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ABSTRACT

As cyber threats continue to grow in scale and sophistication, blue team defenders
increasingly require advanced tools to proactively detect and mitigate risks. Large
Language Models (LLMs) offer promising capabilities for enhancing threat anal-
ysis. However, their effectiveness in real-world blue team threat-hunting scenar-
ios remains insufficiently explored. This paper presents CYBERTEAM, a bench-
mark designed to guide LLMs in blue teaming practice. CYBERTEAM constructs
a standardized workflow in two stages. First, it models realistic threat-hunting
workflows by capturing the dependencies among analytical tasks from threat attribu-
tion to incident response. Next, each task is addressed through a set of operational
modules tailored to its specific analytical requirements. This transforms threat
hunting into a structured sequence of reasoning steps, with each step grounded in a
discrete operation and ordered according to task-specific dependencies. Guided
by this framework, LLMs are directed to perform threat-hunting tasks through
modularized steps. Overall, CYBERTEAM integrates 30 tasks and 9 operational
modules to guide LLMs through standardized threat analysis. We evaluate both
leading LLMs and state-of-the-art cybersecurity agents, comparing CYBERTEAM
against open-ended reasoning strategies. Our results highlight the improvements
enabled by standardized design, while also revealing the limitations of open-ended
reasoning in real-world threat hunting.

1 INTRODUCTION

The increasing frequency and sophistication of cyber threats continue to pose significant challenges
to organizational security. In 2024 alone, over 11,000 more (38% increase!) vulnerabilities were
reported compared to 2023, as evidenced by the MITRE CVE database (The MITRE Corporation,
n.d.). Defenders, commonly known as the blue team (Diogenes & Ozkaya, 2018; Rajendran et al.,
2011), are under increasing pressure to identify, analyze, and respond to malicious activities in a
timely and accurate manner, a process termed threat hunting.

Recent advances in Large Language Models (LLMs) have demonstrated impressive potential to
augment cybersecurity practices, including malware analysis (Abusitta et al., 2021; Al-Karaki et al.,
2024; Qian et al., 2025; Devadiga et al., 2023), penetration testing (Deng et al., 2023; 2024; Happe
& Cito, 2023; Muzsai et al., 2024), and fuzzing (Zhang et al., 2025; Oliinyk et al., 2024; Black
et al., 2024). Building on this progress, there is growing interest in leveraging LLMs to automate or
assist in threat hunting, enabling blue team defenders to scale their investigations across complex
threat landscapes and respond to incidents more effectively. However, despite this momentum, the
application of LLMs in blue team threat hunting remains underdeveloped. Existing frameworks tend
to focus on isolated analytical tasks (Sehgal & Thymianis, 2023; Faghihi et al., 2023; Dash et al.,
2022), such as generating advisory recommendations without integrating earlier steps like threat
group attribution. This fragmented design limits our understanding of how LLMs perform within
complex, interdependent threat-hunting workflows.

To address this gap, we introduce CYBERTEAM, a practical benchmark designed to rigorously
evaluate and guide the use of LLMs in blue team threat hunting. CYBERTEAM supports blue team
threat-hunting workflows through the following aspects:

Broader Coverage. CYBERTEAM is constructed from a diverse and large-scale repository of threat
intelligence data sourced from 23 vulnerability databases, including MITRE (MITRE Corporation,
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Table 1: Comparison between CYBERTEAM and other LLM-oriented cybersecurity benchmarks.
Benchmark Focus #Data #Task #Source Coverage Unique Feature

CWE-Bench-Java (Li et al., 2025) Java vulnerability 120 4 1 Four CWE classes Large-scale Java codes
CTIBench (Alam et al., 2024) Cyber Threat Intelligence 2,500 3 6 CVE, CWE, CVSS, ATT&CK Multi-choice questions (MCQ)
SevenLLM-Bench (Ji et al., 2024) Report understanding 91,401 28 N/A Bilingual instruction corpus Synthetic Data, MCQ, QA
SWE-Bench (Jimenez et al., 2023) Software bug fixing 2,294 12 1 GitHub issues Python repository

CYBERTEAM (Ours) Blue team threat hunting 452,293 30 23 Threat-hunting lifecycle (3.1) Open Generation, Standardized Reasoning Env

1. Threat Attribution 2. Behavior Analysis 3. Prioritization 4. Response & Mitigation
NER REX RAG NER RAG MAP

On Dec. 10, 2024, our SIEM system flagged multiple anomalous outbound DNS requests from internal host host-192-168-10-21.local 
to dns-update.evilcorp.net. Investigation revealed that the host had received a suspicious email containing an attachment named 
Invoice_April2025.doc, which, when opened, triggered a connection to a known C2 domain via an obfuscated PowerShell script. The 
initial vector appears to be a phishing campaign exploiting. The attacker leveraged PowerShell to execute a memory-resident payload 
that conducted system reconnaissance, credential harvesting (via LSASS dump), and lateral movement using SMB.
Detected IOCs include: C2 Domains: dns-update.evilcorp.cn, smbauth.c2redir.net. IP Addresses: 185.100.87.21, 192.168.10.22

Cyber Threat Log

MAP SUM CLS RAG SUM

Evidence
C2 Domain:

Malware 
delivery:

 dns-update.evilcorp.cn

smbauth.c2redir.net

Invoice_April2025.doc 

Actor
CVE-2024-21678

APT41 or TA505

Observation
PowerShell Obfuscation T1059.001

TTPs

LSASS Memory Dump

Spearphishing Attachment

T1003.001

T1566.001

Severity High
Zero-day exploitation

Credential theft detected

Internal host comprimised

Response Action
Apply Microsoft patch KB5000871

Block connections to *.evilcrop.net

Isolate affected host 192.169.10.21

Figure 1: A CYBERTEAM threat hunting example equipped with operational modules. Module names:
NER–named entity recognition, REX–regex parsing, MAP–text mapping, RAG–retrieval-augmented
generation, CLS–classification, SUM–summarization.

2024), NVD (National Institute of Standards and Technology (NIST), 2024), and CISE (CISE
Program, 2024), as well as security platforms such as Red Hat Bugzilla (Red Hat, Inc., 2024), Oracle
Security Alerts (Oracle Corporation, 2024), and IBM X-Force (IBM Corporation, 2024). In addition,
CYBERTEAM presents a larger number of tasks and samples than existing cybersecurity benchmarks
(Jimenez et al., 2023; Li et al., 2025; Alam et al., 2024; Ji et al., 2024), as summarized in Table 1. This
extensive coverage allows for a more comprehensive and nuanced evaluation of LLM performance
across a wide range of threat-hunting scenarios.

Standardized Workflow. An important feature of CYBERTEAM is its structured, modular workflow
for guiding LLMs within a standardized reasoning environment (Yang et al., 2024; Cheng et al., 2025).
This design is inspired by blue team practices, where analysts typically follow standardized
procedures to interpret threat metadata and conduct investigations (Sehgal & Thymianis, 2023;
Diogenes & Ozkaya, 2018; Brotherston et al., 2024). However, strict adherence to such procedures
can limit flexibility when analyzing unstructured threat logs or addressing emerging, zero-day threats.
To balance standardization and flexibility, CYBERTEAM integrates a set of operational modules
that regulate LLM behavior while allowing for open-ended reasoning where needed. As illustrated
in Figure 1, CYBERTEAM first models the dependency structure among threat-hunting objectives
(e.g., attribution, behavior analysis, mitigation) as a task chain, and then maps this chain into a
corresponding sequence of operational modules. In this process, functions such as NER enforce
structured outputs (e.g., extracting threat actor entities), while functions like RAG support more
flexible reasoning (e.g., summarizing relevant patching strategies).

Evaluation Strategy. CYBERTEAM incorporates agent-based evaluation strategies tailored to each
threat-hunting objective. We benchmark leading LLMs and state-of-the-art (SOTA) cybersecurity
agents, comparing CYBERTEAM ’s modularized approach with popular open-ended reasoning strate-
gies such as In-Context Learning (ICL) (Dong et al., 2022), Chain-of-Thought (CoT) (Wei et al.,
2022), Tree-of-Thought (ToT) (Yao et al., 2023). Our evaluation provides insights into the actionable
threat hunting across 30 tasks.

In summary, this paper makes the following contributions: (1) We introduce CYBERTEAM, a practice-
informed, broadly scoped benchmark that enables rigorous evaluation of LLMs for blue team threat
hunting, (2) we construct a standardized reasoning workflow that models the dependencies among
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threat-hunting tasks and guides LLMs through standardized yet flexible reasoning workflow, (3)
we conduct comprehensive evaluations and provide insights to improve LLM performance among
threat-hunting scenarios. To facilitate future research, we release codes at: https://anonymous.
4open.science/r/LLM-Cyberteam-7433/.

2 RELATED WORK

LLMs for Cybersecurity. Recently, LLMs have shown promise in enhancing cybersecurity tasks
such as malware classification (Abusitta et al., 2021; Al-Karaki et al., 2024; Qian et al., 2025;
Devadiga et al., 2023), code vulnerability detection (Russell et al., 2018; Lu et al., 2024; Sheng et al.,
2024), penetration testing (Happe & Cito, 2023; Muzsai et al., 2024; Shen et al., 2024), phishing
detection (Kulkarni et al., 2024; Greco et al., 2024), and incident report generation (Bernardi et al.,
2024; Sufi, 2024; McGregor et al., 2025). These applications leverage the language understanding
and reasoning capabilities of LLMs to analyze technical data, recommend solutions, or simulate
attacker behaviors. However, existing applications typically target isolated tasks without considering
broader analyst workflows. Additionally, their open-ended reasoning often results in hallucinations
and inconsistencies (Mündler et al., 2023; Simhi et al., 2025; Shrivastava), raising concerns about
reliability in high-stakes defensive scenarios.

