompts, forming the training set429

D. Our theoretical statements can be generalized to the case, where we collect multiple responses for430

each prompt. We will use Ê as the empirical mean. Let U = U(x ∈ D) be a random variable that431

selects a prompt x̂ uniformly at random and removes all prompt–response pairs associated with it.432

The resulting dataset is433

DU := D \ {(x̂, ŷ)}.

We then perform a single gradient update with a preconditioner matrix M that can depend on the434

training set DU :435

Θft;U ← ΘS − η E(x,y)∼DU

[
M(DU ; ΘS)∇L(y|x; ΘS)

]
+ ϵ, (5)

where ϵ ∼ N (0, σ2I) denotes Gaussian noise.436

We measure the CMI between the updated parameters Θft;U and the random variable U , defined as437

I(Θft;U ;U | D). This quantifies how much information about the omitted prompt x̂ can be inferred438

from the updated parameters after training. For simplicity of notation, we define the following439

notations, following our notation on GRACE:440

µ(D \ {(x̂, ŷ)}) = ÊD\{(x̂,ŷ)}∇L(y|x; ΘS)

Σ̃(D \ {(x̂, ŷ)}) = 1

(n− 1)m
G̃⊤G̃

where G̃ contains normalized gradients from examples in the set D \ {(x̂, ŷ)}.441

Lemma E.2 (Informal). Under the one-step update rule on the parameters Θ (Equation (5)),442

I(Θft;U ;U |S) ≲
2η2

σ2n2
Ê(x̂,ŷ) ∥M(D \ {(x̂, ŷ)}; ΘS) ḡx̂,ŷ∥22

If we use gradient descent and set M as I, we get G-Var that uses mean shifted gradients. If443

instead we choose M as the inverse normalized gradient covariance matrix, i.e. MD\{(x̂,ŷ)} =444

Σ̃(D \ {(x̂, ŷ)})−1/2, we recover GRACE.445
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The lemma indicates that GRACE evaluates the stability of a one-step gradient update when few446

prompts are removed from the batch. Importantly, the outcome of this update depends on the447

optimization method, since gradient descent and preconditioned updates can behave differently. In448

our setting, the preconditioner matrix is closely related to the one used in AdaGrad (Duchi et al.,449

2011). Since adaptive optimizers are the de facto choice for training language models, it is essential450

to incorporate this preconditioning effect in our analysis. In principle, one could obtain sharper451

predictions by choosing M optimally. This might require a short warm-up training phase of the452

student model and setting M as a function of the optimizer states during the warm-up training, akin453

to Xia et al. (2024). We leave a more thorough exploration of this direction to future work.454

Note on theoretical limitations: Our current analysis only establishes a connection between GRACE455

and leave-one-out conditional mutual information. Prior work by Rammal et al. (2022) shows that456

this quantity upper-bounds the generalization gap in terms of the gap between train and test loss.457

By contrast, our experiments focus on tracking the student model’s test performance using GRACE.458

Empirically, we find that GRACE serves as a reliable predictor of student performance, even though459

it fails to correlate with loss-based quantities. This gap highlights the need for a stronger theoretical460

framework to fully explain the behavior of GRACE, which we leave to future work.461

F Proof of Lemma E.2462

We will slightly simplify notations for presentation. We will use463

M−{(x̂,ŷ)} := M (D \ {(x̂, ŷ)}; ΘS)

µ−{(x̂,ŷ)} := µ (D \ {(x̂, ŷ)}; ΘS) .

Then, a more formal version of Lemma E.2 is given as follows:464

Lemma F.1 (Bounds for Pre-conditioned Gradient Descent). Under the one-step update rule on the465

parameters Θ (Equation (5)),466

I(Θft;U ;U |S) ≲
3η2

σ2n2
Ê(x̂,ŷ)

∥∥M−{(x̂,ŷ)}ḡx̂,ŷ

∥∥2
2

+
3η2

σ2
Ê(x̂,ŷ)

∥∥∥(M−{(x̂,ŷ)} − Ê(x̄,ȳ)M−{(x̄,ȳ)}

)
µ−{(x̂,ŷ)}

∥∥∥2
2

where ḡx̂,ŷ = ∇L(ŷ | x̂; ΘS)− µ−{(x̂,ŷ)}.

