
Multilinear and Linear Programs for Partially Identifiable Queries in
Quasi-Markovian Structural Causal Models

João P. Arroyo1 João G. Rodrigues1 Daniel Lawand1 Denis D. Mauá1 Junkyu Lee2 Radu Marinescu2

Alex Gray3 Eduardo R. Laurentino4 Fabio G. Cozman1

11 Universidade de São Paulo, São Paulo, Brazil
2IBM Research – J. L.: Yorktown Heights, USA; R. M.: Ireland

3Centaur Institute, USA
4Instituto de Ciência e Tecnologia Itaú, São Paulo, Brazil

Abstract

We investigate partially identifiable queries in a
class of causal models. We focus on acyclic Struc-
tural Causal Models that are quasi-Markovian
(that is, each endogenous variable is connected
with at most one exogenous confounder). We look
into scenarios where endogenous variables are ob-
served (and a distribution over them is known),
while exogenous variables are not fully specified.
This leads to a representation that is in essence a
Bayesian network where the distribution of root
variables is not uniquely determined. In such cir-
cumstances, it may not be possible to precisely
compute a probability value of interest. We thus
study the computation of tight probability bounds,
a problem that has been solved by multilinear pro-
gramming in general, and by linear programming
when a single confounded component is intervened
upon. We present a new algorithm to simplify the
construction of such programs by exploiting input
probabilities over endogenous variables. For sce-
narios with a single intervention, we apply column
generation to compute a probability bound through
a sequence of auxiliary linear integer programs,
thus showing that a representation with polynomial
cardinality for exogenous variables is possible. Ex-
periments show column generation techniques to
be superior to existing methods.

1 INTRODUCTION

Structural Causal Models (SCMs) offer a representation
where some variables are associated with deterministic
mechanisms while other variables are associated with
marginal probabilities. We refer to the former variables as
endogenous ones, and to the latter variables as exogenous
ones.

It is often the case that observational data determines the
probability distribution of endogenous variables, but not the
distribution of exogenous variables. In fact, the structure
of exogenous variables may not be specified, and all that
one may know are bounds on the cardinalities of those vari-
ables. In such a setting, the causal diagram that captures the
connections between variables can be viewed as a Bayesian
network where the (marginal) distribution of root variables
is not specified [Zaffalon et al., 2020]. This is the sort of
representation we explore in this paper.

Given such a causal model, one may be interested in some
probability value (or some function of probability values)
under interventions. When such a query leads to a single
precise number, we say the query is identifiable. Pearl’s
do-calculus can be used to determine when a query is iden-
tifiable [Pearl, 2009].

When identifiability fails, one can still bound probability val-
ues given a distribution over the observed variables. Hope-
fully, one may then produce probability intervals that are
sufficiently informative to make decisions — when the ob-
servable variables are discrete, this can be achieved without
additional assumptions on the unknown mechanisms at play
[Balke and Pearl, 1997].

In this paper we focus on the computation of tight proba-
bilistic bounds when identifiability fails; that is, we focus
on the partially identifiable setting. We abuse language by
using “SCM” to also refer to models where the marginal dis-
tribution over exogenous variables is not known precisely,
but rather imprecisely induced by a distribution over en-
dogenous variables.

We restrict interest to quasi-Markovian SCMs; that is, to
SCMs where each endogenous variable has at most one ex-
ogenous parent. This family of SCMs is quite expressive; for
instance, it contains Balke and Pearl’s imperfect compliance
example and many of their extensions in the literature. More-
over, quasi-Markovian SCMs can be used to approximate
non-quasi-Markovian ones [Zhang et al., 2022].

Accepted for the 1st Workshop on Causal Abstractions and Representations (CAR) at UAI 2025 (CAR 2025).

There have been several relevant proposals to cast partially
identifiable queries with quasi-Markovian SCMs as nonlin-
ear programs that, in some cases, reduce to linear programs.
For example, Balke and Pearl [1994] showed that linear
programming can bound the causal effect of an interven-
tion in the so-called instrumental variable model. Tian and
Pearl [2000] then showed how to write a linear program
to compute the probability of necessity and sufficiency in
two-variable binary models. Sachs et al. [2023] extended
Balke and Pearl [1994]’s models to a larger class, for which
they showed that causal effect inferences can be cast as
linear programs; the size of these linear programs has been
studied, and in many cases reduced, by Shridharan and
Iyengar [2023a]. Zhang et al. [2022] described techniques
that bound the cardinality of non-observed variables and
that can be used to approximate bounds on causal effects
through linear programming. Duarte et al. [2024] instead
focused on the general multilinear programs that produce
anytime probability bounds (in the sense that the algorithm
can be stopped at any given time and still yield approximate
bounds). Zaffalon et al. [2024] translated the computation
of causal inferences to inference in credal networks, and
looked at approximate solutions based on sequences of lin-
ear programs and on parametric learning (a credal network
is, in essence, a Bayesian network where conditional prob-
ability distributions are only known to belong to specified
sets of distributions [Cozman, 2000]).

Recently, Shridharan and Iyengar [2023b] derived a signifi-
cant result for quasi-Markovian SCMs. In short, for those
SCMs, tight bounds on causal effects can be computed by
multilinear programs whose degree is restricted to the num-
ber of intervened confounded components — and hence to
linear programming when a single confounded component
is intervened upon! It is within the context of Shridharan
and Iyengar’s work that we make our contributions.

We first present a new proof for the main result by Shridha-
ran and Iyengar [2023b], a proof that hopefully shows this
clever result to be in essence a simple one from a mathe-
matical point of view (Section 3). We then present a new
algorithm that shows how to exploit information in an in-
put distribution over endogenous variables to simplify the
construction of such multilinear/linear programs (Section 4).
Our new algorithm exploits Pearl’s do-calculus to build up
a simplified objective function.

One practical challenge is that bounds on the cardinality of
exogenous variables may be very large, thus leading to large
multilinear/linear programs. To avoid this explosion, we in-
troduce column generation techniques; that is, we show how
to build a sequence of basis changes that lead to the desired
bound (Section 5). Each change of basis uses a common
master linear program and an auxiliary program that, despite
the presence of polynomial terms in its specification, can
be reduced to a linear integer program. We also show how
to build a single linear integer program, that directly pro-

duces desired bounds. We present empirical evidence that
our proposed techniques are superior to existing approaches.

2 BACKGROUND

We write random variables using capital letters (e.g., X)
and sets of random variables using boldface (e.g., X). The
support of X is denoted as val(X), and val(X) is the di-
rect product of the support of each variable in the set. A
probability value is denoted by Pr(X = x), or Pr(x) when
appropriate. A distribution is denoted by Pr(X). We con-
sider graphs whose nodes are random variables, and refer
indiscriminately to nodes and random variables. We write
Pa(X) to denote the parents of X in a graph G. We write
GX to denote the graph obtained from G by removing all
edges leaving nodes in the node set X, and GX to denote
the graph obtained by removing edges entering nodes in X.

A Structural Causal Model (SCM) is a tuple
(G,V,U,F ,Pr(U)) where G is an directed graph
whose node set is V ∪ U, where V are the inner nodes,
called endogenous, and U are the root nodes, called exoge-
nous; F is a set of functions fV : val(PaG(V)) → val(V)
called mechanisms, one for each node V in G; and Pr(U)
is a probability distribution over the exogenous random
variables U [Galles and Pearl, 1998, Halpern, 2000].

