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ABSTRACT

To effectively manage the complexities of real-world dynamic environments, con-
tinual learning must incrementally acquire, update, and accumulate knowledge
from a stream of tasks—without suffering from catastrophic forgetting of prior
knowledge. While this capability is innate to human cognition, it remains a signifi-
cant challenge for modern deep learning systems. At the heart of this challenge lies
the stability-plasticity dilemma: the need to balance leveraging prior knowledge,
integrating novel information, and allocating model capacity adaptively based on
task complexity. In this paper, we propose a novel exemplar-free class-incremental
continual learning (ExfCCL) framework that addresses these issues through a Hier-
archical Exploration-Exploitation (HEE) approach. Our method centers on two key
subsystems: (i) a HEE-guided neural architecture search (HEE-NAS) that enables
a learning-to-adapt backbone via four primitive operations—reuse, new, adapt, and
skip—thereby serving as an internal memory that dynamically updates selected
components across tasks; and (ii) a task ID inference mechanism, which utilizes an
external memory of task centroids to select the appropriate task-specific backbone
and classifier during testing. We term our overall framework CHEEM (Contin-
ual Hierarchical-Exploration-Exploitation Memory). CHEEM is evaluated on the
challenging MTIL and Visual Domain Decathlon (VDD) benchmarks using both
Tiny and Base Vision Transformers. It significantly outperforms state-of-the-art
prompting-based continual learning methods, closely approaching full fine-tuning
upper bounds. Furthermore, it learns adaptive model structures tailored to indi-
vidual tasks in a semantically meaningful way, demonstrating its effectiveness in
exemplar-free continual learning scenarios.

1 INTRODUCTION

Developing continual learning machines is a key objective in Artificial Intelligence (AI), aiming to
replicate human-like adaptability and the ability to learn-to-learn, enabling proficiency in streaming
tasks. Despite their advances, state-of-the-art Deep Neural Networks (DNNs) still lack true biological
intelligence in the realm of continual learning from streaming tasks in dynamic environments,
which requires the continual acquisition, update, and accumulation of knowledge while mitigating
catastrophic forgetting of previous tasks (McCloskey & Cohenl (1989} [Thrun & Mitchell, [1995)),
referring to the stability-plasticity trade-off.

Recently, continual learning using Vision Transformers (ViTs) (Dosovitskiy et al.| 2021)) has witnessed
promising progress, primarily explored through the lens of prompt-tuning or prefix-tuning (Wang
et al.l 2022djcja; [Smith et al., [2023). Of particular interest is Exemplar-free Class-incremental
Continual Learning (ExfCCL), where the raw data (or latent features of samples) of old tasks are not
available in learning a new task, and task IDs of testing samples are unknown at inference.

Denote by 7 = {1,2,--- ,¢,--- , N} a stream of NN tasks in continual learning, where each task ¢
consists of a training set DI"%" and a testing set D!°*, Task 1 is assumed to train a ViT sufficiently
well (Wang et al., [2022dcza; [Smith et al., 2023)), consisting of a backbone and a head classifier,
(F1, Hq). In this paper, we make no restrictive assumptions in the remaining tasks, 7\ {1}, regarding
the task nature, order, or number of classes in streaming tasks (either per task or in total). For example,
there are 11 diverse, streaming tasks in the MTIL benchmark (Fig. . Let task ¢ have C; classes, so
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Figure 1: Illustration of the proposed CHEEM.
A pretrained and frozen ViT model such as
ViT-Base (Dosovitskiy et al.l 2021)) or DEiT-
Tiny (Touvron et al.l 2021)) is structurally and
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by time T" we have observed tasks 1, ..., T with a total of Zthl C} classes. Denote by (Fy, H) the
continually learned ViT backbones and head classifiers after task ¢ (for ¢ > 1) in ExXfCCL. We have
two design choices as follows:

Static Backbone vs Dynamic Backbone: For a static backbone, F; = F; (Vt > 1), and the continual
learning capability is achieved through prompt-tuning or prefix-tuning (Wang et al.l 2022d:cza}; [Smith
et al.} 2023)), which often entails large pretrained ViTs to accommodate all streaming tasks of diverse
nature and thus pays the computational cost “blindly" across tasks totally ignoring their difficulty
levels.

For dynamic backbones, F; is the super backbone structurally and dynamically updated from the
pretrained model 7, = Fy, and F; C F; (¢ > 1). Let ©; = F; \ F;—1 be task-specific backbone
parameters to the task ¢, which we term the internal parameter memory in ExfCCL to exploit task
synergies.

Task-Agnostic Head vs Task-Specific Head at Inference: For the task-agnostic head at inference,
there often exists a discrepancy between training and inference. During training, for a task ¢,
only the segment head H; is trained and used in a softmax over C} classes for the current task
(i.e., local arg max is used). At inference, consider a new test sample x belonging (in truth) to
task t*, the entire head is used: we compute logits for all classes seen so far, and choose the
global arg max. We have: (i) The local arg max, giocal () = arg MaXee(1,...,Cpr } z= o(x), where
zpe () = Hy (]-"t (x)) are the logits restricted to task t*. (ii) The global arg max, Fgioba () =
arg Max(¢ c)e{1,..., 7} x{1,...,C;} 2t,c(x). So, we will need to ensure a sufficiently high probability
that these two predictions coincide, Pr (g)local(z) = Yglobal (a:)) , but it is very difficult to hod in practice
due to the diverse nature of streaming tasks. We can show a rough illustrative bound (see Appendix G|

M
for more details), Pr(Jiocat = Jgiobal) ~ [ [Pr(ZO < z)} Fy+(z) dz, where we assume for a task

t*, the local maximum logit Z* has mean p* and variance o*2. All out-of-task classes have means
o < p* and variance o2, and there are M out-of-task classes in total. Z, is the logit distribution for
a single out-of-task class and Fz~ is the PDF of Z*. If u* is sufficiently larger than y,, (and variances
are not too large), Z* will, with high probability, exceed all M out-of-task logits. But as M grows
large, this event can become less likely unless the margin p1* — p, is also large (which can not hold at
streaming task in continual learning). Our experimental results empirically reflect the difficult of this
task-agnostic head design.

For the task-specific head at inference, we do not have the loca-argmax-vs-global-argmax issue.
Instead, the challenge is to infer the task ID for a testing sample on the fly. In the prior art (Wang
et al., [2022d;c; Smith et al., [2023; Wang et al., |2022a)), the pretrained model F () is used as the
task-ID query function ¢(), and use ¢() to retrieve the task ID from the external memory such as
the continually learned task centroids used in (Wang et al., 2022a).
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(a) The MTIL benchmark (Zheng et al.l [2023) consisting of tasks of different nature with #training
images/#classes significantly varying across different tasks.
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(b) From ViT-Base trained on Tsk1_ImNet (with blocks B1 to B12), our CHEEM learns sensible task-tailored
models that reflect the task complexity. For example, when learning Caltech 101 (Tsk3_C101), CHEEM learns
to Skip 5 MLP blocks and most of the architecture. On the contrary, when learning FGVC Aircraft
(Tsk1_Airc), which is a more complex task with larger shift from ImageNet due to its fine-grained nature,
CHEEM learns to the ImageNet parameters in Block 7, adds a operation in Block 6, and Skips the
last 3 MLP blocks. See text for details.

Tsk4_CIFAR

(c) From DEiT-Tiny trained on Tsk1l_ImNet (with blocks B1 to B12), our CHEEM learns to use multiple
and operations, without Skip operations selected, sensibly different from those with more Skip
and less operations learned based on the stronger ViT-Base model.

Figure 2: Examples of CHEEM learning task-tailored models.