Proof. For any (x̄, ȳ) pair, denote the mean parameter update on the training set D \ (x̄, ȳ) as467

δ−(x̄,ȳ) := ΘS − ηM−{(x̄,ȳ)}µ−{(x̄,ȳ)}.468

By the definition of CMI,469

I(Θft;U ;U |S) = Êu∼UDKL

(
pΘft;u|D,u||ÊūpΘft;Ū |D,ū

)
,

where pΘft;u|D,u denotes the probability distribution of Θft;u conditioned on dropping prompts from470

D according to the random variable u. Note that there is a one-to-one correspondence between the471

variable u and the random prompt x̂ that we drop. Thus, one can write472

I(Θft;U ;U |S) = Êx̂DKL

(
pΘft;−x̂|D,x̂||Êx̄pΘft;−x̄|D,x̄

)
,

where pΘft;−x̂|D,x̂ denotes the probability distribution of Θft;−x̂ conditioned on dropping prompts473

from x̂ from the training set.474

The update rule for any set D \ (x̄, ȳ) is given by475

Θft;−x̄ ← ΘS − δ−(x̄,ȳ) + ϵ := δ−(x̄,ȳ) + ϵ.

Because of the gaussian noise ϵ,476

Θft;−x̂ ∼ N
(
δ−(x̄,ȳ), σ

2I
)
.
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Then, using the properties of gaussian distribution;477

I(Θft;U ;U | D) = Êx̂DKL

(
pΘft;−x̂|D,x̂

∥∥∥∥ Êx̄pΘft;−x̄|D,x̄

)
= Êx̂ÊX∼N(δ−(x̂,ŷ),σ2I)

(
log

(
1
Z e−∥X−δ−(x̂,ŷ)∥22/2σ2

)
− log Êx̄

(
1
Z e−∥X−δ−(x̄,ȳ)∥22/2σ2

))
≤ Êx̂ÊX∼N(δ−(x̂,ŷ),σ2I)

(
log

(
1
Z e−∥X−δ−(x̂,ŷ)∥22/2σ2

)
− Êx̄ log

(
1
Z e−∥X−δ−(x̄,ȳ)∥22/2σ2

))
=

1

2σ2
Êx̂ÊX∼N(δ−(x̂,ŷ),σ2I)

(
−
∥∥X − δ−(x̂,ŷ)

∥∥2
2
+ Êx̄

∥∥X − δ−(x̄,ȳ)

∥∥2
2

)
=

1

2σ2
Êx̂Êx̄ÊX∼N(δ−(x̂,ŷ),σ2I)

(
−
∥∥X − δ−(x̂,ŷ)

∥∥2
2
+

∥∥X − δ−(x̄,ȳ)

∥∥2
2

)
=

1

2σ2
Êx̂Êx̄

∥∥δ−(x̄,ȳ) − δ−(x̂,ŷ)

∥∥2
2

=
1

σ2
Êx̂

∥∥∥δ−(x̂,ŷ) − Êx̄δ−(x̄,ȳ)

∥∥∥2
2

In the second step, we simply use the CDF formulation of gaussian distribution, where Z = (2πe)−D.478

The third step applies a jensen’s inequality.479

Using the definition of δ, we have480

I(Θft;U ;U | D) ≤
1

σ2
Êx̂

∥∥∥M−(x̂,ŷ)µ−{(x̂,ŷ)} − Êx̄M−{(x̄,ȳ)}µ−{(x̄,ȳ)}

∥∥∥2
2

Warmup: When the pre-conditioner is identity matrix Then for any (x̄, ȳ) pair, we have481

