
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BENCHMARKING LLM-ASSISTED BLUE TEAMING VIA
STANDARDIZED THREAT HUNTING

Anonymous authors
Paper under double-blind review

ABSTRACT

As cyber threats continue to grow in scale and sophistication, blue team defenders
increasingly require advanced tools to proactively detect and mitigate risks. Large
Language Models (LLMs) offer promising capabilities for enhancing threat anal-
ysis. However, their effectiveness in real-world blue team threat-hunting scenar-
ios remains insufficiently explored. This paper presents CYBERTEAM, a bench-
mark designed to guide LLMs in blue teaming practice. CYBERTEAM constructs
a standardized workflow in two stages. First, it models realistic threat-hunting
workflows by capturing the dependencies among analytical tasks from threat attribu-
tion to incident response. Next, each task is addressed through a set of operational
modules tailored to its specific analytical requirements. This transforms threat
hunting into a structured sequence of reasoning steps, with each step grounded in a
discrete operation and ordered according to task-specific dependencies. Guided
by this framework, LLMs are directed to perform threat-hunting tasks through
modularized steps. Overall, CYBERTEAM integrates 30 tasks and 9 operational
modules to guide LLMs through standardized threat analysis. We evaluate both
leading LLMs and state-of-the-art cybersecurity agents, comparing CYBERTEAM
against open-ended reasoning strategies. Our results highlight the improvements
enabled by standardized design, while also revealing the limitations of open-ended
reasoning in real-world threat hunting.

1 INTRODUCTION

The increasing frequency and sophistication of cyber threats continue to pose significant challenges
to organizational security. In 2024 alone, over 11,000 more (38% increase!) vulnerabilities were
reported compared to 2023, as evidenced by the MITRE CVE database (The MITRE Corporation,
n.d.). Defenders, commonly known as the blue team (Diogenes & Ozkaya, 2018; Rajendran et al.,
2011), are under increasing pressure to identify, analyze, and respond to malicious activities in a
timely and accurate manner, a process termed threat hunting.

Recent advances in Large Language Models (LLMs) have demonstrated impressive potential to
augment cybersecurity practices, including malware analysis (Abusitta et al., 2021; Al-Karaki et al.,
2024; Qian et al., 2025; Devadiga et al., 2023), penetration testing (Deng et al., 2023; 2024; Happe
& Cito, 2023; Muzsai et al., 2024), and fuzzing (Zhang et al., 2025; Oliinyk et al., 2024; Black
et al., 2024). Building on this progress, there is growing interest in leveraging LLMs to automate or
assist in threat hunting, enabling blue team defenders to scale their investigations across complex
threat landscapes and respond to incidents more effectively. However, despite this momentum, the
application of LLMs in blue team threat hunting remains underdeveloped. Existing frameworks tend
to focus on isolated analytical tasks (Sehgal & Thymianis, 2023; Faghihi et al., 2023; Dash et al.,
2022), such as generating advisory recommendations without integrating earlier steps like threat
group attribution. This fragmented design limits our understanding of how LLMs perform within
complex, interdependent threat-hunting workflows.

To address this gap, we introduce CYBERTEAM, a practical benchmark designed to rigorously
evaluate and guide the use of LLMs in blue team threat hunting. CYBERTEAM supports blue team
threat-hunting workflows through the following aspects:

Broader Coverage. CYBERTEAM is constructed from a diverse and large-scale repository of threat
intelligence data sourced from 23 vulnerability databases, including MITRE (MITRE Corporation,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison between CYBERTEAM and other LLM-oriented cybersecurity benchmarks.
Benchmark Focus #Data #Task #Source Coverage Unique Feature

CWE-Bench-Java (Li et al., 2025) Java vulnerability 120 4 1 Four CWE classes Large-scale Java codes
CTIBench (Alam et al., 2024) Cyber Threat Intelligence 2,500 3 6 CVE, CWE, CVSS, ATT&CK Multi-choice questions (MCQ)
SevenLLM-Bench (Ji et al., 2024) Report understanding 91,401 28 N/A Bilingual instruction corpus Synthetic Data, MCQ, QA
SWE-Bench (Jimenez et al., 2023) Software bug fixing 2,294 12 1 GitHub issues Python repository

CYBERTEAM (Ours) Blue team threat hunting 452,293 30 23 Threat-hunting lifecycle (3.1) Open Generation, Standardized Reasoning Env

1. Threat Attribution 2. Behavior Analysis 3. Prioritization 4. Response & Mitigation
NER REX RAG NER RAG MAP

On Dec. 10, 2024, our SIEM system flagged multiple anomalous outbound DNS requests from internal host host-192-168-10-21.local
to dns-update.evilcorp.net. Investigation revealed that the host had received a suspicious email containing an attachment named
Invoice_April2025.doc, which, when opened, triggered a connection to a known C2 domain via an obfuscated PowerShell script. The
initial vector appears to be a phishing campaign exploiting. The attacker leveraged PowerShell to execute a memory-resident payload
that conducted system reconnaissance, credential harvesting (via LSASS dump), and lateral movement using SMB.
Detected IOCs include: C2 Domains: dns-update.evilcorp.cn, smbauth.c2redir.net. IP Addresses: 185.100.87.21, 192.168.10.22

Cyber Threat Log

MAP SUM CLS RAG SUM

Evidence
C2 Domain:

Malware
delivery:

 dns-update.evilcorp.cn

smbauth.c2redir.net

Invoice_April2025.doc

Actor
CVE-2024-21678

APT41 or TA505

Observation
PowerShell Obfuscation T1059.001

TTPs

LSASS Memory Dump

Spearphishing Attachment

T1003.001

T1566.001

Severity High
Zero-day exploitation

Credential theft detected

Internal host comprimised

Response Action
Apply Microsoft patch KB5000871

Block connections to *.evilcrop.net

Isolate affected host 192.169.10.21

Figure 1: A CYBERTEAM threat hunting example equipped with operational modules. Module names:
NER–named entity recognition, REX–regex parsing, MAP–text mapping, RAG–retrieval-augmented
generation, CLS–classification, SUM–summarization.

2024), NVD (National Institute of Standards and Technology (NIST), 2024), and CISE (CISE
Program, 2024), as well as security platforms such as Red Hat Bugzilla (Red Hat, Inc., 2024), Oracle
Security Alerts (Oracle Corporation, 2024), and IBM X-Force (IBM Corporation, 2024). In addition,
CYBERTEAM presents a larger number of tasks and samples than existing cybersecurity benchmarks
(Jimenez et al., 2023; Li et al., 2025; Alam et al., 2024; Ji et al., 2024), as summarized in Table 1. This
extensive coverage allows for a more comprehensive and nuanced evaluation of LLM performance
across a wide range of threat-hunting scenarios.

Standardized Workflow. An important feature of CYBERTEAM is its structured, modular workflow
for guiding LLMs within a standardized reasoning environment (Yang et al., 2024; Cheng et al., 2025).
This design is inspired by blue team practices, where analysts typically follow standardized
procedures to interpret threat metadata and conduct investigations (Sehgal & Thymianis, 2023;
Diogenes & Ozkaya, 2018; Brotherston et al., 2024). However, strict adherence to such procedures
can limit flexibility when analyzing unstructured threat logs or addressing emerging, zero-day threats.
To balance standardization and flexibility, CYBERTEAM integrates a set of operational modules
that regulate LLM behavior while allowing for open-ended reasoning where needed. As illustrated
in Figure 1, CYBERTEAM first models the dependency structure among threat-hunting objectives
(e.g., attribution, behavior analysis, mitigation) as a task chain, and then maps this chain into a
corresponding sequence of operational modules. In this process, functions such as NER enforce
structured outputs (e.g., extracting threat actor entities), while functions like RAG support more
flexible reasoning (e.g., summarizing relevant patching strategies).

Evaluation Strategy. CYBERTEAM incorporates agent-based evaluation strategies tailored to each
threat-hunting objective. We benchmark leading LLMs and state-of-the-art (SOTA) cybersecurity
agents, comparing CYBERTEAM ’s modularized approach with popular open-ended reasoning strate-
gies such as In-Context Learning (ICL) (Dong et al., 2022), Chain-of-Thought (CoT) (Wei et al.,
2022), Tree-of-Thought (ToT) (Yao et al., 2023). Our evaluation provides insights into the actionable
threat hunting across 30 tasks.

In summary, this paper makes the following contributions: (1) We introduce CYBERTEAM, a practice-
informed, broadly scoped benchmark that enables rigorous evaluation of LLMs for blue team threat
hunting, (2) we construct a standardized reasoning workflow that models the dependencies among

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

threat-hunting tasks and guides LLMs through standardized yet flexible reasoning workflow, (3)
we conduct comprehensive evaluations and provide insights to improve LLM performance among
threat-hunting scenarios. To facilitate future research, we release codes at: https://anonymous.
4open.science/r/LLM-Cyberteam-7433/.

2 RELATED WORK

LLMs for Cybersecurity. Recently, LLMs have shown promise in enhancing cybersecurity tasks
such as malware classification (Abusitta et al., 2021; Al-Karaki et al., 2024; Qian et al., 2025;
Devadiga et al., 2023), code vulnerability detection (Russell et al., 2018; Lu et al., 2024; Sheng et al.,
2024), penetration testing (Happe & Cito, 2023; Muzsai et al., 2024; Shen et al., 2024), phishing
detection (Kulkarni et al., 2024; Greco et al., 2024), and incident report generation (Bernardi et al.,
2024; Sufi, 2024; McGregor et al., 2025). These applications leverage the language understanding
and reasoning capabilities of LLMs to analyze technical data, recommend solutions, or simulate
attacker behaviors. However, existing applications typically target isolated tasks without considering
broader analyst workflows. Additionally, their open-ended reasoning often results in hallucinations
and inconsistencies (Mündler et al., 2023; Simhi et al., 2025; Shrivastava), raising concerns about
reliability in high-stakes defensive scenarios.

Cybersecurity Benchmarks. Recent benchmarks have focused on static analysis (Reinhold et al.,
2024; Higuera et al., 2020; Braga et al., 2017), software vulnerabilities (Hossen et al., 2024; Sawant
et al., 2024), and threat report generation (Tihanyi et al., 2024; Perrina et al., 2023; Čupka et al., 2023).
These benchmarks evaluate predefined tasks such as identifying CWE categories, matching CVEs,
or summarizing intelligence reports (Alam et al., 2024; Aghaei et al., 2020; Branescu et al., 2024;
Hemberg et al., 2020). While helpful for reproducibility, they often cover narrow domains and lack
the complexity and task interdependencies inherent in real-world threat investigations. In contrast,
benchmarks from other high-stakes fields (e.g., law, medicine, finance) increasingly include complex,
multistep tasks requiring diverse reasoning skills (Fei et al., 2023; Wang et al., 2024; Choshen et al.,
2024; Lucas et al., 2024; Zhou et al.). Inspired by these efforts, we introduce CYBERTEAM to
emphasize structured reasoning and realistic interdependencies for blue teaming scenarios.

Operation-Guided Agents. Recent research has proposed agents with operational modules to
structure LLM reasoning into modular, interpretable steps (Driess et al., 2023; Dongre et al., 2024;
Hu et al., 2024). Such frameworks have achieved notable success in robotics (Jeong et al., 2024;
Akkaladevi et al., 2021), database querying (Kadir et al., 2024; Dar et al., 2019), and scientific
reasoning tasks (Abate et al., 2020; Vaesen & Houkes, 2021). However, their use in cybersecurity,
especially defensive operations, remains underexplored despite the need for structured workflows.
Our work addresses this gap by introducing a modular environment aligned with blue team practices,
enabling procedural reasoning within a structured analytical pipeline.

3 CYBERTEAM

In this section, we provide a detailed introduction of CYBERTEAM regarding the collected threat
hunting tasks (3.1), data sources (3.2), and the modularized strategy (3.3).

3.1 THREAT HUNTING TASKS

As shown in Table 2, CYBERTEAM reflects the full lifecycle of threat hunting tasks. Specifically,
CYBERTEAM systematizes analytical tasks into four categories: Threat Attribution, Behavior
Analysis, Prioritization, and Response & Mitigation. Each category captures a stage in the threat-
hunting workflow from investigating cyber threats to identifying countermeasures. Specifically:

Threat Attribution aims at uncovering the origins and nature of a threat. This includes tasks such as
extracting infrastructure artifacts (e.g., domains, IPs, URLs), classifying malware families based on
observed behaviors, matching known threat signatures, and linking activities to known campaigns or
actor groups (e.g., APT or MITRE ATT&CK (MITRE Corporation, 2024)). Further granularity is
achieved through geographic and temporal pattern analysis, as well as victimology and affiliation
linking, all of which help analysts contextualize incidents in terms of their broader threat landscape.

