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ABSTRACT

Deep reinforcement learning has proven an effective method to solve many in-
tricate tasks, yet it still struggles with data efficiency and generalization to novel
scenarios. Recent approaches to deal with this include (1) unsupervised pretrain-
ing of the agent in an environment without reward signals, and (2) training the
agent using offline data coming from various possible sources. In this paper we
propose to consider both of these approaches together, resulting in a setting where
different types of data streams are available and fast online adaptation to new
tasks is required. Towards this goal we consider the Unsupervised Reinforcement
Learning Benchmark and show that access to unsupervised data is better used as
a source of exploration trajectories rather than for pretraining a policy. Follow-
ing this observation we develop a method based on training a world-model as a
smart offline buffer of exploration data. We show that this approach outperforms
previous methods and results in 10-times-faster adaptation. We then propose a
setup that includes access to both unsupervised exploratory data and offline ex-
pert demonstrations when testing the agents’ online performance on adaptation to
novel tasks in the environment.

1 INTRODUCTION

Deep reinforcement learning (RL) has achieved remarkable success in addressing complex control
tasks, yet a significant challenge persists in its ability to generalize and adapt to novel tasks. While
transfer learning practices excel in simpler supervised setups, RL traditionally treats each task in
isolation, hindering the utilization of knowledge from prior experiences.

This creates two related big challenges: first, this setup is extremely inefficient because of the vast
compute that is necessary to train policies from scratch, when even small changes in the task requires
the agent to expose itself to millions of experiences in the environment; and second, this results in
brittle policies that fail when facing perturbations to the task or environment.

Two recent approaches try to deal with this problem, namely unsupervised RL and offline RL. While
both approaches offer partial solutions, they often operate in distinct paradigms. In the unsupervised
RL approach, an agent is first pretrained using interactions in a similar environment, but without
access to a specific task and its reward function. The assumption is that this can lead to a better
initialization of the network weights for the second phase, when the agent starts to receive a reward
signal and uses it to finetune its weights towards a policy that solves the desired task. In the offline
RL approach, the agent first acquires offline data that contains demonstrations of interactions with
the environment and the task reward. The agent can then use this data in different ways to extract
the optimal policy for the task at hand.

In this paper we propose to unify these two approaches. We argue that (1) it is better to treat the
unsupervised phase as a method to acquire offline data rather than a method to pretrain the agent’s
weights, and (2) the usefulness of offline data should not be measured as a zero-shot method to solve
a task, but rather by the acceleration it provides to subsequent online reinforcement learning.

Towards this goal, we propose a framework where unsupervised interaction primarily serves to
gather diverse exploratory data, which is then refined and utilized alongside minimal online in-
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Figure 1: The proposed setup for testing fast adaptation to new tasks. The agent has access to many unsuper-
vised interactions with the environment (e.g. 2M steps) and is then measured by its performance on a specific
task in the same environment after a very small number of supervised interactions (e.g. 10K steps). We pro-
pose to use the unsupervised phase not only for pretraining the agent weights but also to populate a buffer of
unsupervised exploration trajectories that can be used in the supervised adaptation phase. We also propose
to potentially use an additional set of offline expert demonstrations. This setup tests the ability to combine
different data sources in order to achieve 10 times faster adaptation than was tested before. Right: The two
environments that we use, Walker and Quadruped (Tunyasuvunakool et al., 2020).

teraction for rapid task mastery. To achieve this we consider using world models as a method for
effectively combining the different types of data streams. A recent paper (Rajeswar et al., 2023)
showed that world models are effective in an unsupervised pretraining setup, achieving excellent
results in the Unsupervised RL Benchmark (URLB) (Laskin et al., 2021). We claim that the reason
for this is that unsupervised pretraining is best used as a source of exploratory data rather than a
way to achieve better initialization of the policy weights, and that world models can serve as a smart
buffer for exploratory data. By extending the method in Rajeswar et al. (2023) using an offline RL
approach, we show significant improvements in adapting to novel tasks in 10 times less online steps.