In this paper, we choose to focus on learning dynamic backbones in ExfCCL for its better balance
between stability and plasticity. We propose a novel formulation for the internal parameter memory,
while leveraging the task-specific head design with the external task-centroid memory
[2022a)) to eliminate the local-argmax-vs-global-argmax difficulty.

Fig. [T]illustrates our proposed method, CHEEM (Continual Hierarchical-Exploration-Exploitation
Memory), enabling a dynamic learning-to-update ViT backbone that balances stability and plasticity,
mitigating catastrophic forgetting through task synergies, in which a new task learns to automati-
cally reuse/adapt modules from previous similar tasks, to introduce new modules when needed,
or to skip some modules when it appears to be an easier task (see Figs.[2bland 2c). We propose a
hierarchical exploration-exploitation (HEE) sampling based neural architecture search (NAS) method
for learning the internal memory.

To ensure NAS is computationally efficient, and retain the stability of the backbone to account for
tasks in streams that have little training data, we select two components in a ViT block: the down
projection layer (MLPP°"") in the FFN and the projection layer after the MHSA, to be plastic in
learning-to-adapt to different tasks using four basic operations:

* Reuse: facilitates similar tasks sharing layers for knowledge transfer in continual learning.

* New: explores new features for handling tasks that are dissimilar to previous tasks. The New
operation enables learning-to-grow the backbone to be skilled at streaming tasks.

e Adapt: utilizes Low-Rank Adaptation (LoRA) 2022), inducing task synergies in
ExfCCL in a parameter-efficient way.

* Skip: skips the entire MHSA block (when the projection component is used) or the entire FFN
block (when the MLPP°*" is used). It can thus induce much simpler backbones for relatively easier
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tasks in a learning-to-shrink manner, especially when a strong backbone such as ViT-Base is used
(e.g., from ImageNet to MNIST).

In experiments, to account for the five metrics (average accuracy, average forgetting, average param-
eter increase and average compute) holistically in ExfCCL, we propose a holistic figure of merits
(FoM) based metric to compare CHEEM with baseline methods. Our CHEEM is tested on two
challenging benchmarks (MTIL (Zheng et al., [2023)) and VDD (Rebuffi et al., |2017)) using both
ViT-Base (Dosovitskiy et al.| 2021)) and DEiT-Tiny (Touvron et al.,|2021) and obtains significantly
better performance than prompting-based methods (Smith et al., [2023} [Wang et al., [2022cfd:a; Tang
et al.l 2024). Our CHEEM'’s performance is close to the upper-bound performance using either
task-to-task full fine-tuning or task-to-task LoRA based fine-tuning, demostrating its effectiveness.
The learned task-tailored backbones are also sensible, and result in much less overall computing cost
across all tasks compared to prompting based methods.

Our Contributions. This paper makes three main contributions to the field of ExfCCL using
ViT: (i) It poses ExfCCL as a problem of learning two decoupled continual memory in ViT, the
external task-centroid memory and the internal parameter memory. (ii) It presents a hierarchical task-
synergy exploration-exploitation sampling based NAS method for maintaining the internal memory
by learning task-aware dynamic models continually with respect to four operations: Reuse, Adapt,
New and Skip, to mitigate catastrophic forgetting. (iii) It shows state-of-the-art performance on two
challenging benchmarks (MTIL and VDD) in terms of a proposed figure of merits (FoM) metric,
with sensible task-tailored model structures automatically learned.

2 OUR ProPOSED CHEEM

This section presents details of our proposed CHEEM. We start with a vanilla D-layer ViT model
(e.g., the 12-layer ViT-Base) (Dosovitskiy et al.| 2021). As illustrated in Fig. m we select two
components in a Transformer block, the MLPP°*" and the project layer after the MHSA to place the
internal parameter memory. We provide an ablation study in Appendix [Hl which empirically supports
these two design choices.

2.1 THE MIXTURE-OF-EXPERTS REPRESENTATION OF TASK-SYNERGY INTERNAL MEMORY

The proposed internal memory of our B 4
CHEEM is represented by a Mixture of Ex- D /
perts (MoEs). Starting with the ViT base
model F7, the internal memory at the [-th
layer in ViT consists of a single expert de-
fined by a tuple,

1, 1,
B = (01, ), (1)
where the subscript represents the layer in-
dex and the list-based superscript shows

which task(s) use this expert. 91(1’) are the
parameters of the projection layer or the
MLPP*" Jayer and pf € R? is the as-
sociated mean class-token (CLS) pooled
from the training dataset after the model is
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Figure 3: Illustration of CHEEM learning via NAS.

trained, which is task specific (as indicated by the superscript). For example, if an expert is reused by

another task (say, 3) in continual learning, we will have El(l’g’) = ((91(1’3’)7 ph p3).

As shown in Fig.[3] for a new task ¢, learning to update CHEEM consists of three components: i)
the Supernet construction (the parameter space of updating CHEEM)), ii) the Supernet training (the
parameter estimation of updating CHEEM), and iii) the target network selection and finetuning (the
consolidation of the CHEEM for the task t).

2.2 SUPERNET CONSTRUCTION VIA Reuse, Adapt, New AND Skip

For clarity, we consider how the space of MoEs of the internal memory is constructed at a single
layer [ for a new task with CHEEM placed at the MLPP°"" (projection) layer, assuming the current

memory consists of two experts, {EI(L), El(2’)} (Fig. |3} left). The Supernet is constructed via:
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» Reuse: Uses the MLPP°"" (projection) layer from an old task for the new task unchanged,
exploiting task synergies during learning.

* Adapt: Introduces a new lightweight LoRA (Hu et al.,[2022) component, e.g., 91(3’) = 0;2’) + By -
A;, where B; and A; are low-rank parameter matrices.

* New: Adds a new MLPP"" (projection) layer, which enables the model to handle corner cases and
novel situations.

* Skip: Skips the entire FFN (MHSA) block, which encourages dynamically adjusting the model
complexity based on the task complexity.

The bottom of Fig. B3] shows the search space. The Supernet is constructed by reusing and
adapting each existing expert at layer /, and adding a new and a skip expert. The newly added
adapt (By, A;) by LoRA and projection layers will be trained from scratch using the data of a new

task only. The right-top of Fig. [3|shows the Adapt operation on top of El<2’) is learned and added,
E) = (6, 13) where 13 is the mean CLS token pooled for the task 3.

2.3 SUPERNET TRAINING VIA HEE-NAS

To train the Supernet constructed for a new

ion - Uniform

task ¢, we build on the SPOS method (Guo i
et al.L[2020) due to its efficiency. The basic .. o .A €.~ Epoch
idea of SPOS is to train a single-path sub- y Sampling
network from the Supernet by sampling an 10| é e
expert at every layer in each mini-batch i
of training. One key aspect is the sam- i

. g y . p @ Exploitation - Hierarchical Sampling
pling strategy. The vanilla SPOS method _ : . i
uses uniform sampling (i.e., the pure ex- -: %1 - Pe -: Y1 P Y
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ploration (PE) strategy, Fig. {4 top).. WEC] P Til-p1 P T d—p; P I 1—pry 05 ~J o5
propose an exploitation strategy (Fig. — - — - - i
bottom), which utilizes a hierarchical sam- %1) wi) «p,,,,,)

pling method that forms the categorical dis-
tribution over the operations in the search
space explicitly based on task syner-
gies computed based on the pooled task-
specific CLS tokens.

Figure 4: Illustration of the proposed HEE sampling
based NAS. It integrates the vanilla exploration strategy
(top) and the proposed exploitation strategy (bottom)
with an epoch-wise scheduling.