3

https://anonymous.4open.science/r/LLM-Cyberteam-7433/
https://anonymous.4open.science/r/LLM-Cyberteam-7433/

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 2: Threat hunting tasks, description of targets, corresponding modularized operations, number
of instances, and evaluation metrics. Details of implemented 9 modules and involved metrics are in
Appendix B and C, respectively.

Task Analytical Target Function #Data Metric

Threat Attribution

Malware Identification Malware delivery or toolset NER, SUM 15,742 F1
Signature Matching Techniques from known threat groups NER, SIM 5,166 F1
Temporal Pattern Matching Known work schedules REX 4,203 Sim
Affiliation Linking Source organizations NER, MAP 17,583 F1
Geographic Analysis Geographic or cultural indicators NER, SIM 6,164 F1
Victimology Profiling Targeted victims or attacker motives NER, REX 18,612 F1
Infrastructure Extraction Domains, IPs, URLs, or file hashes NER, REX, SUM 24,129 F1
Actor Identification The threat group or actor (e.g., APT28) NER, RAG, MAP 17,823 F1
Campaign Correlation Threat campaigns or incidents NER, MAP 27,762 F1

Behavior Analysis

File System Activity Detection Suspicious file creation, deletion, or access SPA, NER, SUM 4,653 Sim
Network Behavior Profiling Patterns of external communication (e.g., C2) SPA, NER, SUM 2,617 Sim
Credential Access Detection Theft or misuse of credentials SPA, NER, SUM 2,492 Sim
Execution Context Analysis Execution behaviors by user or process SPA, NER, SUM 23,888 Sim
Command & Script Analysis Suspicious commands or scripts SPA, NER, SUM 20,232 F1
Privilege Escalation Inference Privilege escalation attempts SPA, NER, SUM 15,953 Sim
Evasion Behavior Detection Evasion or obfuscation techniques SPA, NER, SUM 8,973 Sim
Event Sequence Reconstruction Timeline of attack-related events SUM 23,265 Sim
TTP Extraction Tactics, techniques, and procedures RAG, MAP 28,292 F1

Prioritization

Attack Vector Classification Exploitation vectors (e.g., network, local, physical) SUM, CLS 17,448 Acc
Attack Complexity Classification Level of hurdles required to carry out the attack SUM, CLS 17,116 Acc
Privileges Requirement Detection Level of access privileges an attacker needs SUM, CLS 18,030 Acc
User Interaction Categorization If exploitation requires user participation SUM, CLS 17,075 Acc
Attack Scope Detection If the vulnerability affects one/multiple components SUM, CLS 18,570 Acc
Impact Level Classification Consequences on confidentiality, integrity, and availability SUM, CLS 18,736 Acc
Severity Scoring A numerical score indicating the overall attack severity SUM, MATH 11,507 Dist

Response & Mitigation

Playbook Recommendation Relevant response actions based on threat type RAG, SUM 10,718 Hit
Security Control Adjustment Firewall rules, EDR settings, or group policies RAG, SUM 9,929 Sim
Patch Code Generation Code snippets to patch the vulnerability RAG, SUM 11,341 Pass
Patch Tool Suggestion Security tools or utilities RAG, SUM 9,763 Hit
Advisory Correlation Security advisories or best practices RAG, SUM 24,511 Hit

Subsequently, Behavior Analysis focuses on understanding how adversaries interact with systems
over time. Tasks in this category include mapping unusual file system activities, profiling network
behaviors (e.g., Monitoring outbound traffic), detecting credential access, and analyzing the use of
commands and scripts. Analysts aim to reconstruct sequences of attack events and associate them
with specific execution contexts or behavioral patterns.

When multiple threats emerge simultaneously, Prioritization assesses their relative urgency and
associated risk. This involves analyzing the attack vector and complexity, identifying privilege
requirements and user interaction dependencies, and estimating potential impact. These factors are
then synthesized into impact labels and severity scores (e.g., CVSS (FIRST, a)) to guide effective
triage. Finally, Response & Mitigation focus on generating actionable defense strategies. This
includes recommending response playbooks, generating patch code, correlating relevant security
advisories, and suggesting appropriate tools or configuration changes to neutralize the threat.

3.2 DATA SOURCES

CYBERTEAM collects threat metadata from two primary sources: (1) vulnerability databases, which
offer authoritative structural and non-structural information about threats, and (2) threat intelligence
platforms, which report event-driven, context-rich threat data.

Vulnerability databases serve as foundational resources for automated threat hunting by providing
machine-readable records of software flaws, exposure types, and critical contextual metadata. We
aggregate threat entries from established sources such as NVD (National Institute of Standards
and Technology (NIST), 2024), MITRE CVE (The MITRE Corporation, n.d.), ATT&CK (MITRE
Corporation, 2024), CWE (MITRE Corporation, b), CAPEC (MITRE Corporation, a), D3FEND
(MITRE Corporation, c), Exploit-DB (Offensive Security, 2024), and VulDB (VulDB Team, 2024).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Cyber Threat Log 1. Threat Attribution
1.a) Malware identification

1.b) Infrastructure extraction

NER SUM Identified malware file: <file-
name>.exe and dropper.exe

NER REX SUM Extract domain/
IP from the log

Cyber Threat Log 2. Behavior Analysis
2.a) File system activity detection

2.b) Execution context analysis

SPA NER

SPA NER SUM

SUM File creation in
user directory

Registry key inser-
tion for auto-start

3. Prioritization

SUM
3.a) Attack vector classification

[10:25:03] File downloaded: https://<domain-name>.org/<file-name>.exe

[10:25:10] File <file-name>.exe saved to C:\Users\Public\Downloads
[10:25:12] Connection attempt to IP address 203.0.113.10:443
[10:25:15] Registry key added for persistence: HKCU\...\Run\<regkey_name>
[10:25:25] File dropper.exe detected from https://<domain>.org/dropper.exe

[10:25:03] File downloaded: https://<domain-name>.org/<file-name>.exe
[10:25:10] File <file-name>.exe saved to C:\Users\Public\Downloads
[10:25:12] Connection attempt to IP address 203.0.113.10:443
[10:25:15] Registry key added for persistence: HKCU\...\Run\<regkey_name>
[10:25:25] File dropper.exe detected from https://<domain>.org/dropper.exe

 <file-name>.exe: network-based delivery
dropper.exe: with exploitation component

CLS network vector, dropper involves exploit
→ higher complexity

NER

NER

REX

NER

NER

SUM
3.b) Attack complexity classification

 <file-name>.exe: user interaction+download
dropper.exe: with privilege-escalation logic

CLS <file-name> is classified as low complexity
Dropper is classified as high complexity

…

3.x) Severity scoring

SUM

MATH

complexity score: 0.8
Privilege score: 1.0 …

Severity score: 4.5

4. Response & Mitigation

…

4.a) Playbook recommendation 4.b) Security control adjustment 4.x) Advisory correlation

RAG

SUM

RAG

SUM

RAG

SUM

Retrieve and rank playbooks from threat
databases, e.g., MITRE D3FEND

Suggest response sequence: D3-DA -
Dynamic Analysis …

Retrieve and rank security control strategies
about “hardening system setting to block…”

Disable PowerShell base64 execution via
GPO, block unbound connections to …

Patch KB5031234
released by MSRC

Retrieve advisories
using malware name

SPA

SPA

NER

NER

Figure 2: A threat hunting example demonstrating a dependency chain of analytical tasks, where
each task is completed through a sequence of operational modules executed by LLMs autonomously.

These sources include detailed insights such as exploitability scores (EPSS (FIRST, b)), severity
metrics (CVSS (FIRST, a)), and remediation guidance. Additionally, we incorporate data from
vendor-maintained repositories (e.g., the Microsoft Security Update Guide (Microsoft Corporation),
IBM X-Force (IBM Corporation, 2024)) to capture fine-grained details on affected systems, attack
vectors, and patch methods.

Threat intelligence platforms complement these databases by providing behavioral and contextual
signals linked to adversary activity. Platforms such as VirusTotal (VirusTotal (Google Chronicle),
2024), AlienVault OTX (AlienVault (AT&T Cybersecurity), 2024), and MISP (MISP Project, 2024)
contribute indicators of compromise (IOCs), behavioral patterns, and telemetry that enable tasks
like campaign correlation, infrastructure extraction, and actor attribution. Furthermore, industry
threat reports—from sources, such as Mandiant (Mandiant (Google Cloud), 2024), Recorded Future
(Recorded Future, 2024), Palo Alto Unit 42 (Palo Alto Networks, 2024), and Apache (The Apache
Software Foundation, 2024), offer semi-structured intelligence, including incident timelines, IOC
lists, and narrative analyses, which are essential for modeling multi-stage attack sequences and
evaluating blue team responses.

Additional details on how these databases and platforms are used are provided in Appendix A.

3.3 STANDARDIZED THREAT HUNTING WITH OPERATIONAL MODULES

Task Dependency. Threat hunting is inherently a multi-stage analytical process (Sauerwein et al.,
2019; Caltagirone et al., 2013; Hillier & Karroubi, 2022), where downstream actions, such as
incident response and mitigation, rely on outcomes derived from upstream analytical steps. For
example, recommending an effective response playbook requires accurate attribution of the threat
actor and thorough behavioral analysis of the compromise. To explicitly model this structured
workflow, CYBERTEAM formulates threat hunting as a Dependency Chain. As illustrated in Figure
2, all analytical tasks (e.g., 1.a: Malware Identification or 2.a: File System Activity Detection)
are organized into a pipelined workflow that reflects their inherent dependencies. For example,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

attack complexity classification relies on prior analyses of file system activity and execution context.
Meanwhile, tasks within the same category (e.g., malware identification and infrastructure extraction
under threat attribution) can often be performed in parallel, as they address distinct dimensions of the
threat and do not exhibit direct interdependencies.

Highlight �. Instead of enumerating all tasks listed in Table 2, LLMs are asked to determine
which tasks to perform at each stage, opening reasoning flexibility in threat hunting.

Operational Modules. Within each threat hunting task, CYBERTEAM invokes a set of operations
(functional modules) designed to produce actionable threat analyses and progressively address the
current threat hunting target (e.g., incident response). Specifically, each threat hunting task ti
is associated with a corresponding set of operational modules Fi = {f1

i , f
2
i , . . . }. Each task ti

involves executing a sequence f∗
i ∈ Fi, as detailed in the third column of Table 2. The resulting

output yi = f∗
i (x) is subsequently passed to dependent downstream tasks. For instance, the task

of TTP Extraction involves invoking both Retrieval-Augmented Generation (RAG) and Mapping
(MAP) functions to identify relevant tactics and techniques from unstructured logs. Subsequently, a
downstream task such as Tool Suggestion utilizes RAG and summarization (SUM) functions to map
these identified TTPs to suitable defensive tools.

Highlight �. These modules provide broad coverage of threat hunting practices (as shown
in Table 2), while retaining flexibility (e.g., in SUM, RAG) for LLM reasoning to adapt across
diverse scenarios, thereby balancing flexibility with standardization in blue team threat hunting.

Due to space constraints, we defer implementation details and design rationales to Appendix B.

4 EXPERIMENT

CYBERTEAM aims to empirically address the following research questions: RQ1: How effective
is standardization compared to open-ended reasoning for threat-hunting tasks? RQ2: Can LLMs
accurately solve individual threat-hunting tasks? RQ3: How robust are LLMs, under the guidance of
CYBERTEAM, when analyzing noisy inputs?

LLMs. We evaluate a range of industry-leading large language models, including GPT-4o (G4o),
GPT-o4-mini (Go4), Qwen3-32B (QW), Gemini-2.5 (GM), Claude-Sonnet-4 (CD), Llama-3.1-405B
(L3.1), Llama-4-Scout-17B (L4), and Gemma-3-27b (GA). In addition, we assess state-of-the-art
cybersecurity-focused LLM agents, including Lily-Cybersecurity-7B (LY) (Segolily Labs, 2025),
DeepHat-7B (DH) (DeepHat, 2025), and SevenLLM-7B (SL) (Ji et al., 2024).