Following our findings, we propose to test for faster adaptation than the standard URLB, moving
from 100K to 10K steps, and we propose to extend the setup to also allow access to a few offline
expert demonstrations. This results in a setup (Fig. 1) that contains unsupervised exploratory data,
supervised expert demonstrations, and supervised online interactions, providing a unified test of the
ability to use various data sources for fast adaptation. We believe this is a natural setup to start
benchmarking, as it represents a realistic setting, e.g. in robotics, where different possible data
sources are available, and extremely rapid adaptation is required.

Our results on this setup suggests that world models provide a particularly effective mechanism to
fuse different data sources since they can act as sophisticated, generative buffers of experience. They
not only compress vast amounts of interaction data gained during unsupervised exploration but also
allow for separately dealing with the reward prediction in order to adapt to different tasks, effectively
bridging the gap between diverse unsupervised data, offline expert knowledge, and efficient online
adaptation. Our main contributions can be summarized as follows:

1. We show that access to an unsupervised environment is best used as a method to collect
exploratory data for offline RL rather than for pretraining the weights of a policy.

2. We develop a method that outperforms all previous methods in the URLB benchmark by
training a world model on unsupervised data using techniques from offline RL.

3. We propose to study extreme adaptation in a unified setup consisting of unsupervised pre-
training, offline expert demonstrations, and online interactions in the environment. Towards
this end we add extra expert demonstrations to the URLB tasks and show that our method
can leverage this information to further improve adaptation results.

2 PRELIMINARIES AND RELATED WORK

Unsupervised Reinforcement Learning Benchmark The Unsupervised Reinforcement Learn-
ing Benchmark (URLB) (Laskin et al., 2021) is a benchmark that compares the adaptation capabil-
ities of different RL unsupervised exploration algorithms. The setup is separated into two stages:
pretraining and finetuning. During the pretraining stage, there is no specific task required from the
agent and the environment does not provide a reward signal. The agent is therefore trained using
an intrinsic reward which is specified by the tested exploration method. At the second stage, the
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resulted policy from the previous stage is used and finetuned to a specific task in the same environ-
ment. The underlining RL algorithm for pretraining and finetunung is DrQv2 (Yarats et al., 2021),
which is a variant of DDPG (Lillicrap et al., 2019).

In the pretraining stage, the tested exploration methods are separated into knowledge-based, data-
based and competence methods. Knowledge-based methods focus on maximizing the entropy of
visited states. Competence methods focus on maximizing the entropy of the learned policy. Data-
based methods learn an explicit skill vector by maximizing the mutual information between the
encoded observation and skill. For each exploration method, the pretraining stage is performed on
environments from the DeepMind Control Suit (Tunyasuvunakool et al., 2020): Walker, Quadruped
and Jaco. Here we focus on Walker and Quadruped, as they present a more interesting challenge of
exploration vs. fast adaptation.

In the finetuning stage, the exploration strategy used during pretraining is evaluated on set of tasks.
First, the policy weights and part of the critic network are loaded from the pretraining stage. Then,
the policy is trained on the task using the baseline RL algorithm DrQv2. The method is evaluated
after 100K steps of finetuning, which is used as a measure of adaptation to the novel tasks.

Intrinsic Reward Models Intrinsic reward method are used to facilitate better exploration in
sparse reward environments. The idea is to use an additional reward to promote the visiting of
novel states. Intrinsic reward methods are specially important when dealing with unsupervised en-
vironments, such as the pretraining stage of URLB, as they form the only source of reward. In this
work we focus on four leading methods for exploration as used in Laskin et al. (2020) and Rajeswar
et al. (2023). The methods we consider are ICM Pathak et al. (2017), RND Burda et al. (2018),
RE3 Seo et al. (2021), and Latent Bayesian Surprise (LBS) (Mazzaglia et al., 2022). The latter
is used in Rajeswar et al. (2023), which introduce a world-model based method for unsupervised
learning on which we build.

Offline RL In offline RL, rather than collecting data by interacting with the environment, data is
collected by a different, usually unknown method, and used by the agent as a dataset to learn the
policy. Data can come from expert demonstrations, historical data, or simulated environments. The
aim is to reduce the need of costly interaction with the environment. For an overview of the approach
see Levine et al. (2020), and for different datasets see Fu et al. (2021).