Cybersecurity Benchmarks. Recent benchmarks have focused on static analysis (Reinhold et al.,
2024; Higuera et al., 2020; Braga et al., 2017), software vulnerabilities (Hossen et al., 2024; Sawant
et al., 2024), and threat report generation (Tihanyi et al., 2024; Perrina et al., 2023; Čupka et al., 2023).
These benchmarks evaluate predefined tasks such as identifying CWE categories, matching CVEs,
or summarizing intelligence reports (Alam et al., 2024; Aghaei et al., 2020; Branescu et al., 2024;
Hemberg et al., 2020). While helpful for reproducibility, they often cover narrow domains and lack
the complexity and task interdependencies inherent in real-world threat investigations. In contrast,
benchmarks from other high-stakes fields (e.g., law, medicine, finance) increasingly include complex,
multistep tasks requiring diverse reasoning skills (Fei et al., 2023; Wang et al., 2024; Choshen et al.,
2024; Lucas et al., 2024; Zhou et al.). Inspired by these efforts, we introduce CYBERTEAM to
emphasize structured reasoning and realistic interdependencies for blue teaming scenarios.

Operation-Guided Agents. Recent research has proposed agents with operational modules to
structure LLM reasoning into modular, interpretable steps (Driess et al., 2023; Dongre et al., 2024;
Hu et al., 2024). Such frameworks have achieved notable success in robotics (Jeong et al., 2024;
Akkaladevi et al., 2021), database querying (Kadir et al., 2024; Dar et al., 2019), and scientific
reasoning tasks (Abate et al., 2020; Vaesen & Houkes, 2021). However, their use in cybersecurity,
especially defensive operations, remains underexplored despite the need for structured workflows.
Our work addresses this gap by introducing a modular environment aligned with blue team practices,
enabling procedural reasoning within a structured analytical pipeline.

3 CYBERTEAM

In this section, we provide a detailed introduction of CYBERTEAM regarding the collected threat
hunting tasks (3.1), data sources (3.2), and the modularized strategy (3.3).

3.1 THREAT HUNTING TASKS

As shown in Table 2, CYBERTEAM reflects the full lifecycle of threat hunting tasks. Specifically,
CYBERTEAM systematizes analytical tasks into four categories: Threat Attribution, Behavior
Analysis, Prioritization, and Response & Mitigation. Each category captures a stage in the threat-
hunting workflow from investigating cyber threats to identifying countermeasures. Specifically:

Threat Attribution aims at uncovering the origins and nature of a threat. This includes tasks such as
extracting infrastructure artifacts (e.g., domains, IPs, URLs), classifying malware families based on
observed behaviors, matching known threat signatures, and linking activities to known campaigns or
actor groups (e.g., APT or MITRE ATT&CK (MITRE Corporation, 2024)). Further granularity is
achieved through geographic and temporal pattern analysis, as well as victimology and affiliation
linking, all of which help analysts contextualize incidents in terms of their broader threat landscape.
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Table 2: Threat hunting tasks, description of targets, corresponding modularized operations, number
of instances, and evaluation metrics. Details of implemented 9 modules and involved metrics are in
Appendix B and C, respectively.

Task Analytical Target Function #Data Metric

Threat Attribution

Malware Identification Malware delivery or toolset NER, SUM 15,742 F1
Signature Matching Techniques from known threat groups NER, SIM 5,166 F1
Temporal Pattern Matching Known work schedules REX 4,203 Sim
Affiliation Linking Source organizations NER, MAP 17,583 F1
Geographic Analysis Geographic or cultural indicators NER, SIM 6,164 F1
Victimology Profiling Targeted victims or attacker motives NER, REX 18,612 F1
Infrastructure Extraction Domains, IPs, URLs, or file hashes NER, REX, SUM 24,129 F1
Actor Identification The threat group or actor (e.g., APT28) NER, RAG, MAP 17,823 F1
Campaign Correlation Threat campaigns or incidents NER, MAP 27,762 F1

Behavior Analysis

File System Activity Detection Suspicious file creation, deletion, or access SPA, NER, SUM 4,653 Sim
Network Behavior Profiling Patterns of external communication (e.g., C2) SPA, NER, SUM 2,617 Sim
Credential Access Detection Theft or misuse of credentials SPA, NER, SUM 2,492 Sim
Execution Context Analysis Execution behaviors by user or process SPA, NER, SUM 23,888 Sim
Command & Script Analysis Suspicious commands or scripts SPA, NER, SUM 20,232 F1
Privilege Escalation Inference Privilege escalation attempts SPA, NER, SUM 15,953 Sim
Evasion Behavior Detection Evasion or obfuscation techniques SPA, NER, SUM 8,973 Sim
Event Sequence Reconstruction Timeline of attack-related events SUM 23,265 Sim
TTP Extraction Tactics, techniques, and procedures RAG, MAP 28,292 F1

Prioritization

Attack Vector Classification Exploitation vectors (e.g., network, local, physical) SUM, CLS 17,448 Acc
Attack Complexity Classification Level of hurdles required to carry out the attack SUM, CLS 17,116 Acc
Privileges Requirement Detection Level of access privileges an attacker needs SUM, CLS 18,030 Acc
User Interaction Categorization If exploitation requires user participation SUM, CLS 17,075 Acc
Attack Scope Detection If the vulnerability affects one/multiple components SUM, CLS 18,570 Acc
Impact Level Classification Consequences on confidentiality, integrity, and availability SUM, CLS 18,736 Acc
Severity Scoring A numerical score indicating the overall attack severity SUM, MATH 11,507 Dist

Response & Mitigation

Playbook Recommendation Relevant response actions based on threat type RAG, SUM 10,718 Hit
Security Control Adjustment Firewall rules, EDR settings, or group policies RAG, SUM 9,929 Sim
Patch Code Generation Code snippets to patch the vulnerability RAG, SUM 11,341 Pass
Patch Tool Suggestion Security tools or utilities RAG, SUM 9,763 Hit
Advisory Correlation Security advisories or best practices RAG, SUM 24,511 Hit

Subsequently, Behavior Analysis focuses on understanding how adversaries interact with systems
over time. Tasks in this category include mapping unusual file system activities, profiling network
behaviors (e.g., Monitoring outbound traffic), detecting credential access, and analyzing the use of
commands and scripts. Analysts aim to reconstruct sequences of attack events and associate them
with specific execution contexts or behavioral patterns.

When multiple threats emerge simultaneously, Prioritization assesses their relative urgency and
associated risk. This involves analyzing the attack vector and complexity, identifying privilege
requirements and user interaction dependencies, and estimating potential impact. These factors are
then synthesized into impact labels and severity scores (e.g., CVSS (FIRST, a)) to guide effective
triage. Finally, Response & Mitigation focus on generating actionable defense strategies. This
includes recommending response playbooks, generating patch code, correlating relevant security
advisories, and suggesting appropriate tools or configuration changes to neutralize the threat.

3.2 DATA SOURCES

CYBERTEAM collects threat metadata from two primary sources: (1) vulnerability databases, which
offer authoritative structural and non-structural information about threats, and (2) threat intelligence
platforms, which report event-driven, context-rich threat data.

Vulnerability databases serve as foundational resources for automated threat hunting by providing
machine-readable records of software flaws, exposure types, and critical contextual metadata. We
aggregate threat entries from established sources such as NVD (National Institute of Standards
and Technology (NIST), 2024), MITRE CVE (The MITRE Corporation, n.d.), ATT&CK (MITRE
Corporation, 2024), CWE (MITRE Corporation, b), CAPEC (MITRE Corporation, a), D3FEND
(MITRE Corporation, c), Exploit-DB (Offensive Security, 2024), and VulDB (VulDB Team, 2024).
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Cyber Threat Log 1. Threat Attribution
1.a) Malware identification

1.b) Infrastructure extraction

NER SUM Identified malware file: <file-
name>.exe and dropper.exe

NER REX SUM Extract domain/
IP from the log

Cyber Threat Log 2. Behavior Analysis
2.a) File system activity detection

2.b) Execution context analysis

SPA NER

SPA NER SUM

SUM File creation in 
user directory

Registry key inser-
tion for auto-start

3. Prioritization

SUM
3.a) Attack vector classification

[10:25:03] File downloaded: https://<domain-name>.org/<file-name>.exe  

[10:25:10] File <file-name>.exe saved to C:\Users\Public\Downloads  
[10:25:12] Connection attempt to IP address 203.0.113.10:443 
[10:25:15] Registry key added for persistence: HKCU\...\Run\<regkey_name>  
[10:25:25] File dropper.exe detected from https://<domain>.org/dropper.exe  

[10:25:03] File downloaded: https://<domain-name>.org/<file-name>.exe  
[10:25:10] File <file-name>.exe saved to C:\Users\Public\Downloads  
[10:25:12] Connection attempt to IP address 203.0.113.10:443 
[10:25:15] Registry key added for persistence: HKCU\...\Run\<regkey_name>  
[10:25:25] File dropper.exe detected from https://<domain>.org/dropper.exe  

 <file-name>.exe: network-based delivery
dropper.exe: with exploitation component

CLS network vector, dropper involves exploit 
→ higher complexity

NER

NER

REX

NER

NER

SUM
3.b) Attack complexity classification

 <file-name>.exe: user interaction+download
dropper.exe: with privilege-escalation logic 

CLS <file-name> is classified as low complexity
Dropper is classified as high complexity

…

3.x) Severity scoring

SUM

MATH

complexity score: 0.8
Privilege score: 1.0 …

Severity score: 4.5

4. Response & Mitigation

…

4.a) Playbook recommendation 4.b) Security control adjustment 4.x) Advisory correlation

RAG

SUM

RAG

SUM

RAG

SUM

Retrieve and rank playbooks from threat 
databases, e.g., MITRE D3FEND

Suggest response sequence: D3-DA - 
Dynamic Analysis …

Retrieve and rank security control strategies 
about “hardening system setting to block…”

Disable PowerShell base64 execution via 
GPO, block unbound connections to …

Patch KB5031234 
released by MSRC

Retrieve advisories 
using malware name

SPA

SPA

NER

NER

Figure 2: A threat hunting example demonstrating a dependency chain of analytical tasks, where
each task is completed through a sequence of operational modules executed by LLMs autonomously.

