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Abstract

Training a Named Entity Recognition (NER)
model often involves fixing a taxonomy of en-
tity types. However, requirements evolve and
we might need the NER model to recognize
additional entity types. A simple approach is
to re-annotate entire dataset with both existing
and additional entity types and then train the
model on the re-annotated dataset. However,
this is an extremely laborious task. To remedy
this, we propose a novel approach called Partial
Label Model (PLM) that uses only partially an-
notated datasets. We experiment with 6 diverse
datasets and show that PLMconsistently per-
forms better than most other approaches (0.5–
2.5 F1), including in novel settings for taxon-
omy expansion. The gap between PLM and
other approaches is especially large in settings
where there is limited data available for the ad-
ditional entity types (as much as 11 F1), thus
suggesting a more cost effective approach to
taxonomy expansion.

1 Introduction

Training a Named Entity Recognition (NER) model
typically involves presupposing a fixed taxonomy,
that is, the entity types that are being recognized
are known and fixed. However, NER models often
need to extract new entity types of interest appear-
ing in new text, thus requiring an expansion of
the taxonomy under consideration. Consider an
example (Figure 1), where an NER model was ini-
tially trained to recognize PERSON and LOCATION

types using data annotated only for these two types.
However, it later needs to identify ORGANIZATION

entities in addition to the two initial entity types.
There are several simple ways to solve this prob-

lem, yet they are cumbersome in different ways.
One possible solution is to re-annotate all data
that was only annotated for the initial entity types
(PERSON, LOCATION) with the new entity types
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Figure 1: Taxonomy Expansion for NER: Given
Dataset DA annotated only with entity types EA and
DB annotated only with EB , the task is to train a model
that recognize entities from both EA and EB .

(ORGANIZATION), and then train a single model
to recognize all the entity types on this data. If
such re-annotation and re-training needs to happen
iteratively every time new entities are introduced,
then this is an expensive process, and re-annotation
requires knowledge of all entity types both old and
new. A secondary issue with this approach is that
the original training data was chosen only to con-
tain examples of the initial entity types. Thus, it
may not even contain enough examples of the new
entity types and it may be simpler to obtain data
that is rich in the new entities types for annota-
tion (ORGANIZATION). Given these two disjoint
datasets with two separate sets of annotations, we
can train two different models to recognize the two
sets of entity types — yet this requires heuristics
to combine the predictions of the two models, es-
pecially if the old and new entity types have some
shared semantics (e.g. some of the new entity types
are subtypes of the existing entity types).

This problem of Taxonomy Expansion for NER



(henceforth, TE-NER) has been studied in several
different settings in prior work. However, most
prior work (§2) assumes that the old and the new
entity types are completely disjoint and mutually
exclusive. In contrast, we define a general version
of the TE-NER problem (§3) where the original
training data can be used, and old and new en-
tity types can be related in different ways. Our
general setup allows for many practical scenarios
encountered during taxonomy expansion such as
new entity types being subtypes of existing entity
types, or partially overlapping in definition.

We then propose a novel solution to TE-NER mo-
tivated by the fact that the available training data
are only partially annotated (§4.2). As shown in
Figure 1, BBC has not been annotated as ORGANI-
ZATION in the initial dataset DA, since ORGANIZA-
TION was not in the label taxonomy of A. Similarly,
Robert is not annotated as PERSON in the new
dataset DB . Given such partial annotations, we
treat the true, unobserved label as a latent variable
and derive our approach called Partial Label Model
(PLM). Intuitively, PLM uses a model trained on
DB to annotate BBC with a probability distribu-
tion over entity types B. Similarly, it uses a model
trained on DA to obtain predictions for Robert.
Finally, the desired model over all entity types is
trained using both the observed annotation and the
soft labels obtained via the predictions of the inter-
mediate models. Minimizing the KL divergence
loss (as used by Monaikul et al. (2021) and Xia
et al. (2022)) corresponds to maximizing a lower
bound on the likelihood of our formulation, while
the proposed PLM loss corresponds to directly
maximizing the likelihood.

Experiments with six English datasets show that
PLM outperforms all baselines except one (cross
annotation) by 0.5–2.5 F1 (§6). However, this
competitive baseline, that involves simply cross-
annotating the datasets using weak labels from a
model trained on the other dataset, is less accu-
rate in few-shot settings compared to PLM. When
only 200 examples are provided for each new entity
type, PLM is 11 F1 better than cross-annotation.
We further test the robustness of these approaches
across several data distributions and find that they
perform robustly across the board (§7).

2 Related Work

While this work is closely related to knowledge
distillation (Hinton et al., 2015; Shmelkov et al.,

2017) and continual learning (CL) based methods
for NER (Xia et al., 2022; Monaikul et al., 2021;
Chen and Moschitti, 2019; De Lange et al., 2019),
our setup differs in two aspects from previous tasks.