One of the main issues with offline RL relates to the inability to generalize from one setup to another.
This is because the standard approach tests zero-shot generalization to the online environment, and
therefore lacks a mechanism for adaptation. Several methods were developed to address this prob-
lem, such as CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021) and CRR (Wang et al., 2020).
Cal-CQL (Nakamoto et al., 2024) focuses on using policies pretreined on supervised offline data to
improve the training of downstream online RL. In our work, we propose to use unsupervised ex-
ploratory data as an offline dataset and measure its effectiveness by the acceleration it provides to
subsequent learning of new tasks with online interactions, essentially measuring fast adaptation.

ExORL ExORL Yarats et al. (2022) is a different benchmark that tests ways to utilize unsuper-
vised exploration data from the perspective of offline RL. In URLB, the setup builds on pretraining
a policy and later finetuning on a specific task. In contrast, ExORL uses unsupervised exploration to
collect offline data, and then, given a task in the environment, it assumes it has access to the ground
truth reward function and uses it to fix the unsupervised exploration buffer. This is done without
collecting any additional supervised data. Similar to ExoRL, we also show that using the unsuper-
vised interactions as offline data is more beneficial then using the policy that was used during the
unsupervised data collection stage, however we show this in a more realistic setup where there is no
acess to the ground-truth reward function which needs to be estimated from supervised interactions
with the environment.

World Model Pretraining A major development in model based RL is the success of learned
world models, which allow simulating environment transitions, and can facilitate sample efficient
training. A learned world model is a data driven model that can estimate the distribution over the
next state given a history of previous transitions:

pθ(st+1, rt+1|st, at, st−1, . . . ). (1)
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In essence, a well trained world model can replace a complex simulation of the environment. This,
in turn, allows training the agent with almost no interaction with the actual environment, when the
underlining environment dynamics stay the same. Additionally, planning techniques can be used by
generating possible futures from the current states.

An example of such an architecture for world models is Dreamer (Hafner et al., 2022) which uses
an RNN to learn the environment dynamics in a sequential way. In addition, it learns the reward
model R(s, a). This allows generating partial trajectories, using some policy, and training an off-
policy agent on the generated data. Recently, excellent results were achieved on the tasks tested in
URLB (Rajeswar et al., 2023). The method, which we call here Dreamer-MPC (DMPC), uses the
Dreamer architecture as a world model, trained as a supervised next-state predictor, using data from
the unsupervised RL stage collected with LBS as the exploration intrinsic reward. Additionally,
during the finetuning stage, a planning strategy called Model Predictive Control (MPC) (Hansen
et al., 2022) is used to generate trajectories.

In MPC, the planning policy consists of a network that predicts the value function Vξ(s) and a
Gaussian action sequence distribution estimator p(a1, a2, . . . , at|s0). For each state, several plan-
ning iterations are done, to gradually find the optimal trajectory and then the first planned action is
used to proceed in the actual environment. For each planning iteration, given the sequence distri-
bution, an expected return is estimated using the world model, and the value function. The return
estimation is done in the following way: (1) the state s0 is received from the environment; (2) an
initialized Gaussian sequence distribution p(a1, a2, . . . , at|s0) is used to generate a sequence of ac-
tions; (3) the world model pθ(st+1, rt+1|st, at) is used to predict the reward at each time step until
st; (4) the rest of the expected return is calculated by Vξ(st+1). Top sampled sequences are used to
update the distribution, and another set of sequences are sampled. This process continues for a set
amount of iterations. We base our method on this model but make important modifications treating
the model as a smart offline buffer of exploration trajectories rather than a model pretrained on an
unsupervised environment.