These sources include detailed insights such as exploitability scores (EPSS (FIRST, b)), severity
metrics (CVSS (FIRST, a)), and remediation guidance. Additionally, we incorporate data from
vendor-maintained repositories (e.g., the Microsoft Security Update Guide (Microsoft Corporation),
IBM X-Force (IBM Corporation, 2024)) to capture fine-grained details on affected systems, attack
vectors, and patch methods.

Threat intelligence platforms complement these databases by providing behavioral and contextual
signals linked to adversary activity. Platforms such as VirusTotal (VirusTotal (Google Chronicle),
2024), AlienVault OTX (AlienVault (AT&T Cybersecurity), 2024), and MISP (MISP Project, 2024)
contribute indicators of compromise (IOCs), behavioral patterns, and telemetry that enable tasks
like campaign correlation, infrastructure extraction, and actor attribution. Furthermore, industry
threat reports—from sources, such as Mandiant (Mandiant (Google Cloud), 2024), Recorded Future
(Recorded Future, 2024), Palo Alto Unit 42 (Palo Alto Networks, 2024), and Apache (The Apache
Software Foundation, 2024), offer semi-structured intelligence, including incident timelines, IOC
lists, and narrative analyses, which are essential for modeling multi-stage attack sequences and
evaluating blue team responses.

Additional details on how these databases and platforms are used are provided in Appendix A.

3.3 STANDARDIZED THREAT HUNTING WITH OPERATIONAL MODULES

Task Dependency. Threat hunting is inherently a multi-stage analytical process (Sauerwein et al.,
2019; Caltagirone et al., 2013; Hillier & Karroubi, 2022), where downstream actions, such as
incident response and mitigation, rely on outcomes derived from upstream analytical steps. For
example, recommending an effective response playbook requires accurate attribution of the threat
actor and thorough behavioral analysis of the compromise. To explicitly model this structured
workflow, CYBERTEAM formulates threat hunting as a Dependency Chain. As illustrated in Figure
2, all analytical tasks (e.g., 1.a: Malware Identification or 2.a: File System Activity Detection)
are organized into a pipelined workflow that reflects their inherent dependencies. For example,
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attack complexity classification relies on prior analyses of file system activity and execution context.
Meanwhile, tasks within the same category (e.g., malware identification and infrastructure extraction
under threat attribution) can often be performed in parallel, as they address distinct dimensions of the
threat and do not exhibit direct interdependencies.

Highlight �. Instead of enumerating all tasks listed in Table 2, LLMs are asked to determine
which tasks to perform at each stage, opening reasoning flexibility in threat hunting.

Operational Modules. Within each threat hunting task, CYBERTEAM invokes a set of operations
(functional modules) designed to produce actionable threat analyses and progressively address the
current threat hunting target (e.g., incident response). Specifically, each threat hunting task ti
is associated with a corresponding set of operational modules Fi = {f1

i , f
2
i , . . . }. Each task ti

involves executing a sequence f∗
i ∈ Fi, as detailed in the third column of Table 2. The resulting

output yi = f∗
i (x) is subsequently passed to dependent downstream tasks. For instance, the task

of TTP Extraction involves invoking both Retrieval-Augmented Generation (RAG) and Mapping
(MAP) functions to identify relevant tactics and techniques from unstructured logs. Subsequently, a
downstream task such as Tool Suggestion utilizes RAG and summarization (SUM) functions to map
these identified TTPs to suitable defensive tools.

Highlight �. These modules provide broad coverage of threat hunting practices (as shown
in Table 2), while retaining flexibility (e.g., in SUM, RAG) for LLM reasoning to adapt across
diverse scenarios, thereby balancing flexibility with standardization in blue team threat hunting.

Due to space constraints, we defer implementation details and design rationales to Appendix B.

4 EXPERIMENT

CYBERTEAM aims to empirically address the following research questions: RQ1: How effective
is standardization compared to open-ended reasoning for threat-hunting tasks? RQ2: Can LLMs
accurately solve individual threat-hunting tasks? RQ3: How robust are LLMs, under the guidance of
CYBERTEAM, when analyzing noisy inputs?

LLMs. We evaluate a range of industry-leading large language models, including GPT-4o (G4o),
GPT-o4-mini (Go4), Qwen3-32B (QW), Gemini-2.5 (GM), Claude-Sonnet-4 (CD), Llama-3.1-405B
(L3.1), Llama-4-Scout-17B (L4), and Gemma-3-27b (GA). In addition, we assess state-of-the-art
cybersecurity-focused LLM agents, including Lily-Cybersecurity-7B (LY) (Segolily Labs, 2025),
DeepHat-7B (DH) (DeepHat, 2025), and SevenLLM-7B (SL) (Ji et al., 2024).

Open-ended Reasoning. In open-ended reasoning, we consider three widely used prompting
structures: (1) In-Context Learning (ICL) (Dong et al., 2022) – including basic task instructions
along with five (or ten) illustrative examples to demonstrate the desired solution format. (2) Chain-
of-Thought (CoT) (Wei et al., 2022) – encouraging the model to generate “step-by-step” reasoning
results before producing the final answer. (3) Tree-of-Thought (ToT) (Yao et al., 2023) – guiding
LLMs to explore multiple reasoning paths and select the most plausible one.

Metrics. Table 2 lists evaluation metrics tailored to each task. For information extraction tasks (e.g.,
malware identification), we use the F1 score to balance precision and recall. For classification tasks
(e.g., privilege escalation inference), we adopt accuracy among well-defined categories. Generation or
summarization tasks (e.g., behavioral profiling) are evaluated using BERTScore (Zhang* et al., 2020)
to measure semantic similarity. Tasks involving ranking (e.g., security playbook recommendation)
utilize Hit@k (default k = 10), measuring whether correct choices appear in the top-k outputs. For
programmatic outputs (e.g., patch code generation), we apply Pass rate using UNITEST in Python to
assess functional correctness. Numeric estimation tasks (e.g., severity scoring) are evaluated using
Normalized Distance to quantify similarity to ground truth values. All metrics are scaled to the
range [0, 1]. We explain the rationale for those metrics in Appendix C.

4.1 STANDARDIZED THREAT HUNTING VS. OPEN-ENDED REASONING (RQ1)

Ultimately, CYBERTEAM is designed to generate actionable responses and mitigation strategies
against cyber threats. We begin by evaluating the overall quality of LLM-generated responses and

6
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Table 3: Results of LLMs threat-hunting performance (scaled to 100%) on CYBERTEAM, using
corresponding metrics tailored to each analytical target as detailed in Table 2. We use boldface to
indicate the best results and underline to denote the second-best results.

Method Cybersecurity Agent Industry-Leading LLM
LY DH SL G4o Go4 QW GM CD L3.1 L4 GA

Playbook Recommend

Open-ended

ICL5 42.3 54.2 54.7 64.5 73.1 52.8 79.4 63.7 65.8 55.8 54.9
ICL10 44.1 52.5 55.3 65.2 74.5 53.6 80.2 64.9 66.4 56.4 55.5
CoT 51.6 50.6 50.5 78.3 89.2 67.5 80.1 81.4 77.3 67.3 66.4
ToT 48.1 53.3 54.3 75.2 85.1 71.4 83.5 77.2 82.1 72.1 71.2

Standardized (Ours) 67.2 58.4 66.8 84.6 91.4 79.3 91.8 89.3 89.7 79.7 78.8
Security Control Adjust

Open-ended

ICL5 51.5 66.3 43.9 61.8 70.3 50.6 65.8 79.2 61.5 51.5 50.6
ICL10 53.2 68.4 45.6 62.7 71.8 51.2 66.4 80.1 62.3 52.3 51.4
CoT 60.3 70.5 68.4 70.3 80.2 59.8 79.2 77.2 77.9 67.9 63.0
ToT 66.7 72.1 61.6 75.9 85.6 66.3 73.6 73.1 72.8 62.8 61.9

Standardized (Ours) 74.2 77.6 80.1 82.1 89.7 74.7 88.5 86.5 86.4 76.4 75.5
Patch Code Generation

Open-ended

ICL5 10.8 49.8 29.2 56.2 58.4 39.3 63.7 47.5 49.2 39.2 38.3
ICL10 12.6 51.2 31.5 57.8 59.1 40.1 64.9 48.6 50.1 40.1 39.2
CoT 24.5 54.7 55.1 58.4 76.3 54.7 65.3 66.3 67.4 57.4 51.5
ToT 25.3 50.9 58.3 61.8 72.5 50.2 69.8 61.4 62.9 52.9 52.2

Standardized (Ours) 29.7 63.4 60.2 72.5 87.4 65.4 82.6 79.2 80.6 70.6 69.7
Patch Tool Suggestion

Open-ended

ICL5 48.2 65.2 61.5 68.9 79.4 59.2 74.1 68.5 70.3 60.3 59.4
ICL10 49.1 64.7 63.1 69.7 80.6 60.3 74.9 69.8 71.4 61.4 60.5
CoT 53.6 70.1 77.2 79.2 90.1 70.3 81.7 79.1 79.6 69.6 68.7
ToT 56.5 71.8 68.1 75.8 86.3 74.5 86.3 83.7 84.2 74.2 67.3

Standardized (Ours) 69.1 76.5 77.7 87.4 96.9 83.6 93.2 91.2 92.1 82.1 81.2
Advisory Correlation

Open-ended

ICL5 21.7 57.5 63.8 64.7 67.2 48.5 62.4 56.8 58.7 48.7 47.8
ICL10 22.9 59.1 64.7 65.9 68.1 49.2 63.2 58.1 59.5 49.5 48.6
CoT 49.5 71.4 69.5 67.2 80.5 61.7 77.5 76.2 76.3 66.3 65.4
ToT 46.8 73.2 67.2 70.8 84.2 64.8 73.1 72.5 71.8 61.8 60.9

Standardized (Ours) 73.4 78.8 77.1 80.3 92.3 76.5 86.9 84.5 84.9 74.9 74.0

mitigation outputs on CYBERTEAM. Table 3 presents the results, using task-specific metrics detailed
in Table 2.