Consider a new task ¢ with the training dataset D", with the current supernet consisting of £ — 1
task-specific target networks, we first run inference of the ¢ — 1 target networks on D{"**" to pool
initial CLS tokens for each expert, e.g., pi~3 and p? 73 in the bottom of Fig.[3| Consider one expert
El(” Y at the I-th layer which is shared by two previous tasks ¢ and j with their mean CLS tokens 1;
and 1] respectively, we have the pooled CLS tokens for the current task ¢, pi~t and w -t computed
accordingly. The task similarity is computed by,

St = NormCosine(uf, ui "), (2)
where NormCosine(:, -) is the Normalized Cosine Similarity, which is calculated by scaling the
Cosine Similarity score between —1 and 1 using the minimum and the maximum Cosine Similarity
scores from all the experts in all the MHSA blocks of the ViT. This normalization is necessary to
increase the difference in magnitudes of the similarities between tasks, which results in better Expert
sampling distributions during the sampling process in our experiments. The task similarity score will
be used in sampling the Reuse and Adapt operations.

For the new task ¢, we also have the New expert and the Skip expert at each layer [, for which we do
not have similarity scores. Instead, we introduce an auxiliary expert, Aux (see the bottom of Fig. )
which gives equally-likely chance to select the New expert or the Skip expert once sampled in NAS.
For the Aux expert itself, the similarity score between it and the new task ¢ is specified by,
it Lol it

S = —max 57, 3)
which intuitively means we probabilistically resort to the New operation or the Skip operation when
other experts turn out not “helpful” for the task ¢.

At each layer [ in the ViT, for a new task ¢, the task-similarity oriented operation sampling is realized
by a 2-level hierarchical sampling, as illustrated in the right of Fig.
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* The first level uses a categorical distribution with the maximum number of entries being ¢ consisting
of at most the previous ¢ — 1 tasks (some of which may use Skip and thus will be ignored) and the
Aux expert. The categorical distribution ()1, - ,4;, -+ ,¥7_1,%r) is computed by the Softmax
function over the similarity scores defined above, where I < t.

* With a previous task ¢ sampled with the probability 1);, at the second level of sampling, we sample
the Reuse operation for the associated expert using a Bernoulli distribution with the succcess rate

computed by the Sigmoid function of the task similarity score defined by p; = m, and
ex -9

the Adapt operation with probability 1 — p;.

2.4 COMPUTE-AWARE TARGET NETWORK SELECTION

After the Supernet is trained, we propose a compute-sensitive evolutionary search on top of (Real
et al.| 2019). It first draws a population with a predefined number of candidate architectures from
the trained Supernet using our proposed HEE sampling method. It then “evolves" the population via
the crossover and the mutation operations. At each “evolving" iteration, the population is evaluated
and sorted based on the trade-off between the validation performance and the compute of candidates:
we predefine a performance tolerance threshold 7 (e.g., 7 = 2%) to group candidate networks, and
rank candidate networks in each group based on their compute in the increasing order. With the top-k
candidates after evaluation and sorting (the number & is predefined), for crossover, two randomly
sampled candidate networks in the top-k are crossed to produce a new target network. For mutation,
a randomly selected candidate in the top-k mutates its every choice block with probability (e.g.,
0.1) to produce a new candidate. Crossover and mutation are repeated to generate sufficient new
candidate target networks to form the population for the next “evolving" iteration. We study the effect
of varying the 7 in Figure[9b]in Appendix[F

2.5 TARGET NETWORK RETRAINING FROM SCRATCH

After the target network for a new task is selected, we retrain the newly added layers by the New and
Adapt operations from scratch (random initialization), rather than keeping or warming-up from the
weights from the Supernet training. This is based on the observations in network pruning that it is the
neural architecture topology that matters and that the warm-up weights may not need to be preserved
to ensure good performance on the target dataset (Liu et al., 2019b). Our experiments during the
development of CHEEM confirms this observation.

2.6 BALANCING EXPLORATION AND EXPLOITATION

As illustrated in Fig. [ to harness the best of the pure exploration strategy and the proposed
exploitation strategy, we apply epoch-wise exploration and exploitation sampling for simplicity.
For the pure exploration, we directly uniformly sample the experts at a layer [/, consisting of the
n experts from the previous ¢ — 1 tasks, and the New and Skip operations, where n < ¢ — 1. At
the beginning of an epoch in the Supernet training, we choose the pure exploration strategy with
a probability of ¢; (e.g., 0.3), and the hierarchical sampling strategy with a probability of 1 — ¢;.
Similarly, when generating the initial population during the evolutionary search, we draw a candidate
target network from a uniform distribution over the operations with a probability of €2, and from the
hierarchical sampling process with a probability of 1 — €5, respectively. In practice, we set €5 > €1
(e.g., e2 = 0.5) to encourage more exploration during the evolutionary search, while encouraging
more exploitation for faster learning in the Supernet training. We study the effect of €; and e, in

Figure[Da]in Appendix [F|

3 EXPERIMENTS

Data. We evaluate CHEEM on two challenging benchmarks, the MTIL benchmark (Zheng et al.,
2023) and the VDD benchmark (Rebuffi et al.,[2017)), both consisting of tasks from varying domains
with different complexities. While MTIL is largely balanced in terms of classes per task, VDD
presents a much larger class imbalance. For example, out of the total 2128 classes (excluding
ImageNet-1k), Omniglot contains 1623 classes, whereas DTD contains only 47. Further details of
the benchmarks can be found in Appendix

Pretrained Models in ExfCCL. We test two settings: one strong ViT-Base pretrained on the
ImageNet-21k and fine-tuned on the ImageNet-1k, and the other relatively weaker DEiT-Tiny
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Table 1: Comparison of Average Accuracy and Forgetting on Table 2: FoM (Eqgn. E]) of
the MTIL benchmark with three different seeds. Accuracy of CHEEM (MLPP°*") against

individual tasks are in the supplementary (Table E[) baselines on the MTIL
Method | ViT-Base DEIT-Tiny benchmark.
| Avg. Acc | Avg. Frgt. | FLOPs | Avg. Acc | Avg. Frgt. | FLOPs Method | ViT-Base | DEiT-Tiny
Full Finetuning | 88.1 = 0.0 - - 753 4+0.1 - - EWC | 105 26.0
LoRA Finetuning | 87.4 £+ 0.0 74.6 0.1 - CODA-Prompt | 24.2 84.6
CHEEM (MLP™™) | 859103 | 17401 623 745403 | 19400 | 45 Dual-Prompt | 27.4 Lo
EWC | 44664 | 238465 | 337 |353+03| 73406 | 22 S-Prompts | 3.2 10.5
CODA-Prompt | 402 £12 | 25318 | 703 56+03 | 426+08 5.0 EIKI 3.6 6.4
DualPrompt | 338+ 04 | 22.1+04 | 703 | 309403 | 175403 | 50 LoRA (MLP™™) | 17 57
L2P | 266402 | 31.0+£03 | 703 |23240.1 | 258404 | 5.1
S-Prompts | 81.6£04 | 1.6+£0.1 | 676 | 673404 | 18400 | 44
DIKI | 764400 | 20+£00 | 425 |67.6+0.1 | 1.84+00 | 28
LoRA (MLPP™") | 847 £0.0 | 1.6E£01 | 682 |71.1+£00| 19+£00 | 45

Table 3: Comparison of Average Accuracy and Forgetting on Table 4: FoM (Eqn. @) of
the VDD benchmark with three different seeds. Accuracy of CHEEM (MLPP°*") against

individual tasks are in the Appendix (Table[T0). baselines on the VDD bench-
Method | ViT-Base DEIT-Tiny mark.
| Avg. Acc | Avg. Frgt. | FLOPs | Avg. Acc | Avg. Frgt. | FLOPs Method | ViT-Base | DEIT-Tiny