Open-ended Reasoning. In open-ended reasoning, we consider three widely used prompting
structures: (1) In-Context Learning (ICL) (Dong et al., 2022) – including basic task instructions
along with five (or ten) illustrative examples to demonstrate the desired solution format. (2) Chain-
of-Thought (CoT) (Wei et al., 2022) – encouraging the model to generate “step-by-step” reasoning
results before producing the final answer. (3) Tree-of-Thought (ToT) (Yao et al., 2023) – guiding
LLMs to explore multiple reasoning paths and select the most plausible one.

Metrics. Table 2 lists evaluation metrics tailored to each task. For information extraction tasks (e.g.,
malware identification), we use the F1 score to balance precision and recall. For classification tasks
(e.g., privilege escalation inference), we adopt accuracy among well-defined categories. Generation or
summarization tasks (e.g., behavioral profiling) are evaluated using BERTScore (Zhang* et al., 2020)
to measure semantic similarity. Tasks involving ranking (e.g., security playbook recommendation)
utilize Hit@k (default k = 10), measuring whether correct choices appear in the top-k outputs. For
programmatic outputs (e.g., patch code generation), we apply Pass rate using UNITEST in Python to
assess functional correctness. Numeric estimation tasks (e.g., severity scoring) are evaluated using
Normalized Distance to quantify similarity to ground truth values. All metrics are scaled to the
range [0, 1]. We explain the rationale for those metrics in Appendix C.

4.1 STANDARDIZED THREAT HUNTING VS. OPEN-ENDED REASONING (RQ1)

Ultimately, CYBERTEAM is designed to generate actionable responses and mitigation strategies
against cyber threats. We begin by evaluating the overall quality of LLM-generated responses and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Results of LLMs threat-hunting performance (scaled to 100%) on CYBERTEAM, using
corresponding metrics tailored to each analytical target as detailed in Table 2. We use boldface to
indicate the best results and underline to denote the second-best results.

Method Cybersecurity Agent Industry-Leading LLM
LY DH SL G4o Go4 QW GM CD L3.1 L4 GA

Playbook Recommend

Open-ended

ICL5 42.3 54.2 54.7 64.5 73.1 52.8 79.4 63.7 65.8 55.8 54.9
ICL10 44.1 52.5 55.3 65.2 74.5 53.6 80.2 64.9 66.4 56.4 55.5
CoT 51.6 50.6 50.5 78.3 89.2 67.5 80.1 81.4 77.3 67.3 66.4
ToT 48.1 53.3 54.3 75.2 85.1 71.4 83.5 77.2 82.1 72.1 71.2

Standardized (Ours) 67.2 58.4 66.8 84.6 91.4 79.3 91.8 89.3 89.7 79.7 78.8
Security Control Adjust

Open-ended

ICL5 51.5 66.3 43.9 61.8 70.3 50.6 65.8 79.2 61.5 51.5 50.6
ICL10 53.2 68.4 45.6 62.7 71.8 51.2 66.4 80.1 62.3 52.3 51.4
CoT 60.3 70.5 68.4 70.3 80.2 59.8 79.2 77.2 77.9 67.9 63.0
ToT 66.7 72.1 61.6 75.9 85.6 66.3 73.6 73.1 72.8 62.8 61.9

Standardized (Ours) 74.2 77.6 80.1 82.1 89.7 74.7 88.5 86.5 86.4 76.4 75.5
Patch Code Generation

Open-ended

ICL5 10.8 49.8 29.2 56.2 58.4 39.3 63.7 47.5 49.2 39.2 38.3
ICL10 12.6 51.2 31.5 57.8 59.1 40.1 64.9 48.6 50.1 40.1 39.2
CoT 24.5 54.7 55.1 58.4 76.3 54.7 65.3 66.3 67.4 57.4 51.5
ToT 25.3 50.9 58.3 61.8 72.5 50.2 69.8 61.4 62.9 52.9 52.2

Standardized (Ours) 29.7 63.4 60.2 72.5 87.4 65.4 82.6 79.2 80.6 70.6 69.7
Patch Tool Suggestion

Open-ended

ICL5 48.2 65.2 61.5 68.9 79.4 59.2 74.1 68.5 70.3 60.3 59.4
ICL10 49.1 64.7 63.1 69.7 80.6 60.3 74.9 69.8 71.4 61.4 60.5
CoT 53.6 70.1 77.2 79.2 90.1 70.3 81.7 79.1 79.6 69.6 68.7
ToT 56.5 71.8 68.1 75.8 86.3 74.5 86.3 83.7 84.2 74.2 67.3

Standardized (Ours) 69.1 76.5 77.7 87.4 96.9 83.6 93.2 91.2 92.1 82.1 81.2
Advisory Correlation

Open-ended

ICL5 21.7 57.5 63.8 64.7 67.2 48.5 62.4 56.8 58.7 48.7 47.8
ICL10 22.9 59.1 64.7 65.9 68.1 49.2 63.2 58.1 59.5 49.5 48.6
CoT 49.5 71.4 69.5 67.2 80.5 61.7 77.5 76.2 76.3 66.3 65.4
ToT 46.8 73.2 67.2 70.8 84.2 64.8 73.1 72.5 71.8 61.8 60.9

Standardized (Ours) 73.4 78.8 77.1 80.3 92.3 76.5 86.9 84.5 84.9 74.9 74.0

mitigation outputs on CYBERTEAM. Table 3 presents the results, using task-specific metrics detailed
in Table 2.

Effectiveness of Standardization. From Table 3, we observe that using operational modules (Ours)
outperforms typical open-ended reasoning methods. For instance, modular operations enable GPT-o4
to achieve over 90% Hit@10 in playbook recommendation and over 92% in advisory correlation. In
contrast, open-ended reasoning achieves only secondary effectiveness, with a significant performance
gap observed (e.g., in the security control adjustment task of SevenLLM). This demonstrates the
effectiveness of combining standardized guidance with the inherent flexibility of LLMs.

Gains from Standard Operating Procedures. Notably, while ICL, CoT, and ToT have been shown
to improve generation quality for general-purpose tasks (Dong et al., 2022; Yu et al., 2023; Wang et al.,
2022), they provide limited guidance for domain-specific problems that require precise procedural
knowledge and structured analytical workflows. By contrast, standardized threat hunting workflows
help LLMs follow standard operating procedures by decomposing complex tasks into modular steps.
This reduces hallucination and enforces structure. In tasks requiring strict sequencing (e.g., threat
actor identification followed by response planning), workflow-based methods ensure the correct order
and information flow, outperforming ICL, CoT, and ToT, which often lack such control.

Case Study I (Failure Case). When using CoT to generate a response plan for LockBit (a
ransomware), GPT-4o offers generic recommendations "... the first step is to isolate affected
machines. Next, the system should assess backup availability and notify stakeholders ..." without
tailoring to LockBit and ignoring unique traits like double extortion tactics or known exploits.

By contrast, operations in CYBERTEAM constrain LLM reasoning to resolve correct analytical
sequences, ensuring outputs remain aligned with operational goals:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Threat Attribution — GPT-o4

(b) Behavior Analysis — GPT-o4

(c) Prioritization — GPT-o4

Figure 3: Threat-hunting performance (scaled to 100%) on individual tasks, evaluating under GPT-
o4-mini. Results for additional LLMs are provided in Appendix E.

Case Study II (Successful Case). The modular operation framework guides GPT-4o to explicitly
invoke RAG and SUM modules. Specifically, RAG retrieves up-to-date security advisories (e.g.,
CISA Alert AA23-325A) specific to LockBit, while SUM outlines mitigation strategies with double
extortion prevention and air-gapped offline backups.

These results suggest that in cybersecurity, particularly in threat-hunting scenarios, structured elicita-
tion methods are necessary for reliably leveraging LLM capabilities.

Operational Interpretability. Notably, the modular approach enhances interpretability for analysts,
as outputs can be traced back to specific operations (e.g., RAG for evidence retrieval, SUM for
summarization). In contrast, open-ended prompts produce opaque reasoning chains that are harder to
audit what real-world evidence is integrated.

Case Study III (Interpretability). For the MOVEit vulnerability (CVE-2023-34362), an open-
ended Qwen prompt returned only a vague recommendation (“apply vendor patches and monitor
suspicious traffic”). In contrast, our pipeline invoked the RAG module to retrieve Progress
Software’s advisory and the NER module to extract SQL injection IOCs. This modular trace
improved accuracy and enabled analysts to audit advisory steps.

Due to space constraints, we provide additional evaluation of the trade-off between latency and
reliability in Appendix E.1. Our results show that the standardized threat hunting method achieves a
more favorable balance compared with open-ended reasoning.

Design Insights �. The evaluation provides two actionable insights for blue team practices: (1)
Breaking threat analysis into smaller, modularized operations (e.g., IOC extraction, TTP mapping),
each guided by distinct reasoning objectives; (2) Integrate LLMs into existing analytic pipelines
where upstream outputs (e.g., extracted indicators) are fed into downstream modules rather than
relying on single-pass generation.

4.2 THREAT-HUNTING PERFORMANCE FOR INDIVIDUAL TASKS (RQ2)

Complementing Section 4.1, we also evaluate individual threat-hunting tasks prior to the response &
mitigation stage, as outlined in Table 2. Figures 3 and Appendix E present the experimental results.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Malware Identification (b) Signature Matching (c) Infrastructure Extraction

Figure 4: LLM performance (metrics corresponding to Table 2) when input threat logs are perturbed
with token-level noise (solid line) or semantic-level noise (dashed line). X-axis shows the noise ratios.

Observe that using standardized threat hunting consistently achieves the highest performance across
all intermediate tasks. However, the magnitude of performance gains varies across task types. For
instance, in complex reasoning tasks (e.g., Event Sequence Construction), the standardized method
yields substantial improvements over open-ended reasoning strategies like CoT and ToT, boosting
accuracy by over 20% using GPT-o4-mini. These gains are most notable when task dependencies
are strong. For example, generating effective responses depends on accurate upstream analysis.
Module-guided models can preserve and pass critical context, while ICL/CoT/ToT often fail to
coordinate such multi-stage reasoning reliably. This is largely because these tasks require multi-hop
reasoning, evidence synthesis, and careful dependency tracking, which are capabilities that general
prompting methods struggle to coordinate effectively. In contrast, for narrower, classification-focused
tasks (e.g., attack vector categorization or privilege escalation inference), the performance gap
between operational modules and standard prompting is smaller. Here, the tasks are more self-
contained, and models can often arrive at correct predictions even without explicit task decomposition
or function integration.

Design Insights �. While standardized threat hunting offer general advantages, their relative
benefit is particularly significant in scenarios requiring structured reasoning over interconnected
steps. This demonstrates the importance of modular guidance in complex cybersecurity workflows.

Due to space constraints, we provide complementary results and analyses in Appendix E.2.

4.3 LLM ROBUSTNESS AGAINST NOISY INPUTS (RQ3)

Experimental Setting. We also investigate LLM robustness when input threat logs contain noisy text.
We introduce (i) token-level noise using TextAttack (Morris et al., 2020), which randomly injects or
substitutes tokens, and (ii) semantic-level noise using BART-paraphraser (Lewis et al., 2019), which
subtly introduces misleading or shifted context. Both noise types are applied at controlled levels (e.g.,
perturbing 10% of the input).

Results and Observations. From Figure 4, we observe that token-level noise has a smaller impact on
LLM performance compared to semantic-level noise. For example, under 10% perturbation, random
character insertions or deletions lead to less than 5% performance drop across tasks. In contrast,
semantic-level noise (e.g., paraphrased or subtly altered context) causes a much larger decline. These
findings suggest that while LLMs handle surface-level errors relatively well, they struggle with the
semantic shifting, even when guided by CYBERTEAM. This highlights the importance of curating
expert-level threat reports in threat hunting, as imprecise statements can unintentionally mislead blue
team efforts and degrade overall analysis.

5 CONCLUSION

We present CYBERTEAM, a benchmark designed to evaluate the capabilities of LLMs in blue team
threat-hunting workflows. By combining broad and diverse real-world datasets, a standardized
workflow environment with modular function-guided reasoning, and detailed evaluation strategies,
CYBERTEAM provides a comprehensive workflow for assessing LLM capabilities in realistic cyber
defense scenarios. Our empirical findings offer actionable insights for integrating standardized
operations into security workflows. We hope CYBERTEAM will serve as a valuable resource for the
research community and practitioners alike, driving future innovations in AI-assisted cybersecurity.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This study is based solely on publicly accessible cybersecurity reports, vulnerability databases, and
open-source intelligence platforms, each used in accordance with their copyright and licensing
conditions. No proprietary, sensitive, or personally identifiable data were collected or processed.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide an anonymous GitHub repository containing benchmark
construction details, operational module implementations, evaluation pipelines, and experiment
configurations.