First, we assume access to both initial (DA) and
new datasets (DB), while typical CL based meth-
ods assume access only to the new data and to a
model trained on the initial data. Xia et al. (2022)
assumes access to a generative model trained on
the initial dataset and trains the final model in a
two-stage process. In contrast, we systematically
derive PLM using a latent variable formulation and
train our final model in a single stage.

Second, we do not constrain the new entity types
to be disjoint from old entity types. For example, if
PERSON is among the initial entity types, the new
entity types can include ACTOR, which is a sub-
type of PERSON; our desired final model should
predict a mention as (ACTOR, PERSON) if the men-
tion is an actor, and just PERSON if the mention is a
person but not an actor. This setup is related to prior
work on hierarchical classification (Silla and Fre-
itas, 2011; Arabie et al., 1996; Meng et al., 2019)
or fine-grained NER (Ling and Weld, 2012; Choi
et al., 2018; Mai et al., 2018; Ringland et al., 2019).
However, the objective of such work is to use the
hierarchical structure to train a better fine-grained
NER model; they do not deal with taxonomy ex-
pansion. Abhishek et al. (2019) propose a unified
hierarchical label set (UHLS) and use Partial Hier-
archical Label Loss to train a unified model from
multiple datasets with different (potentially over-
lapping) label sets. However, our work differs in
two key aspects; first, our approach works even if
two labels are overlapping but neither one is a sub-
type or supertype of other (i.e. even if the relation
is non hierarchical) and second, our probabilistic
approach is theoretically grounded (PLM).

Another class of related approaches is based
on positive-unlabelled (PU) learning (Bekker and
Davis, 2020; Grave, 2014; Peng et al., 2019) or
learning from partial/noisy training data (Mayhew
et al., 2019) — if we combine the initial (DA) and
new datasets (DB), then the combined training data
can be viewed as a positive-unlabelled or noisy
dataset. However, unlike PU learning, the annota-
tions in our setup are not randomly missing; instead,
annotations of entity types A and B are missing in
datasets DB and DA respectively.



3 Problem Definition and Notation

Given datasets DA and DB annotated with en-
tity types EA = {e1A, e2A, ...emA } and EB =
{e1B, e2B, ...enB} respectively, the goal of TE-NER
is to learn a model to recognize entities from both
EA and EB . For our initial definition and solution,
we assume that all entity types are distinct and mu-
tually exclusive, i.e., a token does not belong to
more than one entity type. While this is in line with
prior work, it is also a shortcoming as entity types
and definitions can often overlap in real world set-
tings as well as academic datasets. For instance, in
the FewNERD dataset (Ding et al., 2021), an entity
can be both a PERSON as well as a POLITICIAN.
To handle such cases, we define a more general
version of the problem and solutions in §5.

Prior work on TE-NER is based on continual
learning where the goal is to adapt the NER model
continuously to new entity types (Monaikul et al.,
2021; Xia et al., 2022). Such work assumes access
to only the models trained on the original datasets
(ModelA trained on DA, ModelB trained on DB)
and not the datasets themselves. However, in many
scenarios, both the original dataset and the new
dataset are available but are annotated using differ-
ent sets of entity types due to an evolving taxonomy
or come from different sources. Hence, our defini-
tion assumes full access to both DA and DB . Also,
unlike few-shot and transfer-learning setups (Phang
et al., 2018; Ma et al., 2022), our goal is to train a
model (Modelfinal) that does well on both EA and
EB (irrespective of the size of DB; however, we
return to the question of size in §6.3.2).

Why is Taxonomy Expansion challenging? The
central challenge with TE-NER is partial annota-
tions — if a mention in DA belongs to an entity in
EB , it will not be annotated (e.g. in Fig 1, BBC is
not annotated as ORGANIZATION). Similarly, DB

is also partially annotated. Such partial annotation
misleads model training, and prior work attempts
to mitigate this issue on a single dataset (Mayhew
et al., 2019; Jie et al., 2019). We focus on this
problem in the context of TE-NER.

4 Methods for TE-NER

We first discuss our methods for the scenario where
all entity types are disjoint; then, in §5.3, we dis-
cuss modifications for a more general definition of
TE-NER. We use the BIO scheme (Ramshaw and
Marcus, 1995) for this work. All the approaches be-

Dataset   
Entities 

𝒟AℰA

Dataset   
Entities 

𝒟BℰB

ModelA ModelB

Modelfinal

Reannotated Dataset A 
using Model B

Reannotated Dataset B 
using Model A

1 1 

2 2 

3 

Figure 2: PLM consists of three steps: 1⃝ Train
ModelA/ModelB to recognize entities in EA/EB using
dataset DA/DB 2⃝Use ModelA to annotate DB with dis-
tribution over entity types EA (repeat with ModelB and
DA 3⃝ Use these annotations with the PLM loss to train
the final model. Cross-annotation is similar except in 2⃝,
we annotate the dataset with the hard predictions of the
models instead of a distribution, and use a cross-entropy
loss in 3⃝. PLM-KL replaces the PLM loss in 3⃝ with
a KL-divergence term.

low are motivated by a simple observation: in both
DA and DB , the observed labels are not always the
true labels. Specifically, if a word is annotated as
O (used to indicate tokens that are not part of entity
mentions), we do not know its true label. Figure 2
provides an overview of all approaches.