Full Finetuning | 88.7 £ 0.1 - - 76.21 £ 0.1 - - EWC | 12.1 678.9

LoRA Finetuning | 86.8 + 0.1 76.3 +£0.3 - CODA-Prompt | 35.9 2811.3

Down Dual-Prompt | 34.1 2130.6

CHEEM (MLPP**") | 86.7+0.2 | 04+00 | 616 7618 £0.1 | 1.0+0.0 | 45 12p | 36.4 24316
EWC | 44013 | 5.14+11 | 337 | 337402 | 15+01 | 22 S-Prompts | 5.5 338.8
CODA-Prompt | 249 £22 | 26.1 £0.8 | 703 LIE£01 |37.6£04] 50 DIKI | 7.8 370.8

DualPrompt | 28.1£0.9 | 3205 | 703 | 194£06 |105£05| 50 LoRA (MLP™™) | 1.5 73.6

L2P | 239+£0.7 | 9.0£06 70.3 11.5+£08 | 209+ 1.7 5.1

S-Prompts | 78.6 £0.1 | 0.4 £0.0 67.6 65.8+0.3 09+00 4.4

DIKI | 659 £0.1 | 0.1 £0.0 42.5 583 £0.1 0.6 £0.0 2.8

LoRA (MLPP"M) ['86.0 £0.1 | 0.3 £0.0 68.2 74.0£0.3 1.1£0.0 45

trained on ImageNet-1k. The overall objective is two-fold: (i) to observe how different continual
learning methods cope with different pretrained conditions, and (ii) to verify if our CHEEM can
adaptively learn sensible task-tailored models, e.g., learning more Skip (New) when the strong
(weak) pretrained ViT is used.

Implementation Details: In all our experiments, we apply CHEEM to the MLPP°*" layer, unless
stated otherwise. We provide further implementation details in Appendix [E]

Baselines. We compare with four types of baselines:

* The classic Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017a)) method.

o State-of-the-art prompting based methods: CODA-Prompt (Smith et al.,[2023)), Dual-Prompt (Wang
et al., [2022c)), Learning-to-Prompt (L2P) (Wang et al.| 2022d)), S-Prompts (Wang et al.}2022a) and
DIKI (Tang et al., 2024).

* Parameter-Efficient Fine-Tuning (PEFT) based continual learning: we test LORA (Hu et al., [2022)
as the alternative internal parameter memory while using the same external task-centroid memory
as our CHEEM. This is a special case of our CHEEM, using the LoRA Adapt operation and
without NAS.

* Upper-bound task-to-task fine-tuning: we test two settings, full task-to-task fine-tuning, and
LoRA (Hu et al.,[2022) based task-to-task PEFT, from the pretrained model to each task individually.

Metrics: We measure the performance of CHEEM using three metrics: Average Accuracy, Average
Forgetting (Chaudhry et al., 2018)), and Figure of Merit. Let (F;, H;) be the feature backbone and
the classifier heads after completion of task ¢, and a; ; = Acc(D}?eSt; Fi, H;) be the Top-1 accuracy
on the testing data for task j computed using (F;, H;). The Average Accuracy (AA) after 7 \ {71}
and Average Forgetting (AF) after 7 \ {11, T } tasks are defined as

1
AA = ——
N -1 N -2 — \JEtN]
We propose a new pair-wise metric, Figure of Merit (FoM), to explicitly and holistically compare
two methods (e.g., our CHEEM against another baseline) with respect to their respective average
accuracies and model complexities, where the model complexity is measured using FLOPs. For two
methods m and n, we define the FoM as

AAUpperBound _ A" FLOPs™
'AAUpperBound _ g Am ' FLOPs™’

N N1

1
E Acc(D!*Y Fy, Hy), (4) AF = —— E (max aj —aN,t) , (3
=2

FoM(m,n) = (6)
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Table 5: Task-wise FLOPs for the MTIL and VDD benchmarks using ViT-Base as pretrained model.

MTIL | VDD
Airc C101 CIFAR DTD ESAT Flwr CIFAR DPed OGlt SVHN UCF
628 £09 59.0+09 640+£00 646+£09 578409 621+£01|635+1.7 541£09 622415 567+0.0 655+18
F101 MNIST Pets Cars SUN397 Avg GTSR Flwr Airc DTD Avg

652+£17 560+09 628+09 659+15 652409 623+£03|578+1.7 622+£00 66.1+0.1 666+09 61.6+03

where AAUPPerBound renresents the average accuracy of upper-bound full task-to-task fine-tuning,
and FLOPs is the computing cost. If a method m has smaller performance gap against the upper
bound and smaller computing cost than another method n, FoM(m, n) will be greater than 1. There
is a trade-off between the first performance ratio and the second cost ratio. Intuitively, FoM(m, n)
represents the relative magnitude of method m being better than n.

3.1 PERFORMANCE COMPARISONS ON MTIL AND VDD

Table |1| and Table |3| show the Average Accuracy, Average Forgetting, and the runtime FLOPs on
MTIL and VDD benchmarks respectively. Our CHEEM outperforms all the baseline methods by
large margins.

Table 2| and Table 4| show the FoM of CHEEM on MTIL and VDD benchmarks respectively. The
FoM shows that CHEEM can balance Average Accuracy and FLOPs, whereas the baseline
methods fall short on either of both of the axes. For example, on both MTIL and VDD, DIKI achieves
lower FLOPs, but sacrifices performance. LoORA (MLP%™) achieves Average Accuracy close to
CHEEM, but requires higher FLOPs as it cannot skip modules. The FoM of CHEEM against baselines
for DEiT-Tiny are significantly large on VDD since CHEEM almost reaches the full fine-tuning
performance (76.18% vs 76.21%), resulting in a very large accuracy gap ratio term in Eqn. [

Our CHEEM closely approaches full fine-tuning performance. On MTIL, CHEEM achieves
85.9% vs 88.1% for ViT-Base, and 74.5% vs 75.3% for DEiT-Tiny. On VDD, CHEEM achieves
86.7% vs 88.7% for ViT-Base, and 76.2% vs 76.2% for DEiT-Tiny.

Importance of structure updates to backbone - CHEEM vs Prompting-based Baselines: Three
prompting-based methods (CODA-Prompt, DualPrompt and L2P) perform even worse than EWC
for both ViT-Base and DEiT-Tiny, mainly due to the aforementioned discrepancy between global-
argmax-vs-local-argmax in their head classifier designs. CODA-Prompt almost completely failed for
DEiT-Tiny with 5.62% average accuracy. S-Prompts works the best among prompting based methods,
but is still inferior to our CHEEM: 4% drop (81.62% vs 85.88%) for ViT-Base, and 7% drop (67.33%
vs 74.51%) for DEiT-Tiny. This shows the importance of inferring task IDs on-the-fly for streaming
tasks with significantly varying distributions of classes. Overall, the superior performance by our
CHEEM shows the importance of structurally and dynamically updating the backbone with
the task-synergy internal memory.

Importance of Search - CHEEM vs LoRA: Both are applied to MLPP°*" and use the same external
task-centroid memory for task IDs inference. The LoRA counterpart is a special case of our CHEEM
(only learning Adapt operation without NAS). The improvement by CHEEM, 1% increase for
ViT-Base and 3.45% increase for DEiT-Tiny show the benefits of HEE-NAS, especially for weaker
backbone such as DEiT-Tiny, leading to more competent ExfCCL that is less sensitive to starting
feature backbone. We note that the LoRA counterpart outperforms all prompting based baselines,
showing the importance of introducing new model parameters in ExfCCL.