REFERENCES

Tsedeke Abate, Kassa Michael, and Carl Angell. Assessment of scientific reasoning: Development
and validation of scientific reasoning assessment tool. Eurasia Journal of Mathematics, Science
and Technology Education, 16(12):em1927, 2020.

Adel Abusitta, Miles Q Li, and Benjamin CM Fung. Malware classification and composition analysis:
A survey of recent developments. Journal of Information Security and Applications, 59:102828,
2021.

Ehsan Aghaei, Waseem Shadid, and Ehab Al-Shaer. Threatzoom: Cve2cwe using hierarchical neural
network. arXiv preprint arXiv:2009.11501, 2020.

Sharath Chandra Akkaladevi, Matthias Plasch, Michael Hofmann, and Andreas Pichler. Semantic
knowledge based reasoning framework for human robot collaboration. Procedia CIRP, 97:373–378,
2021.

Jamal Al-Karaki, Muhammad Al-Zafar Khan, and Marwan Omar. Exploring llms for mal-
ware detection: Review, framework design, and countermeasure approaches. arXiv preprint
arXiv:2409.07587, 2024.

Md Tanvirul Alam, Dipkamal Bhusal, Le Nguyen, and Nidhi Rastogi. Ctibench: A benchmark for
evaluating llms in cyber threat intelligence. arXiv preprint arXiv:2406.07599, 2024.

AlienVault (AT&T Cybersecurity). Alienvault open threat exchange (otx). https://otx.
alienvault.com, 2024.

Mario Luca Bernardi, Marta Cimitile, and Riccardo Pecori. Automatic job safety report generation
using rag-based llms. In 2024 International Joint Conference on Neural Networks (IJCNN), pp.
1–8. IEEE, 2024.

Gavin Black, Varghese Vaidyan, and Gurcan Comert. Evaluating large language models for enhanced
fuzzing: An analysis framework for llm-driven seed generation. IEEE Access, 2024.

Alexandre Braga, Ricardo Dahab, Nuno Antunes, Nuno Laranjeiro, and Marco Vieira. Practical
evaluation of static analysis tools for cryptography: Benchmarking method and case study. In 2017
IEEE 28th International Symposium on Software Reliability Engineering (ISSRE), pp. 170–181.
IEEE, 2017.

Ioana Branescu, Octavian Grigorescu, and Mihai Dascalu. Automated mapping of common vulnera-
bilities and exposures to mitre att&ck tactics. Information, 15(4):214, 2024.

Lee Brotherston, Amanda Berlin, and William F Reyor III. Defensive security handbook. " O’Reilly
Media, Inc.", 2024.

Sergio Caltagirone, Andrew Pendergast, and Christopher Betz. The diamond model of intrusion
analysis. Threat Connect, 298(0704):1–61, 2013.

Zhili Cheng, Yuge Tu, Ran Li, Shiqi Dai, Jinyi Hu, Shengding Hu, Jiahao Li, Yang Shi, Tianyu Yu,
Weize Chen, et al. Embodiedeval: Evaluate multimodal llms as embodied agents. arXiv preprint
arXiv:2501.11858, 2025.

10

https://otx.alienvault.com
https://otx.alienvault.com

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Leshem Choshen, Ariel Gera, Yotam Perlitz, Michal Shmueli-Scheuer, and Gabriel Stanovsky.
Navigating the modern evaluation landscape: Considerations in benchmarks and frameworks for
large language models (llms). In Proceedings of the 2024 Joint International Conference on
Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024): Tutorial
Summaries, pp. 19–25, 2024.

CISE Program. Cybersecurity information sharing environment (cise), 2024. URL https://www.
cisa.gov/cybersecurity-information-sharing.

Ondrej Čupka, Ester Federlova, and Peter Vesely. Comparison of methodologies used in cybersecurity
reports. In Developments in Information and Knowledge Management Systems for Business
Applications: Volume 7, pp. 313–348. Springer, 2023.

Hafsa Shareef Dar, M Ikramullah Lali, Moin Ul Din, Khalid Mahmood Malik, and Syed Ahmad Chan
Bukhari. Frameworks for querying databases using natural language: a literature review. arXiv
preprint arXiv:1909.01822, 2019.

Tirtharaj Dash, Sharad Chitlangia, Aditya Ahuja, and Ashwin Srinivasan. A review of some tech-
niques for inclusion of domain-knowledge into deep neural networks. Scientific Reports, 12(1):
1040, 2022.

DeepHat. Deephat-v1-7b. Model on Hugging Face, 2025.

Gelei Deng, Yi Liu, Víctor Mayoral-Vilches, Peng Liu, Yuekang Li, Yuan Xu, Tianwei Zhang, Yang
Liu, Martin Pinzger, and Stefan Rass. Pentestgpt: An llm-empowered automatic penetration testing
tool. arXiv preprint arXiv:2308.06782, 2023.

Gelei Deng, Yi Liu, Víctor Mayoral-Vilches, Peng Liu, Yuekang Li, Yuan Xu, Tianwei Zhang, Yang
Liu, Martin Pinzger, and Stefan Rass. {PentestGPT}: Evaluating and harnessing large language
models for automated penetration testing. In 33rd USENIX Security Symposium (USENIX Security
24), pp. 847–864, 2024.

Dharani Devadiga, Gordon Jin, Bisti Potdar, Hankyu Koo, Andrew Han, Anusha Shringi, Angad
Singh, Kinjal Chaudhari, and Saurav Kumar. Gleam: Gan and llm for evasive adversarial mal-
ware. In 2023 14th International Conference on Information and Communication Technology
Convergence (ICTC), pp. 53–58. IEEE, 2023.

Yuri Diogenes and Erdal Ozkaya. Cybersecurity-attack and defense strategies: Infrastructure security
with red team and blue team tactics. Packt Publishing Ltd, 2018.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. arXiv preprint arXiv:2301.00234,
2022.

Vardhan Dongre, Xiaocheng Yang, Emre Can Acikgoz, Suvodip Dey, Gokhan Tur, and Dilek
Hakkani-Tür. Respact: Harmonizing reasoning, speaking, and acting towards building large
language model-based conversational ai agents. arXiv preprint arXiv:2411.00927, 2024.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, et al. Palm-e: An embodied
multimodal language model. 2023.

Hossein Rajaby Faghihi, Aliakbar Nafar, Chen Zheng, Roshanak Mirzaee, Yue Zhang, Andrzej
Uszok, Alexander Wan, Tanawan Premsri, Dan Roth, and Parisa Kordjamshidi. Gluecons: A
generic benchmark for learning under constraints. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 9552–9561, 2023.

Zhiwei Fei, Xiaoyu Shen, Dawei Zhu, Fengzhe Zhou, Zhuo Han, Songyang Zhang, Kai Chen,
Zongwen Shen, and Jidong Ge. Lawbench: Benchmarking legal knowledge of large language
models. arXiv preprint arXiv:2309.16289, 2023.

FIRST. Common vulnerability scoring system (cvss). https://www.first.org/cvss/, a.

FIRST. Exploit prediction scoring system (epss). https://www.first.org/epss/, b.

11

https://www.cisa.gov/cybersecurity-information-sharing
https://www.cisa.gov/cybersecurity-information-sharing
https://www.first.org/cvss/
https://www.first.org/epss/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Francesco Greco, Giuseppe Desolda, Andrea Esposito, Alessandro Carelli, et al. David versus goliath:
Can machine learning detect llm-generated text? a case study in the detection of phishing emails.
In The Italian Conference on CyberSecurity, 2024.

Andreas Happe and Jürgen Cito. Getting pwn’d by ai: Penetration testing with large language models.
In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 2082–2086, 2023.

Erik Hemberg, Jonathan Kelly, Michal Shlapentokh-Rothman, Bryn Reinstadler, Katherine Xu, Nick
Rutar, and Una-May O’Reilly. Linking threat tactics, techniques, and patterns with defensive
weaknesses, vulnerabilities and affected platform configurations for cyber hunting. arXiv preprint
arXiv:2010.00533, 2020.

Juan R Bermejo Higuera, Javier Bermejo Higuera, Juan A Sicilia Montalvo, Javier Cubo Villalba, and
Juan José Nombela Pérez. Benchmarking approach to compare web applications static analysis
tools detecting owasp top ten security vulnerabilities. Computers, Materials & Continua, 64(3),
2020.

Caroline Hillier and Talieh Karroubi. Turning the hunted into the hunter via threat hunting: Life
cycle, ecosystem, challenges and the great promise of ai. arXiv preprint arXiv:2204.11076, 2022.

Md Imran Hossen, Jianyi Zhang, Yinzhi Cao, and Xiali Hei. Assessing cybersecurity vulnerabilities
in code large language models. arXiv preprint arXiv:2404.18567, 2024.

Mengkang Hu, Pu Zhao, Can Xu, Qingfeng Sun, Jianguang Lou, Qingwei Lin, Ping Luo, and Saravan
Rajmohan. Agentgen: Enhancing planning abilities for large language model based agent via
environment and task generation. arXiv preprint arXiv:2408.00764, 2024.

IBM Corporation. Ibm x-force exchange, 2024. URL https://exchange.xforce.
ibmcloud.com/.

Hyeongyo Jeong, Haechan Lee, Changwon Kim, and Sungtae Shin. A survey of robot intelligence
with large language models. Applied Sciences, 14(19):8868, 2024.

Hangyuan Ji, Jian Yang, Linzheng Chai, Chaoren Wei, Liqun Yang, Yunlong Duan, Yunli Wang,
Tianzhen Sun, Hongcheng Guo, Tongliang Li, et al. Sevenllm: Benchmarking, eliciting,
and enhancing abilities of large language models in cyber threat intelligence. arXiv preprint
arXiv:2405.03446, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Rabiah Abdul Kadir, Ely Salwana Mat Surin, and Mahidur R Sarker. A systematic review of
automated classification for simple and complex query sql on nosql database. Computer Systems
Science & Engineering, 48(6), 2024.

Aditya Kulkarni, Vivek Balachandran, Dinil Mon Divakaran, and Tamal Das. From ml to llm:
Evaluating the robustness of phishing webpage detection models against adversarial attacks. arXiv
preprint arXiv:2407.20361, 2024.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension, 2019.

Ziyang Li, Saikat Dutta, and Mayur Naik. Iris: Llm-assisted static analysis for detecting security
vulnerabilities. In The Thirteenth International Conference on Learning Representations, 2025.

Guilong Lu, Xiaolin Ju, Xiang Chen, Wenlong Pei, and Zhilong Cai. Grace: Empowering llm-based
software vulnerability detection with graph structure and in-context learning. Journal of Systems
and Software, 212:112031, 2024.

12

https://exchange.xforce.ibmcloud.com/
https://exchange.xforce.ibmcloud.com/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mary M Lucas, Justin Yang, Jon K Pomeroy, and Christopher C Yang. Reasoning with large language
models for medical question answering. Journal of the American Medical Informatics Association,
31(9):1964–1975, 2024.

Mandiant (Google Cloud). Mandiant threat intelligence reports. https://www.mandiant.
com/resources/reports, 2024.

Sean McGregor, Allyson Ettinger, Nick Judd, Paul Albee, Liwei Jiang, Kavel Rao, William H Smith,
Shayne Longpre, Avijit Ghosh, Christopher Fiorelli, et al. To err is ai: A case study informing
llm flaw reporting practices. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 28938–28945, 2025.

Microsoft Corporation. Microsoft security update guide. https://msrc.microsoft.com/
update-guide.

MISP Project. Misp - threat intelligence sharing platform. https://www.misp-project.org,
2024.

MITRE Corporation. Common attack pattern enumeration and classification (capec). https:
//capec.mitre.org/, a.

MITRE Corporation. Common weakness enumeration (cwe). https://cwe.mitre.org/, b.

MITRE Corporation. D3fend: A knowledge graph of cybersecurity countermeasures. https:
//d3fend.mitre.org/, c.

MITRE Corporation. Mitre att&ck framework, 2024. URL https://attack.mitre.org/.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. Textattack: A framework
for adversarial attacks, data augmentation, and adversarial training in nlp. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations,
pp. 119–126, 2020.