We restrict ourselves here to acyclic graphs. For such mod-
els, we have for any endogenous variable V ∈ V that

Pr(V = v|Pa(V) = π) = [[fV (π) = v]],

where [[θ]] denotes the Iverson bracket (i.e., it is 1 if state-
ment θ holds, and 0 otherwise). We assume exogenous nodes
are independent, hence Pr(u) =

∏
U∈U Pr(U = u). Con-

sequently,

Pr(v,u) =
∏
V

[[fV (π) = v]]
∏
U

Pr(U = u), (1)

for values of v, π and u that are consistent with v and u.
The latter expression is multilinear on the probabilities of
exogenous variables. Any marginal probability is therefore
a multilinear expression of {Pr(U = u) : u ∈ val(U), U ∈
U}.

A confounded component (for short, c-component) of a
directed graph G is a set of endogenous nodes in a maximal
connected component of the undirected version of graph
GV (i.e., the graph obtained by removing endogenous-to-
endogenous edges) [Tian, 2002].

An SCM is quasi-Markovian if every endogenous variable
has at most one exogenous variable as parent. If in addition
every exogenous variable has exactly one child, then the
model is said to be Markovian. Figure 1 (a) shows the graph
of a quasi-Markovian SCM (that is not Markovian), taken
from a rather simple example by [Sachs et al., 2023]. The
model has two c-components: {X,W} and {Z, Y }.

U1 U2

X W Z Y

(a)

X W Z Y

(b) U1

X W Z Y

(c) U1

X W Z Y

(d)

Figure 1: (a) An example proposed by Sachs et al. [2023]. (b) The factorization of the (marginal) distribution for endogenous
variables. (c) A semi-marginal graph that marginalizes U2. (d) The intervened semi-marginal graph for do(X = x).

Consider a c-component C of a quasi-Markovian SCM, and
let U be the (single) exogenous parent of nodes in C, and
WC denote the union of the variables in C and all of their
endogenous parents. A key result by Tian [2002] is that:

Pr(V = v) =
∏
C

QC(wC), (2)

where wC is the configuration of WC that is consistent
with v, and

QC(WC) =
∑
u

Pr(u)
∏
V ∈C

[[fV (Pa(V)) = V]]. (3)

For V ∈ C, let WV denote the variables that are topo-
logically smaller than V in WC. Tian [2002] also showed
that:

QC(WC) =
∏
V ∈C

Pr(V |WV). (4)

As c-components form a partition of V, we have that:

Pr(V) =
∏
V ∈V

Pr(V |WV) . (5)

For example, for the graph in Figure 1 (a), Equa-
tion (5) implies Pr(W,X, Y, Z) = Pr(X) Pr(W |X)
Pr(Z|W) Pr(Y |W,Z) (as captured by Figure 1 (b)).

As Zaffalon et al. [2024] noted, Equations (3) and (4) lead
to necessary and sufficient linear constraints over Pr(U):∏

V ∈C

Pr(V |WV) =
∑
u

Pr(u)
∏
V ∈C

[[fV (Pa(V))=V]]. (6)

Note that there is one constraint per configuration of WC.

When endogenous random variables are categorical, one
can always extend a causal graph into a partially spec-
ified SCM, that is, an SCM without a fixed exogenous
distribution Pr(U). That process is known as canonical-
ization [Zhang et al., 2022], and essentially, consists of
enumerating all possible mechanisms via values of the ex-
ogenous variables. For quasi-Markovian graphs, canoni-
calization reduces each exogenous variable U to a cate-
gorical random variable whose state space has cardinality∏

V ∈C |val(V)||val(Pa(V))|, where C is the corresponding c-
component. Each value u ∈ val(U) specifies a mechanism
fV : PaG(V) → V for each V in the c-component. Thus,
we assume without loss of generality that every exogenous
variable is categorical.

A simple intervention do(X = x) modifies an SCM by
substituting fX with [[X = x]], where x is the corresponding
value in x, for every X ∈ X. Graphically, interventions are
represented by means of surgery of G, producing GX.

An intervention induces a new (post-intervention) distribu-
tion over any variable set Y, denoted as Pr(Y|do(x)). The
goal of causal inference is to estimate expressions involv-
ing such probabilities using the constraints shared by the
non-intervened and intervened SCMs. We are interested in
the calculation of population-level causal effects that can be
written as linear combinations of post-intervention proba-
bilities, such as the average treatment effect (ATE) and the
conditional average treatment effect (CATE). For the sake
of exposition, we concentrate on simple inferences such
as Pr(Y|do(x)); however, the same algorithms and results
apply for linear combinations of such probabilities.

3 COMPUTING PROBABILITY BOUNDS

Suppose we have a partially specified quasi-Markovian
SCM (G,V,U,F) and an input distribution P̂r(V). In the
remainder of this paper we assume endogenous variables
are binary; this substantially simplifies the presentation by
reducing the number of necessary indexes (extension to
categorical variables should be clear).

We are interested in computing Pr(Y = y|do(X = x)),
abbreviated Pr(y|do(x)). We do not assume identifiability;
that is, the input distribution may not be sufficient to con-
strain Pr(y|do(x)) to a point value; for this reason, we wish
to compute the lower probability defined as

Pr(y|do(x)) := inf Pr(y|do(x)),

where the infimum is taken over the set of all extensions of
the given partially specified SCM whose induced joint distri-
butions satisfies the set of constraints given by Equation (6),
with

Pr(V |WV) = P̂r(V |WV).

Zaffalon et al. [2024] have shown this optimization problem
to lead to tight bounds. Note that the fact that the feasible
region is a closed polytope allows us to replace infimum by
minimum in the expression above, so

Pr(y|do(x)) = minPr(y|do(x)).

One might as well be interested in the upper probability,
by taking maximum instead of minimum; the necessary
changes should be obvious.

As shown by Shridharan and Iyengar [2023b], the multilin-
ear expression for Pr(y|do(x)) need only involve probabil-
ities Pr(U = u) for exogenous variables connected with
c-components intervened by do(X = x).1 Thus, the de-
gree of the multilinear expression is equal to the number of
intervened c-components. This result was proved by them
by explicitly developing the relevant factors in the multilin-
ear expression; we now present a shorter argument directly
based on Tian’s factorization given by Expression (2).