M−{(x̄,ȳ)} = I. Then, the formulation simplifies to482

I(Θft;U ;U | D) ≤
η2

σ2
Êx̂

∥∥∥µ−{(x̂,ŷ)} − Êx̄µ−{(x̄,ȳ)}

∥∥∥2
2

=
η2

σ2
Êx̂

∥∥∥∥ n

n− 1
µ(D)− 1

n− 1
∇L(ŷ | x̂; ΘS)− Êx̄

(
n

n− 1
µ(D)− 1

n− 1
∇L(ȳ | x̄; ΘS)

)∥∥∥∥2
2

=
η2

σ2(n− 1)2
Êx̂

∥∥∥∇L(ŷ | x̂; ΘS)− Êx̄∇L(ȳ | x̄; ΘS)
∥∥∥2
2

=
η2

σ2(n− 1)2
Êx̂

(
1− 1

n

)2 ∥∥∥∇L(ŷ | x̂; ΘS)− ÊD\x̄∇L(ȳ | x̄; ΘS)
∥∥∥2
2

=
η2

σ2n2
Êx̂

∥∥∥∇L(ŷ | x̂; ΘS)− ÊD\{x̄,ȳ}∇L(ȳ | x̄; ΘS)
∥∥∥2
2

The first step follows from the fact that µ(D) = Êx̂∼DL(ŷ | x̂; ΘS).483
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General pre-conditioner M: We follow similar steps as above:484

I(Θft;U ;U | D) ≤
η2

σ2
Êx̂

∥∥∥M−{(x̂,ŷ)}µ−{(x̂,ŷ)} − Êx̄M−{(x̄,ȳ)}µ−{(x̄,ȳ)}

∥∥∥2
2

=
η2

σ2
Êx̂

∥∥∥ n

n− 1
M−{(x̂,ŷ)}µ(D)−

1

n− 1
M−{(x̂,ŷ)}∇L(ŷ | x̂; ΘS)

− Êx̄

(
n

n− 1
M−{(x̄,ȳ)}µ(D)−

1

n− 1
M−{(x̄,ȳ)}∇L(ȳ | x̄; ΘS)

)∥∥∥2
=

η2

σ2
Êx̂

∥∥∥ n

n− 1

(
M−{(x̂,ŷ)} − Êx̄M−{(x̄,ȳ)}

)
µ(D)

− 1

n− 1

(
M−{(x̂,ŷ)}∇L(ŷ | x̂; ΘS)− Êx̄

(
M−{(x̄,ȳ)}∇L(ȳ | x̄; ΘS)

)) ∥∥∥2
=

η2

σ2
Êx̂

∥∥∥ n

n− 1

(
M−{(x̂,ŷ)} − Êx̄M−{(x̄,ȳ)}

)
µ(D)

− 1

n− 1
M−{(x̂,ŷ)}

(
∇L(ŷ | x̂; ΘS)− Êx̄∇L(ȳ | x̄; ΘS)

)
− 1

n− 1
Êx̄

(
M−{(x̂,ŷ)} −M−{(x̄,ȳ)}

)
∇L(ȳ | x̄; ΘS)

∥∥∥2
≤ 3η2

σ2
Êx̂

(
n

n− 1

)2

Êx̂

∥∥∥(M−{(x̂,ŷ)} − Êx̄M−{(x̄,ȳ)}

)
µ(D)

∥∥∥2
2

+
3η2

σ2

1

(n− 1)2
Êx̂

∥∥∥Êx̄

(
M−{(x̂,ŷ)} −M−{(x̄,ȳ)}

)
∇L(ȳ | x̄; ΘS)

∥∥∥2
2

+
3η2

σ2

1

(n− 1)2
Êx̂

∥∥∥M−{(x̂,ŷ)}

(
∇L(ŷ | x̂; ΘS)− Êx̄∇L(ȳ | x̄; ΘS)

)∥∥∥2
2

≤ 3η2

σ2
Êx̂

(
n

n− 1

)2

Êx̂

∥∥∥(M−{(x̂,ŷ)} − Êx̄M−{(x̄,ȳ)}

)
µ(D)