3 UNSUPERVISED PRETRAINING AS OFFLINE EXPLORATION

We start by considering unsupervised RL, where agents have access to an unsupervised environment
without a reward signal. We base our setup on the URLB with the DeepMind Control Suite envi-
ronments (Tunyasuvunakool et al., 2020), using 2M unsupervised steps in the first phase, and then
testing the capacity of adaptation after 100K supervised steps. We compare the standard approach of
policy pretraining to an approach that uses the unsupervised environment for data collection (Fig. 2
and Fig. 3). The standard method, as proposed in the original benchmark of URLB, is to pretrain
an agent in the unsupervised environment, using various possible exploration methods, and then use
the weights as initial values when finetuning the policy using a reward function for some given task.
This is denoted by Finetune in the figures, where the performance is measured for each task after
100K supervised environment steps. While finetuning a pretrained agent leads to some accelera-
tion in training time for some of the tasks, it is not always significantly better than initializing the
weights randomly and completely discarding the output of the pretraining phase denoted as baseline
(horizontal line).

We argue that this happens because the benefit of the pretrained agent does not necessarily come
from the value of its weights, but rather from its behavior in the environment in the initial steps. In
other words, fast adaptation occurs not because the policy weights are closer to their optimal values,
but rather because the pretrained policy can start generating useful exploration trajectories from the
first episodes.

To test this, we use a different method to exploit unsupervised exploration, where the exploration
trajectories in the pretraining phase are stored in a buffer, and then used together with the online data
while training the agent on a specific task. This means that the pretraining exploration is treated as
offline data. However, since it comes from unsupervised exploration, the reward signal corresponds
to some intrinsic exploration reward rather than the true task reward. To correct this, we implement
a reward-model component, that uses the online supervised data to learn a reward predictor. In turn,
the reward model can be used to predict the reward in each step of the exploratory trajectories in the
pretrained buffer.
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Figure 2: Average episodic returns (over 10 episodes) on the URLB benchmark with state observations after
100K training steps. We show two environments and three different tasks for each and values are normalized
to a baseline that does not use any pretraining information. Results show that (1) finetuning a pretrained
agent (Finetune) is not always better than training from scratch (baseline); and (2) Using the unsupervised
pretraining to collect offline data (Buffer+RM) leads to better performance. This is implemented by training a
reward model to predict the reward of the unsupervised data and label the unsupervised trajectories.
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Figure 3: Average episodic returns (over 10 episodes) on the URLB benchmark for pixel observations after
100K training steps (normalized to a baseline with no pretraining). The behavior is similar to state observation
in Fig. 2, namely (1) finetuning a pretrained agent is not always beneficial (Finetune vs. baseline), and (2) using
the unsupervised pretraining as an offline buffer where the reward signal is predicted by a learned reward model
leads to better performance (Buffer+RM).
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Figure 4: A diagram of the Off-DMPC method. In the first stage the world model is pretrained and an unsuper-
vised buffer is collected. In the second stage the world model’s reward head is trained on supervised data while
supervised replay buffer is collected, and the model together with the unsupervised and supervised buffers are
used for planning. The supervised data can potentially also contain expert demonstrations.

Implementation Details The reward model shares the architecture of the Q network used by the
policy (based on DrQv2). During the supervised phase, we intermittently sample trajectories from
both the unsupervised buffer and the online supervised data. When the batch comes from the su-
pervised buffer, which contains the true task reward, it is used to train the reward model and the
policy. When the data comes from the unsupervised buffer, the reward model is used to predict the
task reward and the trajectory is then used to train the policy. In both cases, the trajectories, which
contain either the true or a predicted reward, are used in the same way to update the policy.

Results The results in Fig. 2 and Fig. 3, corresponding to experiments in state space and pixel
space respectively, show that the method based on using an unsupervised buffer and a reward model,
denoted by Buffer+RM, outperforms simple finetuning of the agent weights. Buffer+RM achieves
better results than Finetune for 17 out of the 18 experiments (3 tasks for each of the 2 environments
using 3 exploration methods) performed in state space (Fig. 2) and for all the 18 experiments in pixel
space (Fig. 3).