To start, let Z = V\{X,Y}. Thus Pr(y|do(x)) is equal to∑
z

Pr(y, z,x|do(x)) =
∑
z

∏
C

Q
do(x)
C (wC),

where the latter equality follows from Expression (2) with
each wC being consistent with y, z and x. To proceed,
let C0 denote the collection of c-components of the non-
intervened model that do not contain intervened variables.
Note that a c-component C ∈ C0 does not change under
the intervention, as an intervention do(X = x) modifies
only the mechanisms related to X ∈ X. As a consequence,
in the expression above, each term Q

do(x)
C that refers to

a c-component C ∈ C0 equals the analogous term QC in
the factorization of the non-intervened SCM (as both are
given by identical instances of Expression (3)). Moreover,
by Equation (4) QC can be written as a product of empirical
probabilities P̂r(v|wV) for each V ∈ C. Similarly, for
each C not in C0 the term Q

do(x)
C in the expression above

differs from the analogous term QC only with respect to
the mechanisms for the intervened variables, which become
[[X = x]]. Connecting all observations above, we get:

Pr(y|do(x)) =
∑
z

∏
C∈C0

∏
V ∈C

P̂r(v|wV)×∏
C̸∈C0

∑
u

Pr(u)
∏

V ∈C\X

[[fV (π) = v]], (7)

where all assignments inside the outer summation must
agree with the assignments for Y = y, Z = z, and X = x.
Now define U∗ to be the set of exogenous variables that are
parents of intervened c-components. Then we have that

Pr(y|do(x)) = min
Pr(U):U∈U∗

Pr(y|do(x)),

where Pr(y|do(x)) is given by Expression (7), subject to
the set of constraints given by Equation (6). As that defines
a multilinear program, we conclude our proof of Shridharan
and Iyengar [2023b]’s main result.

It is actually possible to convey this latter result in a rather
visual way by using graphs. A simple example should clarify
the idea. Consider an SCM with graph as in Figure 1 (a),
and an intervention do(X = x). We may marginalize all
exogenous variables (Figure 1 (b)), or just U2 (Figure 1

1This assumes that the optimization is feasible.

(c)); the latter produces what we call a semi-marginal graph.
Equation (7) denotes the factorization given by Equation (1)
in the graph in Figure 1 (d). In the latter, the exogenous
variable U1, associated with the intervened c-component
{W,X} of the original graph, is kept while the exogenous
U2 in the non-intervened c-component {Z, Y } is discarded
— note the edge W → Y is included to account for the
missing exogenous variable.

That is, we can take the directed graph, create a topological
order for the variables, and for each c-component C that is
not intervened,

• remove the corresponding exogenous variable, and

• connect each variable V in C with the variables in
WV (recall that WV contains the variables that are
topologically smaller than V among the variables in C
and the variables that are parents of variables in C);

and then remove edges corresponding to the interventions
as usual. We refer to this latter type graph as the intervened
semi-marginal graph, that is, the graph obtained by marginal-
izing exogenous variables connected with non-intervened
c-components and performing surgery on the intervened
variables. Additional intervened semi-marginal graphs can
be found in the Supplementary Material.

4 EXPLOITING INPUT DISTRIBUTIONS

Suppose we have a quasi-Markovian causal graph G, an
input distribution P̂r(V), target variables Y and a single
intervention do(X = x). Then Shridharan and Iyengar
[2023b]’s result show us that Pr(y|do(x)) can be cast as
a linear program whose objective function, given by Equa-
tion (7), contains val(U ∪Z) terms. We can instead simplify
the expression for instance by running symbolic variable
elimination [Koller and Friedman, 2009] with the factors
defined by the semi-marginal graph. Doing so leads to an
expression whose number of terms is given by val(U) times
an exponential in the graph’s treewidth (which measures the
connectivity of the causal graph).

However, we can do better. As we now show, we may require
only a smaller set of factors, and less exogenous variables,
by taking a different route.

As a preliminary point, note that any node that is not in the
ancestral graph of Y can be discarded, as it will not affect
the result of the causal inference. This can be seen from
the intervened semi-marginal graph, which in that case will
have such a node d-separated from Y or barren. That holds
even for intervened X ∈ X; we thus assume that each X is
an ancestor of some Y ∈ Y in the following.

Now consider simplifications that exploit the input distribu-
tion. To do so, we take the input distribution as an oracle
that can yield any conditional distribution P̂r(R|S), for any

R,S ⊆ V. In practice, efficient data structures can be used
to obtain such probabilities from e.g. a dataset (note: “local”
probabilities are needed anyway to handle Expression (7)).

We present an algorithm that produces a sequence of expres-
sions for auxiliary values Pr(Yt|do(x)); the objective func-
tion can be built at the end by collecting such expressions,
leading to an expression that potentially is exponentially
more succinct that the one given by Expression (7).

Starting with the input target set, Y0 = Y, at each step t =
0, 1, . . . , the algorithm selects a variable Yt ∈ Yt that has
no descendants in Yt; that is, the algorithm selects variables
Y0 < Y1 < · · · in reverse topological order. It then defines
a next target set Yt+1 and produces a symbolic expression
relating Pr(Yt|do(x)) and Pr(Yt+1|do(x)), according to
the following cases.

C1: Yt is in U (hence Y is not a descendant of X).
Then build Yt+1 = Yt \ {Yt} and output

Pr(yt|do(x)) = Pr(yt+1|do(x)) Pr(Yt = u)

for each assignment yt of Yt, where u agrees with yt.
If Yt+1 = ∅ then set Pr(yt+1|do(x)) = 1.

C2: Yt ∈ V is not a descendant of X .
Then build Yt+1 = Yt \ {Yt} and output

Pr(yt|do(x)) = Pr(yt+1|do(x))P̂r(y|yt+1)

for each assignment yt of Yt.

C3: Yt is a descendant of X and they are in the same
c-component.
Then define Zt = Pa(Yt) \ (Yt ∪ {X}), and Yt+1 =
(Yt∪Zt)\{Yt}. For each assignment yt of Yt, output

Pr(yt|do(x)) =
∑
zt

[[fYt
(π) = yt]] Pr(yt+1|do(x)),

where π is the assignment of the parents of Yt that
agrees with zt, yt and x, and yt agrees with yt.

C4: Yt is a descendant of X but they are not in the same
c-component.
Define Ut = Pa(X). Find a set of endogenous vari-
ables Wt such that (i) Yt and X are d-separated by St

in GX (the graph where edges leaving X are removed),
and (ii) Yt and Ut are d-separated by St ∪ {X} in G,
where St = (Wt∪Yt)\{Yt, Ut}. Let Zt = Wt \Yt.
Build Yt+1 = (Yt ∪ Zt) \ {Yt} and output

Pr(yt|do(x)) =
∑
zt

P̂r(yt|x, st) Pr(yt+1|do(x)) ,

where the assignments on the right hand side agree
with the assignments on the left hand side.

Each one of these cases produces a new expression; as noted
previously, these expressions can be collected to generate

U1U2

X YR Z

U1 U2

Z YX W

Figure 2: Graphs for quasi-Markovian SCMs, used in exam-
ples. None of them are handled by techniques by Sachs et al.
[2023].

a single linear expression for Pr(y|do(x)) that contains
optimization variables Pr(u) (for each u).

Before we prove the algorithm correct, consider a few ex-
amples that convey its behavior.

Example 1. Consider the graph in Figure 1 (a), an inter-
vention do(x) and target Y0 = {Y }. At step t = 0, the
algorithm selects Y . To apply C4, we find a set W0 that
d-separates Y and X in GX , and also d-separates Y and U1

in G. The only set satisfying such conditions is W0 = {W}.
The algorithm produces

Pr(y|do(x)) =
∑

w P̂r(y|x,w) Pr(w|do(x)).

Then the algorithm moves to Y1 = {W}, selects W , which
satisfies C3, and produces

Pr(w|do(x)) =
∑

u1
[[fW (x, u1) = w]] Pr(u1|do(x)).