Effectiveness of Standardization. From Table 3, we observe that using operational modules (Ours)
outperforms typical open-ended reasoning methods. For instance, modular operations enable GPT-o4
to achieve over 90% Hit@10 in playbook recommendation and over 92% in advisory correlation. In
contrast, open-ended reasoning achieves only secondary effectiveness, with a significant performance
gap observed (e.g., in the security control adjustment task of SevenLLM). This demonstrates the
effectiveness of combining standardized guidance with the inherent flexibility of LLMs.

Gains from Standard Operating Procedures. Notably, while ICL, CoT, and ToT have been shown
to improve generation quality for general-purpose tasks (Dong et al., 2022; Yu et al., 2023; Wang et al.,
2022), they provide limited guidance for domain-specific problems that require precise procedural
knowledge and structured analytical workflows. By contrast, standardized threat hunting workflows
help LLMs follow standard operating procedures by decomposing complex tasks into modular steps.
This reduces hallucination and enforces structure. In tasks requiring strict sequencing (e.g., threat
actor identification followed by response planning), workflow-based methods ensure the correct order
and information flow, outperforming ICL, CoT, and ToT, which often lack such control.

Case Study I (Failure Case). When using CoT to generate a response plan for LockBit (a
ransomware), GPT-4o offers generic recommendations "... the first step is to isolate affected
machines. Next, the system should assess backup availability and notify stakeholders ..." without
tailoring to LockBit and ignoring unique traits like double extortion tactics or known exploits.

By contrast, operations in CYBERTEAM constrain LLM reasoning to resolve correct analytical
sequences, ensuring outputs remain aligned with operational goals:
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(a) Threat Attribution — GPT-o4

(b) Behavior Analysis — GPT-o4

(c) Prioritization — GPT-o4

Figure 3: Threat-hunting performance (scaled to 100%) on individual tasks, evaluating under GPT-
o4-mini. Results for additional LLMs are provided in Appendix E.

Case Study II (Successful Case). The modular operation framework guides GPT-4o to explicitly
invoke RAG and SUM modules. Specifically, RAG retrieves up-to-date security advisories (e.g.,
CISA Alert AA23-325A) specific to LockBit, while SUM outlines mitigation strategies with double
extortion prevention and air-gapped offline backups.

These results suggest that in cybersecurity, particularly in threat-hunting scenarios, structured elicita-
tion methods are necessary for reliably leveraging LLM capabilities.

Operational Interpretability. Notably, the modular approach enhances interpretability for analysts,
as outputs can be traced back to specific operations (e.g., RAG for evidence retrieval, SUM for
summarization). In contrast, open-ended prompts produce opaque reasoning chains that are harder to
audit what real-world evidence is integrated.

Case Study III (Interpretability). For the MOVEit vulnerability (CVE-2023-34362), an open-
ended Qwen prompt returned only a vague recommendation (“apply vendor patches and monitor
suspicious traffic”). In contrast, our pipeline invoked the RAG module to retrieve Progress
Software’s advisory and the NER module to extract SQL injection IOCs. This modular trace
improved accuracy and enabled analysts to audit advisory steps.

Due to space constraints, we provide additional evaluation of the trade-off between latency and
reliability in Appendix E.1. Our results show that the standardized threat hunting method achieves a
more favorable balance compared with open-ended reasoning.

Design Insights �. The evaluation provides two actionable insights for blue team practices: (1)
Breaking threat analysis into smaller, modularized operations (e.g., IOC extraction, TTP mapping),
each guided by distinct reasoning objectives; (2) Integrate LLMs into existing analytic pipelines
where upstream outputs (e.g., extracted indicators) are fed into downstream modules rather than
relying on single-pass generation.

4.2 THREAT-HUNTING PERFORMANCE FOR INDIVIDUAL TASKS (RQ2)

Complementing Section 4.1, we also evaluate individual threat-hunting tasks prior to the response &
mitigation stage, as outlined in Table 2. Figures 3 and Appendix E present the experimental results.
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(a) Malware Identification (b) Signature Matching (c) Infrastructure Extraction

Figure 4: LLM performance (metrics corresponding to Table 2) when input threat logs are perturbed
with token-level noise (solid line) or semantic-level noise (dashed line). X-axis shows the noise ratios.

Observe that using standardized threat hunting consistently achieves the highest performance across
all intermediate tasks. However, the magnitude of performance gains varies across task types. For
instance, in complex reasoning tasks (e.g., Event Sequence Construction), the standardized method
yields substantial improvements over open-ended reasoning strategies like CoT and ToT, boosting
accuracy by over 20% using GPT-o4-mini. These gains are most notable when task dependencies
are strong. For example, generating effective responses depends on accurate upstream analysis.
Module-guided models can preserve and pass critical context, while ICL/CoT/ToT often fail to
coordinate such multi-stage reasoning reliably. This is largely because these tasks require multi-hop
reasoning, evidence synthesis, and careful dependency tracking, which are capabilities that general
prompting methods struggle to coordinate effectively. In contrast, for narrower, classification-focused
tasks (e.g., attack vector categorization or privilege escalation inference), the performance gap
between operational modules and standard prompting is smaller. Here, the tasks are more self-
contained, and models can often arrive at correct predictions even without explicit task decomposition
or function integration.

Design Insights �. While standardized threat hunting offer general advantages, their relative
benefit is particularly significant in scenarios requiring structured reasoning over interconnected
steps. This demonstrates the importance of modular guidance in complex cybersecurity workflows.

Due to space constraints, we provide complementary results and analyses in Appendix E.2.

4.3 LLM ROBUSTNESS AGAINST NOISY INPUTS (RQ3)

Experimental Setting. We also investigate LLM robustness when input threat logs contain noisy text.
We introduce (i) token-level noise using TextAttack (Morris et al., 2020), which randomly injects or
substitutes tokens, and (ii) semantic-level noise using BART-paraphraser (Lewis et al., 2019), which
subtly introduces misleading or shifted context. Both noise types are applied at controlled levels (e.g.,
perturbing 10% of the input).

Results and Observations. From Figure 4, we observe that token-level noise has a smaller impact on
LLM performance compared to semantic-level noise. For example, under 10% perturbation, random
character insertions or deletions lead to less than 5% performance drop across tasks. In contrast,
semantic-level noise (e.g., paraphrased or subtly altered context) causes a much larger decline. These
findings suggest that while LLMs handle surface-level errors relatively well, they struggle with the
semantic shifting, even when guided by CYBERTEAM. This highlights the importance of curating
expert-level threat reports in threat hunting, as imprecise statements can unintentionally mislead blue
team efforts and degrade overall analysis.

5 CONCLUSION

We present CYBERTEAM, a benchmark designed to evaluate the capabilities of LLMs in blue team
threat-hunting workflows. By combining broad and diverse real-world datasets, a standardized
workflow environment with modular function-guided reasoning, and detailed evaluation strategies,
CYBERTEAM provides a comprehensive workflow for assessing LLM capabilities in realistic cyber
defense scenarios. Our empirical findings offer actionable insights for integrating standardized
operations into security workflows. We hope CYBERTEAM will serve as a valuable resource for the
research community and practitioners alike, driving future innovations in AI-assisted cybersecurity.
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A DATA SOURCE AND METADATA COLLECTION

The MITRE CVE (Common Vulnerabilities and Exposures) system (The MITRE Corporation,
n.d.) is a foundational database that provides unique identifiers for publicly disclosed cybersecurity
vulnerabilities. Each CVE record includes an ID, a brief description, references to external resources,
and associated vendors or platforms. This source allows for consistent naming and indexing of
vulnerabilities across tools and reports. We collect structured metadata such as CVE IDs, descriptions,
reference links, and related CWE classifications. CVE feeds (XML/JSON) are used for automated
ingestion and linkage to other threat intelligence frameworks like CAPEC and ATT&CK.

Maintained by NIST, the NVD (National Vulnerability Database) (National Institute of Standards
and Technology (NIST), 2024) builds on MITRE CVE data by adding rich metadata, including CVSS
scores (base, temporal, environmental), CWE mappings, configuration impacts, patch availability,
and severity vectors. We extract metadata through the official JSON data feeds, parsing CVE-level
risk metrics, impact sub-scores, and associated product configurations. This information is critical
for prioritizing remediation and understanding the real-world impact of vulnerabilities.

Exploit-DB (Offensive Security, 2024) is a curated collection of publicly available exploits and proof-
of-concept code. Each entry includes exploit titles, CVE references, author information, platform
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tags, and the actual code used in attacks. Unlike CVE/NVD, Exploit-DB provides practical insights
into how vulnerabilities are weaponized in real environments. We extract titles, descriptions, exploit
types (e.g., Local, Remote), and related CVEs using web scraping and NLP-based text classification.