4 OFF-DMPC: WORLD MODEL AS AN OFFLINE BUFFER

Dreamer-MPC (DMPC) (Rajeswar et al., 2023) is an agent based on planning with a world model
and is shown to significantly outperform all other methods in URLB. While this can be a result of
the general efficiency of planning in RL, we argue that the reasons for the favorable performance
of DMPC are related to the results discussed in Sec. 3, because training a world model on unsuper-
vised exploration can be viewed as a way to store the exploration trajectories. The world model is
essentially a smart buffer of the exploration trajectories that also allows generalization and planning.

Following the results of training a reward predictor and using it for the unsupervised trajectory
buffer, a natural next step is to consider a full world model. While DMPC showed excellent results
on the original URLB, our goal is to achieve even faster adaptation. We make modifications to
the training method, based on the approach that the model should treat unsupervised exploration as
offline data rather than pretraining data.

Our method, which we denote by Offline-Dreamer-MPC (Off-DMPC), is depicted in Fig. 4. Sim-
ilarly to DMPC, it operates in two phases - an unsupervised exploration phase and an online finetun-
ing phase. During the unsupervised phase, Off-DMPC preforms exploration using the LBS intrinsic
reward and pretrains a Dreamer world model. While pretraining the world model, we also save the
collected exploration buffer to be used as a source of starting points when training in the supervised
stage. In addition, we leave the reward head of the world model un-trained in the first stage, and
only train it once we have access to some supervision of the reward in the second stage. During the
supervised stage we finetune the reward head using the online data, and treat the exploration data in
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Figure 5: Average episodic return (over 10 episodes) on URLB tasks. ExORL uses a GT reward function and
no online data, RM, DMPC and Off-DMPC are trained on 10K online steps with/without 2K expert demonstra-
tions, and all results are normalized relative to a baseline that was trained on 100K online steps. The results
show: (1) 10x faster adaptation is possible (2) The method based on a world model significantly outperforms
other methods. (3) Using expert data is not always beneficial, but can lead to significant improvements.

conjunction with the learned world model as auxiliary sources of offline exploration data. Using the
unsupervised exploration data we can provide much more diverse starting points to initiate the plan-
ning trajectories using the world model. As a result, we can make more parameter updates relative
to steps in the environment and continue optimization after we finished collecting supervised data,
utilizing the large unsupervised exploration dataset.

The online finetuning stage is described in Algorithm 1. After pretraining the DMPC in the unsuper-
vised stage using an exploration reward we use the following components: an unsupervised buffer
U consisting of trajectories from the first stage, a pretrained state transition model Wθ, an untrained
reward model Rϕ, a pretrained exploration actor policy πψ and an untrained value model (critic)
Vξ. Then, Nseed steps of exploration in the online environment are performed to collect an initial
set of trajectories stored in the supervised replay buffer D. These transitions are collected using the
pretrained exploration policy πψ . Afterwords a mixed training process is performed using online
and offline data. For each update, we first perform a number of steps in the environment to collect
more supervised data into the replay buffer D. We then sample a batch of trajectories either from
the unsupervised buffer U or the supervised buffer D. When the batch comes from D we use it to
update the weights of Wθ and Rϕ. When the batch comes from U we only update Wθ. In either case,
the batch is used as a source of states s which are fed as initial states to sample trajectories from Wθ

and Rϕ in order to train the critique Vξ. The probability of using a batch of unsupervised trajectories
from U decreases based on a counter cu and as more online data is collected in D. After acting a
total of Nsteps steps, the training process continues without collecting more online trajectories from
the environment.

In comparison to the original DMPC that uses the unsupervised phase to pretrain the world model,
the modifications we make are: (1) Collect an exploration buffer during pretraining (similar to the
method described in Sec. 3) and use it in the finetuning stage to extract diverse starting points for the
MPC planner; (2) Train the reward head of the world model only in the finetuning stage; (3) keep
making offline updates after the online steps collection is finished; (4) make more weight updates
relative to steps in the environment by decreasing the step-per-updates ratio from 10 to 5; and (5)
add finetuning updates to the world model on the online episodes.
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Table 1: Average episodic returns after 10K supervised training steps on URLB tasks. Off-DMPC significantly
outperforms other methods and effectively combines unsupervised data and expert demonstration.

no expert demo. expert demo.