Last, the algorithm takes Y2 = {U1}, satisfying C1, and
produces: Pr(u1|do(x)) = Pr(u1). Collecting all expres-
sions, we get a linear objective function:∑

w P̂r(y|x,w)
∑

u1
[[fW (x, u1) = w]] Pr(u1) . □

Example 2. Consider the graph in Figure 2 (left). Given
intervention do(x) and target Y0 = {Y }, the algorithm
selects variables in the ordering Y , Z and U1, creates sets
Y1 = {Z,U1}, Y2 = {U1}, and outputs, respectively:

Pr(y|do(x)) =
∑

z,u1:fY (z,x,u1)=y

Pr(z, u1|do(x)). [C3]

Pr(z, u1|do(x)) = P̂r(z|x) Pr(u1|do(x)). [C4]
Pr(u1|do(x)) = Pr(u1). [C1]

Collecting all expressions, we get a linear objective function
that notably does not mention R:∑

z,u1
[[fY (z, x, u1) = y]]P̂r(z|x) Pr(u1) . □

Example 3. Consider a graph as in Figure 2 (left), but with
the edge R → Z replaced by a sequence R → R1 → · · · →
Rn → Z, where each Ri is also connected to U1. Then Ex-
pression (7) generates an expression with over |val(U1)|2n
terms, whereas our algorithm generates the same expression
as in the previous example. And if we replace each Ri by a
subgraph with high treewidth, the same example shows that
our algorithm can produce expressions that are exponen-
tially smaller then by running symbolic variable elimination
on the intervened semi-marginal graph. □

Now consider correctness:

Theorem 1. The previous algorithm generates a linear
program that, when optimized subject to constraints given
by Equation (6), computes tight bounds for Pr(y|do(x)).

The proof requires the following lemma.

Lemma 1. Suppose a quasi-Markovian graph G with en-
dogenous nodes X , Y and Z is such that: (i) X and Y have
no common exogenous parent; (ii) Y is a descendant of X;
(iii) there are no descendants of Y in Z. Then there is a set
of endogenous variables W that are ancestors of Z ∪ {Y }
and such that X and Y are d-separated by W ∪ Z in GX .
In addition, W ∪ Z ∪ {X} also d-separates Y and U in G,
where U = Pa(X) ∩U.

Proof of Lemma 1. Consider the moral graph M of the an-
cestors of Z and Y in GX , which also include the ancestors
of X by Assumption (ii). Then, X and Y are d-separated
by some superset of Z in GX iff there is no undirected path
in M containing no endogenous nodes (other than X and
Y) [Koller and Friedman, 2009]. First note that M has no
edge X–Y , since X has no outgoing edges in GX , Y is de-
scendant of X by Assumption (ii) and by Assumption (iii)
X and Y have no common child in M. Thus consider a
path between X and Y containing U . By Assumption (i)
and because G is quasi-Markovian, there is no connection
X–U–Y in that path. Similarly, we cannot have X–U–U ′,
with U ′ being another exogenous node. Hence, any path
must have at least one endogenous node on which we can
condition to block it. Now the existence of an active path
between Y and U in G would imply an active path between
X and Y in M, hence it cannot exist.

Proof of Theorem 1. We will prove that each case follows
from probability laws and Pearl’s do-calculus [Pearl, 2009].
Thus consider Yt that satisfies either C1 or C2. According
to the variable selection rule, either case only occurs if there
are no descendants of X in Yt. We thus have

Pr(yt|do(x)) = Pr(yt,yt+1|do(x))
= Pr(yt+1|do(x)) Pr(yt|do(x),yt+1).

Rule 3 of do-calculus states that:

Pr(yt|do(x),yt+1) = Pr(yt|yt+1),

whenever Yt and X are d-separated by Yt+1 in GX. Because
Yt does not contain descendants of X, any path from Yt to
X in GX goes through some collider which has no descen-
dants in Yt+1. Now, if Yt ∈ U, then Yt is also d-separated
from Yt+1 and Pr(yt|yt+1) = Pr(yt).

Now consider Yt that satisfies C3. Let Z′ = Pa(Yt) \
Yt; that is, unlike Zt, Z′ includes X if X ∈ Pa(Yt).
Similarly, let y′ be yt+1 possibly extended with x if

X ∈ Pa(Yt). Denote by π an assignment of the par-
ents of Pa(Yt) that is consistent with y′. Usual proba-
bilistic manipulation, and d-separation between a node
and its nondescendants nonparents given its parents, leads
to Pr(yt|do(x)) =

∑
z′ Pr(yt|π,do(x)) Pr(y′|do(x)).

Now, because Pr(X = x|yt+1,do(x)) = 1, we obtain
Pr(yt|do(x)) =

∑
zt+1

Pr(yt|π,do(x)) Pr(yt+1|do(x)).
Using the fact that a parent set defines a backdoor set, the
intervened conditional probability of a variable given its par-
ents is identified with its non-intervened probability, which
is just the corresponding mechanism. So,

Pr(yt|do(x)) =
∑
zt

[[fYt(zt,wt) = yt]] Pr(yt+1|do(x)).

At last, consider Yt that satisfies C4. Note that X and Yt

have no common parent (as they are assumed in distinct
c-components), and there can be no descendants of Yt in
Yt+1 (because we only add ancestors and we process vari-
ables in reverse topological order). Hence, we can apply
Lemma 1 to show that there is a subset Wt of the endoge-
nous ancestors of Yt such that St d-separates Yt and X
in GX , and such that St ∪ {X} d-separates Yt and Ut

in G. By probability laws, we have that Pr(yt|do(x)) =∑
zt
Pr(yt|yt+1,do(x)) Pr(yt+1|do(x)). It follows from

Rule 2 of the do-calculus that

Pr(yt|yt+1,do(x)) = Pr(yt|x,yt+1),

because Yt and X are d-separated by Yt+1 in the graph
obtained by removing edges leaving X . Now since St∪{X}
d-separates also Yt and Ut, we can ignore ut from the right
hand side above (if it exists), producing

Pr(yt|do(x)) =
∑
zt

P̂r(yt|x,vt) Pr(yt+1|do(x)),

and concluding the proof.

All the results in this section are still correct when we have
multiple interventions in the same c-component, as such a
case can essentially be reduced to a single-intervention case.

5 EXPLOITING COLUMN GENERATION

We now suppose that a single c-component is intervened
upon; that is, Pr(y|do(x)) is produced by a linear program
as described in the previous section. Denote by C∗ the inter-
vened c-component, by W∗ the union of the (endogenous)
variables in C∗ and their parents, and by U∗ the exogenous
variable connected to C∗. For simplicity, we assume all
endogenous variables are binary.

There are 2M constraints (6), where M := |W∗| (one con-
straint per configuration of W∗). Canonicalization may lead
to a large cardinality for U∗ (one value per possible mech-
anism), given by

∏
V ∈C∗ 22

|Pa(V)|
(Section 2). Depending

on the edges among variables in W∗, the cardinality of U∗

may be of order 22
M

. We assume here that |W∗| is relatively
small, say 4 or 5 variables. Even then, note that 22

M

is al-
ready larger than 4 billions for |W∗| = 5, hence we should
not expect that a direct formulation of the linear program is
practical.