4.1 Cross Annotation (X-Ann.)

Before discussing our solution, we suggest a naive
solution to TE-NER. As discussed before, the main
challenge with TE-NER is partial annotations. If
the annotations are correct and exhaustive, i.e., DA

was annotated for entity types EB (and DB for
EA), then we could simply combine these datasets
and train an NER model on the combined dataset.
Cross-annotation is motivated by this observation
— instead of expecting the data to be fully labeled,
it uses model outputs to provide the missing labels.

Under our setup, if a token in DA is annotated as
O, it can still belong to either one of the entities in
EB (e.g. BBC in Figure 1 can truly be O or it can be
an ORGANIZATION). Therefore, in DA, if a word is
annotated as O, we replace it with the prediction of
ModelB . Similarly, in DB , if a word is annotated as
O, we replace it with the prediction from ModelA.
We combine these re-annotated versions of DA and
DB to train the final model.

4.2 Partial Label Model (PLM)

Cross annotation uses the hard labels obtained
from the predictions of ModelA and ModelB to
re-annotate DA and DB . We present an alternate



approach that extends cross-annotation to use soft
labels (i.e., the entire output distribution).

As in cross annotation, we start with the obser-
vation that the observed label for a token is not
necessarily the true label, and conversely, the true
label is unobserved. Thus, we treat the the true
label as a latent variable. First, to simplify the
discussion, we assume that the distribution of this
latent variable is known and then solve for the opti-
mal parameters of the model. Later, we relax this
assumption and discuss how to approximate the
distribution of this latent variable.

Let us denote our desired final model by
Modelfinal, parameterized by θ as f(s|θ). The out-
put of f(·) is a probability distribution over the
entity labels Efinal = EA ∪ EB , for each token in
the input s and the output for ith token is denoted
by fi(·). We use a BERT-based sequence tagging
model for f(·) (§6.1).

First, let us calculate the likelihood for a sin-
gle example s ∈ DA ∪ DB consisting of n to-
kens, s = [w1, w2, . . . , wn], and its correspond-
ing observed labels y = [y1, y2, . . . , yn]. We
denote the corresponding (latent) true labels as
Z = [Z1, Z2, . . . , Zn] and predicted labels as
Y = [Y1, Y2, . . . , Yn] with Yi ∼ fi(s|θ) and
Zi ∼ gi(s). Here g() is an oracle function that
gives us the distribution of true labels. The likeli-
hood of the predictions matching the true underly-
ing label, P (Y = Z|θ), is then calculated as

P (Y = Z|θfinal) =
n∏

i=1

P (Yi = Zi).

Further, P (Yi = Zi) can be decomposed as

P (Yi = Zi) =
∑

e∈Efinal

fi(s|θ)[e]× gi(s)[e]

=
〈
fi(s|θ), gi(s)

〉
.

Finally, the negative log-likelihood yields the loss:

Loss(s|θ) =
n∑

i=1

− log
〈
fi(s|θ), gi(s)

〉
. (1)

Approximating g(·) Equation 1 assumes access
to an oracle function g(·) that gives us the distribu-
tion of the true labels. In practice, this is exactly the
information that we do not have access to. Thus,
we approximate g using the predictions of a model,
based on two key observations.

First, if a token wi ∈ s (for s ∈ DA) is anno-
tated as an entity e, we know that the annotated
label is the true label. In this case, gi(s)[e] = 1,
and gi(s)[e

′] = 0 ∀e′ ̸= e. Second, if wi is not
annotated as an entity (i.e., is assigned an O label),
then we know that it does not belong to any entity
in EA. Therefore gi(s)[e] = 0 ∀e ∈ EA. However,
wi could potentially be an entity ∈ EB . So, we just
need the probability distribution over EB ∪ {O},1

which we can directly estimate by using ModelB .2

Analogously, for s ∈ DB , we can use ModelB
to estimate the distribution over EA. With these
approximations, Equation 1 can be split into two
terms corresponding to the two cases above. For
the first case, the loss is simply a cross-entropy
loss against the one-hot vector obtained from gi(s).
This gives us the proposed loss function of PLM.