∥∥∥2
2

+
3η2

σ2

1

(n− 1)2
Êx̂

∥∥∥M−{(x̂,ŷ)}
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2
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(
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)
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Here, we assume that M is a well conditioned matrix, and so the second term is a small term of485

order 1
n4 . This can be ensured by a small smoothing term. The first term looks at the sensitivity of486

the pre-conditioned matrix M when a sample is dropped. The second term looks at the change in487

gradient with a drop in sample.488

489

When M is set as Σ̃−1/2, we find there are two terms in the bound above: how much Σ̃−1/2 changes490

with a drop in sample and second, how much the gradients change with respect to the Σ̃−1/2 matrix,491

which is related to the GRACE term. We find that Σ̃−1/2 is extremely stable in our experiments, and492

the first term is 5− 10x smaller compared to the second term. This gives us the rough bound that the493

CMI is bounded by GRACE.494

G Additional results495

Here, we report the performance when we allow more computation for the computation of GRACE.496

We use highher d than the ones reported in Figures 2 and 4. We use d = 1024 and n = 512. The497

correlation improves for both the models on GSM8K; however it hurts on MATH.498

G.1 More baselines499

We consider the following baselines:500

1. Student Loss on the teacher’s generations;501
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Figure 8: GRACE achieves 88% correlation to Llama-3B performance after training on MATH,
across all teacher, generation temperature combinations. G-Var and G-Vendi can achieve 90%
and 74% correlation respectively. Here, n = 512, d = 512 are used to compute all metrics.

2. G-Var (Equation (4));502

3. G-Vendi (Equation (3));503

4. Determinant504

5. Determinant × gradient norm, corresponding to BADGE (Ash et al., 2019), which captures505

both the diversity and magnitude of gradients;506

6. Gradient inner product, which is another way to capture gradient diversity: Given gradients507

from the training setD, we compute pairwise inner product between the normalized gradients508

of generations for the same prompt:509

ExE(x,y1),(x,y2)∼D

[
g1

∥g1∥2

]⊤
g2

∥g2∥2
,

where g1 = ∇LCE(x,y1;πS),

g2 = ∇LCE(x,y2;πS).

7. Gradient inner product with norm, which is similar to the above but additionally considering510

gradient magnitude: Here, we compute pairwise inner product between the gradients of511

generations from the same prompt.512

8. Average Probabilities (per token): this computes the average probability per token of the513

student on the teacher’s generations, averaged over all generations and all prompts.514

9. Best average probabilities per prompt: we compute the average probability per token for515

each generation, and take the highest average probability (i.e. the most probable) across all516

generations of the same prompt. We then take an average across all prompts.517

10. Correct average probabilities: Here, we simply compute the average probabilities of tokens518

in correct generations for each prompt and take the average across all prompts.519

11. Incorrect average probabilities: Same as above, but over incorrect generations.520

12. Different average probabilities per prompt: For each prompt, we compute the average per-521

token probabilities for correct and incorrect generations respectively, and take the difference522

of the two. We then average over all prompts.523

As mentioned in Section 3, naive metrics are not useful for identifying the best teachers.524

G.2 Performance gap with GRACE selected teacher v/s the absolute best teacher525

In addition to spearman correlations that we reported in the main paper, we also report the performance526

gap of the student trained with the teacher that is judged to be the best w.r.t. a metric, and the527

performance of the absolute best student. We report this metric for the following two cases: first,528

when we look at teachers constrained to a some size, and second, when we look at teachers constrained529

to a particular model family (from our discussion in Appendix C.1). We observe that in both cases,530

across different groups, GRACE returns the least performance gap. Please see Figures 13 and 14.531
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Figure 9: Repeated experiment from Figure 2 but with d = 1024. GRACE achieves 90% correlation
to Llama-1B performance after training on GSM8K, across all teacher, generation temperature
combinations. G-Var and G-Vendi can only achieve 55% and 47% correlation respectively.