CHEEM vs EWC. EWC suffers from catastrophic forgetting due to the restriction of maintaining a
single shared backbone, and can only reach average accuracy 44.58% for ViT-Base and 35.33% for
DEiT-Tiny.

3.2 CHEEM LEARNS SENSIBLE AND TASK-TAILORED MODEL STRUCTURES

Intuitively, easier tasks should require lesser FLOPs in continual learning. Table[5|shows that CHEEM
allocates lower FLOPs to easier tasks like MNIST and ESAT. Figs. [2band [2¢|show some examples
of architectures learned by CHEEM on the MTIL benchmark. These sensible model structures
are unique to our CHEEM in comparisons to other baselines. They also show interesting yet
“irregular” model configurations caused by learned Skip operations in different blocks in Fig. [2b}
two consecutive Transformer blocks with one block comprising only the attention component (for
token mixing) without the FFN (for channel mixing). Fig.[5]in the Appendix shows the sensible
model structures learned by CHEEM on VDD.
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Table 6: Comparisons of two selected CHEEM  Table 7: Comparisons of our HEE and Uniform

placements in a ViT block. (i.e., Pure Exploration) sampling during Super-
ataet | ethod | ViT-Base DET-Tiny net NAS training on the MTIL benchmark.
| | Avg. Acc | FLOPs | %Param | Avg. Acc | FLOPs | %Param Method ‘ ViT-Base ‘ DEIT-Tiny
i | MUPP™ | 8S88 | 6231 | 040 | 74SL | 447 | 632 etho
Attn Proj | 85.57 65.91 0.25 7439 442 1.79 | Avg. Acc | FLOPs | %Param | Avg. Acc | FLOPs | %Param
MLPP™ | 8671 | 61.63 | 145 7618 | 449 5.98 HEE | 8588 | 6231 0.25 74.51 447 6.32
VDD | an proj | 8723 ‘ 6591 ‘ 027 ‘ 7597 ‘ 468 ‘ 210 Uniform | 84.74 | 6182 | 589 7505 | 447 14.93

3.3 ABLATION STUDIES

CHEEM Placement: MLPP°"" vs. Projection Table E] shows the comparisons. Both of the
placements of CHEEM achieve on-par average accuracy performance. However, due to the size of
the FFN layers, when skipping the FFN block rather than the attention block, CHEEM (MLPP°*")
shows better FLOPs reduction.

Sampling in NAS: HEE vs. Uniform Table [/|shows the comparisons. Although both methods
achieve on-par average accuracy, the uniform sampling method leads to much higher number of new
parameter increase (due to New and Adapt): 5.89% vs 0.25% for ViT-Base (as seen in Figure[7]in
the supplementary text), and 14.93% vs 6.32% for DEiT-Tiny. The promising performance of uniform
sampling based NAS shows the representational power of our proposed internal parameter memory
using the four basic operations (Reuse, Adapt, New and Skip). The parsimoniousness of
HEE-NAS hightlights its efficacy in continual learning by effectively leveraging task synergies,
especially towards many more tasks in streams beyond the MTIL and VDD benchmarks.

4 RELATED WORK

For exemplar-free continual learning, Regularization Based approaches explicitly control the plasticity
of the model by preventing the parameters of the model from deviating too far from their stable values
learned on the previous tasks when learning a new task (Kirkpatrick et al.|[2017aj |Aljundi et al.| [2018];
2019; |Douillard et al.,|2020; |[Nguyen et al., 2018} Kirkpatrick et al.,2017b; [Li & Hoiem, 2018}, |/Zenke
et al.l 2017 [Schwarz et al.,[2018)). These approaches aim to balance the stability and plasticity of a
fixed-capacity model. Dynamic Models aim to use different parameters for each task to eliminate the
use of stored exemplars. Dynamically Expandable Network (Yoon et al.,|2018]) adds neurons to a
network based on learned sparsity constraints and heuristic loss thresholds. PathNet (Fernando et al.|
2017) finds task-specific submodules from a dense network, and only trains submodules not used by
other tasks. Progressive Neural Networks (Rusu et al.| 2016) learn a new network per task and adds
lateral connections to the previous tasks’ networks. (Rebuffi et al.,[2017)) learns residual adapters
which are added between the convolutional and batch normalization layers. (Aljundi et al., [2017)
learns an expert network per task by transferring the expert network from the most related previous
task. The L2G (Li et al.,|2019) uses Differentiable Architecture Search (DARTS) (Liu et al.| [2019al)
to determine if a layer can be reused, adapted, or renewed for a task, which is tested for ConvNets
and the learning-to-grow operations are applied uniformly at each layer in a ConvNet. Our method is
motivated by the L2G method, but with substantially significant differences.

Recently, there has been increasing interest in continual learning using Vision Transformers (Wang
et al.| 2022dic; | Xue et al., 2022} [Ermis et al., [2022; |Douillard et al., |2022; [Pelosin et al., [2022; |Yu
et al., 2021} [Li et al.l [2022a; Iscen et al.| [2022; [Wang et al.l |2022ab; Mohamed et al.| [2023; |Gao
et al.,|[2023)). Prompt Based approaches learn external parameters appended to the data tokens that
encode task-specific information useful for classification (Wang et al., [2022dja; Douillard et al., |2022;
Smith et al., [2023 [Wang et al.| 2022c}; |Tang et al.| [2024). Our proposed method is complementary to
prompting-based methods.

5 CONCLUSION

We present a method of transforming Vision Transformers (ViTs) for exemplar-free class-incremental
continual learning (ExfCCL), dubbed CHEEM (Continual Hierarchical-Exploration-Exploitation
Memory). Our CHEEM consists of the external (task-centroid) memory and the internal (parameter)
memory. The former is for task ID inference for test data based on clustered task centroids in training.
The latter is realized by a proposed Hierarchical-Exploration-Exploitation (HEE) sampling based
neural architecture search algorithm. The external and internal memory are maintained in a decoupled
way. Our CHEEM is tested on two challenging benchmarks, the MTIL and VDD benchmarks. It
obtains state-of-the-art performance on both benchmarks, outperforming the prior art by a large
margin, with sensible CHEEM structures continually learned.
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REPRODUCIBILITY STATEMENT

All the hyperparameter and coding framework details required to reproduce our experiments are
present in Appendix [E| We will release the full code upon acceptance.
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A EXAMPLES OF CHEEM CONTINUALLY LEARNED ON THE VDD
BENCHMARK

Base Task Streaming Tasks at Any Orders

B
BEis

ImageNet CIFAR100 SVHN UCF101 Omniglot  GTSRB  Pedestrian VGG Flowers Aircraft  Describable Textures
1.1M /1000 45K /100 65K /10 6.8K/101  16.1K/1623 23K/43 21.2K/2 1K/102 3.3K/100 1.8K/47

(a) The VDD benchmark [Rebuffi et al.| (2017) consisting of tasks of different nature with #training
images/#classes significantly varying across different tasks.
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(b) From ViT-Base trained on Tskl_ImNet (with blocks B1 to B12), our CHEEM learns sensible task-
tailored models that reflect the task complexity. For example, when learning Daimer Pedestrian Classification
(Tsk3_DPed), CHEEM learns to Skip 8 MLP blocks and most of the architecture. When learning
Omniglot (Tsk3_Oglt), which has a larger shift from ImageNet, CHEEM learns to the ImageNet
parameters in Blocks 1 and 5, adds operations in Blocks 3 and 9, and Skips blocks 6, 10 and 12.
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(c) From DEIiT-Tiny trained on Tsk1_ImNet (with blocks B1 to B12), our CHEEM learns to use multiple
and operations, without Skip operations selected, sensibly different from those with more Skip
and less operations learned based on the stronger ViT-Base model.