CWE(Common Weakness Enumeration) (MITRE Corporation, b) is a taxonomy developed by
MITRE to classify software and hardware weaknesses. Each CWE includes a unique ID, a detailed
explanation, potential consequences, examples, and related patterns (e.g., CAPEC). We use CWE
to enrich CVE data with root cause information, enabling fine-grained vulnerability clustering and
defensive prioritization. The metadata includes weakness category, severity, and relationships with
CAPEC and CVE entries.

CAPEC (Common Attack Pattern Enumeration and Classification) (MITRE Corporation, a)
provides a standardized catalog of common attack strategies. Each pattern includes the attacker’s
objectives, prerequisites, execution flow, related weaknesses (CWE), and example scenarios. We
extract attack pattern IDs, descriptions, related CWEs, and suggested mitigations. These data points
enable us to map vulnerabilities to adversarial behaviors, enhancing our CTI behavioral modeling
capabilities.

The MITRE ATT&CK (MITRE Corporation, 2024) framework systematically catalogs adversary
tactics, techniques, and procedures (TTPs) observed in real-world incidents. Each entry includes
tactic categories (e.g., Privilege Escalation), techniques, mitigations, detection suggestions, and
threat actor mappings. We extract technique IDs, corresponding software, mitigation strategies, and
detection methods. These are used to link CVEs and exploits to higher-level attacker behaviors,
supporting advanced threat modeling.

D3FEND (MITRE Corporation, c) is a curated knowledge graph that maps defensive techniques to
specific threat behaviors and artifacts. D3FEND complements the well-known ATT&CK framework
by focusing on how defenders can detect, disrupt, and respond to adversarial actions. To integrate this
resource into CYBERTEAM, we crawl D3FEND’s publicly available ontology and extract metadata
on detection, deception, and mitigation techniques, along with their associated digital artifacts (e.g.,
file paths, registry keys, network signatures). This metadata is then linked to relevant analytical
tasks, such as behavioral profiling and response planning, providing a rich, standardized reference for
grounding LLM outputs in practical defensive actions.

Oracle Security Alerts (Oracle Corporation, 2024) provides detailed security patch advisories for its
product suite. Each alert includes the CVEs addressed, severity scores, and remediation timelines.
We parse the advisories to gather product-specific vulnerability timelines, vendor patch statuses, and
mitigation instructions, which complement the NVD and MITRE CVE datasets.

Red Hat Bugzilla (Red Hat, Inc., 2024) is a bug tracking system that includes detailed discussions
and technical logs about software bugs, many of which are security-related. Entries often include
CVE links, fix status, patch availability, and affected components. We scrape metadata such as Bug
IDs, CVE references, affected packages, and resolution details to supplement our understanding of
vulnerability lifecycle management.

The RHSA(Red Hat Security Advisories) (Red Hat, Inc.) portal lists all critical, important, and
moderate security advisories affecting Red Hat products. Each advisory provides CVE mappings,
severity scores, fixed packages, and risk summaries. Metadata extraction includes advisory IDs,
publication dates, CVE linkages, and suggested upgrades or patches, enabling alignment with
real-world remediation practices.

IBM X-Force Exchange (IBM Corporation, 2024) is a commercial threat intelligence sharing
platform that provides in-depth reports on vulnerabilities, exploits, malware, and threat actors. Each
CVE entry is enriched with exploitability status, malware connections, and actor attribution. We
extract structured threat metadata such as exploit availability, indicators of compromise (IOCs),
campaign tags, and actor profiling to complement CVE risk modeling.

CISE (Cybersecurity Information Sharing Environment) (CISE Program, 2024), maintained by
CISA, promotes cybersecurity information exchange across government and private sector entities.
The platform facilitates sharing of indicators of compromise (IOCs), analysis reports, and threat
mitigation strategies through structured partnerships. We extract strategic-level threat metadata,
including threat vectors, vulnerability trends, and response best practices from shared reports and
alerts. This supports broader CTI tasks like attribution and risk contextualization.
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VulDB (Vulnerability Database) (VulDB Team, 2024) is a commercial vulnerability intelligence
service that provides insights into current exploits, threat actor behavior, and exploit trends. Entries
often include exploitability scores, attack vectors, exploitation status, and tags related to malware or
campaigns. We collect CVE mappings, vulnerability titles, exploitation timelines, and associated
actors, enabling temporal and behavioral correlation with other sources like Exploit-DB and MITRE
ATT&CK.

Apache’s official security advisory page lists all disclosed vulnerabilities affecting Apache projects
(e.g., HTTP Server, Tomcat, Struts) (The Apache Software Foundation, 2024). Each advisory includes
CVE references, affected versions, and patch instructions. We extract CVE mappings, patch details,
vulnerability types, and affected modules. These insights are cross-referenced with MITRE CVE and
NVD entries to improve accuracy in software-specific threat tracking.

Mandiant Threat Intelligence Reports (Mandiant (Google Cloud), 2024), now part of Google
Cloud, publishes in-depth research on nation-state APTs, malware campaigns, and threat actor
tactics. Their reports include IOC lists, ATT&CK mappings, and campaign chronologies. We extract
metadata on APT groups, attack stages, observed TTPs, and malware toolkits. These data points
support the attribution and behavioral modeling dimensions of our threat intelligence corpus.

Recorded Future Threat Intelligence Reports (Recorded Future, 2024) publishes real-time,
machine-readable threat intelligence covering threat actors, vulnerabilities, dark web chatter, and
geopolitical cyber campaigns. Reports often include structured indicators, predictive analytics, and
CVE exploitability assessments. We leverage this source to collect threat context, emerging trends,
and exploit discussion patterns—enabling our system to associate vulnerabilities with evolving threat
actor intent and capability.

Unit 42 Threat Research (Palo Alto Networks) (Palo Alto Networks, 2024) provides malware
analysis, campaign forensics, and actor behavior insights from Palo Alto Networks’ global threat
intelligence platform. Their publications include links to malicious infrastructure, malware families,
and ATT&CK references. We extract TTPs, CVE-to-malware correlations, and campaign data.
This enhances our contextual metadata for linking specific vulnerabilities to real-world exploitation
scenarios.

Microsoft’s Security Update Guide (Microsoft Corporation) lists monthly updates across its soft-
ware stack. Entries contain CVEs, severity ratings, exploitability assessments, patch availability, and
affected platforms. Metadata extraction includes CVE linkage, threat vectors (e.g., local, remote),
exploitation likelihood, and patch rollout status—enriching vendor-specific vulnerability intelligence.

CVSS (Common Vulnerability Scoring System) (FIRST, a) is a widely adopted scoring system
developed by FIRST to assess the severity of software vulnerabilities. It breaks down risk into Base,
Temporal, and Environmental components. We use this framework to interpret NVD scores, compare
severity across platforms, and calibrate exploitability in relation to business-critical systems.

EPSS (Exploit Prediction Scoring System) (FIRST, b), also developed by FIRST, provides proba-
bilistic predictions of whether a vulnerability is likely to be exploited in the wild. It integrates data
from CVSS, Exploit-DB, and historical attack patterns. We ingest EPSS scores via API to prioritize
vulnerabilities not just by severity, but by real-world exploitation likelihood—enabling dynamic
risk-based vulnerability management.

MISP (Malware Information Sharing Platform) (MISP Project, 2024) is an open-source platform
designed for structured threat intelligence sharing using STIX/TAXII formats. It facilitates sharing of
IOCs, threat event correlations, and TTP mappings. We integrate MISP data via its API to ingest
indicators (e.g., hashes, domains, IPs), related threat actors, and event metadata. These enrich our
knowledge graph with actionable CTI feeds.

VirusTotal (VirusTotal (Google Chronicle), 2024) is a widely used threat intelligence platform
that aggregates malware analysis and sandbox reports from multiple antivirus engines and security
vendors. To support behavior analysis and attribution tasks, CYBERTEAM collects structured threat
metadata from VirusTotal’s public API, including file hashes (MD5, SHA-1, SHA-256), behavioral
execution traces, contacted IPs/domains, dropped files, and detection labels. This information is
linked to threat artifacts such as malware families, indicators of compromise (IOCs), and known
campaign signatures. The extracted metadata enables CYBERTEAM to contextualize adversarial
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behaviors and enrich analytical functions like malware classification, infrastructure extraction, and
campaign correlation.

AlienVault Open Threat Exchange (OTX) (AlienVault (AT&T Cybersecurity), 2024) is a collabo-
rative threat-sharing platform that provides community-contributed threat indicators and contextual
threat intelligence. CYBERTEAM leverages the OTX API to collect threat pulses—curated collections
of IOCs and metadata describing specific threat actors, campaigns, or vulnerabilities. These pulses
include information such as associated IPs, domains, file hashes, CVEs, and targeted sectors. By
integrating OTX data, CYBERTEAM enhances its ability to support tasks like actor attribution, TTP
matching, and community correlation, allowing LLMs to reason over shared intelligence and align
analysis with ongoing threat landscapes.

Data Ethics. All data used in CYBERTEAM are collected from publicly available vulnerability
databases and open-source threat intelligence platforms. No sensitive personal information or
proprietary organizational data are included.

B MODULARIZED OPERATIONS: BASIC COMPONENT OF STANDARDIZED
THREAT HUNTING

To support modular and extensible capabilities within our CYBERTEAM, we decompose complex
NLP workflows into discrete, modularized operations. This section detail the implementation of NLP
modules as described in section 3.1. Each module corresponds to a specific operation type, described
as follows:

B.1 NER (NAMED ENTITY RECOGNITION)

To identify and classify cybersecurity-relevant entities such as threat actors, malware names, vulnera-
bilities, and indicators of compromise (IOCs) in unstructured textual data, NER facilitates automated
extraction for threat attribution and situational awareness. We employ prompt-based techniques
that enable entity recognition without retraining, thus maintaining adaptability to emerging domain
vocabulary.