Niels Mündler, Jingxuan He, Slobodan Jenko, and Martin Vechev. Self-contradictory hallucinations
of large language models: Evaluation, detection and mitigation. arXiv preprint arXiv:2305.15852,
2023.

Lajos Muzsai, David Imolai, and András Lukács. Hacksynth: Llm agent and evaluation framework
for autonomous penetration testing. arXiv preprint arXiv:2412.01778, 2024.

National Institute of Standards and Technology (NIST). National vulnerability database (nvd), 2024.
URL https://nvd.nist.gov/.

Offensive Security. Exploit database (exploit-db), 2024. URL https://www.exploit-db.
com/.

Yaroslav Oliinyk, Michael Scott, Ryan Tsang, Chongzhou Fang, Houman Homayoun, et al. Fuzzing
{BusyBox}: Leveraging {LLM} and crash reuse for embedded bug unearthing. In 33rd USENIX
Security Symposium (USENIX Security 24), pp. 883–900, 2024.

Oracle Corporation. Oracle security alerts, 2024. URL https://www.oracle.com/
security-alerts/.

Palo Alto Networks. Unit 42 threat research reports. https://unit42.paloaltonetworks.
com, 2024.

Filippo Perrina, Francesco Marchiori, Mauro Conti, and Nino Vincenzo Verde. Agir: Automating
cyber threat intelligence reporting with natural language generation. In 2023 IEEE International
Conference on Big Data (BigData), pp. 3053–3062. IEEE, 2023.

Xingzhi Qian, Xinran Zheng, Yiling He, Shuo Yang, and Lorenzo Cavallaro. Lamd: Context-driven
android malware detection and classification with llms. arXiv preprint arXiv:2502.13055, 2025.

13

https://www.mandiant.com/resources/reports
https://www.mandiant.com/resources/reports
https://msrc.microsoft.com/update-guide
https://msrc.microsoft.com/update-guide
https://www.misp-project.org
https://capec.mitre.org/
https://capec.mitre.org/
https://cwe.mitre.org/
https://d3fend.mitre.org/
https://d3fend.mitre.org/
https://attack.mitre.org/
https://nvd.nist.gov/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.oracle.com/security-alerts/
https://www.oracle.com/security-alerts/
https://unit42.paloaltonetworks.com
https://unit42.paloaltonetworks.com

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jeyavijayan Rajendran, Vinayaka Jyothi, and Ramesh Karri. Blue team red team approach to hardware
trust assessment. In 2011 IEEE 29th international conference on computer design (ICCD), pp.
285–288. IEEE, 2011.

Recorded Future. Recorded future threat intelligence reports. https://www.recordedfuture.
com/research, 2024.

Red Hat, Inc. Red hat security advisories (rhsa). https://access.redhat.com/.

Red Hat, Inc. Red hat bugzilla, 2024. URL https://bugzilla.redhat.com/.

Ann Marie Reinhold, Brittany Boles, A Redempta Manzi Muneza, Thomas McElroy, and Clemente
Izurieta. Surmounting challenges in aggregating results from static analysis tools. Military Cyber
Affairs, 7(1):5–11, 2024.

Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur Ozdemir, Paul
Ellingwood, and Marc McConley. Automated vulnerability detection in source code using deep
representation learning. In 2018 17th IEEE international conference on machine learning and
applications (ICMLA), pp. 757–762. IEEE, 2018.

Clemens Sauerwein, Christian Sillaber, Andrea Mussmann, and Ruth Breu. A framework for cyber
threat hunting. In ACM CCS Workshop on Security and Privacy Analytics, 2019.

Devesh Sawant, Manjesh K Hanawal, and Atul Kabra. Improving discovery of known software
vulnerability for enhanced cybersecurity. arXiv preprint arXiv:2412.16607, 2024.

Segolily Labs. Lily-Cybersecurity-7B-v0.2. https://huggingface.co/segolilylabs/
Lily-Cybersecurity-7B-v0.2, 2025.

Kunal Sehgal and Nikolaos Thymianis. Cybersecurity Blue Team Strategies: Uncover the secrets of
blue teams to combat cyber threats in your organization. Packt Publishing Ltd, 2023.

Xiangmin Shen, Lingzhi Wang, Zhenyuan Li, Yan Chen, Wencheng Zhao, Dawei Sun, Jiashui Wang,
and Wei Ruan. Pentestagent: Incorporating llm agents to automated penetration testing. arXiv
preprint arXiv:2411.05185, 2024.

Ze Sheng, Fenghua Wu, Xiangwu Zuo, Chao Li, Yuxin Qiao, and Lei Hang. Lprotector: An
llm-driven vulnerability detection system. arXiv preprint arXiv:2411.06493, 2024.

Aryan Shrivastava. Response inconsistency of large language models in high-stakes military decision
making.

Adi Simhi, Itay Itzhak, Fazl Barez, Gabriel Stanovsky, and Yonatan Belinkov. Trust me, i’m wrong:
High-certainty hallucinations in llms. arXiv preprint arXiv:2502.12964, 2025.

Fahim Sufi. An innovative gpt-based open-source intelligence using historical cyber incident reports.
Natural Language Processing Journal, 7:100074, 2024.

The Apache Software Foundation. Apache security advisories. https://www.apache.org/
security/, 2024.

The MITRE Corporation. Common Vulnerabilities and Exposures (CVE). https://cve.mitre.
org/, n.d.

Norbert Tihanyi, Mohamed Amine Ferrag, Ridhi Jain, Tamas Bisztray, and Merouane Debbah.
Cybermetric: a benchmark dataset based on retrieval-augmented generation for evaluating llms
in cybersecurity knowledge. In 2024 IEEE International Conference on Cyber Security and
Resilience (CSR), pp. 296–302. IEEE, 2024.

Krist Vaesen and Wybo Houkes. A new framework for teaching scientific reasoning to students from
application-oriented sciences. European journal for philosophy of science, 11(2):56, 2021.

VirusTotal (Google Chronicle). Virustotal: Analyze suspicious files and urls. https://www.
virustotal.com, 2024.

14

https://www.recordedfuture.com/research
https://www.recordedfuture.com/research
https://access.redhat.com/
https://bugzilla.redhat.com/
https://huggingface.co/segolilylabs/Lily-Cybersecurity-7B-v0.2
https://huggingface.co/segolilylabs/Lily-Cybersecurity-7B-v0.2
https://www.apache.org/security/
https://www.apache.org/security/
https://cve.mitre.org/
https://cve.mitre.org/
https://www.virustotal.com
https://www.virustotal.com

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

VulDB Team. Vuldb vulnerability database, 2024. URL https://vuldb.com/.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan Sun.
Towards understanding chain-of-thought prompting: An empirical study of what matters. arXiv
preprint arXiv:2212.10001, 2022.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Alvaro Herrasti, Winson Han, Jiajun Wu, Nick
Haber, Ranjay Krishna, Lingjie Liu, et al. Holodeck: Language guided generation of 3d embodied
ai environments. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16227–16237, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809–11822, 2023.

Zihan Yu, Liang He, Zhen Wu, Xinyu Dai, and Jiajun Chen. Towards better chain-of-thought
prompting strategies: A survey. arXiv preprint arXiv:2310.04959, 2023.

Jie Zhang, Haoyu Bu, Hui Wen, Yongji Liu, Haiqiang Fei, Rongrong Xi, Lun Li, Yun Yang, Hongsong
Zhu, and Dan Meng. When llms meet cybersecurity: A systematic literature review. Cybersecurity,
8(1):1–41, 2025.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert. In International Conference on Learning Representations,
2020.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating
text generation with bert. In International Conference on Learning Representations (ICLR),
2020. URL https://arxiv.org/abs/1904.09675. Official implementation: https:
//github.com/Tiiiger/bert_score.

Yuxuan Zhou, Xien Liu, Chen Ning, Xiao Zhang, Chenwei Yan, Xiangling Fu, and Ji Wu. Revisiting
the scaling effects of llms on medical reasoning capabilities.

A DATA SOURCE AND METADATA COLLECTION

The MITRE CVE (Common Vulnerabilities and Exposures) system (The MITRE Corporation,
n.d.) is a foundational database that provides unique identifiers for publicly disclosed cybersecurity
vulnerabilities. Each CVE record includes an ID, a brief description, references to external resources,
and associated vendors or platforms. This source allows for consistent naming and indexing of
vulnerabilities across tools and reports. We collect structured metadata such as CVE IDs, descriptions,
reference links, and related CWE classifications. CVE feeds (XML/JSON) are used for automated
ingestion and linkage to other threat intelligence frameworks like CAPEC and ATT&CK.

Maintained by NIST, the NVD (National Vulnerability Database) (National Institute of Standards
and Technology (NIST), 2024) builds on MITRE CVE data by adding rich metadata, including CVSS
scores (base, temporal, environmental), CWE mappings, configuration impacts, patch availability,
and severity vectors. We extract metadata through the official JSON data feeds, parsing CVE-level
risk metrics, impact sub-scores, and associated product configurations. This information is critical
for prioritizing remediation and understanding the real-world impact of vulnerabilities.

Exploit-DB (Offensive Security, 2024) is a curated collection of publicly available exploits and proof-
of-concept code. Each entry includes exploit titles, CVE references, author information, platform

15

https://vuldb.com/
https://arxiv.org/abs/1904.09675
https://github.com/Tiiiger/bert_score
https://github.com/Tiiiger/bert_score

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

tags, and the actual code used in attacks. Unlike CVE/NVD, Exploit-DB provides practical insights
into how vulnerabilities are weaponized in real environments. We extract titles, descriptions, exploit
types (e.g., Local, Remote), and related CVEs using web scraping and NLP-based text classification.

CWE(Common Weakness Enumeration) (MITRE Corporation, b) is a taxonomy developed by
MITRE to classify software and hardware weaknesses. Each CWE includes a unique ID, a detailed
explanation, potential consequences, examples, and related patterns (e.g., CAPEC). We use CWE
to enrich CVE data with root cause information, enabling fine-grained vulnerability clustering and
defensive prioritization. The metadata includes weakness category, severity, and relationships with
CAPEC and CVE entries.

CAPEC (Common Attack Pattern Enumeration and Classification) (MITRE Corporation, a)
provides a standardized catalog of common attack strategies. Each pattern includes the attacker’s
objectives, prerequisites, execution flow, related weaknesses (CWE), and example scenarios. We
extract attack pattern IDs, descriptions, related CWEs, and suggested mitigations. These data points
enable us to map vulnerabilities to adversarial behaviors, enhancing our CTI behavioral modeling
capabilities.

The MITRE ATT&CK (MITRE Corporation, 2024) framework systematically catalogs adversary
tactics, techniques, and procedures (TTPs) observed in real-world incidents. Each entry includes
tactic categories (e.g., Privilege Escalation), techniques, mitigations, detection suggestions, and
threat actor mappings. We extract technique IDs, corresponding software, mitigation strategies, and
detection methods. These are used to link CVEs and exploits to higher-level attacker behaviors,
supporting advanced threat modeling.

D3FEND (MITRE Corporation, c) is a curated knowledge graph that maps defensive techniques to
specific threat behaviors and artifacts. D3FEND complements the well-known ATT&CK framework
by focusing on how defenders can detect, disrupt, and respond to adversarial actions. To integrate this
resource into CYBERTEAM, we crawl D3FEND’s publicly available ontology and extract metadata
on detection, deception, and mitigation techniques, along with their associated digital artifacts (e.g.,
file paths, registry keys, network signatures). This metadata is then linked to relevant analytical
tasks, such as behavioral profiling and response planning, providing a rich, standardized reference for
grounding LLM outputs in practical defensive actions.

Oracle Security Alerts (Oracle Corporation, 2024) provides detailed security patch advisories for its
product suite. Each alert includes the CVEs addressed, severity scores, and remediation timelines.
We parse the advisories to gather product-specific vulnerability timelines, vendor patch statuses, and
mitigation instructions, which complement the NVD and MITRE CVE datasets.

Red Hat Bugzilla (Red Hat, Inc., 2024) is a bug tracking system that includes detailed discussions
and technical logs about software bugs, many of which are security-related. Entries often include
CVE links, fix status, patch availability, and affected components. We scrape metadata such as Bug
IDs, CVE references, affected packages, and resolution details to supplement our understanding of
vulnerability lifecycle management.