We can write down the constraints (6) in matrix form as
Ap = q̂, where the vector p contains the optimizing vari-
ables pu = Pr(U∗ = u), indexed by values of U∗. And the
vector q̂ comes from the input empirical distribution. Matrix
A only contains zeros and ones; there are as many rows as
constraints, and as many columns as values of U∗.

However, only a square matrix is actually needed at any
given iteration of the revised simplex algorithm [Bertsimas
and Tsitsiklis, 1997]; that is, we can keep a 2M ×2M matrix
in memory, where each column is defined by a mechanism
(hence we only need to find 2M mechanisms). We can thus
resort to column generation to sequentially find the relevant
columns.

As a digression, note that Shridharan and Iyengar [2023a]
have shown that, in some particular cases, the number of
columns of A can be reduced to 2|C

∗|2|∪V ∈C∗Pa(V)\C∗|
. We

assume that those particular cases are treated, whenever they
apply and reduce costs, before our techniques are run.

5.1 COLUMN GENERATION

Column generation searches for a column at each iteration of
the revised simplex method, by searching u that minimizes
the reduced cost [Bertsimas and Tsitsiklis, 1997]:

γu − d · au, (8)

where γu is the uth coefficient of the objective function,
d is the current vector of dual costs, and au is the uth
column of matrix A. We have used subscripts u because
each coefficient of the objective function, and each column
of A, is fixed when we select a value u of the exogenous
variable U∗. Note that the vector d is usually available as
a call to the linear solver of choice, so we assume it is
available. In our context, there are as many dual costs as
there are constraints; as constraints in our problem can be
indexed by the configuration w of W∗, we write dw for
each entry of d. Likewise, the vector au has as many entries
as there are constraints; so we write au,w for the entry of
au corresponding to the configuration w of W∗.

Consider first the term,

d · au =
∑
w

dwau,w,

where the summation runs over the values w of W∗. Note
that u is not fixed at this point, as we are searching for it;
however, w, for each term in the summation, is fixed.

We start by writing an implicit expression for au. The strat-
egy is to write a generic value u of U∗ in binary notation as
a sequence of bits; in fact, as a sequence of blocks of bits,
one per mechanism fV . The procedure is as follows.

1. Take each mechanism fVi
in C∗, for i = 1, . . . , |C∗|.

(a) If fVi
is a function only of U , introduce a single

bit bi1 = fVi
(U). That is, the output of fVi

(U) is
simply the bit bi1 of U .

(b) If instead fVi
is a function of U and a set of ni

variables in {V1, . . . , Vi−1}, then: for each one of
the 2ni configurations of these variables, ordered
themselves as binary numbers, introduce a bit bij .
Note that this step introduces 2ni bits.

2. Write u = b10 · · · b12n1−1 · · · b
|C∗|
1 · · · b|C

∗|
2
n|C∗|−1

, with
ni = 0 when fVi

does not depend on endogenous
variables, for a generic value of U∗.

Example 4. Consider the quasi-Markovian model in Figure
2 (right), and focus on the c-component C∗ associated with
exogenous variable U∗ = U1. Order the variables in W∗,
W , X and Z, using lexicographic order (V1 is W , V2 is
X , V3 is Z). Now examine mechanisms associated with
variables in C∗. Mechanism fX depends only on U1, hence
we write: fX(u) = b20. Mechanism fW depends on X and
Z (in this order) besides U1, so we must code the four
configurations of X,Z, ordered using binary notation:

fW (0, 0, u) = b10, fW (0, 1, u) = b11,
fW (1, 0, u) = b12, fW (1, 1, u) = b13.

(9)

Thus a generic value u of U1 is written as b10b
1
1b

1
2b

1
3b

2
0. Con-

sequently, there are 25 = 32 values of U , agreeing with∏
V ∈C∗ 22

|Pa(V)|
= 22

0 × 22
2

. □

We use these bits to build a “symbolic” version of each au,w,
so as to leave au as a function of the sought for value u:

1. For each variable Vi in C∗, take mechanism fVi
and:

(a) get the bit bij that corresponds to the value of fVi

evaluated at (u,w);
(b) if vi = 1, then insert bij into a list L+;
(c) if vi = 0, then insert (1− bij) into a list L−.

2. Return au,w =
∏

b+∈L+ b+
∏

b−∈L−(1− b−).

Note that each b+ and b− is restricted to be integer in {0, 1}.

We must now eliminate the products of bits; we do so re-
sorting to linear constraints. More precisely, we replace the
product in the last step of the previous algorithm by the
following set of |C∗|+ 1 linear constraints:

0 ≤ au,w ≤ b+, for each b+ ∈ L+,

0 ≤ au,w ≤ (1− b−), for each b− ∈ L−,

1− |C∗|+
∑

b+∈L+

b+ +
∑

b−∈L−

(1− b−) ≤ au,w ≤ 1.

Example 5. Consider again Figure 2 (right), where each
u is written as bits b10b

1
1b

1
2b

1
3b

2
0. A generic column au has

an entry per configuration w = (wxz) of W∗, as follows:
if w = b12x+z , and x = b20, then au,w = 1; otherwise,
au,w = 0. Abusing notation (equating “true” and 1, “false”
and 0), we write:

au,w = (b12x+z ↔ w) ∧ (b20 ↔ x).

For binary variable V and any bit b, (v ↔ b) is just b when
v = 1, and is just (1−b) when v = 0. Moreover, with binary
variables we can reproduce conjunction using product. For
instance if wxz = 000, we have au,000 = (1− b10)(1− b20).
That is, each element of the column au,w is a product of
bits (or negated bits) of u. Additional details can be found
in the Supplementary Material (Section 7). □

To actually process the reduced cost (Expression (8)) within
column generation, we still need to write γu, the coefficient
of Pr(U∗ = u) in the objective function, as a function of
(the bits of) u. Note that γu = Pr(y|do(X = x), U∗ = u).
As described in Section 4, our proposed algorithm generates
γu sequentially; in the end, γu is a summation with as many
terms as there are configurations of W∗\{X}. Moreover,
each term is a product of |C∗| − 1 bits (or negated bits)
in the binary notation for U∗ (the same binary encoding
discussed previously), as all mechanisms in C∗ contribute,
except the mechanism of the intervened variable.

We can thus use the same techniques discussed previously
to code au to build γu as a function of the bits of U∗. An
example should clarify the idea.

Example 6. Consider again the quasi-Markovian model in
Figure 2 (right). By running the algorithm in the previous
section, we obtain: Pr(y|do(x)) =

∑
u γu Pr(u), where

γu =
∑

w,z P̂r(y|w, x, z)[[fW (x, z, u) = w]]P̂r(z|x).

Recall that [[fW (x, z, u) = z]] is given by Expression (9). If
we want Pr(Y = y|do(X = 1)); then γu is equal to:

P̂r(y|W =0, X=1, Z=0)P̂r(Z=0|X=1)(1− b12)+

P̂r(y|W =0, X=1, Z=1)P̂r(Z=1|X=1)(1− b13)+

P̂r(y|W =1, X=1, Z=0)P̂r(Z=0|X=1)b12+

P̂r(y|W =1, X=1, Z=1)P̂r(Z=1|X=1)b13,

a function of the bits of U1. In a more complex example
we might have to handle products of bits in the objective
function, by adding linear integer constraints as before. □

By writing γu and au as depending on bits of U∗, we can
find a value u that minimizes Expression (8). By iterat-
ing this process as usual in any implementation of column
generation [Bertsimas and Tsitsiklis, 1997], we can reach
Pr(y|do(x)) as desired.