Prompt 1. NER Prompt for Threat Attribution

System Prompt: You are a cybersecurity threat intelligence assistant specialized in named
entity recognition. Your task is to extract and categorize all named entities relevant to threat
attribution from the provided text. Focus on answering: "Who is responsible for the attack?",
"How was the attack carried out?".
Instructions: Given a cybersecurity-related document or report excerpt, extract all relevant
named entities and classify them into:

• Threat Actor: Individual(s) or groups suspected or known to conduct the activity.
• Malware/Tool: Names of malicious software, exploits, or hacking tools.
• Vulnerability: CVE identifiers or technical flaws exploited.
• Infrastructure: IPs, domains, file hashes, or URLs used.

Output: Return results as a structured JSON object.

Design Rationale: In real-world threat hunting, analysts are constantly overwhelmed by unstructured
reports, logs, and advisories filled with technical jargon and entity references. Automating named
entity recognition helps blue teams immediately isolate critical items such as threat actors, malware
strains, or CVE identifiers without combing through entire reports manually. This reduces analyst
workload, accelerates attribution, and ensures no important entity slips through, particularly when
adversaries recycle or slightly modify names and indicators across campaigns.

B.2 REX (REGEX PARSING)

To extract structured indicators from cybersecurity logs or reports, REX employs predefined regular
expressions to match patterns like IP addresses, domain names, file hashes, and timestamps. This
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rule-based approach offers high precision in normalizing threat data for correlation and enrichment
tasks.

Prompt 2. Regex Pattern Matching Prompt

System Prompt: You are a cybersecurity parsing assistant. Your task is to extract standard
threat indicators from raw incident reports using predefined regex patterns.
Instructions: Parse the following document and extract any matches for:

• IP addresses
• File hashes (MD5, SHA1, SHA256)
• Domain names
• Timestamps

Output: Return all matches grouped by type in structured JSON format.

Design Rationale: Regex parsing remains indispensable because many threat indicators—such as
IP addresses, hashes, and domains—follow strict syntactic patterns. Blue team analysts often must
quickly normalize raw log data or incident feeds into structured formats suitable for correlation across
SIEM or TIP platforms. Automated regex-based extraction delivers high precision and avoids false
alarms, providing reliable building blocks for pivoting investigations, linking disparate alerts, and
enriching threat databases with verified observables.

B.3 SUM (SUMMARIZATION)

To enable analysts to quickly grasp key information from lengthy threat reports, SUM generates
concise summaries while preserving critical details such as TTPs, IOCs, and incident timelines.

Prompt 3. Threat Report Summarization Prompt

System Prompt: You are a cybersecurity analyst assistant. Your task is to summarize
the following threat report in 3–4 sentences, preserving the attack vector, affected systems,
timeline, and any mentioned threat actors or IOCs.
Instructions: Summarize only the essential intelligence. Avoid generic phrases. Include
dates, names, and tools where available.
Output: Return a plain-text summary paragraph.

Design Rationale: Threat reports and advisories are typically lengthy, verbose, and include redundant
or irrelevant details. In time-critical investigations, analysts need condensed yet accurate snapshots
that retain attack vectors, key actors, and affected assets. Automated summarization provides blue
teams with quick situational awareness, enabling them to brief stakeholders or prioritize triage without
missing essential context. It also helps align tactical actions with strategic threat intelligence by
stripping away noise and surfacing the essentials.

B.4 SIM (TEXT SIMILARITY MATCHING)

To determine semantic equivalence between pairs of threat indicators—particularly geographic or
cultural references (e.g., "Eastern European" vs. "Russian-speaking")—the SIM function applies
LLM-based textual similarity matching. This is critical for normalizing contextual descriptions found
in incident reports or threat assessments that use varied, informal, or aliasing terms to describe similar
threat origin profiles. Rather than relying on surface-level keyword overlap, SIM leverages the LLM’s
contextual understanding to judge whether two descriptions refer to the same underlying group or
region. This helps unify disparate threat intelligence entries that may use different terminology for
the same adversarial origin.
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Prompt 4. Text Similarity Matching Prompt for Geocultural Indicators

System Prompt: You are a cybersecurity assistant that helps analysts determine whether two
geolocation or cultural indicators refer to the same threat origin. Use contextual reasoning to
decide whether the two phrases describe the same group or region in a cyber threat context.
Instructions: Given two input phrases describing threat origin (e.g., "Russian-affiliated"
vs. "Eastern Bloc actor"), determine whether they semantically refer to the same group or
geopolitical background.
Answer the following questions:

• Do both descriptions point to the same cultural, linguistic, or geopolitical region?
• Are the expressions used interchangeably in threat intelligence contexts?

Output: Return a JSON object with:
• "match": Boolean (true/false)
• "confidence": A float score from 0.0 to 1.0
• "justification": One or two sentences explaining the decision

Design Rationale: Threat hunting often suffers from inconsistent terminology—analysts and vendors
may describe the same adversary group or region in different ways. By applying semantic similarity
matching, blue teams can unify aliases, regional descriptions, or contextual cues, thereby avoiding
fragmented analysis. For example, detecting that “Eastern European actors” and “Russian-speaking
threat groups” likely refer to the same set of adversaries allows more coherent attribution and prevents
intelligence silos that adversaries can exploit.

B.5 MAP (TEXT MAPPING)

To visualize and semantically relate named entities and key concepts extracted from cybersecurity
documents, the MAP function supports construction of structured representations such as knowledge
graphs or threat maps. These representations help uncover infrastructure relationships, campaign
patterns, and geotemporal dynamics in threat activity. When powered by large language models,
MAP enables flexible and context-aware extraction of relational triples from unstructured threat
reports.

Prompt 7. Threat Knowledge Mapping Prompt

System Prompt: You are a cybersecurity knowledge graph assistant. Extract and relate key
entities from the given threat report to form subject-predicate-object triples.
Instructions: Identify entities (e.g., threat actors, tools, organizations, IP addresses) and the
relationships between them (e.g., "uses", "targets", "associated with").
Output: Return a list of triples in the format: [subject, predicate, object]
Include a confidence score (0–1) if applicable.

Design Rationale: Attack campaigns rarely consist of isolated events—they are orchestrated through
complex infrastructures and actor-tool relationships. Mapping extracted entities into structured
knowledge graphs helps analysts visualize these relationships and trace adversary activity across time
and geography. This capability supports detection of infrastructure reuse, identification of campaign
evolution, and discovery of hidden connections that might otherwise remain unnoticed, enabling
more proactive defense strategies and long-term threat tracking.

B.6 RAG (RETRIEVAL-AUGMENTED GENERATION)

To enhance generation with accurate and recent data, RAG combines LLM output with real-time
retrieval from external threat intelligence APIs or databases. It is particularly useful for describing
evolving threats or identifying actor affiliations.
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Prompt 4. Structured Query for Retrieval

System Prompt: You are a cybersecurity assistant. Formulate a concise search query to
retrieve current information about the topic specified below.
Instructions: Based on the topic “Recent activity by APT29 involving phishing attacks”,
generate a query such as:

“APT29 phishing campaign 2024 indicators, tools, and targets site:mitre.org OR
site:virustotal.com”
Output: Return the final query string and optionally list key evidence passages from results.

Design Rationale: Adversary tactics evolve daily, and static LLMs quickly become outdated if
disconnected from real-time sources. Retrieval-augmented generation enables blue teams to ground
LLM outputs with fresh, authoritative information from trusted CTI feeds, vulnerability databases, or
public repositories. This ensures that generated insights remain both accurate and timely, supporting
decisions during live incidents such as phishing outbreaks or zero-day exploitation campaigns where
stale intelligence could lead to ineffective responses.

B.7 SPA (TEXT SPAN LOCALIZATION)

To precisely extract actionable phrases—such as indicators of compromise or technique descrip-
tions—from long-form cybersecurity text, Text Span Localization (SPA) models are used.

Two key metrics evaluate SPA effectiveness:

• Exact Match (EM):

EM =
Number of exact matches

Total predictions

• Intersection over Union (IoU):

IoU =
|Sp ∩ St|
|Sp ∪ St|

These metrics assess both strict and partial correctness, aiding in accurate downstream processing
such as relation extraction or automated summarization.

Prompt 5. Span Extraction Prompt

System Prompt: You are a cybersecurity span identification assistant. Extract the text span
that describes the primary technique used in the attack.
Instructions: Given a report excerpt, locate and return the sentence or phrase that directly
describes how the attacker compromised the system (e.g., phishing, lateral movement, privilege
escalation).
Output: Return the extracted span as plain text.

Design Rationale: In practice, analysts often need to pull out the single critical phrase—such as
the exact exploitation method—from long reports or alerts. Span localization ensures precision by
targeting actionable fragments rather than broad summaries, which is vital for creating detection
rules, YARA signatures, or SIEM correlation logic. By pinpointing exact techniques or IOCs, blue
teams reduce ambiguity, streamline evidence curation, and avoid wasting resources on imprecise or
overly generalized intelligence.

B.8 CLS (CLASSIFICATION)

To measure the ability of a system to categorize cybersecurity-relevant textual inputs—such as threat
alerts, vulnerability descriptions, or log messages—into predefined classes (e.g., threat categories,
severity levels, or attack types), classification models are employed. This is commonly performed
using transformer-based large language models (LLMs), which utilize a special token (e.g., [CLS]) to
represent sentence-level semantics. The resulting embedding is mapped to labels through a learned
classifier.
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Design Rationale: Blue teams constantly receive heterogeneous data ranging from phishing alerts to
vulnerability disclosures. Automated classification allows this information to be triaged into relevant
categories—such as attack type, severity, or impacted systems—so that workflows can be routed
efficiently. Accurate classification supports prioritization of critical alerts, ensures compliance with
response playbooks, and minimizes analyst fatigue by filtering out low-severity noise while surfacing
the incidents that require immediate attention.