Loss(s|θ) =
∑

i:yi=O

CE
(
fi(s|θ), yi

)
+

∑
i:yi ̸=O

− log
〈
fi(s|θ), gi(s)

〉
. (2)

PLM-KL: The loss term in Equation 2 is similar
to the knowledge distillation loss, where the second
term is replaced by a KL-divergence term:

Loss(s|θ) =
∑

i:yi=O

CE
(
fi(s|θ), yi

)
+

∑
i:yi ̸=O

KL
(
gi(s) || fi(s|θ)

)
. (3)

This loss term has been used in prior work on con-
tinuous learning in NER (Monaikul et al., 2021)
and it simulates a student-teacher framework with
g as the teacher, and f as the student. We prove,
using a simple application of Jensen’s inequality,
that the loss in Equation 3 is an upper bound of the
loss in Equation 2 (Appendix B). In §6, we experi-
ment with both the exact loss function of PLM as
well as the upper-bound of PLM-KL.

5 Revisiting Taxonomy Expansion

5.1 Definition
In §3, following prior work, we assumed that all
the entity types are distinct and disjoint. We now

1More precisely, a token is not annotated with an entity
type (e.g. PERSON), but a combination of B/I tag and the type
(e.g. B-PERSON). We drop the B/I tags for simplicity, but the
approach works identically regardless of the tags.

2ModelB gives us the probability of not belonging to any
of the EB , but since we already know that the token does not
belong to EA, the probability of not belonging to EB is equal
to the probability of not belonging to EA and EB .
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Figure 3: For the non-disjoint case, the output space of
the combined entity types is not simply a union of the
two original entity types. 3a illustrates how the final
entity types look like given the original types and the
relations between them. 3b shows the allowed entity
types in the redefined output space for each token in the
dataset, given their original annotations.

extend our definition of the problem as well as
methods to a more general version which allows
for semantic overlap in the entity types. Specifi-
cally, we assume that along with DA,DB, EA, and
EB , we also know the relationship R, between the
entity types (E = EA ∪ EB), where R : E × E →
{DISJOINT, SUBTYPE, SUPERTYPE, OVERLAP-
PING}. The SUBTYPE/SUPERTYPE relations allow
for an entity in EB (e.g. Politician) to be a subtype
of an entity in EA (e.g. Person), and vice versa. The
OVERLAPPING relation allows for partial overlaps
in the definitions of types (e.g. if both EA and EB
have a LOCATION type, but only a subset of LOCA-
TIONS are common to both definitions).3 Figure 3a
illustrates these possible relationships.

Output: As in §3, our aim is to train a model to
recognize both EA and EB . However, now a men-
tion can get more than one entity label. Consider

3We ignore the trivial case when an entity in EA is exactly
identical to EB . Without loss of generality, we also assume
that entities within EA (EB) are disjoint; even if they are not,
we can always convert them to disjoint.

the SUBTYPE/SUPERTYPE example in Figure 3a,
where a mention can belong to both {PERSON,
ACTOR} or {PERSON, POLITICIAN}, or just PER-
SON (i.e. PERSON, but neither ACTOR nor POLITI-
CIAN). Given this, we cannot directly train an
NER model over EA ∪ EB . Instead in Efinal, we
define an entity type for each possible combina-
tion (illustrated in the grey box in Figure 3a), and
train a model over the redefined output labels.
For instance, we introduce three new entity types
in the final label set corresponding to the PER-
SON entity for the three cases discussed above—
PERSON:ACTOR, PERSON:POLITICIAN, and PER-
SON:O). Similarly, for the OVERLAPPING case, we
define three new types — LOCATION:A (entities
that are locations only according to DA), LOCA-
TION:B (entities that are locations only according
to DB), and LOCATION:A,B (entities that are loca-
tions according to both DA and DB).

5.2 Allowed Entity Types

Before discussing the modifications to the methods
for the non-disjoint case, we revisit the assumption
that drove the methods in the disjoint case — we
observed that if a token in DA is annotated as O,
it belongs to one of EB ∪ {O}, else it belongs to
the annotated entity type (§4.1). However, this
assumption does not hold in the non-disjoint setting.
In Figure 3b, James is annotated as PERSON in
DA, so it can belong to one of {PERSON:ACTOR,
PERSON:POLITICIAN, or PERSON:O}) in the final
output space. Thus, for each token in the datasets,
we define a set of allowed entity types that the token
can belong to. These allowed types are determined
by the observed annotation of that token and are a
combination of existing entity types or the newly-
introduced types as discussed above. Figure 3b
gives more examples of allowed entity types.

5.3 Modifications to Proposed Methods

Given this mapping of the problem to detecting
the entity types in a redefined output space, the
modification to the methods from §6.3.1 lies in 2⃝
from Figure 2, where instead of annotating a token
with predictions from a model, we simply constrain
this annotation by the allowed entity types for that
token. The rest of the steps proceed as before. We
defer further details to Appendix C.