U1

U2
Z1

YX
W1

. . .
WN

ZM

. . .

Figure 3: A parameterized expansion of the graph in Figure
2 (right). We have |C∗| = N +1 and |W∗| = N +M +1.

5.2 EXPERIMENTS

We have implemented the algorithm in the previous sec-
tion,2 relying on the Gurobi solver for master and auxiliary
programs.3 We report representative experiments here.

We start with the quasi-Markovian SCM depicted in Figure 2
(right). This SCM is based on a practical problem faced by
one of the authors; namely, the evaluation of causes in a
low-latency service pipeline. Binary treatment X signals
activation of a newly deployed AI system. High processing
requests are indicated by Z (whether or not average load ex-
ceeds, say, 80%); Z mediates the effect of X on tail latency
W , and the latter may in turn trigger an incident indicated
by Y . We also allow for a direct path from X to W , caused
by database calls issued by the AI model. There are latent
pressures on the pipeline: U1 indicates heavy traffic induced
by marketing campaigns, and U2 refers to the degradation
of an external API that affects both Z and Y .

We also consider a parameterized version of this SCM,
where there are N variables Wi in the direct path between
X and Y , all of them in the c-component connected with
U1, and M observed confounders Zj , children of U2 and
parents of all Wi. The template is depicted in Figure 3. For
N = M = 1 we obtain the graph in Figure 2 (right). No
pair (M,N) can be handled by techniques by Sachs et al.
[2023]. Additional details can be found in the Supplemen-
tary Material (Section 8).

We wish to compute bounds on Pr(y|do(X = x)). There
are on the order of 2N2M optimization variables in the cor-
responding linear program. To run column generation, we
build auxiliary linear integer programs that produce values
of U1 coded as b10...b

1
2M+1−1...b

N
2M+1−1b

N+1
0 , where each

block of bits bi0...b
i
2M+1−1 corresponds to a variable Wi and

bit bN+1
0 corresponds to X .

Table 1 shows the comparison between the execution times
with our column generation scheme (CG) and with just the
direct linear program (LP) conveyed by Expression (7). The
latter approach cannot handle several cases; as can be seen
in the table, the running time of LP grows dramatically and

2It will be made publicly available if the paper is accepted.
3Gurobi version 12.0.2 (Linux): www.gurobi.com.

M N CG(s) LP(s)
1 1 0.749 0.661
1 2 0.271 1.55
1 3 1.81 106
1 4 16.0 411
1 5 1050 7174
2 1 0.216 4.65

M N CG(s) LP(s)
2 2 0.867 2494
2 3 94.5 -
2 4 4360 -
3 1 0.207 4207
3 2 6.64 -
3 3 3138 -

Table 1: Runs of Column Generation (CG) and direct Lin-
ear Programming (LP), in seconds, for several pairs M,N .
Entries marked “-” mean that the LP solver did not finish
within 3 hours of execution.

is, except for small problems, much larger than the running
time of CG (all tests run in an AMD 32-cores machine). A
particularly striking case is M = 3, N = 1, where CG is
20.000 times faster than LP.

5.3 BONUS: SOLUTION BY SINGLE PROGRAM

We have explored, in the previous section, an encoding for
a single coefficient γu and a single column au. However,
we know that to optimize Pr(y|do(x)) we must only find
M such pairs coefficient/column — if we simultaneously
find the M right columns (instead of one), we can obtain
the desired probability bounds.

This leads to the following strategy:
1) Build M copies of the bits described in the previous sec-
tion: for each bit bij , we have M bits bi,kj .
2) Then use, for each k ∈ {1, . . . ,M}, the bits bi,kj to build
constraints for a column auk

. So, we have M columns that
depend on the bits.
3) Similarly, use, for each k ∈ {1, . . . ,M}, the bits bi,kj
to build a coefficient γuk

. So, we have M coefficients that
depend on the bits.
4) Write down a single objective function as a sum∑

k γuk
Pr(uk) subject to Ap = q̂ where A is now the

square matrix with the M columns just built, p is a vector
with the optimizing values Pr(uk), and q̂ is defined as be-
fore. These expressions contains products of the form mp,
where m ∈ {0, 1} and p is a real (both optimizing variables).
Replace each such product by a fresh variable αm,p subject
to 0 ≤ αm,p ≤ m and p+m− 1 ≤ αm,p ≤ p.
The minimum/maximum for the latter linear integer pro-
gram is exactly the lower/upper bound we desire.

This strategy has been employed in probabilistic logic [Coz-
man and Fargoni di Ianni, 2015]. The advantage of a non-
iterative strategy is simplicity of implementation. Past expe-
rience suggests that column generation tends to be faster, an
issue to be verified empirically in our present context.

6 CONCLUSION

In this paper we have investigated the computation of prob-
ability bounds for quasi-Markovian SCMs subject to in-
terventions. We described a shorter proof for Shridharan
and Iyengar [2023b]’s key reduction to multilinear program-
ming. We then proposed a new algorithm that exploits the
presence of input probabilities when building linear pro-
grams in the presence of a single intervention. We presented
a column generation scheme to solve such linear programs,
and described an approach that computes lower or upper
bounds using a single linear integer program. Our exper-
iments showed that column generation offers significant
improvements over direct linear programming.

Future work should extend our results to multiple inter-
ventions. It is also important to characterize the complex-
ity of our algorithm, perhaps by connecting it with graph-
theoretical quantities, and to explore tree decompositions
or similar data structures to accelerate the construction of
linear programs. Another promising avenue is to combine
column generation with special cases that already reduce
linear programs; for example, the cases discussed by Shrid-
haran and Iyengar [2023a].

Looking forward, it will be valuable to combine binary (and
categorical) variables with continuous ones, so as to expand
practical application. That extension will likely require dif-
ferent techniques to handle continuous variables, even if
continuous variables are restricted to say Gaussian distribu-
tions.

ACKNOWLEDGEMENTS

We thank the Center for Artificial Intelligence at Universi-
dade de São Paulo (C4AI-USP), with support by the São
Paulo Research Foundation (FAPESP grant 2019/07665-4)
and by the IBM Corporation. We thank the Instituto de Ciên-
cia e Tecnologia Itaú (ICTi), for providing key funding for
this work through the Centro de Ciência de Dados (C2D)
at Universidade de São Paulo. D.D.M. was partially sup-
ported by CNPq grant 305136/2022-4 and FAPESP grant
2022/02937-9. F.G.C. was partially supported by CNPq
grants 312180/2018-7 and 305753/2022-3. The authors also
thank support by CAPES - Finance Code 001.

References

A. Balke and J. Pearl. Counterfactual probabilities: Compu-
tational methods, bounds and applications. In Proceed-
ings of the Tenth International Conference on Uncertainty
in Artificial Intelligence, pages 46–54, 1994.

A. Balke and J. Pearl. Bounds on treatment effects from
studies with imperfect compliance. Journal of the Ameri-
can Statistical Association, 92:1171–1176, 1997.