Figure 5: Examples of CHEEM learning task-tailored models.
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B EFFECTS OF STREAMING TASK ORDERS

We verify the effect of different task orders on the performance of CHEEM. Table [§] shows that
CHEEM is robust to task orders on the MTIL benchmark.

Table 8: Results of learning CHEEM on the MTIL benchmark with three different streaming task
orders.

SUN Airc DTD F101 Cars C101 CIFAR ESAT Flwr MNIST Pets | Avg. Acc. | Avg. Frgt.
68.59 67.87  69.15 89.02 83.60 8441 9047 9856  97.82 99.65 93.05 85.65 1.38
C101 CIFAR ESAT Flwr MNIST Pets DTD Cars F101 Airc SUN | Avg. Acc. | Avg. Frgt.
78.23 9036 98.42 9776  99.66  91.77  69.15 84.48 89.30 66.13 66.86 84.74 2.47
MNIST SUN Flwr DTD C101 Cars Pets F101 CIFAR Airc ESAT | Avg. Acc. | Avg. Frgt.
99.63 68.58  98.11 67.87 8452 8439 9253 88.50  90.88 69.10 97.78 85.63 1.28
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Figure 6: Figure 2(b) from the main text reproduced on the full benchmark. From ViT-Base trained
on Tsk1_ImNet (with blocks B1 to B12), our CHEEM learns sensible task-tailored models that
reflect the task complexity. For example, when learning Caltech 101 (Tsk3_C101), CHEEM learns
to Skip 5 MLP blocks and most of the architecture. On the contrary, when learning FGVC
Aircraft (Tsk1_Airc), which is a more complex task with larger shift from ImageNet due to its
fine-grained nature, CHEEM learns to the ImageNet parameters in Block 7, adds a
operation in Block 6, and Skips the last 3 MLP blocks. When learning MNIST, CHEEM skips 8
MLP blocks, accounting for the easy nature of the task.

’

“

’

17



Under review as a conference paper at ICLR 2026

Tsk12_SUN

Tsk11 Ca}s

@@M@ww [ *@&w@@wwwww
Tsk10_Pets

@@@@@@@+Ww el ool ol ol ol
Toka_MNIST | | | |

el asie os o asial ol oS iassal Jas
Tsk8_F{01 : : | |
[&-}{.'}{. D) COATS) CY (1) (O e e (C g (1) (V{10 Y )
Tolk7_Fwi | I |
&@@@M@M&MM@MQWM@@W HEI
Tsk6_ESAT

@m@%@@@mwma @rm+@+g@m+@a
Tsk5

Tsk4 k;/ IFAR [ \

Toka_6101 y i y \

@@@—@+@ﬁ@mamwﬁ@+@@@wwwwﬁ

Tsk2 Alrc[ [

Tski1 Im et

{@@ﬁ@@ﬁ@@ﬁ@wﬁ ueif(sn) mﬁ@mﬁ@mﬁ saHup) M}
B1 B9 B11 B12

Figure 7: ViT-Base trained on Tskl_ImNet (w1th b]ocks B1 to B12), with Pure Exploration
in CHEEM. While pure exploration accounts for task complexity through the skip operation, it
operations as compared to the proposed Hierarchical
Exploration-Exploitation scheme (Figure [6). This shows that the HEE sampling scheme can effec-
tively leverage task synergies and reuse previous parameter memories.
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Figure 8: Figure 2(c) reproduced on the full benchmark. From DEiT-Tiny trained on Tsk1_ImNet

(with blocks B1 to B12), our CHEEM learns to use multiple

and

Skip operations selected, sensibly different from those with more Skip and less
learned based on the stronger ViT-Base model.
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D FULL RESULTS

Table 9: MTIL: Full results on the MTIL benchmark, extending Table in the main text.

Method | Airc | C101 | CIFAR | DTD | ESAT | Flwr | F101 | MNIST | Pets | Cars | SUN | Avg. Acc | Avg. Frgt.
ViT Base

Full Finetuning 69.87 | 98.32 90.66 | 77.46 | 98.78 | 97.87 | 88.46 99.70 92.85 | 85.42 | 69.89 | 88.12 & 0.04 -

LoRA Finetuning 63.86 | 97.77 91.35 77.59 | 98.84 | 98.83 | 88.41 99.69 93.14 | 80.26 | 71.96 | 87.43 £ 0.01 -
CHEEM (MLPP°v" HEE) | 69.77 | 84.86 | 90.27 | 68.48 | 98.31 | 97.54 | 89.48 99.60 | 92.88 | 84.94 | 68.58 | 85.88 +£0.29 | 1.73 +0.05
CHEEM (MLPPov", PE) 69.97 | 84.96 90.21 66.74 | 97.97 | 97.32 | 86.97 99.50 92.32 | 82.11 | 64.06 | 84.74 £0.26 | 1.72 £ 0.05
CHEEM (Attn Proj, HEE) | 69.92 | 83.00 | 90.44 66.54 | 98.31 | 97.53 | 88.94 99.60 92.90 | 85.50 | 68.62 | 85.57 £0.27 | 1.67 £0.03
EWC 39.10 | 40.90 | 43.93 1298 | 61.43 | 22.24 | 51.81 96.20 60.65 | 12.64 | 48.46 | 44.58 +£6.35 | 23.80 + 6.53
CODA-Prompt 091 19.14 75.60 7.39 | 38.26 | 24.40 | 84.62 97.32 36.02 | 12.61 | 46.17 | 40.22 £1.22 | 2525 £ 1.78
DualPrompt 3.08 | 1440 | 83.96 348 | 4645 | 6.00 | 8546 | 68.43 24.13 | 5.88 | 30.78 | 33.82£0.35 | 22.11 £0.42
L2p 1.22 | 17.35 78.81 346 | 3039 | 4.67 | 78.47 16.83 2345 | 4.62 | 33.40 | 26.61 £0.16 | 30.96 £+ 0.27
S-Prompts 53.78 | 82.54 | 8826 | 6544 | 96.71 | 98.51 | 84.64 | 99.23 92.88 | 70.09 | 65.79 | 81.62 £0.35 | 1.64 +0.05
DIKI 5229 | 91.68 89.10 63.95 | 96.31 | 30.22 | 86.55 98.37 92.24 | 70.22 | 69.74 | 76.42 £0.04 | 1.96 £0.02
LoRA (MLPPowm) 63.78 | 85.68 90.52 67.98 | 98.41 | 98.51 | 87.26 99.69 92.51 | 79.79 | 67.59 | 84.70 £ 0.01 1.64 £0.11

DIiET Tiny

Method | Airc | C101 | CIFAR | DTD | ESAT | Flwr | F101 | MNIST | Pets | Cars | SUN | Avg Acc | Avg. Frgt.