Method Ontonotes FewNERD-Super FewNERD-Sub WNUT17 JNLPBA I2B2

Naive Join 76.3 (2.1) 68.4 (2.1) 54.2 (1.6) 27.9 (3.4) 54.8 (3.5) 76.5 (2.8)
CL 87.7 (0.2) 77.7 (0.1) 66.1 (0.2) 40.6 (1.3) 70.5 (0.5) 91.2 (0.3)
AML 87.4 (0.3) 77.9 (0.1) 65.6 (0.2) 38.4 (1.7) 70.6 (0.4) 91.6 (0.3)

X-Ann. 87.8 (0.2) 78.3 (0.1) 66.9 (0.1) 42.3 (1.2) 71.5 (0.5) 92.0 (0.3)
PLM-KL 88.2 (0.2) 78.4 (0.1) 67.0 (0.1) 43.5 (1.1) 71.4 (0.5) 92.5 (0.2)
PLM 88.1 (0.2) 78.4 (0.1) 67.2 (0.1) 43.3 (1.3) 71.4 (0.5) 92.3 (0.3)

Upper Bound 88.7 (0.2) 78.6 (0.1) 67.4 (0.1) 45.3 (0.8) 71.8 (0.4) 93.3 (0.1)

Table 1: Results for the disjoint setup (mean and std. dev. micro-F1 across 25 runs). PLM , PLM-KL, and cross
annotation are competitive across the board and close to the upper bound.

6 Experiments

6.1 Datasets, Setup, and Hyperparameters

We study TE-NER using datasets covering diverse
domains, entity types, and sizes—(1) Ontonotes
(Weischedel et al., 2013) (2) WNUT17 (Derczynski
et al., 2017) (3) JNLPBA (Kim et al., 2004) and
(4) I2B2 (Stubbs and Uzuner, 2015). Since these
datasets are fully annotated, we cannot use them
directly to study TE-NER. Instead we modify each
dataset to obtain partial annotations. For the non-
disjoint setup, we only use the FewNERD dataset.
We defer more details to Appendix A.

For all experiments, we finetune BERT-base as
our backbone models for all experiments with the
exact setup from Devlin et al. (2019). We re-
peat every experiment with 5 random splits of
DA and DB and 5 different seeds (for training)
for each split and report mean and standard de-
viation of micro-F1 scores averaged across all
5 × 5 runs. For each dataset, we use the vali-
dation data to choose the best learning rate from
{5e−6, 1e−5, 2e−5, 3e−5, 5e−5}.

6.2 Baselines and Upperbound

Naive Join: A naive solution to TE-NER is to
combine the two partially annotated datasets DA

and DB and train a model on this combined dataset
using a cross-entropy loss. We expect this approach
to perform poorly, but it highlights the severity of
issues caused by partial annotation.

Continual Learning (CL): This baseline uses
knowledge distillation similar to Monaikul et al.
(2021) and Xia et al. (2022). Briefly, we first train
ModelA as teacher, then we train the student model
(Modelfinal) on DB; if a token is annotated as e ∈
EB , we use the cross-entropy loss, else we calculate
KL divergence with respect to the teacher’s output.

Modified Continual Learning (CL++): Default
CL does not work when the entity types are not
disjoint. CL++ is a modified version of CL for
our non-disjoint setup to account for allowed entity
types.

Adjusted Multilabel (AML): The AML base-
line treats the NER problem as a multi-label classi-
fication (with sigmoid loss) problem for each token,
instead of multi-class as in a standard sequence tag-
ging approach. However, instead of all entities, the
loss for multi-label considers the loss for only the
allowed entity types.

Upperbound: Since DA and DB are derived
from fully annotated datasets D, where every ex-
ample is annotated for Efinal, we train our model
on the original, unmodified dataset D and use it as
a hypothetical upperbound. In real scenarios, we
do not have such fully annotated datasets.

6.3 Research Questions and Experiments
We focus on three key research questions:

1. Is PLM more accurate than other approaches
given sizeable training data (DB) for the new
entity types EB?

2. Is PLM more accurate than other approaches
given little training data (DB)?

3. Does PLM show robust performance when
validation data is not exhaustively annotated?

6.3.1 Accuracy of PLM given sizeable DB

We answer our first research question via experi-
ments that focus on three different scenarios for TE-
NER — DISJOINT (§3), SUBTYPES/SUPERTYPE,
and OVERLAPPING (§5.1).

Disjoint Entity types Table 1 shows the results
of all methods on the disjoint setup. First, Naive
Join performs significantly worse than all other
methods, with a drop of as much as 16 F1 in the
case of JNLPBA. This is an expected outcome,



Method PER. LOC. ORG. PROD. PER. LOC. ORG. PROD.