Dimitris Bertsimas and John N. Tsitsiklis. Introduction to
Linear Optimization. Athena Scientific, 1997.

Fabio G. Cozman. Credal networks. Artificial Intelligence,
120(2):199–233, 2000.

Fabio G. Cozman and Lucas Fargoni di Ianni. Probabilis-
tic satisfiability and coherence checking through integer
programming. International Journal Approximate Rea-
soning, 58(C):57–70, 2015. ISSN 0888-613X.

Guilherme Duarte, Noam Finkelstein, Dean Knox, Jonathan
Mummolo, and Ilya Shpitser. An automated approach
to causal inference in discrete settings. Journal of the
American Statistical Association, 119(547):1778–1793,
2024.

David Galles and Judea Pearl. An axiomatic characterization
of causal counterfactuals. Foundations of Science, 3(1):
151–182, 1998.

Joseph Y. Halpern. Axiomatizing causal reasoning. Journal
of Artificial Intelligence Research, 12:317–337, 2000.

Daphner Koller and Nir Friedman. Probabilistic Graphical
Models: Principles and Techniques. MIT Press, 2009.

Judea Pearl. Causality. Cambridge University Press, 2009.

Michael C. Sachs, Gustav Jonzon, Arvid Sjölander, and
Erin E. Gabriel. A general method for deriving tight sym-
bolic bounds on causal effects. Journal of Computational
and Graphical Statistics, 32(2):567–576, 2023.

Madhumitha Shridharan and Garud Iyengar. Scalable com-
putation of causal bounds. Journal of Machine Learning
Research, 24(237):1–35, 2023a.

Madhumitha Shridharan and Garud Iyengar. Causal bounds
in quasi-Markovian graphs. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, Proceedings of the
40th International Conference on Machine Learning, vol-
ume 202 of Proceedings of Machine Learning Research,
pages 31675–31692. PMLR, 2023b.

J. Tian. Studies in Causal Reasoning and Learning. PhD
thesis, UCLA, 2002.

J. Tian and J. Pearl. Probabilities of causation: Bounds
and identification. Annals of Mathematics and Artificial
Intelligence, 28:287–313, 2000.

M. Zaffalon, A. Antonucci, R. Cabañas, D. Huber, and
D. Azzimonti. Efficient computation of counterfactual
bounds. International Journal of Approximate Reasoning,
pages 1–24, 2024.

Marco Zaffalon, Alessandro Antonucci, and Rafael Cabañas.
Structural causal models are (solvable by) credal net-
works. In International Conference on Probabilistic
Graphical Models, pages 581–592. PMLR, 2020.

Junzhe Zhang, Jin Tian, and Elias Bareinboim. Partial coun-
terfactual identification from observational and experi-
mental data. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
editors, Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Ma-
chine Learning Research, pages 26548–26558. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/zhang22ab.html.

https://proceedings.mlr.press/v162/zhang22ab.html
https://proceedings.mlr.press/v162/zhang22ab.html

Multilinear and Linear Programs for Partially Identifiable Queries in
quasi-Markovian Structural Causal Models

(Supplementary Material)

João P. Arroyo1 João G. Rodrigues1 Daniel Lawand1 Denis D. Mauá1 Junkyu Lee2 Radu Marinescu2

Alex Gray3 Eduardo R. Laurentino4 Fabio G. Cozman1

11 Universidade de São Paulo, São Paulo, Brazil
2IBM Research – J. L.: Yorktown Heights, USA; R. M.: Ireland

3Centaur Institute, USA
4Instituto de Ciência e Tecnologia Itaú, São Paulo, Brazil

7 ADDITIONAL DETAILS ABOUT EXAMPLE 5

Here we offer details about Example 5. We start by repeating the relevant graph (left) and presenting the corresponding
intervened semi-marginal graph for do(X = x) (right):

U1 U2

Z YX W

U1

X Z W Y

We take all conventions described in Example 4. That is, variables in W∗ are ordered so that V1 is W , V2 is X , V3 is Z;
values of U1 are written in binary notation as b10b

1
1b

1
2b

1
3b

2
0; and we code mechanisms fW (X,Z,U1) and fX(U1) as follows:

fW (0, 0, u) = b10, fW (0, 1, u) = b11, fW (1, 0, u) = b12, fW (1, 1, u) = b13, fX(u) = b20.

As noted in Example 5, a generic column au has a entry per configuration w = (wxz) of W∗,

au,w = (b12x+z ↔ w) ∧ (b20 ↔ x).

The following table explicitly shows the entries of au:

w = (wxz) au, for u = b10b
1
1b

1
2b

1
3b

2
0

000 (b10 ↔ 0) ∧ (b20 ↔ 0)
001 (b11 ↔ 0) ∧ (b20 ↔ 0)
010 (b12 ↔ 0) ∧ (b20 ↔ 1)
011 (b13 ↔ 0) ∧ (b20 ↔ 1)
100 (b10 ↔ 1) ∧ (b20 ↔ 0)
101 (b11 ↔ 1) ∧ (b20 ↔ 0)
110 (b12 ↔ 1) ∧ (b20 ↔ 1)
111 (b13 ↔ 1) ∧ (b20 ↔ 1)

For binary variable V and any bit b, (v ↔ b) is just b when v = 1, and is just (1− b) when v = 0. Moreover, with binary
variables we can reproduce conjunction using product. For instance if wxz = 000, we have au,000 = (1− b10)(1− b20). That
is, each element of the column au,w is a product of bits (or negated bits) of u. Hence we have:

Accepted for the 1st Workshop on Causal Abstractions and Representations (CAR) at UAI 2025 (CAR 2025).

w = (wxz) au, for u = b10b
1
1b

1
2b

1
3b

2
0

000 (1− b10)(1− b20)
001 (1− b11)(1− b20)
010 (1− b12)b

2
0

011 (1− b13)b
2
0

100 b10(1− b20)
101 b11(1− b20)
110 b12b

2
0

111 b13b
2
0

Note that all bits bij are integer variables in {0, 1}. Then each product of bits can be turned into linear integer constraints;
here are a few instances:

• au,000 (that is, wxz = 000):

0 ≤ au,000 ≤ (1− b10), 0 ≤ au,000 ≤ (1− b20), 1− b10 − b20 ≤ au,000 ≤ 1.

• au,011 (that is, wxz = 011):

0 ≤ au,011 ≤ (1− b13), 0 ≤ au,011 ≤ b20, b20 − b13 ≤ au,011 ≤ 1.

• au,111 (that is, wxz = 111):

0 ≤ au,111 ≤ b13, 0 ≤ au,111 ≤ b20, b13 + b20 − 1 ≤ au,111 ≤ 1.

Hence the term d · au in the reduced cost (Expression (8)) is a summation with 8 terms, one per configuration of (wxz),
subject to 24 linear constraints and the fact that all bij ∈ {0, 1}.

As described in Example 6, we can use the same sort of encoding via bits for the objective function; in this particular
example the objective function is itself a linear function of bits. A more complex example may exhibit products of bits (or
negated) bits in the objective function.