The RHSA(Red Hat Security Advisories) (Red Hat, Inc.) portal lists all critical, important, and
moderate security advisories affecting Red Hat products. Each advisory provides CVE mappings,
severity scores, fixed packages, and risk summaries. Metadata extraction includes advisory IDs,
publication dates, CVE linkages, and suggested upgrades or patches, enabling alignment with
real-world remediation practices.

IBM X-Force Exchange (IBM Corporation, 2024) is a commercial threat intelligence sharing
platform that provides in-depth reports on vulnerabilities, exploits, malware, and threat actors. Each
CVE entry is enriched with exploitability status, malware connections, and actor attribution. We
extract structured threat metadata such as exploit availability, indicators of compromise (IOCs),
campaign tags, and actor profiling to complement CVE risk modeling.

CISE (Cybersecurity Information Sharing Environment) (CISE Program, 2024), maintained by
CISA, promotes cybersecurity information exchange across government and private sector entities.
The platform facilitates sharing of indicators of compromise (IOCs), analysis reports, and threat
mitigation strategies through structured partnerships. We extract strategic-level threat metadata,
including threat vectors, vulnerability trends, and response best practices from shared reports and
alerts. This supports broader CTI tasks like attribution and risk contextualization.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

VulDB (Vulnerability Database) (VulDB Team, 2024) is a commercial vulnerability intelligence
service that provides insights into current exploits, threat actor behavior, and exploit trends. Entries
often include exploitability scores, attack vectors, exploitation status, and tags related to malware or
campaigns. We collect CVE mappings, vulnerability titles, exploitation timelines, and associated
actors, enabling temporal and behavioral correlation with other sources like Exploit-DB and MITRE
ATT&CK.

Apache’s official security advisory page lists all disclosed vulnerabilities affecting Apache projects
(e.g., HTTP Server, Tomcat, Struts) (The Apache Software Foundation, 2024). Each advisory includes
CVE references, affected versions, and patch instructions. We extract CVE mappings, patch details,
vulnerability types, and affected modules. These insights are cross-referenced with MITRE CVE and
NVD entries to improve accuracy in software-specific threat tracking.

Mandiant Threat Intelligence Reports (Mandiant (Google Cloud), 2024), now part of Google
Cloud, publishes in-depth research on nation-state APTs, malware campaigns, and threat actor
tactics. Their reports include IOC lists, ATT&CK mappings, and campaign chronologies. We extract
metadata on APT groups, attack stages, observed TTPs, and malware toolkits. These data points
support the attribution and behavioral modeling dimensions of our threat intelligence corpus.

Recorded Future Threat Intelligence Reports (Recorded Future, 2024) publishes real-time,
machine-readable threat intelligence covering threat actors, vulnerabilities, dark web chatter, and
geopolitical cyber campaigns. Reports often include structured indicators, predictive analytics, and
CVE exploitability assessments. We leverage this source to collect threat context, emerging trends,
and exploit discussion patterns—enabling our system to associate vulnerabilities with evolving threat
actor intent and capability.

Unit 42 Threat Research (Palo Alto Networks) (Palo Alto Networks, 2024) provides malware
analysis, campaign forensics, and actor behavior insights from Palo Alto Networks’ global threat
intelligence platform. Their publications include links to malicious infrastructure, malware families,
and ATT&CK references. We extract TTPs, CVE-to-malware correlations, and campaign data.
This enhances our contextual metadata for linking specific vulnerabilities to real-world exploitation
scenarios.

Microsoft’s Security Update Guide (Microsoft Corporation) lists monthly updates across its soft-
ware stack. Entries contain CVEs, severity ratings, exploitability assessments, patch availability, and
affected platforms. Metadata extraction includes CVE linkage, threat vectors (e.g., local, remote),
exploitation likelihood, and patch rollout status—enriching vendor-specific vulnerability intelligence.

CVSS (Common Vulnerability Scoring System) (FIRST, a) is a widely adopted scoring system
developed by FIRST to assess the severity of software vulnerabilities. It breaks down risk into Base,
Temporal, and Environmental components. We use this framework to interpret NVD scores, compare
severity across platforms, and calibrate exploitability in relation to business-critical systems.

EPSS (Exploit Prediction Scoring System) (FIRST, b), also developed by FIRST, provides proba-
bilistic predictions of whether a vulnerability is likely to be exploited in the wild. It integrates data
from CVSS, Exploit-DB, and historical attack patterns. We ingest EPSS scores via API to prioritize
vulnerabilities not just by severity, but by real-world exploitation likelihood—enabling dynamic
risk-based vulnerability management.

MISP (Malware Information Sharing Platform) (MISP Project, 2024) is an open-source platform
designed for structured threat intelligence sharing using STIX/TAXII formats. It facilitates sharing of
IOCs, threat event correlations, and TTP mappings. We integrate MISP data via its API to ingest
indicators (e.g., hashes, domains, IPs), related threat actors, and event metadata. These enrich our
knowledge graph with actionable CTI feeds.

VirusTotal (VirusTotal (Google Chronicle), 2024) is a widely used threat intelligence platform
that aggregates malware analysis and sandbox reports from multiple antivirus engines and security
vendors. To support behavior analysis and attribution tasks, CYBERTEAM collects structured threat
metadata from VirusTotal’s public API, including file hashes (MD5, SHA-1, SHA-256), behavioral
execution traces, contacted IPs/domains, dropped files, and detection labels. This information is
linked to threat artifacts such as malware families, indicators of compromise (IOCs), and known
campaign signatures. The extracted metadata enables CYBERTEAM to contextualize adversarial

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

behaviors and enrich analytical functions like malware classification, infrastructure extraction, and
campaign correlation.

AlienVault Open Threat Exchange (OTX) (AlienVault (AT&T Cybersecurity), 2024) is a collabo-
rative threat-sharing platform that provides community-contributed threat indicators and contextual
threat intelligence. CYBERTEAM leverages the OTX API to collect threat pulses—curated collections
of IOCs and metadata describing specific threat actors, campaigns, or vulnerabilities. These pulses
include information such as associated IPs, domains, file hashes, CVEs, and targeted sectors. By
integrating OTX data, CYBERTEAM enhances its ability to support tasks like actor attribution, TTP
matching, and community correlation, allowing LLMs to reason over shared intelligence and align
analysis with ongoing threat landscapes.

Data Ethics. All data used in CYBERTEAM are collected from publicly available vulnerability
databases and open-source threat intelligence platforms. No sensitive personal information or
proprietary organizational data are included.

B MODULARIZED OPERATIONS: BASIC COMPONENT OF STANDARDIZED
THREAT HUNTING

To support modular and extensible capabilities within our CYBERTEAM, we decompose complex
NLP workflows into discrete, modularized operations. This section detail the implementation of NLP
modules as described in section 3.1. Each module corresponds to a specific operation type, described
as follows:

B.1 NER (NAMED ENTITY RECOGNITION)

To identify and classify cybersecurity-relevant entities such as threat actors, malware names, vulnera-
bilities, and indicators of compromise (IOCs) in unstructured textual data, NER facilitates automated
extraction for threat attribution and situational awareness. We employ prompt-based techniques
that enable entity recognition without retraining, thus maintaining adaptability to emerging domain
vocabulary.

Prompt 1. NER Prompt for Threat Attribution

System Prompt: You are a cybersecurity threat intelligence assistant specialized in named
entity recognition. Your task is to extract and categorize all named entities relevant to threat
attribution from the provided text. Focus on answering: "Who is responsible for the attack?",
"How was the attack carried out?".
Instructions: Given a cybersecurity-related document or report excerpt, extract all relevant
named entities and classify them into:

• Threat Actor: Individual(s) or groups suspected or known to conduct the activity.
• Malware/Tool: Names of malicious software, exploits, or hacking tools.
• Vulnerability: CVE identifiers or technical flaws exploited.
• Infrastructure: IPs, domains, file hashes, or URLs used.

Output: Return results as a structured JSON object.

Design Rationale: In real-world threat hunting, analysts are constantly overwhelmed by unstructured
reports, logs, and advisories filled with technical jargon and entity references. Automating named
entity recognition helps blue teams immediately isolate critical items such as threat actors, malware
strains, or CVE identifiers without combing through entire reports manually. This reduces analyst
workload, accelerates attribution, and ensures no important entity slips through, particularly when
adversaries recycle or slightly modify names and indicators across campaigns.

B.2 REX (REGEX PARSING)

To extract structured indicators from cybersecurity logs or reports, REX employs predefined regular
expressions to match patterns like IP addresses, domain names, file hashes, and timestamps. This

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

rule-based approach offers high precision in normalizing threat data for correlation and enrichment
tasks.

Prompt 2. Regex Pattern Matching Prompt

System Prompt: You are a cybersecurity parsing assistant. Your task is to extract standard
threat indicators from raw incident reports using predefined regex patterns.
Instructions: Parse the following document and extract any matches for:

• IP addresses
• File hashes (MD5, SHA1, SHA256)
• Domain names
• Timestamps

Output: Return all matches grouped by type in structured JSON format.

Design Rationale: Regex parsing remains indispensable because many threat indicators—such as
IP addresses, hashes, and domains—follow strict syntactic patterns. Blue team analysts often must
quickly normalize raw log data or incident feeds into structured formats suitable for correlation across
SIEM or TIP platforms. Automated regex-based extraction delivers high precision and avoids false
alarms, providing reliable building blocks for pivoting investigations, linking disparate alerts, and
enriching threat databases with verified observables.

B.3 SUM (SUMMARIZATION)

To enable analysts to quickly grasp key information from lengthy threat reports, SUM generates
concise summaries while preserving critical details such as TTPs, IOCs, and incident timelines.

Prompt 3. Threat Report Summarization Prompt

System Prompt: You are a cybersecurity analyst assistant. Your task is to summarize
the following threat report in 3–4 sentences, preserving the attack vector, affected systems,
timeline, and any mentioned threat actors or IOCs.
Instructions: Summarize only the essential intelligence. Avoid generic phrases. Include
dates, names, and tools where available.
Output: Return a plain-text summary paragraph.

Design Rationale: Threat reports and advisories are typically lengthy, verbose, and include redundant
or irrelevant details. In time-critical investigations, analysts need condensed yet accurate snapshots
that retain attack vectors, key actors, and affected assets. Automated summarization provides blue
teams with quick situational awareness, enabling them to brief stakeholders or prioritize triage without
missing essential context. It also helps align tactical actions with strategic threat intelligence by
stripping away noise and surfacing the essentials.

B.4 SIM (TEXT SIMILARITY MATCHING)

To determine semantic equivalence between pairs of threat indicators—particularly geographic or
cultural references (e.g., "Eastern European" vs. "Russian-speaking")—the SIM function applies
LLM-based textual similarity matching. This is critical for normalizing contextual descriptions found
in incident reports or threat assessments that use varied, informal, or aliasing terms to describe similar
threat origin profiles. Rather than relying on surface-level keyword overlap, SIM leverages the LLM’s
contextual understanding to judge whether two descriptions refer to the same underlying group or
region. This helps unify disparate threat intelligence entries that may use different terminology for
the same adversarial origin.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Prompt 4. Text Similarity Matching Prompt for Geocultural Indicators

System Prompt: You are a cybersecurity assistant that helps analysts determine whether two
geolocation or cultural indicators refer to the same threat origin. Use contextual reasoning to
decide whether the two phrases describe the same group or region in a cyber threat context.
Instructions: Given two input phrases describing threat origin (e.g., "Russian-affiliated"
vs. "Eastern Bloc actor"), determine whether they semantically refer to the same group or
geopolitical background.
Answer the following questions:

• Do both descriptions point to the same cultural, linguistic, or geopolitical region?
• Are the expressions used interchangeably in threat intelligence contexts?

Output: Return a JSON object with:
• "match": Boolean (true/false)
• "confidence": A float score from 0.0 to 1.0
• "justification": One or two sentences explaining the decision

Design Rationale: Threat hunting often suffers from inconsistent terminology—analysts and vendors
may describe the same adversary group or region in different ways. By applying semantic similarity
matching, blue teams can unify aliases, regional descriptions, or contextual cues, thereby avoiding
fragmented analysis. For example, detecting that “Eastern European actors” and “Russian-speaking
threat groups” likely refer to the same set of adversaries allows more coherent attribution and prevents
intelligence silos that adversaries can exploit.