Full Finetuning 43.17 | 94.64 83.55 64.88 | 98.67 | 68.90 | 79.88 99.65 86.57 | 54.83 | 52.99 | 75.25 +0.12 -

LoRA Finetuning 39.92 | 93.71 81.04 63.37 | 98.59 | 74.38 | 76.25 99.58 87.38 | 53.80 | 52.97 | 74.64 £0.08 -
CHEEM (MLPP°“" HEE) | 52.51 | 80.59 79.67 57.43 | 97.86 | 73.94 | 77.89 99.60 87.37 | 61.73 | 51.02 | 74.51 £0.28 1.86 £+ 0.04
CHEEM (MLPPov" | PE) 53.03 | 80.50 80.16 57.66 | 97.86 | 80.37 | 78.11 99.62 85.95 | 62.43 | 49.81 | 75.05+0.12 | 1.85 4 0.06
CHEEM (Attn Proj, HEE) | 50.65 | 80.35 78.44 56.77 | 97.75 | 77.23 | 771.71 99.55 86.84 | 61.72 | 51.27 | 74.39 £0.13 1.95 £ 0.03
EWC 37.38 | 13.94 | 48.87 0.00 | 83.14 | 0.00 | 50.65 93.72 3044 | 2.89 | 27.57 | 3533 +£0.32 | 7.34£0.55
CODA-Prompt 0.00 1.77 2.75 0.04 0.32 0.00 | 22.46 3.94 5.80 0.27 | 2445 | 5.624+0.25 | 42.58 £0.81
DualPrompt 0.66 | 42.28 59.13 3.03 | 42.04 | 0.86 | 42.10 55.06 4742 | 575 | 41.47 | 30.89 £0.29 | 17.53 £ 0.27
L2Pp 0.11 | 39.46 47.87 4.11 29.80 1.02 | 37.07 0.83 50.15 1.29 | 43.97 | 23.24 +£0.14 | 25.81 +£0.37
S-Prompts 36.00 | 79.08 71.58 50.50 | 93.87 | 72.27 | 67.97 98.66 87.44 | 40.01 | 43.22 | 67.33 £0.38 1.80 £+ 0.02
DIKI 33.95 | 76.57 71.13 54.84 | 92.66 | 71.79 | 70.46 97.40 87.61 | 40.13 | 47.41 | 67.63 £0.06 | 1.76 4 0.01
LoRA (MLPPowm) 39.48 | 78.89 78.11 54.38 | 97.80 | 73.66 | 74.80 99.58 85.88 | 53.53 | 45.61 | 71.06 £ 0.02 1.87 £ 0.00

Table 10: VDD: Full results on VDD benchmark, extending Table [3|in the main text.

Method | CIFAR | DPed | OGIt | SVHN | UCF | GTSR | Flwr | Airc | DTD | Avg. Acc | Avg. Frgt.
ViT Base
Full Finetuning 90.65 99.97 | 86.06 | 97.75 | 79.54 | 99.35 | 98.03 | 70.29 | 76.99 | 88.74 £ 0.11 -
LoRA Finetuning 91.44 | 99.50 | 79.43 | 97.42 | 73.36 | 98.95 | 98.96 | 64.03 | 77.64 | 86.75 £ 0.11 -
CHEEM (MLPP°»" HEE) 90.06 99.59 | 83.32 | 95.87 | 73.96 | 97.09 | 97.48 | 67.13 | 75.85 | 86.71 £0.23 | 0.35 £0.02
CHEEM (Attn Proj, HEE) 89.90 99.58 | 83.08 | 96.26 | 7449 | 97.27 | 97.56 | 70.55 | 76.42 | 87.23 £0.22 | 0.34 £ 0.01
EWC 83.69 97.69 | 691 7743 | 2592 | 78.20 0.06 598 | 1991 | 4398 £1.34 | 509 +1.14
CODA-Prompt 37.69 1.29 6.87 54.52 2.32 49.22 | 39.18 | 7.48 | 25.16 | 24.86 £2.19 | 26.11 £ 0.75
DualPrompt 82.34 4.04 14.37 15.02 | 13.41 | 64.42 | 27.20 | 15.29 | 16.37 | 28.05+0.85 | 3.18 £0.51
L2P 86.64 4.98 14.75 6.63 14.19 | 27.89 | 2559 | 16.71 | 18.12 | 23.94 +£0.72 | 8.98 £ 0.64
S-Prompts 88.34 | 99.47 | 57.38 | 94.23 | 55.07 | 87.90 | 98.48 | 53.52 | 72.59 | 78.55£0.09 | 0.36 £0.04
DIKI 86.54 | 98.20 | 57.70 | 63.44 | 52.10 | 72.66 | 36.45 | 53.53 | 72.82 | 65.94 £0.05 | 0.11 £0.01
LoRA (MLPPowm) 90.18 99.21 | 79.43 | 96.35 | 73.10 | 97.39 | 98.54 | 64.01 | 76.19 | 86.04 £0.11 | 0.34 +0.03
DIiET Tiny
Method | CIFAR | DPed | OGIt | SVHN | UCF | GTSR | Flwr | Airc | DTD | Avg. Acc | Avg. Frgt.
Full Finetuning 83.50 | 99.97 | 69.71 | 97.24 | 57.97 | 98.95 | 69.04 | 44.46 | 65.02 | 76.21 £ 0.07 -
LoRA Finetuning 81.29 99.96 | 76.93 | 96.37 | 54.83 | 98.16 | 74.37 | 40.66 | 63.67 | 76.25 £ 0.30 -
CHEEM (MLPP°“" HEE) 75.75 97.73 | 81.64 | 95.30 | 57.26 | 93.11 | 74.76 | 4591 | 64.13 | 76.18 £ 0.10 | 1.03 +0.01
CHEEM (Attn Proj, HEE) 7470 | 97.85 | 80.43 | 95.22 | 57.46 | 93.68 | 75.75 | 46.55 | 62.11 | 7597 £0.36 | 1.09 £ 0.01
EWC 79.39 93.96 | 0.03 60.13 4.97 64.41 0.00 0.58 0.00 | 33.72+0.15 | 1.52£0.08
CODA-Prompt 2.07 0.00 0.02 1.55 0.02 0.56 0.36 0.30 5.16 1.12+0.08 | 37.56 + 0.40
DualPrompt 47.87 448 | 28.60 | 11.53 254 | 75.67 | 040 | 0.57 2.61 19.36 £0.55 | 10.54 £+ 0.49
L2P 56.24 1.38 0.80 0.26 2.15 37.43 124 | 0.17 390 | 11.51 £0.76 | 20.90 + 1.72
S-Prompts 68.58 97.24 | 46.05 | 85.87 | 43.44 | 80.13 | 74.78 | 36.72 | 58.90 | 65.75 +£0.27 | 0.90 £ 0.02
DIKI 65.54 97.44 | 4489 | 4555 | 40.78 | 64.49 | 72.37 | 34.41 | 59.38 | 58.32 £0.05 | 0.62 £ 0.00
LoRA (MLPPown) 74.26 97.69 | 76.87 | 9496 | 52.68 | 93.09 | 73.75 | 40.52 | 62.22 | 74.01 £0.34 | 1.07 £0.02

E EXPERIMENT DETAILS

Pretrained Models: We initialize the pretrained ViT-B/16 and DEiT-Tiny/16 models from the
checkpoint available in t imm. Both models use a patch size of 16 and a resolution of 224 x 224. The
ViT-B/16 checkpoint has been pretrained on ImageNet 21k and finetuned on ImageNetlk. The DEiT-
Tiny/16 checkpoint has been trained on ImageNetlk. All out experiments use the same checkpoints.
We refer the reader toDosovitskiy et al. (2021)) for the architecture details of ViT-B/16 and [Touvron
et al.|(2021) for the architecture details of DEiT-Tiny/16.

Our experiments are done using PyTorch and leverage t imm for architecture implementation. In
all our experiments, we use the Adam optimizer Kingma & Ba (2015) with no weight decay. For
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experiments with CHEEM, we use a learning rate of 0.001, 50 epochs for the supernet training
and 20 epochs for finetuning. During supernet training, we use an exploration probability of
e = 0.3, and use ¢ = 0.5 during the target network selection to encourage more exploration.
We do not perform any data augmentations, and simply resize the images to 224 x 224. We modify
the implementation provided at https://github.com/GT-RIPL/CODA-Prompt|to perform
experiments on CODA-Prompt, DualPrompts and L2P, and use our own implementations for the
other baseline methods. We use a single Nvidia A100 GPU for all our experiments.