To illustrate the latter possibility, consider the more complex graph in Figure 4 (left). We focus on the expression for
the objective function, where the goal is to bound Pr(y|do(X = x)). Hence we have C∗ = {T,W,X} and W∗ =
{T,W,X,Z}. We adopt this lexicographic order of variables. We now write a value u of U1 as a sequence of bits
b10b

1
1b

2
0b

2
1b

2
2b

2
3b

3
0, where the bits are associated with mechanisms fT (X,U1), fW (X,Z,U1) and fX(U1) are as follows:

fT (0, u) = b10, fT (1, u) = b11, fW (0, 0, u) = b20, fW (0, 1, u) = b21, fW (1, 0, u) = b22, fW (1, 1, u) = b23, fX(u) = b30.

The algorithm in Section 4 produces

Pr(Y = y|do(X = 1)) =
∑
u

γu Pr(U1 = u),

with (introducing a few auxiliary variables γu,·):

γu = P̂r(y|W = 0, T = 0)γu,1 + P̂r(y|W = 0, T = 1)γu,2 +

P̂r(y|W = 1, T = 0)γu,3 + P̂r(y|W = 1, T = 1)γu,4,

γu,1 = P̂r(Z = 0|X = 1)(1− b11)(1− b22) + P̂r(Z = 1|X = 1)(1− b11)(1− b23),

γu,2 = P̂r(Z = 0|X = 1)b11(1− b22) + P̂r(Z = 1|X = 1)b11(1− b23),

γu,3 = P̂r(Z = 0|X = 1)(1− b11)b
2
2 + P̂r(Z = 1|X = 1)(1− b11)b

2
3,

γu,4 = P̂r(Z = 0|X = 1)b11b
2
2 + P̂r(Z = 1|X = 1)b11b

2
3.

We can then collect all these expressions into a single one (as done in previous examples), or feed them separately to the
appropriate linear solver. In any case, the key point here is that we have to deal with terms such as b′b′′ or b′(1 − b′′) or
(1− b′)(1− b′′), where b′ and b′′ are bits that appear in the program as integer variables in [0, 1]. There are three cases:

U3 U2U1

S Z X W Y

T U1

S Z X W Y

T

Figure 4: Left: a quasi-Markovian model. Right: the intervened semi-marginal graph for do(X = x).

• To handle b′b′′, introduce a fresh optimization variable β and constraints

0 ≤ β ≤ b′, 0 ≤ β ≤ b′′, b′ + b′′ − 1 ≤ β ≤ 1.

• To handle b′(1− b′′), introduce a fresh optimization variable β and constraints

0 ≤ β ≤ b′, 0 ≤ β ≤ 1− b′′, b′ − b′′ ≤ β ≤ 1.

• To handle (1− b′)(1− b′′), introduce a fresh optimization variable β and constraints

0 ≤ β ≤ 1− b′, 0 ≤ β ≤ 1− b′′, 1− b′ − b′′ ≤ β ≤ 1.

8 ADDITIONAL DETAILS ABOUT EXPERIMENTS

We start by providing more details on the characteristics of the SCMs depicted in Figure 3. We wish to compute bounds on
Pr(y|do(X = x)). Note that there are on the order of 2N2M optimization variables in the corresponding linear program
containing values of Pr(U1).

Write U1 as b10...b
1
2M+1−1...b

N
2M+1−1b

N+1
0 , where each block bi0...b

i
2M+1−1 corresponds to a variable Wi and bN+1

0 corre-
sponds to X . The subindex corresponds to the binary number associated with the vector (Wi−1, Z1, ..., ZM), where ZM is
the least significant bit.

8.1 MASTER LINEAR PROGRAM

8.1.1 Objective function

Using the algorithm in Section 4, we get the objective function:

P (y|do(X = x)) =
∑

Wi,Zj ,U

P (y|WN)P (ZM , ..., Z1|x)
N∏
i=1

P (Wi|Wi−1, ZM , ..., Z1, U)P (U). (10)

8.1.2 Constraints

We have: ∑
u7→(W1,W2,...,WN ,X,Z1,...,ZM)

P (u) = P (WN ,WN−1, ...,W1|X,Z1, ..., ZM)P (x). (11)

8.2 AUXILIARY LINEAR INTEGER PROGRAM

8.2.1 The Costs

Note that in Equation 10, each term of the form P (Wi|Wi−1, Z1, ..., ZM , U) can be expressed as a function of bits from U1,
more specifically:

P (Wi|Wi−1, ZM , ..., Z1, U) = bi∗ZM+2ZM−1+...2M−1Z1+2MWi−1
. (12)

Let us call ZM + 2ZM−1 + ...2M−1Z1 + 2MWi−1 = wi, in which wi is the binary number associated with the vector
(Wi−1, Z1, ..., ZM), i.e. the realization for parents of Wi, i ∈ {1, 2, ...N} (adopt W0 = X). Furthermore, define:

bi∗wi
=

{
biwi

,Wi = 1,

1− biwi
,Wi = 0.

(13)

Therefore the cost can be written as:

γu =
∑

Zj ,Wi

P (y|ZN)P (ZM , ..., Z1|x)
∏
i

bi∗wi
. (14)

Now we define
∏

i b
i∗
wi

= βx,w, where w is the binary number associated with (W1, ...,WN , X, Z1, ..., ZM), i. e. the
c-component and it’s tail realization (note that the subindex x is redundant, however we leave it for emphasis). The reason
for this will be evident in the next section.

8.2.2 The Columns

Each column au can be indexed by w for a specific realization and it’s value can be expressed as: au,w = bN+1∗
0 βx,w, which

gives:

au,w =

{
bN+1
0 β1,w, x = 1,

(1− bN+1
0)β0,w, x = 0.

(15)

8.2.3 The Linear Program

We write a linear program in optimizing variables β0,w, β1,w, au,w , w ∈ {0, 1, ..., 2M+N+1 − 1}, a set with O(2M+N)
optimizing variables. Restrictions:

• βx,w:
0 ≤ βx,w ≤ bi∗wi

,∀i ∈ {1, 2..., N},

1−N +
∑
i

bi∗wi
≤ βx,w ≤ 1. (16)

• au,w:
0 ≤ au,w ≤ bN+1∗

0 ,

0 ≤ au,w ≤ βx,w,

− 1 + bN+1∗
0 + βx,w+ ≤ au,w ≤ 1.

(17)

Note that there are O(2M+N) constraints.

The objective function is: ∑
w,X=1

P (y|WN)P (ZM , ..., Z1|x)x0β1,w+∑
w,X=0

P (y|WN)P (ZM , ..., Z1|x)(1− x0)β0,w−∑
w

dwau,w.

(18)

This ensures that, for the βx,w variables, only βx0,w has non-zero coefficient in the objective function.

8.2.4 Initialization

To obtain the first dual cost vector, we need an initial value base so we can start the column generation procedure. In our
implementation we used the bigM method Bertsimas and Tsitsiklis [1997], with M = 104, with an initial basis I2M+N+1+1,
i. e., the identity matrix in the size of the restrictions.

	Introduction
	Background
	Computing Probability Bounds
	Exploiting Input Distributions
	Exploiting Column Generation
	Column Generation
	Experiments
	Bonus: Solution by single program

	Conclusion
	Additional Details about Example 5
	Additional Details about Experiments
	Master Linear Program
	Objective function
	Constraints

	Auxiliary Linear Integer Program
	The Costs
	The Columns
	The Linear Program
	Initialization