B.5 MAP (TEXT MAPPING)

To visualize and semantically relate named entities and key concepts extracted from cybersecurity
documents, the MAP function supports construction of structured representations such as knowledge
graphs or threat maps. These representations help uncover infrastructure relationships, campaign
patterns, and geotemporal dynamics in threat activity. When powered by large language models,
MAP enables flexible and context-aware extraction of relational triples from unstructured threat
reports.

Prompt 7. Threat Knowledge Mapping Prompt

System Prompt: You are a cybersecurity knowledge graph assistant. Extract and relate key
entities from the given threat report to form subject-predicate-object triples.
Instructions: Identify entities (e.g., threat actors, tools, organizations, IP addresses) and the
relationships between them (e.g., "uses", "targets", "associated with").
Output: Return a list of triples in the format: [subject, predicate, object]
Include a confidence score (0–1) if applicable.

Design Rationale: Attack campaigns rarely consist of isolated events—they are orchestrated through
complex infrastructures and actor-tool relationships. Mapping extracted entities into structured
knowledge graphs helps analysts visualize these relationships and trace adversary activity across time
and geography. This capability supports detection of infrastructure reuse, identification of campaign
evolution, and discovery of hidden connections that might otherwise remain unnoticed, enabling
more proactive defense strategies and long-term threat tracking.

B.6 RAG (RETRIEVAL-AUGMENTED GENERATION)

To enhance generation with accurate and recent data, RAG combines LLM output with real-time
retrieval from external threat intelligence APIs or databases. It is particularly useful for describing
evolving threats or identifying actor affiliations.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Prompt 4. Structured Query for Retrieval

System Prompt: You are a cybersecurity assistant. Formulate a concise search query to
retrieve current information about the topic specified below.
Instructions: Based on the topic “Recent activity by APT29 involving phishing attacks”,
generate a query such as:

“APT29 phishing campaign 2024 indicators, tools, and targets site:mitre.org OR
site:virustotal.com”
Output: Return the final query string and optionally list key evidence passages from results.

Design Rationale: Adversary tactics evolve daily, and static LLMs quickly become outdated if
disconnected from real-time sources. Retrieval-augmented generation enables blue teams to ground
LLM outputs with fresh, authoritative information from trusted CTI feeds, vulnerability databases, or
public repositories. This ensures that generated insights remain both accurate and timely, supporting
decisions during live incidents such as phishing outbreaks or zero-day exploitation campaigns where
stale intelligence could lead to ineffective responses.

B.7 SPA (TEXT SPAN LOCALIZATION)

To precisely extract actionable phrases—such as indicators of compromise or technique descrip-
tions—from long-form cybersecurity text, Text Span Localization (SPA) models are used.

Two key metrics evaluate SPA effectiveness:

• Exact Match (EM):

EM =
Number of exact matches

Total predictions

• Intersection over Union (IoU):

IoU =
|Sp ∩ St|
|Sp ∪ St|

These metrics assess both strict and partial correctness, aiding in accurate downstream processing
such as relation extraction or automated summarization.

Prompt 5. Span Extraction Prompt

System Prompt: You are a cybersecurity span identification assistant. Extract the text span
that describes the primary technique used in the attack.
Instructions: Given a report excerpt, locate and return the sentence or phrase that directly
describes how the attacker compromised the system (e.g., phishing, lateral movement, privilege
escalation).
Output: Return the extracted span as plain text.

Design Rationale: In practice, analysts often need to pull out the single critical phrase—such as
the exact exploitation method—from long reports or alerts. Span localization ensures precision by
targeting actionable fragments rather than broad summaries, which is vital for creating detection
rules, YARA signatures, or SIEM correlation logic. By pinpointing exact techniques or IOCs, blue
teams reduce ambiguity, streamline evidence curation, and avoid wasting resources on imprecise or
overly generalized intelligence.

B.8 CLS (CLASSIFICATION)

To measure the ability of a system to categorize cybersecurity-relevant textual inputs—such as threat
alerts, vulnerability descriptions, or log messages—into predefined classes (e.g., threat categories,
severity levels, or attack types), classification models are employed. This is commonly performed
using transformer-based large language models (LLMs), which utilize a special token (e.g., [CLS]) to
represent sentence-level semantics. The resulting embedding is mapped to labels through a learned
classifier.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Design Rationale: Blue teams constantly receive heterogeneous data ranging from phishing alerts to
vulnerability disclosures. Automated classification allows this information to be triaged into relevant
categories—such as attack type, severity, or impacted systems—so that workflows can be routed
efficiently. Accurate classification supports prioritization of critical alerts, ensures compliance with
response playbooks, and minimizes analyst fatigue by filtering out low-severity noise while surfacing
the incidents that require immediate attention.

B.9 MATH (MATHEMATICAL CALCULATION)

To perform quantitative analyses and structured computations relevant to cybersecurity, the MATH
function supports tasks such as frequency modeling, impact scoring, cryptographic evaluation, and
automated threat prioritization. These computations are critical for risk-informed decision-making
within cyber threat intelligence pipelines.

A prominent example is the Common Vulnerability Scoring System (CVSS v3.1), which uses a
combination of weighted factors and conditional logic to produce a standardized severity score for
vulnerabilities. One key element is the Base Score, calculated using the Impact and Exploitability
sub scores:

Base Score =


0, if Impact Subscore ≤ 0

RoundUp (min(Impact + Exploitability, 10)) , if Scope is Unchanged
RoundUp (min(1.08× (Impact + Exploitability), 10)) , if Scope is Changed

The Impact Subscore is computed from confidentiality, integrity, and availability impact metrics as:

ISCBase = 1− (1− C)× (1− I)× (1−A)

This formula models the probability that the system’s security properties are affected by a vulnerability.
The resulting score guides patching priority, risk exposure assessments, and automated vulnerability
triage.

Such logic-heavy, non-trivial calculations exemplify the role of mathematical modules in operational
cybersecurity settings and justify the integration of computational reasoning capabilities in modern
cyber AI systems.

Prompt 9. CVSS Score Computation Prompt

System Prompt: You are a cybersecurity scoring assistant. Given a vulnerability description
and metric values (Confidentiality, Integrity, Availability, Scope, Attack Vector, etc.), compute
the CVSS v3.1 Base Score.
Instructions: Use the official CVSS equations and apply the rounding rules specified in the
standard. Return both the numeric score and a textual explanation of the computation steps.
Output: Return the Base Score as a float (1 decimal place) and a step-by-step explanation.

Design Rationale: Quantitative scoring frameworks like CVSS remain the backbone of enterprise
vulnerability management and patch prioritization. Automated mathematical reasoning allows blue
teams to consistently compute, validate, and apply these scores across large vulnerability sets,
ensuring consistent triage even under heavy load. Beyond CVSS, mathematical modules enable
probability modeling, risk scoring, and exposure forecasting—practices that help defenders allocate
resources effectively and justify decisions to leadership with evidence-based metrics.

C METRIC

Below are further details on how each evaluation metric quantifies the corresponding threat hunting
performance.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.1 GENERATION (PRECISION–RECALL BALANCE BY F1) AND CLASSIFICATION
(ACCURACY)

In threat hunting, information extraction tasks such as detecting malware names, extracting IOCs,
or identifying exploited vulnerabilities require a careful balance between precision and recall. If a
system retrieves too many irrelevant indicators, analysts are burdened with noise; if it misses critical
signals, adversarial activity may go unnoticed. The F1 score captures this balance by evaluating
how well a model retrieves the right items while minimizing both false alarms and missed detections.
This makes it particularly valuable in operational contexts where the completeness and reliability of
extracted intelligence directly affect the quality of subsequent analysis and response.

Besides, well-quantified tasks such as prioritization in blue team activities involve classification, such
as determining whether an alert corresponds to privilege escalation, categorizing attack vectors, or
assigning severity levels to vulnerability reports. In these scenarios, accuracy serves as an intuitive
and effective measure of system performance, reflecting how often predictions align with ground-truth
categories. High accuracy ensures that automated classification supports efficient triage and aligns
with established taxonomies like MITRE ATT&CK.

C.2 SIM (BERT SCORE)

To evaluate the semantic similarity between cybersecurity-related texts—such as comparing analyst-
written threat summaries, aligning generated incident narratives with original reports, or verifying
paraphrased explanations of threat indicators—the Sim function utilizes contextual embedding-based
metrics. Specifically, it computes BERTScore (Zhang et al., 2020), which has been shown to correlate
strongly with human judgment in natural language generation tasks.

BERTScore measures semantic equivalence at the token level by aligning contextual embeddings
from pre-trained transformer models. The score is computed as:

BERTScore =
1

|x|
∑
i

max
j

cos(xi,yj)

where xi and yj are contextual embeddings of tokens in the candidate and reference texts, respectively.
The final score reflects the average of maximal cosine similarities for each token in the candidate
sentence.

This metric is particularly valuable in evaluating machine-generated text in cybersecurity domains,
where surface-level similarity may fail to capture the deeper equivalence of technical meaning or
threat context.

C.3 PASS (CODE EXECUTION PASSING RATE)

To measure the reliability and functional correctness of cybersecurity automation artifacts—such
as detection rules, analysis scripts, or integration workflows—the Pass Rate metric is employed.
It quantifies how well a system performs under test by evaluating the proportion of test cases that
execute successfully within a defined execution cycle, often conducted in a continuous integration
(CI) pipeline.

Formally, the Pass Rate is defined as:

Pass Rate =
Number of Passed Tests

Total Tests Executed
× 100%

This metric provides a coarse yet effective indicator of operational readiness. A high Pass Rate
implies that the deployed codebase functions as intended across its tested scenarios, which is critical
in cybersecurity contexts where automation is used to process threat intelligence, detect anomalies,
or trigger incident response mechanisms.

Routine monitoring of this metric supports the early identification of integration regressions, promotes
pipeline stability, and ensures confidence in deploying automated defensive measures to production
environments.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.4 HIT (TOP-K HIT RATIO)

To evaluate the effectiveness of cybersecurity recommendation or retrieval systems—such as those that
propose relevant threat indicators, patch suggestions, attack techniques, or investigative leads—the
Top-k Hit Ratio is employed. This metric measures how frequently at least one correct or relevant
item appears within the top-k ranked results returned by the system.

Mathematically, the Top-k Hit Ratio is defined as:

Hit@k =
Number of queries with at least one relevant item in top k

Total number of queries

A higher Hit@k indicates better system performance in surfacing relevant intelligence near the top of
recommendations, which is critical for time-sensitive security operations.

Use Case Example: If a system recommends threat indicators based on a query about a ransomware
family, Hit@5 evaluates whether at least one valid IOC (e.g., file hash or C2 domain) appears in the
top 5 returned items.

Prompt 6. Hit Evaluation Prompt for Threat Retrieval

System Prompt: You are an assistant for evaluating cybersecurity retrieval systems. Given a
query and a list of system-generated recommendations, check whether any ground truth item
appears within the top-k returned results.
Instructions: For each query, compare the top-k predicted items against the gold-standard
set. Indicate "Hit" if at least one match exists, otherwise "Miss".
Output: Return a JSON object with fields: query, top_k_results, ground_truth,
hit@k: true/false

C.5 DIST (NORMALIZED DISTANCE SIMILARITY)

To evaluate the accuracy of numeric predictions in range-based estimation tasks, such as severity
scoring, the Normalized Distance Similarity (Dist) metric is employed. This metric compares the
predicted number and the ground-truth and scales the similarity into the [0, 1] range, where higher
values indicate closer alignment.

Formally, the similarity is computed as:

Similarity = 1− |ĉ− c|
R

where ĉ and c denote the midpoints of the predicted and true ranges, respectively, and R is the
maximum possible value of the range (e.g., 10 in our case of CVSS scores). The metric reflects
the Euclidean distance between prediction and truth, normalized such that a perfect match yields a
similarity of 1, and the furthest possible discrepancy yields 0.

D EXPERIMENTAL SETTING

This section details the experimental setup used to evaluate LLMs in the CyberTeam benchmark.

Hyperparameters. Table 4 summarizes the key hyperparameters for querying LLMs during experi-
ments. These settings were chosen to balance generation quality and computational efficiency.