Figure 10: Repeated experiment from Figure 4 but with d = 1024. GRACE achieves 81% cor-
relation to Llama-1B performance after training on GSM8K, across all teacher, generation
temperature combinations. G-Var and G-Vendi can only achieve 43% and 50% correlation respec-
tively.

Figure 11: Repeated experiment from Figure 2 but greedy performance of trained student model.
GRACE achieves only 70% correlation to Llama-1B performance after training on GSM8K,
across all teacher, generation temperature combinations. This is a sharp reduction from 90%
correlation to Average-at-16. However, GRACE still predicts the optimal teacher.

Figure 12: Repeated experiment from Figure 2 but best-of-16 performance of trained student model.
GRACE achieves only 64% correlation to Llama-1B performance after training on GSM8K,
across all teacher, generation temperature combinations. This is a sharp reduction from 90%
correlation to Average-at-16. However, GRACE still predicts the optimal teacher.
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Figure 13: Gaps in the best performing and best predicted student model for each metric across
teacher families for Llama-1B training on GSM8K. We observe that on average, GRACE selects a
teacher that returns a student within 1% performance to the absolute best performing student from
the teachers in a model family. On the other hand, other metrics can select a teacher that can return a
student with performance gap atleast 3% w.r.t. the absolute best performing student from the teachers
in a model family.

Figure 14: Gaps in the best performing and best predicted student model for each metric across
teacher scale groups for Llama-1B training on GSM8K. We observe that across each group, GRACE
selects a teacher that returns a student within 1% performance to the absolute best performing student
from the teachers in the group. On the other hand, other metrics can select a teacher that can return
a student with performance gap atleast 2.5% w.r.t. the absolute best performing student from the
teachers in the group.

G.3 Computational complexity532

GRACE is computationally inexpensive to compute. As shown in Table 1, for m = d = 512 and533

m = 4, the gradients for each model takes around 10 minutes to compute and around 4.3MB to store.534

H Ablations535

H.1 Filtering v/s No filtering536

In our experiments in the main paper, we perform no filtering of the responses from the teacher.537

Here, we compare to the case when we filter the teacher’s responses by correctness. We sample 16538

responses from each teacher and remove the incorrect responses. Then, we sample with repetition to539

get a set of 16 responses to train the model.540

First, we find that the student gets worse performance with filtering of correct responses from the541

teacher (Figure 15). However, we find that when we compare our metrics to the student performance542

after training, we find that our metrics have slightly higher spearman correlation with the student543
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Gradient Features Computation Metric Computation

Computation complexity O(n ·m · P · d) O(n ·m · d2 + d3)
Running time ≈ 10 minutes < 10 seconds

Storage Complexity O(n ·m · d) -
Actual storage 4.3 MB -

Table 1: Time complexity to compute GRACE. The running time and the actual storage have been
computed on ñ = 512, m = 4, d = 512 for Llama-1B training on GSM8K, and have been reported
as a rough average across all settings. Wall-clock time has been reported on a single H100 (80 GB)
GPU. For gradient computation, we use 32 parallel CPU threads following Park et al. (2023). Here,
P denotes the number of parameters in the model.

Figure 15: Comparing teachers, when we filter correct responses from the teacher v/s when we don’t
filter correct responses from the teacher. Here, we train Llama-1B on GSM8K with 15 teachers
and generation temperatures 0.4, 0.6, 0.8, 1.0. We compare students trained from teacher without
filtering (x-axis) with students trained from teacher with correct answer filtering (y-axis). We find
that students trained with no filtering outperforms models trained with filtering.

performance when we train with filtering on teacher responses, compared to student trained with no544

filtering on the teacher responses (Figure 16).545

H.2 Ablation on training hyperparameters546

We observe that a Llama-1B model trained on generations of Llama-70B Instruct models and Gemma-547