Task/Method ExORL (GT reward) RM DMPC Off-DMPC RM Off-DMPC

Walker Walk 260 238 630 896 375 918
Walker Run 121 96 328 594 106 585
Walker Flip 207 236 607 841 285 889
Quadruped Walk 250 298 339 401 402 540
Quadruped Run 279 299 200 324 412 446
Quadruped Jump 324 640 449 539 630 915

Figure 6: A visual demonstration of fast adaptation compared to previous methods in Walker.

Implementation Details We implement the method described in Algorithm 1 using a total of 10K
steps in the environment, where 4K of them are collected into the buffer as an initial seed before
making any updates. After collecting the seed steps we perform 5 steps per update, and after 10K
environment steps we continue to update the model based on the collected data for a total of 100K
steps. In summary: Nseed = 4K,Nsteps = 10K,Nupdates = 100K and Ns/u = 5.

Results Table 1 (left block of methods) and Fig. 5 (in red) show results of Off-DMPC compared
to other models in a fast adaptation setup. We report episode rewards after 20 episodes consisting of
10K supervised steps for two different environments, and three different tasks in each. Using 10K
online steps is a test of faster adaptation than the original URLB which reports results after 100K
steps. This is because in this setup, adaptation after 100K steps is already solved with the vanilla
DMPC. To test the effectiveness of a world model as a method to consolidate offline exploration
data for fast adaptation we also compare to the method we described in Sec. 3 that collects an
unsupervised buffer and corrects the reward with a reward model. We denote it here by RM and
use the same settings as used for Off-DMPC (i.e. the same number of steps, seed steps, updates and
step-per-updates). In addition we compare to ExoRL Yarats et al. (2022) which is similar to RM
but assumes ground truth access to the task reward function and does not finetune using the online
interactions. In order to run ExoRL which was originally implemented for state observation we
adapat it to image observations. Both RM and ExoRL are methods that use an offline buffer rather
than a world model. For a fair comparison all methods are based on the LBS exploration in the
unsupervised stage. The results in Fig. 5 are normalized relative to the same baseline used in Sec. 3,
namely a vanilla DrQv2 agent trained on 100K supervised environment steps. Note that results of
RM can seem lower than in Fig. 3 because now we test the RM performance after 10K rather than
100K supervised steps.

Our method Off-DMPC significantly outperforms the vanilla world model DMPC for all tasks and
achieves a new state-of-the-art in fast adaptation. Off-DMPC also outperforms the offline buffer
methods - RM and ExoRL, where the only exception is on the Quadruped Jump task compared to
RM. These results highlight the potential for faster adaptation than previously tested and suggest that
training and using a world model as a smart buffer for offline data is an effective way to consolidate
offline exploration data with online interactions.
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5 ADDING EXPERT DEMONSTRATIONS

Motivated by the results and the points discussed above, we propose a new setup to test fast adap-
tation to novel tasks. In this setup we are interested in leveraging different sources of information
in order to achieve even better results for fast adaptation after 10K steps. Towards this end we pro-
pose to use an additional small number of expert demonstrations that can be used together with the
unsupervised data and online supervised data. Our setup can be summarized as follows:

1. The agent has access to a very large number of unsupervised interaction with the environ-
ment. This is similar to the URLB setup, however this can be used either for pretraining an
agent, populating a buffer, or training a world model.

2. The agent has access to a few expert trajectories, containing the task’s reward. This data
can serve two purposes. First, it can be used as initial information about the task, e.g
to train a reward predictor. Second, it can disentangle the problem of exploration in the
environment, as using this data is somewhat equivalent to a successful exploration that
ensures the important states in the environment were covered.

3. Given the above data, the agent is assessed on its performance after a small amount of su-
pervised online interactions in the environment, measuring its capacity for fast adaptation.

Specifically, we use 2M unsupervised exploration steps and 2K supervised expert demonstration
steps (4 episodes), and then measure the performance of the agent after 10K online supervised
steps. Compared to URLB, the only addition are 4 episodes of supervised expert demonstration
that we provide for each task. These episodes are achieved by training the DreamerMPC model
on a supervised environment for 2M steps. We use 4 random episodes from the last 100 training
episodes.