CL++ 73.4 (0.2) 76.2 (0.1) 75.6 (0.1) 77.0 (0.1) 74.7 (0.1) 75.6 (0.1) 75.1 (0.1) 76.8 (0.1)
AML 72.7 (0.2) 75.2 (0.1) 74.5 (0.1) 76.5 (0.1) 74.8 (0.1) 75.6 (0.1) 75.1 (0.1) 76.8 (0.1)

X-Ann. 74.1 (0.1) 76.9 (0.1) 76.3 (0.1) 77.7 (0.1) 75.5 (0.1) 76.4 (0.1) 75.9 (0.1) 77.6 (0.1)
PLM-KL 74.1 (0.1) 76.8 (0.1) 76.2 (0.1) 77.7 (0.1) 75.5 (0.1) 76.3 (0.1) 75.8 (0.1) 77.5 (0.1)
PLM 74.2 (0.1) 77.0 (0.1) 76.4 (0.1) 77.8 (0.1) 75.6 (0.2) 76.4 (0.1) 76.0 (0.1) 77.6 (0.1)
Upper Bound 74.6 (0.1) 77.1 (0.1) 76.6 (0.1) 78.0 (0.1) 76.1 (0.1) 76.9 (0.1) 76.6 (0.1) 77.9 (0.1)

Table 2: Results for the SUBTYPE/SUPERTYPE (left side), and OVERLAPPING (right side) setups (mean and std.
dev. micro-F1 across 25 runs). Each column indicates the entity type manipulated to create datasets (§6.1).

and it highlights the severity of problem caused
by partial annotation. Second, both CL and AML
are more accurate than the Naive Join approach
as they approach the upper bound. Next, despite
its simplicity, cross annotation offers a very strong
solution to this problem. For 4 datasets, cross an-
notation is within 1 F1 of the Upper Bound and CL
and AML are both behind cross annotation.

Finally, both PLM and PLM-KL reach scores
that are on par, or even slightly better than cross
annotation, indicating that they offer alternative
solutions to this problem. However, the differences
of these methods with cross annotation are very
small, and we take a closer look in future sections.

Non-disjont Entity Types: We now turn to
the non-disjoint setup (§5), using the FewNERD
dataset (§6.1). Table 2 shows the results of these ex-
periments, with the left-side showing the results for
the SUBTYPES/SUPERTYPES case, and the right-
side showing the results for the OVERLAPPING

case. In either case, each column indicates the
entity type manipulated to create datasets per Ap-
pendix A. We leave out the Naive Join approach
given its (expectedly) poor performance in the pre-
vious experiment.

The observations for this set of results are very
similar to the previous experiments and also con-
sistent across the SUBTYPES/SUPERTYPES and
OVERLAPPING — cross annotation again proves
to be a highly effective solution, both PLM and
PLM-KL are also on par with cross annotation,
and all three methods approach the Upper Bound.

6.3.2 Accuracy of PLM given small DB

A reasonable assumption in TE-NER is that the
dataset with the new entities (DB) will be much
smaller than the initial dataset (DA) since it is im-
practical to annotate as many examples for each
new entity type as exist for the old entity types. Our
second set of experiments aims to test how various
methods perform in scenarios where the number

of examples in DB is limited, while maintaining
the size of DA. We only focus on cross annotation
and PLM as these were most competitive in the
experiments in §6.3.1. Further, we focus only on
the Ontonotes and FewNERD datasets.

Table 3 indicates that in few-shot settings,
PLM consistently outperforms cross annotation
across the board. The gap between the two methods
is more severe as the number of examples reduce,
with PLM scoring as much as 10 F1 higher when
DB contains only 100 examples for each type on
Ontonotes, and 17 F1 higher on FewNERD with
300 examples per type. However, both approaches
tend to be very unstable in such low data regimes,
indicated by the high variance in results (more se-
vere in Ontonotes). Despite this, PLM exploits the
soft labels from the models to achieve better scores.

6.3.3 Robustness to partially annotated
validation data

Experiments so far have assumed access to a fully
annotated validation set. In practice, it is likely that
even validation sets are partially annotated (similar
to training sets). How do models behave with such
partially annotated validation sets? Specifically,
we assume that we have validation sets, Dval

A and
Dval

B corresponding to DA and DB respectively.
During the validation step, we evaluate the model
being trained (Modelfinal) on both Dval

A and Dval
B

separately, masking out any predictions from EB
on Dval

A and from EA on Dval
B . We use the aver-

age micro-F1 on these individual validation sets as
our stopping criterion. Again, we focus on cross
annotation and PLM on Ontonotes and FewNERD.

Table 4 shows that F1 scores with partial valida-
tion are similar to those of full validation. Thus, we
do not even need validation data labeled with en-
tities from both EA and EB , as partially annotated
validation sets are a reasonable proxy.



Dataset Method 100 200 300 500 1000 2000

OntoNotes X-Ann. 24.8 (16.7) 6.2 (3.1) 6.0 (3.1) 57.9 (6.1) 71.0 (1.4) 80.1 (1.0)
PLM 37.0 (24.6) 16.5 (11.8) 16.5 (11.6) 60.5 (5.5) 75.8 (1.4) 81.2 (0.9)

FewNERD X-Ann. - 14.4 (10.0) 8.2 (4.1) 42.6 (7.7) 48.1 (4.3) 55.9 (1.4)
PLM - 28.2 (4.0) 25.5 (5.5) 47.4 (7.8) 54.2 (2.3) 60.1 (0.5)

Table 3: Experiments with varying sizes of DB (mean and std. dev. micro-F1 across 25 runs). Each column
indicates the number of examples per type. As |DB | reduces, PLM scores higher F1 compared to cross annotation.