2-27B Instruct models perform badly. We train with learning 1e0−5 on the 16 generations per prompt548

of the teacher for 4 epochs. One primary question is whether the small model is over-optimizing on549

the teacher’s generations. To check this, we track the train and test performance of the trained model550

with varying number of generations (Figure 17) and epochs of training (Figure 18). We observe that551

the performance of the trained student model improves with increasing number of epochs and number552

of generations, implying no over-optimization in our training setting.553

H.3 Ablations on the parameters of GRACE554

In Figure 19, we show the behavior of GRACE with changing hyperparameters. We take Llama-555

1B training on GSM8K as a case-study. We vary number of prompts (n), number of generations556

per prompt (m), and the projection dimension of gradients (d) for computing the GRACE score557

and compare correlations to the student performance. We observe that (a) GRACE improves with558

increasing gradient dimension, (b) GRACE gives a good enough estimate with m = 4 generations559

per prompt, (c) GRACE generally increases with number of prompts that we consider but might show560

a small dip as we increase further.561

We additionally vary the number of cross-validation splits used in GRACE. As shown in Figure 20,562

the correlations to the student performance do not vary much for both GSM8k and MATH for more563

than C = 6 splits. We take C = 10 as the default.564
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Figure 16: Comparisons between the metrics and the student performance when we filter responses
v/s we don’t filter correct responses from the teacher. Here, we train Llama-1B on GSM8K with 15
teachers and generation temperatures 0.4, 0.6, 0.8, 1.0. We find that our metrics have slightly higher
spearman correlation to the student performance when we filter correct responses from the teacher
and train only on them.

Figure 17: Llama-1B training on GSM8K with 16 responses per prompt of gemma-27b-instruct
and llama-70b instruct model. We vary the number of epochs and observe that both train and test
performance improves with more epochs of training. Here, the definition of pass@16 on y-axis is
identical to Average-at-16.

H.4 Gradient norm’s relation to length565

Figure 21 shows that the norm of the gradient on a generation decreases as the generation length566

grows, roughly following a trend of 1/ log T for length-T generations, consistent with observations567

in Xia et al. (2024). Intuitively, this is likely because longer generations tend to contain a larger568

fraction of less important tokens that do not contribute much to the overall gradient. This observation569

motivates the log T scaling in Section 2.570

H.5 Ablation on robustness of metrics571

We check the robustness of each metric by reporting the distributions of the metric values computed572

over random subsets of teachers. Specifically, we use 100 random draws of subsets consisting of 60%573

of teachers.574

We compare GRACE against the baselines listed in Appendix G.1. Among all candidate metrics,575

GRACE is the only one showing consistently strong correlations on both datasets.576

577
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Figure 18: Llama-1B training on GSM8K with varying number of responses per prompt of gemma-
27b-instruct and llama-70b instruct model. We observe that both train and test performance improves
with more training samples from the teacher. Here, the definition of pass@16 on y-axis is identical to
Average-at-16.

(a) When we vary gradient projec-
tion dimension d with n.

(b) When we vary number of gener-
ations m per prompt.

(c) When we vary number of
prompts

Figure 19: Varying hyperparameters for GRACE on Llama-1B training on GSM8K at generation
temperature 0.8. We use the base setup as n = 512, m = 16, and d = n. We vary one of them,
while fixing the others. Main takeaway: (a) GRACE improves with increasing gradient dimension,
(b) GRACE gives a good enough estimate with m = 4 generations per prompt, (c) GRACE generally
increases with number of prompts that we consider but might show a small dip as we increase further.

Figure 20: Varying number of cross-validation splits on GSM8K (left) and MATH (right).

Figure 21: Gradient norm decreases inversely with log T , where T is the sequence length. This
motivates the gradient scaling in Section 2.
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Figure 22: Robustness of metrics on GSM8k: we report the distribution of metric values, computed
over 100 random subsets of teachers, each consisting of 60% of the full set of teacher-temperature
combinations. The proposed metric GRACE consistently shows strong correlations.

Figure 23: Robustness of metrics on MATH: following the same setup as Figure 22, GRACE shows
the strongest correlation with smallest variations across random subsets.
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