To test the effect of expert data on fast adaptation we compare to the results from previous sections.
The results can be seen in Table 1 and Fig. 5 (in green). To make a fair comparison with the same
number of supervised steps, we compare methods that use 10K online steps and no expert data with
methods that use 8K online steps and 2K offline expert data. This comparison evaluates the benefit
of replacing 2K steps from the online interactions with expert demonstrations. We implement this in
Algorithm 1 by pre-populating the supervised replay buffer D with the expert demonstrations and
reducing 2K from Nseed and Nsteps. As an additional comparison we perform the same change for
the RM model, replacing initial 2K steps with expert demonstrations.

Results Comparing between methods with and without access to expert data demonstrates its po-
tential benefit for fast adaptation. The results show that in some cases the improvement is only minor
and for other cases it is substantial. A potential reason for this is that in cases where the exploration
covered sufficient states to solve the task, further expert demonstration is not needed. The results
also show that Off-DMPC outperforms RM, suggesting that our method of using world models as
a smart offline exploration buffer provides an effective mechanism to consolidate various types of
data sources for fast adaptation, namely unsupervised exploration of the environment, offline expert
demonstrations and supervised online interactions. Fig. 6 visualizes the resulting fast adaptation
compared to previous methods.

DISCUSSION

In this paper we proposed to use a method based on world models to combine two approaches
to fast adaptation in RL, namely unsupervised RL and offline RL. We argued that unsupervised
pretraining in RL is best used as a source of exploration data and demonstrated how world models
provide an effective way to distill the exploration trajectories. We presented a method that achieved
adaptation to new tasks using 10 times less supervised steps than previously tested in URLB. Finally,
we proposed to consider a fast adaptation setup that consists of both unlimited unsupervised access
to the environment and a small amount of supervised expert demonstrations. We believe this setup
is an interesting extension to standard benchmarks providing a realistic setting such as in robotics,
where various sources of data can be used and extremely fast adaptation is required.
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A IMPLEMENTATION

Algorithm 1 Finetuning With Offline Dreamer MPC
Require: Unsupervised data buffer U , supervised replay buffer D (possibly containing expert

demonstrations, see Sec. 5)
Require: Dreamer world model containing:

1. pretrained transition model Wθ

2. untrained reward head Rϕ
3. pretrained exploration policy πψ
4. untrained critic Vξ

Require: number of seed steps Nseed, online supervised steps Nsteps, updates Nupdates and steps-
per-updates Ns/u

Require: MPC planning horizon H , number of trajectory samples K

Step counter cstep ← 0
Unsupervised batch counter cu ← 0
for t← 1 to Nseed do ▷ collect seed data using exploration policy

a← πψ(s) ▷ choose action according to pretrained exploration policy
s′, r ← P (·|s, a) ▷ execute action in online environment
D ← D ∪ (s, a, s′, r) ▷ add to replay buffer
cstep ← cstep + 1

end for

for t← 1 to Nupdates do

if cstep < Nsteps then ▷ collect new data
for i← 1 to Ns/u do

a←MPC(s) ▷ choose action based on MPC starting from current online state
s′, r ← P (·|s, a) ▷ execute action in online environment
D ← D ∪ (s, a, s′, r) ▷ add to replay buffer
cstep ← cstep + 1

end for
end if

Sample batch b from U or D with prob.=
(

|U |
|U |+|D|+cu ,

|D|+cu
|U |+|D|+cu

)
(s, a, s′, r) = b
if b ⊂ D then ▷ we sampled from the supervised replay buffer

Update Wθ and Rϕ using (s, a, s′, r)
else if b ⊂ U then ▷ we sampled from the unsupervised data

Update Wθ using (s, a, s′)
cu ← cu + 1

end if
Simulate trajectories using MPC starting from s
Compute rewards for trajectories using Rϕ
Compute returns: Jk =

∑H
h=1 γ

hrkh + γHVξ(ŝ
k
H)

Update Vξ using TD learning on simulated trajectories
end for
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