Dataset Val. type X-Ann. PLM

OntoNotes Full val. 87.7 (0.2) 88.1 (0.2)
Partial val. 87.7 (0.2) 88.1 (0.2)

FewNERD Full val. 66.8 (0.2) 67.1 (0.2)
Partial val. 66.8 (0.2) 66.7 (0.2)

Table 4: F1 scores of PLM and cross-annotation are
almost identical regardless of whether validation data
are partially or fully annotated.

|EA|: |EB | X-Ann. PLM

9:9 87.8 (0.2) 88.1 (0.3)
12:6 87.7 (0.2) 88.1 (0.2)
15:3 87.7 (0.2) 88.1 (0.2)
16:2 87.7 (0.2) 88.0 (0.2)
17:1 87.9 (0.3) 88.1 (0.2)

Table 5: Results with varying |EA| and |EB |; F1 scores
of cross annotation and PLM do not vary with changes
in |EA| and |EB |.

6.3.4 Summary of results
Overall, cross annotation and PLM are similarly
accurate when DB is large enough. Both methods
are also robust when partially annotated validation
sets are used instead of fully annotated validation
sets. However, as the size of DB reduces, PLM is
increasingly more accurate.

7 Discussion and Further Analysis

Having seen the effectiveness of cross annotation
and PLM, we further analyze these methods. For
these experiments, we use Ontonotes under the
disjoint setting (§6.3.1).

7.1 Effect of size of EA and EB
In experiments in §6, EA and EB were set to have
(almost) the same number of entity types. How-
ever, a more likely scenario is that the number of
entity types to be added (|EB|) are fewer than the
number of existing entity types (|EA)|. We investi-
gate the behavior of methods in such settings — for
these experiments we keep the size of the datasets
(DA and DB) to be fixed and identical to those in

|EA|: |EB | ModelB XAnn. PLM

9:9 87.7 (2.4) 88.2 (2.1) 88.5 (2.1)
12:6 87.3 (3.1) 87.8 (3.0) 88.3 (2.8)
15:3 84.8 (8.1) 85.5 (8.3) 86.3 (7.1)
16:2 86.0 (8.9) 87.3 (7.2) 87.8 (6.4)
17:1 72.1 (13.3) 74.2 (12.4) 75.7 (11.9)

Table 6: The model from PLM recognizes EB more
accurately than ModelB . As |EA| increases and |EB |
decreases, this performance gap increases.

§6. Results in Table 5 indicate that even as the
difference in number of entity types in EA and EB
grows, cross Annotation and PLM do not diverge
in behavior and continue to be equally accurate.

7.2 Performance of Modelfinal Vs ModelB

Another possible solution to TE-NER is to use
ModelB to recognize the new entity types from
EB , ModelA to recognize the original entity types
EA, and combine the predictions of these two mod-
els via heuristics. However, this begs the question
— does ModelB recognizes entities from EB as well
as (or better than) Modelfinal derived from Cross
Annotation or PLM? We answer this by testing
these methods against ModelB on a test set anno-
tated with just EB . If Modelfinal predicts a mention
as e ∈ EA, we simply ignore it.

Results (Table 6) indicate that (1) PLM and
cross annotation are consistently more accurate
than ModelB at recognizing entity types from EB ,
and (2) as |EB| decreases (and |EA| increases), the
gap between all methods increases. We hypothesise
that this is due to three reasons: (1) Cross Annota-
tion and PLM use additional data corresponding to
EA in dataset DA hence their superior performance.
(2) The more such additional information (about
other entity types) present in DA, the larger the
performance gain. Intuitively, this implies that the
ability to recognize entity types in EA is helping in
better recognizing entities of interest in EB .



8 Conclusion

We define and propose solutions for a general ver-
sion of the problem of taxonomy expansion for
NER. Crucially, and unlike prior work, our defini-
tion does not assume that the entity types that are
being added are disjoint from existing types. We
propose a novel approach, PLM, that is theoreti-
cally motivated based on a latent variable formula-
tion of the problem, and show that prior solutions
based on student-teacher settings are approxima-
tions of the loss arrived at by our method. PLM out-
performs baselines on various datasets, especially
in data scarce scenarios when there is limited data
available for the new entity types. In such settings,
it is as much as 10-15 F1 points more accurate than
the next best baseline.