B.9 MATH (MATHEMATICAL CALCULATION)

To perform quantitative analyses and structured computations relevant to cybersecurity, the MATH
function supports tasks such as frequency modeling, impact scoring, cryptographic evaluation, and
automated threat prioritization. These computations are critical for risk-informed decision-making
within cyber threat intelligence pipelines.

A prominent example is the Common Vulnerability Scoring System (CVSS v3.1), which uses a
combination of weighted factors and conditional logic to produce a standardized severity score for
vulnerabilities. One key element is the Base Score, calculated using the Impact and Exploitability
sub scores:

Base Score =


0, if Impact Subscore ≤ 0

RoundUp (min(Impact + Exploitability, 10)) , if Scope is Unchanged
RoundUp (min(1.08× (Impact + Exploitability), 10)) , if Scope is Changed

The Impact Subscore is computed from confidentiality, integrity, and availability impact metrics as:

ISCBase = 1− (1− C)× (1− I)× (1−A)

This formula models the probability that the system’s security properties are affected by a vulnerability.
The resulting score guides patching priority, risk exposure assessments, and automated vulnerability
triage.

Such logic-heavy, non-trivial calculations exemplify the role of mathematical modules in operational
cybersecurity settings and justify the integration of computational reasoning capabilities in modern
cyber AI systems.

Prompt 9. CVSS Score Computation Prompt

System Prompt: You are a cybersecurity scoring assistant. Given a vulnerability description
and metric values (Confidentiality, Integrity, Availability, Scope, Attack Vector, etc.), compute
the CVSS v3.1 Base Score.
Instructions: Use the official CVSS equations and apply the rounding rules specified in the
standard. Return both the numeric score and a textual explanation of the computation steps.
Output: Return the Base Score as a float (1 decimal place) and a step-by-step explanation.

Design Rationale: Quantitative scoring frameworks like CVSS remain the backbone of enterprise
vulnerability management and patch prioritization. Automated mathematical reasoning allows blue
teams to consistently compute, validate, and apply these scores across large vulnerability sets,
ensuring consistent triage even under heavy load. Beyond CVSS, mathematical modules enable
probability modeling, risk scoring, and exposure forecasting—practices that help defenders allocate
resources effectively and justify decisions to leadership with evidence-based metrics.

C METRIC

Below are further details on how each evaluation metric quantifies the corresponding threat hunting
performance.
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C.1 GENERATION (PRECISION–RECALL BALANCE BY F1) AND CLASSIFICATION
(ACCURACY)

In threat hunting, information extraction tasks such as detecting malware names, extracting IOCs,
or identifying exploited vulnerabilities require a careful balance between precision and recall. If a
system retrieves too many irrelevant indicators, analysts are burdened with noise; if it misses critical
signals, adversarial activity may go unnoticed. The F1 score captures this balance by evaluating
how well a model retrieves the right items while minimizing both false alarms and missed detections.
This makes it particularly valuable in operational contexts where the completeness and reliability of
extracted intelligence directly affect the quality of subsequent analysis and response.

Besides, well-quantified tasks such as prioritization in blue team activities involve classification, such
as determining whether an alert corresponds to privilege escalation, categorizing attack vectors, or
assigning severity levels to vulnerability reports. In these scenarios, accuracy serves as an intuitive
and effective measure of system performance, reflecting how often predictions align with ground-truth
categories. High accuracy ensures that automated classification supports efficient triage and aligns
with established taxonomies like MITRE ATT&CK.

C.2 SIM (BERT SCORE)

To evaluate the semantic similarity between cybersecurity-related texts—such as comparing analyst-
written threat summaries, aligning generated incident narratives with original reports, or verifying
paraphrased explanations of threat indicators—the Sim function utilizes contextual embedding-based
metrics. Specifically, it computes BERTScore (Zhang et al., 2020), which has been shown to correlate
strongly with human judgment in natural language generation tasks.

BERTScore measures semantic equivalence at the token level by aligning contextual embeddings
from pre-trained transformer models. The score is computed as:

BERTScore =
1

|x|
∑
i

max
j

cos(xi,yj)

where xi and yj are contextual embeddings of tokens in the candidate and reference texts, respectively.
The final score reflects the average of maximal cosine similarities for each token in the candidate
sentence.

This metric is particularly valuable in evaluating machine-generated text in cybersecurity domains,
where surface-level similarity may fail to capture the deeper equivalence of technical meaning or
threat context.

C.3 PASS (CODE EXECUTION PASSING RATE)

To measure the reliability and functional correctness of cybersecurity automation artifacts—such
as detection rules, analysis scripts, or integration workflows—the Pass Rate metric is employed.
It quantifies how well a system performs under test by evaluating the proportion of test cases that
execute successfully within a defined execution cycle, often conducted in a continuous integration
(CI) pipeline.

Formally, the Pass Rate is defined as:

Pass Rate =
Number of Passed Tests

Total Tests Executed
× 100%

This metric provides a coarse yet effective indicator of operational readiness. A high Pass Rate
implies that the deployed codebase functions as intended across its tested scenarios, which is critical
in cybersecurity contexts where automation is used to process threat intelligence, detect anomalies,
or trigger incident response mechanisms.

Routine monitoring of this metric supports the early identification of integration regressions, promotes
pipeline stability, and ensures confidence in deploying automated defensive measures to production
environments.
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C.4 HIT (TOP-K HIT RATIO)

To evaluate the effectiveness of cybersecurity recommendation or retrieval systems—such as those that
propose relevant threat indicators, patch suggestions, attack techniques, or investigative leads—the
Top-k Hit Ratio is employed. This metric measures how frequently at least one correct or relevant
item appears within the top-k ranked results returned by the system.

Mathematically, the Top-k Hit Ratio is defined as:

Hit@k =
Number of queries with at least one relevant item in top k

Total number of queries

A higher Hit@k indicates better system performance in surfacing relevant intelligence near the top of
recommendations, which is critical for time-sensitive security operations.

Use Case Example: If a system recommends threat indicators based on a query about a ransomware
family, Hit@5 evaluates whether at least one valid IOC (e.g., file hash or C2 domain) appears in the
top 5 returned items.

Prompt 6. Hit Evaluation Prompt for Threat Retrieval

System Prompt: You are an assistant for evaluating cybersecurity retrieval systems. Given a
query and a list of system-generated recommendations, check whether any ground truth item
appears within the top-k returned results.
Instructions: For each query, compare the top-k predicted items against the gold-standard
set. Indicate "Hit" if at least one match exists, otherwise "Miss".
Output: Return a JSON object with fields: query, top_k_results, ground_truth,
hit@k: true/false

C.5 DIST (NORMALIZED DISTANCE SIMILARITY)

To evaluate the accuracy of numeric predictions in range-based estimation tasks, such as severity
scoring, the Normalized Distance Similarity (Dist) metric is employed. This metric compares the
predicted number and the ground-truth and scales the similarity into the [0, 1] range, where higher
values indicate closer alignment.

Formally, the similarity is computed as:

Similarity = 1− |ĉ− c|
R

where ĉ and c denote the midpoints of the predicted and true ranges, respectively, and R is the
maximum possible value of the range (e.g., 10 in our case of CVSS scores). The metric reflects
the Euclidean distance between prediction and truth, normalized such that a perfect match yields a
similarity of 1, and the furthest possible discrepancy yields 0.

D EXPERIMENTAL SETTING

This section details the experimental setup used to evaluate LLMs in the CyberTeam benchmark.

Hyperparameters. Table 4 summarizes the key hyperparameters for querying LLMs during experi-
ments. These settings were chosen to balance generation quality and computational efficiency.

Computational Resources. All experiments were conducted on a high-performance computing
cluster equipped with six NVIDIA RTX 6000 Ada Generation GPUs, each with 48 GB of dedicated
VRAM. The system utilized CUDA version 12.8 and NVIDIA driver version 570.124.06. This
configuration enabled parallel execution of model inference, evaluation, and tool-augmented tasks
across the benchmark datasets. The hardware provided sufficient memory bandwidth and processing
power to handle large-scale experiments, including multi-sample prompting strategies like CoT and
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Table 4: LLM query hyperparameters.
Hyperparameter Value Description

Temperature 0.7 Output randomness
Top-p 0.95 Nucleus sampling threshold
Max tokens 2048 Generation length cap
Stop sequences ["\n", "Q:"] Response cutoff cues
Prompt format ICL, CoT, ToT, Emb Prompt types (see 4)
Tool-calling API Enabled (Selective) For function-use experiments

Table 5: Running time (in seconds) of LLMs on CYBERTEAM, comparing different open-ended
prompting strategies with our standardized method. Lower values indicate faster inference.