Computational Resources. All experiments were conducted on a high-performance computing
cluster equipped with six NVIDIA RTX 6000 Ada Generation GPUs, each with 48 GB of dedicated
VRAM. The system utilized CUDA version 12.8 and NVIDIA driver version 570.124.06. This
configuration enabled parallel execution of model inference, evaluation, and tool-augmented tasks
across the benchmark datasets. The hardware provided sufficient memory bandwidth and processing
power to handle large-scale experiments, including multi-sample prompting strategies like CoT and

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 4: LLM query hyperparameters.
Hyperparameter Value Description

Temperature 0.7 Output randomness
Top-p 0.95 Nucleus sampling threshold
Max tokens 2048 Generation length cap
Stop sequences ["\n", "Q:"] Response cutoff cues
Prompt format ICL, CoT, ToT, Emb Prompt types (see 4)
Tool-calling API Enabled (Selective) For function-use experiments

Table 5: Running time (in seconds) of LLMs on CYBERTEAM, comparing different open-ended
prompting strategies with our standardized method. Lower values indicate faster inference.

Method Cybersecurity Agent Industry-Leading LLM
LY DH SL G4o Go4 QW GM CD L3.1 L4 GA

Playbook Recommend

Open-ended

ICL5 12.4 15.6 14.8 10.5 41.2 13.6 11.9 12.7 28.6 24.0 16.8
ICL10 14.1 17.2 16.3 12.0 45.7 15.2 13.5 14.4 31.4 26.5 18.3
CoT 18.6 22.4 21.1 15.8 60.8 19.9 17.6 18.8 41.2 34.5 24.5
ToT 27.5 34.1 32.0 24.2 89.5 30.2 27.1 28.9 62.7 52.5 37.8

Standardized (Ours) 21.3 26.5 25.2 19.1 71.3 23.5 21.0 22.3 50.5 42.0 30.1

Security Control Adjust

Open-ended

ICL5 13.1 16.4 15.5 11.1 43.5 14.3 12.5 13.3 30.2 25.0 17.6
ICL10 15.0 18.3 17.2 12.6 48.1 16.1 14.2 15.1 33.0 27.4 19.1
CoT 19.4 23.5 22.2 16.7 63.4 20.8 18.3 19.6 43.8 36.0 25.7
ToT 28.3 35.6 33.6 25.4 92.2 31.7 28.3 30.2 66.4 55.0 39.5

Standardized (Ours) 22.1 27.8 26.7 20.0 74.2 24.7 22.1 23.4 53.1 44.0 31.2

Patch Code Generation

Open-ended

ICL5 14.2 17.9 17.0 12.2 46.8 15.7 13.6 14.4 32.8 27.0 19.2
ICL10 16.3 19.6 18.7 13.7 51.3 17.5 15.3 16.2 35.7 29.5 20.8
CoT 21.2 25.3 24.5 18.1 68.7 22.9 19.7 21.1 47.6 39.0 28.1
ToT 31.7 38.4 36.9 27.8 98.6 34.5 30.6 32.6 71.9 59.0 42.5

Standardized (Ours) 24.0 29.7 28.6 21.4 79.4 26.6 23.6 25.0 57.2 47.0 34.4

Patch Tool Suggestion

Open-ended

ICL5 12.8 15.9 15.2 10.9 42.6 14.0 12.3 13.0 29.5 24.3 17.0
ICL10 14.7 17.7 16.9 12.4 47.0 15.8 14.0 14.8 32.4 26.2 18.6
CoT 19.0 23.0 22.0 16.3 62.1 20.5 18.1 19.2 42.5 35.0 25.1
ToT 27.9 34.9 33.1 24.7 90.8 31.0 27.6 29.6 64.0 52.5 38.2

Standardized (Ours) 21.7 27.1 26.2 19.6 72.8 24.1 21.7 22.9 51.7 42.5 30.5

Advisory Correlation

Open-ended

ICL5 13.6 16.8 16.1 11.7 44.9 14.9 13.0 13.8 31.0 25.5 18.2
ICL10 15.6 18.7 17.9 13.2 49.6 16.7 14.7 15.6 34.0 28.0 20.0
CoT 20.3 24.1 23.4 17.2 65.3 21.7 19.0 20.4 45.3 37.0 26.5
ToT 29.8 36.8 35.4 26.1 95.1 33.1 29.4 31.3 68.8 56.0 40.1

Standardized (Ours) 23.1 28.5 27.8 20.6 76.2 25.4 22.8 24.2 54.6 45.0 32.1

ToT, without encountering resource constraints. Each experimental run was executed in a isolated
environment to ensure reproducibility and avoid interference between tasks.

E ADDITIONAL EXPERIMENTAL RESULTS

This section presents additional experimental results that complement our main findings, offering
deeper insights into model behavior across varied threat-hunting scenarios.

E.1 RUNNING TIME AND TRADE-OFF BETWEEN LATENCY AND EFFECTIVENESS

Observations and Insights. The runtime analysis highlights an inherent trade-off between efficiency
and reasoning complexity across prompting strategies. Consistent with expectations, in-context
learning (ICL) variants remain the fastest across nearly all models, typically completing tasks in the
10–15 second range. This makes ICL attractive for time-sensitive operations such as triage or initial

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(a) Threat Attribution — GPT-4o

(b) Behavior Analysis — GPT-4o

(c) Prioritization — GPT-4o

Figure 5: Threat-hunting performance on individual tasks, evaluating under GPT-4o.

correlation, where speed outweighs the need for more structured reasoning. Chain-of-thought (CoT)
introduces additional reasoning overhead, increasing runtimes by roughly 30–40% compared to ICL.
While this slowdown is measurable, the benefit of CoT lies in its improved consistency on more
nuanced decision tasks, suggesting that blue teams might selectively invoke CoT when precision is
critical. Tree-of-thought (ToT), by contrast, incurs the highest latency, often doubling the runtime
relative to ICL. This stems from ToT’s multi-branch exploration process, which, while occasionally
producing richer reasoning chains, remains computationally expensive and operationally impractical
for most real-time security workflows.

Our standardized pipeline approach falls between CoT and ToT in runtime. The added latency reflects
the sequential decomposition of tasks into modular subroutines, each enforcing more structured
reasoning than raw prompting. While slower than single-pass approaches, our pipeline mostly
avoids the extreme overhead observed in ToT. This stability is particularly important in operational
settings: analysts can predictably plan around a known latency budget while still benefiting from
higher reliability and repeatability of results.

Unlike open-ended reasoning, which may fluctuate in quality depending on the model and prompt,
the standardized pipeline enforces uniform logic steps, reducing error propagation at the cost of
additional inference time. From a deployment standpoint, this balance offers a pragmatic middle
ground: not as lightweight as ICL for quick heuristics, but substantially more usable than ToT when
analysts demand repeatable outputs.

E.2 ADDITIONAL RESULTS OF INDIVIDUAL THREAT HUNTING PERFORMANCE

Figure 5, 6, 7, and 8 complement the results as present in Figure 3, offering aligned insights as
exhibited in previous experiments.

Based on those results, we further outline the following observations and analyses:

Attribution-Oriented Tasks. Attribution tasks rely on aligning disparate indicators into coherent
profiles of adversaries, infrastructure, and campaigns. Here, the standardized workflow shows its
greatest benefit because it forces the model to treat each extracted clue as part of a larger dependency
chain. When the reasoning is left open ended, models often generate fluent narratives that omit
critical ties, such as overlooking how infrastructure relates to a specific campaign or how victimology
patterns reinforce an actor hypothesis. The modular approach ensures that entity recognition, context
mapping, and relational inference are explicitly sequenced, which reduces the tendency of the model

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(a) Threat Attribution — SevenLLM

(b) Behavior Analysis — SevenLLM

(c) Prioritization —SevenLLM

Figure 6: Threat-hunting performance on individual tasks, evaluating under SevenLLM-7B.

(a) Threat Attribution — Gemini

(b) Behavior Analysis — Gemini

(c) Prioritization — Gemini

Figure 7: Threat-hunting performance on individual tasks, evaluating under Gemini-pro.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(a) Threat Attribution — Llama-405B

(b) Behavior Analysis — Llama-405B

(c) Prioritization — Llama-405B

Figure 8: Threat-hunting performance on individual tasks, evaluating under Llama-405B.

to drift or collapse multiple actors into a generic label. This structured pipeline also helps the
model preserve continuity across steps, so that information about geography, malware signatures, or
campaign overlaps is not forgotten or misapplied. In practice, this makes attribution outputs more
consistent and trustworthy, with fewer contradictions across different facets of the same incident.

Behavioral-Oriented Tasks. Behavioral analysis tasks focus on describing how an attack unfolds
across file systems, networks, credentials, execution flows, and evasion strategies. These tasks expose
a different challenge: models must reason not just about isolated labels but about temporal or causal
sequences. Open ended reasoning often struggles to maintain logical order, for example by misplacing
the relationship between a credential theft and subsequent privilege escalation, or by skipping
intermediate steps in an event sequence. Standardized workflows address this by explicitly guiding
the model to construct event chains step by step, preserving both order and dependency. This guidance
is particularly important when behaviors are nested, such as when command script execution spawns
further lateral movements or when evasion strategies are intertwined with persistence mechanisms.
The modular design ensures that contextual cues are not discarded midway, producing outputs that
resemble the structured analysis human analysts expect. The gains here are not simply about accuracy
but about interpretability, as the resulting narratives make it easier to understand how behaviors
connect to form a complete attack path.

Prioritization-Oriented Tasks. Prioritization tasks require models to map extracted observations
into judgments of impact, severity, or scope. These are less about narrative flow and more about
logical consistency and rule following. While open ended reasoning can handle straightforward
labels like user interaction requirements or attack complexity, it often falters when multiple inputs
must be integrated into a composite assessment. For example, determining severity requires careful
alignment of impact level, attack vector, and privilege requirements, which is difficult to achieve
reliably without structured steps. The standardized workflow enforces this alignment by ensuring
that each component assessment is produced systematically and then fed into the final prioritization
judgment. As a result, the model is less likely to generate inconsistent or contradictory scores. The
benefits are particularly visible in tasks that resemble rule based calculations or scoring rubrics, where
the modular structure mirrors the procedural way that human analysts reason about risk.

Broader Implications. Viewed across these categories, a clear pattern emerges. Attribution tasks
benefit most from the preservation of contextual dependencies across different indicators. Behavioral
tasks gain from the ability to model temporal and causal structure. Prioritization tasks see improve-
ments in logical consistency and integration of multiple criteria. Standardization does not change
the core language modeling capability of these systems, but it channels their generative power into

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

workflows that mirror how analysts actually think about security problems. This alignment between
workflow design and task demands is the primary driver of the gains observed, and it demonstrates
why modular guidance is most valuable when reasoning requires structured coordination across
multiple dimensions.

Benchmark Generalizability. Although CyberTeam integrates data from 23 diverse threat intelli-
gence sources, the benchmark is inherently constrained by the selected datasets and threat scenarios.
For example, it may not fully represent emerging attack vectors, such as AI-powered phishing or
supply chain compromises. Expanding the benchmark to include more recent and varied threat
data, as well as cross-domain applications (e.g., IoT or cloud security), would enhance its utility for
evaluating LLM generalization in broader cybersecurity contexts.

F LARGE LANGUAGE MODEL (LLM) USAGE DISCLOSURE

LLMs were employed exclusively for light grammar refinement and phrasing adjustments while
preparing the manuscript. They were not involved in conceptual development, benchmark design,
experiment execution, or result interpretation. All scientific ideas, methodological designs, and
analyses were carried out independently by the authors. LLM usage was limited to minor textual
polishing.

29

	Introduction
	Related Work
	CyberTeam
	Threat Hunting Tasks
	Data Sources
	Standardized Threat Hunting with Operational Modules

	Experiment
	Standardized Threat Hunting vs. Open-Ended Reasoning (RQ1)
	Threat-Hunting Performance for Individual Tasks (RQ2)
	LLM Robustness against Noisy Inputs (RQ3)

	Conclusion
	Data Source and Metadata Collection
	Modularized Operations: Basic Component of Standardized Threat Hunting
	NER (Named Entity Recognition)
	REX (Regex Parsing)
	SUM (Summarization)
	SIM (Text Similarity Matching)
	MAP (Text Mapping)
	RAG (Retrieval-Augmented Generation)
	SPA (Text Span Localization)
	CLS (Classification)
	MATH (Mathematical Calculation)

	Metric
	Generation (Precision–Recall Balance by F1) and Classification (Accuracy)
	Sim (BERT Score)
	Pass (Code Execution Passing Rate)
	Hit (Top-k Hit Ratio)
	Dist (Normalized Distance Similarity)

	Experimental Setting
	Additional Experimental Results
	Running Time and Trade-off between Latency and Effectiveness
	Additional Results of Individual Threat Hunting Performance

	Large Language Model (LLM) Usage Disclosure