9 Limitations

There are many other extensions of the definition
and setup for TE-NER that this work does not ad-
dress. For instance, the old and the new entity
types / datasets, can belong to different domains
and results in such settings are likely to different
than those reported in this paper, where both old
and new entity types are created from the same
pre-annotated dataset. Studying this, however, re-
quires creation of appropriate datasets, which is
also something that this work does not attempt to
do.

For the more general definition of TE-NER that
allows entity types to be related, We assume that we
know these relations (i.e. they have been provided
by an expert/user) and leave aside the problem of
how to identify these relations in the first place. A
separate body of work in taxonomy induction aims
to identify such a hierarchy between entities (e.g.
(Snow et al., 2006)).

Finally, despite its stronger theoretical founda-
tions, the key method proposed in this work, PLM,
is not more accurate than the simple cross anno-
tation baseline in data rich scenarios, and is more
suitable for data scarce scenarios. Further investi-
gation is required to boost results for the former
scenario.
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unrealistic, and we return to this in §6.3.3
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Datasets for Non-disjoint TE-NER We study
the non-disjoint version of the problem (§5.1) us-
ing the FewNERD dataset (Ding et al., 2021). This
dataset consists of two levels of annotations corre-
sponding to coarse-grained supertypes (e.g., PER-
SON) and fine grained subtypes (e.g., ACTOR).4

To study the SUBTYPE/SUPERTYPE scenario,
after we split the coarse-grained entity types E into
EA and EB as above, we randomly add a subset
of the subtypes corresponding to a coarse-grained
entity type e ∈ EA to EB . For instance, if the
PERSON entity type is present in EA, we add a
subset of its eight subtypes (POLITICIAN, ACTOR,
ARTIST) etc.) to EB .

To study the OVERLAPPING scenario, we first
choose a coarse-grained entity type (e.g. PERSON),
split its fine-grained subtypes into two overlapping
subsets SA and SB (e.g. SA = ACTOR, POLITI-
CIAN, ..., and SB = ACTOR, ARTIST, ...). Then, if
a mention in DA is annotated with a subtype in SA,
we assign it a new entity type PERSONA. Similarly,
if a mention in DB is annotated with a subtype
in SB , we assign it a new entity type PERSONB .
PERSONB and PERSONB are added to EA and EB
respectively.

B Proof of lower bound

To show that the loss term for PLM in Equation 2
is a lower bound on the KL-divergence loss used
in prior work (Equation 3), we start with the loss
in Equation 2.

Loss(s|θ) =
∑

i:yi=O

CE
(
fi(s|θ), yi

)
+

∑
i:yi ̸=O

− log
〈
fi(s|θ), gi(s)

〉
. (4)

4For the disjoint version of the problem (§6.3.1), we simply
treat these two different levels of the dataset as two different
datasets — FewNERD-Super and FewNERD-Sub.

Using Jensen’s inequality for concave functions
(like log x)), we get logE[x] ≥ E[log x]. Hence,

Loss(s|θ) ≤
∑

i:yi=O

CE
(
fi(s|θ), yi

)
+

∑
i:yi ̸=O

〈
− log(fi(s|θ)), gi(s)

〉
.

≤
∑

i:yi=O

CE
(
fi(s|θ), yi

)
+

∑
i:yi ̸=O

〈
− log(

fi(s|θ)
gi(s)

), gi(s)
〉
.

=
∑

i:yi=O

CE
(
fi(s|θ), yi

)
+

∑
i:yi ̸=O

KL
(
gi(s) || fi(s|θ)

)
. (5)

C Modifications to proposed methods

C.1 Modified Cross Annotation

Recall that the idea behind cross-annotation is to
use model predictions as a proxy for actual annota-
tions. For the non-disjoint case, if a token in DA is
annotated as e, then we first get its allowed entity
types following §5.2. If this set of allowed enti-
ties contains just one element, then we annotate
it as the allowed entity type. Otherwise, we use
ModelB to chose the best label among the allowed
entities. For the example in Figure 3b, James is
annotated as PERSON in DA, so we know that its
allowed entity types are {PERSON:ACTOR, PER-
SON:POLITICIAN, PERSON:O }. We use ModelB
to get the probability of ACTOR, POLITICIAN and
O and among them, choose the one with highest
probability. After re-annotating both DA and DB ,
the rest of the steps proceed as in §4.1.

C.2 Modified PLM

For PLM, if we are given the distribution of true
labels (gi(s)), the likelihood calculation does not
change, therefore the loss in Equation 1 remains
the same for the non-disjoint case. However, simi-
lar to cross annotation above, the estimation of the
oracle function g(.) changes. For a data point in
DA (similarly for DB), if a token is annotated as e,
we need g(.) to give a probability distribution over
its allowed entity types (the probability of other en-
tity types is 0). Therefore, we compute a softmax
over the logits of the allowed entity types. In Fig-
ure 3b, James is annotated as PERSON, so we use
ModelB to get the logits of ACTOR, POLITICIAN,



and O, and then take softmax over just these (the
probability of other entities in Efinal is 0)