Method Cybersecurity Agent Industry-Leading LLM
LY DH SL G4o Go4 QW GM CD L3.1 L4 GA

Playbook Recommend

Open-ended

ICL5 12.4 15.6 14.8 10.5 41.2 13.6 11.9 12.7 28.6 24.0 16.8
ICL10 14.1 17.2 16.3 12.0 45.7 15.2 13.5 14.4 31.4 26.5 18.3
CoT 18.6 22.4 21.1 15.8 60.8 19.9 17.6 18.8 41.2 34.5 24.5
ToT 27.5 34.1 32.0 24.2 89.5 30.2 27.1 28.9 62.7 52.5 37.8

Standardized (Ours) 21.3 26.5 25.2 19.1 71.3 23.5 21.0 22.3 50.5 42.0 30.1

Security Control Adjust

Open-ended

ICL5 13.1 16.4 15.5 11.1 43.5 14.3 12.5 13.3 30.2 25.0 17.6
ICL10 15.0 18.3 17.2 12.6 48.1 16.1 14.2 15.1 33.0 27.4 19.1
CoT 19.4 23.5 22.2 16.7 63.4 20.8 18.3 19.6 43.8 36.0 25.7
ToT 28.3 35.6 33.6 25.4 92.2 31.7 28.3 30.2 66.4 55.0 39.5

Standardized (Ours) 22.1 27.8 26.7 20.0 74.2 24.7 22.1 23.4 53.1 44.0 31.2

Patch Code Generation

Open-ended

ICL5 14.2 17.9 17.0 12.2 46.8 15.7 13.6 14.4 32.8 27.0 19.2
ICL10 16.3 19.6 18.7 13.7 51.3 17.5 15.3 16.2 35.7 29.5 20.8
CoT 21.2 25.3 24.5 18.1 68.7 22.9 19.7 21.1 47.6 39.0 28.1
ToT 31.7 38.4 36.9 27.8 98.6 34.5 30.6 32.6 71.9 59.0 42.5

Standardized (Ours) 24.0 29.7 28.6 21.4 79.4 26.6 23.6 25.0 57.2 47.0 34.4

Patch Tool Suggestion

Open-ended

ICL5 12.8 15.9 15.2 10.9 42.6 14.0 12.3 13.0 29.5 24.3 17.0
ICL10 14.7 17.7 16.9 12.4 47.0 15.8 14.0 14.8 32.4 26.2 18.6
CoT 19.0 23.0 22.0 16.3 62.1 20.5 18.1 19.2 42.5 35.0 25.1
ToT 27.9 34.9 33.1 24.7 90.8 31.0 27.6 29.6 64.0 52.5 38.2

Standardized (Ours) 21.7 27.1 26.2 19.6 72.8 24.1 21.7 22.9 51.7 42.5 30.5

Advisory Correlation

Open-ended

ICL5 13.6 16.8 16.1 11.7 44.9 14.9 13.0 13.8 31.0 25.5 18.2
ICL10 15.6 18.7 17.9 13.2 49.6 16.7 14.7 15.6 34.0 28.0 20.0
CoT 20.3 24.1 23.4 17.2 65.3 21.7 19.0 20.4 45.3 37.0 26.5
ToT 29.8 36.8 35.4 26.1 95.1 33.1 29.4 31.3 68.8 56.0 40.1

Standardized (Ours) 23.1 28.5 27.8 20.6 76.2 25.4 22.8 24.2 54.6 45.0 32.1

ToT, without encountering resource constraints. Each experimental run was executed in a isolated
environment to ensure reproducibility and avoid interference between tasks.

E ADDITIONAL EXPERIMENTAL RESULTS

This section presents additional experimental results that complement our main findings, offering
deeper insights into model behavior across varied threat-hunting scenarios.

E.1 RUNNING TIME AND TRADE-OFF BETWEEN LATENCY AND EFFECTIVENESS

Observations and Insights. The runtime analysis highlights an inherent trade-off between efficiency
and reasoning complexity across prompting strategies. Consistent with expectations, in-context
learning (ICL) variants remain the fastest across nearly all models, typically completing tasks in the
10–15 second range. This makes ICL attractive for time-sensitive operations such as triage or initial

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(a) Threat Attribution — GPT-4o

(b) Behavior Analysis — GPT-4o

(c) Prioritization — GPT-4o

Figure 5: Threat-hunting performance on individual tasks, evaluating under GPT-4o.

correlation, where speed outweighs the need for more structured reasoning. Chain-of-thought (CoT)
introduces additional reasoning overhead, increasing runtimes by roughly 30–40% compared to ICL.
While this slowdown is measurable, the benefit of CoT lies in its improved consistency on more
nuanced decision tasks, suggesting that blue teams might selectively invoke CoT when precision is
critical. Tree-of-thought (ToT), by contrast, incurs the highest latency, often doubling the runtime
relative to ICL. This stems from ToT’s multi-branch exploration process, which, while occasionally
producing richer reasoning chains, remains computationally expensive and operationally impractical
for most real-time security workflows.

Our standardized pipeline approach falls between CoT and ToT in runtime. The added latency reflects
the sequential decomposition of tasks into modular subroutines, each enforcing more structured
reasoning than raw prompting. While slower than single-pass approaches, our pipeline mostly
avoids the extreme overhead observed in ToT. This stability is particularly important in operational
settings: analysts can predictably plan around a known latency budget while still benefiting from
higher reliability and repeatability of results.

Unlike open-ended reasoning, which may fluctuate in quality depending on the model and prompt,
the standardized pipeline enforces uniform logic steps, reducing error propagation at the cost of
additional inference time. From a deployment standpoint, this balance offers a pragmatic middle
ground: not as lightweight as ICL for quick heuristics, but substantially more usable than ToT when
analysts demand repeatable outputs.

E.2 ADDITIONAL RESULTS OF INDIVIDUAL THREAT HUNTING PERFORMANCE

Figure 5, 6, 7, and 8 complement the results as present in Figure 3, offering aligned insights as
exhibited in previous experiments.

Based on those results, we further outline the following observations and analyses:

Attribution-Oriented Tasks. Attribution tasks rely on aligning disparate indicators into coherent
profiles of adversaries, infrastructure, and campaigns. Here, the standardized workflow shows its
greatest benefit because it forces the model to treat each extracted clue as part of a larger dependency
chain. When the reasoning is left open ended, models often generate fluent narratives that omit
critical ties, such as overlooking how infrastructure relates to a specific campaign or how victimology
patterns reinforce an actor hypothesis. The modular approach ensures that entity recognition, context
mapping, and relational inference are explicitly sequenced, which reduces the tendency of the model
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(a) Threat Attribution — SevenLLM

(b) Behavior Analysis — SevenLLM

(c) Prioritization —SevenLLM

Figure 6: Threat-hunting performance on individual tasks, evaluating under SevenLLM-7B.

(a) Threat Attribution — Gemini

(b) Behavior Analysis — Gemini

(c) Prioritization — Gemini

Figure 7: Threat-hunting performance on individual tasks, evaluating under Gemini-pro.
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(a) Threat Attribution — Llama-405B

(b) Behavior Analysis — Llama-405B

(c) Prioritization — Llama-405B

Figure 8: Threat-hunting performance on individual tasks, evaluating under Llama-405B.

to drift or collapse multiple actors into a generic label. This structured pipeline also helps the
model preserve continuity across steps, so that information about geography, malware signatures, or
campaign overlaps is not forgotten or misapplied. In practice, this makes attribution outputs more
consistent and trustworthy, with fewer contradictions across different facets of the same incident.

Behavioral-Oriented Tasks. Behavioral analysis tasks focus on describing how an attack unfolds
across file systems, networks, credentials, execution flows, and evasion strategies. These tasks expose
a different challenge: models must reason not just about isolated labels but about temporal or causal
sequences. Open ended reasoning often struggles to maintain logical order, for example by misplacing
the relationship between a credential theft and subsequent privilege escalation, or by skipping
intermediate steps in an event sequence. Standardized workflows address this by explicitly guiding
the model to construct event chains step by step, preserving both order and dependency. This guidance
is particularly important when behaviors are nested, such as when command script execution spawns
further lateral movements or when evasion strategies are intertwined with persistence mechanisms.
The modular design ensures that contextual cues are not discarded midway, producing outputs that
resemble the structured analysis human analysts expect. The gains here are not simply about accuracy
but about interpretability, as the resulting narratives make it easier to understand how behaviors
connect to form a complete attack path.

Prioritization-Oriented Tasks. Prioritization tasks require models to map extracted observations
into judgments of impact, severity, or scope. These are less about narrative flow and more about
logical consistency and rule following. While open ended reasoning can handle straightforward
labels like user interaction requirements or attack complexity, it often falters when multiple inputs
must be integrated into a composite assessment. For example, determining severity requires careful
alignment of impact level, attack vector, and privilege requirements, which is difficult to achieve
reliably without structured steps. The standardized workflow enforces this alignment by ensuring
that each component assessment is produced systematically and then fed into the final prioritization
judgment. As a result, the model is less likely to generate inconsistent or contradictory scores. The
benefits are particularly visible in tasks that resemble rule based calculations or scoring rubrics, where
the modular structure mirrors the procedural way that human analysts reason about risk.

Broader Implications. Viewed across these categories, a clear pattern emerges. Attribution tasks
benefit most from the preservation of contextual dependencies across different indicators. Behavioral
tasks gain from the ability to model temporal and causal structure. Prioritization tasks see improve-
ments in logical consistency and integration of multiple criteria. Standardization does not change
the core language modeling capability of these systems, but it channels their generative power into
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workflows that mirror how analysts actually think about security problems. This alignment between
workflow design and task demands is the primary driver of the gains observed, and it demonstrates
why modular guidance is most valuable when reasoning requires structured coordination across
multiple dimensions.

Benchmark Generalizability. Although CyberTeam integrates data from 23 diverse threat intelli-
gence sources, the benchmark is inherently constrained by the selected datasets and threat scenarios.
For example, it may not fully represent emerging attack vectors, such as AI-powered phishing or
supply chain compromises. Expanding the benchmark to include more recent and varied threat
data, as well as cross-domain applications (e.g., IoT or cloud security), would enhance its utility for
evaluating LLM generalization in broader cybersecurity contexts.

F LARGE LANGUAGE MODEL (LLM) USAGE DISCLOSURE

LLMs were employed exclusively for light grammar refinement and phrasing adjustments while
preparing the manuscript. They were not involved in conceptual development, benchmark design,
experiment execution, or result interpretation. All scientific ideas, methodological designs, and
analyses were carried out independently by the authors. LLM usage was limited to minor textual
polishing.
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