E.1 DETAILS OF THE MTIL BENCHMARK

The MTIL benchmark Zheng et al.|(2023) consists of 11 tasks: FGVC-Aircraft Maji et al.| (2013),
Caltech101 |Li et al.[(2022b), CIFAR100 |[Krizhevsky et al.[(2009), Describable Textures |Cimpoi et al.
(2014)), EuroSAT [Helber et al.| (2018), VGG-Flowers |Nilsback & Zisserman|(2008)), Food101 Bossard
et al.| (2014), MNIST [LeCun et al.| (1998)), Oxford Pets [Parkhi et al.|(2012), Stanford Cars|Gebru et al.
(2017), SUN397 Xiao et al.| (2010). We use the official training and testing splits provided in the
constituent datasets. We use the official validation splits for the evolutionary search, and create our
own splits when official split is not provided by randomly sampling 10% of the training dataset.

Table 11: Number of samples in the training, validation, and test sets used in the the experiments on
the MTIL benchmark, along with the number of categories.

Task | #Train | #Validation | #Test | #Classes
FGVC Aircraft 3334 3333 3333 100
Caltech101 5465 608 2604 101
CIFAR100 45000 5000 19850 100
Describable Textures | 1880 1880 1880 47
EuroSAT 17010 1890 8100 10
VGG-Flowers 1020 1020 6149 102
Food-101 68175 7575 25250 101
MNIST 54000 6000 10000 10
Oxford Pets 3312 368 3669 37
Stanford Cars 7329 815 8041 196
SUN397 17865 1985 19850 397

E.2 DETAILS OF THE VDD BENCHMARK

The VDD benchmark Rebutffi et al.|(2017) consists of 10 tasks: ImageNet-1k (Russakovsky et al.}
2015)), CIFAR100 (Krizhevsky et al.||2009), SVHN (Netzer et al.l 2011), UCF101 Dynamic Images
(UCF) (Soomro et al.,2012; Bilen et al., |2016), Omniglot (Lake et al.,[2015)), German Traffic Signs
(GTSR) (Stallkamp et al.,[2012), Daimler Pedestrian Classification (DPed) (Munder & Gavrilal 2006),
VGG Flowers (Nilsback & Zisserman, 2008), FGVC-Aircraft (Maji et al.l 2013)), and Describable
Textures (DTD) (Cimpoi et al.l 2014). All the images in the VDD benchmark have been scaled
such that the shorter side is 72 pixels. However, for a more realistic evaluation, we reconstruct the
VDD benchmark with the original images and splits. Except for UFC101, Omniglot, and Daimler
Pedestrian Classification, we use the official train, validation and test splits (when a validation split is
not avaiable, we construct a validation split by randomly sampling 10% of the training data.). Due to
a lack of high resolution images for UFC101, Omniglot, and Daimler Pedestrian Classification, we
use the splits and the images provided by the VDD benchmark and resize the images to 224 x 224.

Table 12: Number of samples in the training, validation, and test sets used in the the experiments on
the VDD benchmark, along with the number of categories.

Task | #Train | #Validation | #Test | #Classes
ImageNet12 1108951 123216 49000 1000
CIFAR100 45000 5000 19850 100

SVHN 65931 7326 26032 10

UCF 6827 758 1952 101

Omniglot 16068 1785 6492 1623
GTSR 23976 2664 12630 43
DPed 21168 2352 5880 2
VGG-Flowers 1020 1020 6149 102
FGVC Aircraft 3334 3333 3333 100
Describable Textures 1880 1880 1880 47
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Figure 9a: Effect of the exploration probability on the
MTIL benchmark, with exploration probabilities €1
(supernet training) and e> (evolutionary search) set
equal. As e increases, average accuracy first rises,
then falls, while the average number of additional
parameters per task increases monotonically. This is
due to more new operations being learned; e = 0.3
strikes a good balance. Setting ¢ < 0.5 controls
the addition of new operations while maintaining
performance. ¢; = 0.3 and €2 = 0.5 used in our
experiments (denoted by %) improve accuracy further
without increasing parameters. In sum, € governs
number of reuse (exploitation), adapt, and new
(exploration) operations.
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Figure 9b: A higher Tolerance Threshold reduces
average FLOPs per task but also lowers average ac-
curacy, as it permits more skip operations to persist
in the population during evolutionary search, even if
their accuracy is lower (within the tolerance margin).
A 2% threshold, used in our experiments, offers a
good trade-off. At T = 6%, CHEEM still surpasses
SPrompts in average accuracy (dotted blue line) while
using significantly fewer FLOPs, beyond which the
FLOPs plateau. SPrompt FLOPs (dotted red line)
closely match those of LoRA, so the same line is
used. At 7 = 4%, CHEEM matches LoRA’s average
accuracy (dashed blue line) with substantially fewer
FLOPs. Thus, with 7 < 4%, CHEEM matches or
exceeds LoRA in accuracy while reducing FLOPs.

G THEORETICAL ANALYSIS OF LOCAL VS. GLOBAL ARGMAX OF HEAD
CLASSIFIERS IN CONTINUAL LEARNING

G.1 THE PROBLEM

In continual learning, we have IV tasks, each with a different number of classes. Let task ¢ have C}
classes, so by time 7" we have observed tasks 1, ...,7T" with a total of 23:1 C; classes. We train a
shared feature extractor ¢(x) € R? and a growing head classifier composed of task-specific segments
Wt e RXCe,

During training of task ¢, only the segment W is updated and used in a softmax over the C; classes
for the current task. However, at inference, for a new test sample x belonging (in truth) to task t*, the
entire head is used: we compute logits for all classes seen so far, and choose the global arg max. We
denote:

* Local argmax:

max Zp= o (X)),

ce{l,...,Cyx }
where 24+ o(x) = (W(t ¢)» @(x)) are the logits restricted to task ¢*.

glocal (X) = arg

* Global argmax:

Yglobal (x) = arg Zt,c(X)-

max
(t,0)€{1,....T}x{1,....C¢}
We are interested in the probability that these two predictions coincide:
Pr(glocal(x) = gglobal(x)) .
Below is a stylized theoretical analysis of why and how often these two can match, highlighting the
factors that influence this probability.

G.2 DISTRIBUTION OF LOGITS AND TASK SEPARATION

Let z; .(x) be the logit for class c in task ¢ for sample x. We may approximate z; .(x) by a random
variable with mean y1; . and variance aic, e.g.,

Zt,c(x) R Wtet €tey, Ete ™ N(O, Ut27c)-
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In reality, these means and variances depend on how well the feature ¢(x) and the weights W* are
aligned, but we treat them as parameters to illustrate.

Define:
max 2 (x) (the local max for the correct task), @)
ce t*
max max z;.(x) (the max out-of-task logit). 8)

(t£1) c€Cy
For §jiocal = gglobal, we need
max zp o(X) > max max z.(x).

c€C (t#t*) ¢
Hence the distribution of all out-of-task logits relative to the best in-task logit is crucial.

G.3 PROBABILITY OF MATCHING LOCAL AND GLOBAL ARGMAX

G.3.1 A BAsic TwWO-CLASS EXAMPLE

Consider just one class c¢* in the true task vs. one class k in an other task. Suppose
2 2
Zt* c* NN(,U/*aU )a Zt’,kNN(MIaU )
The probability that 2« o« > 2y i is

Pr(zp o» > 2p 1) = Pr(2pe or — 200 > 0) = <I>(M _ )
where ® is the standard normal CDF.
G.3.2 MANY CLASSES FROM DIFFERENT TASKS

Now suppose there are C;- classes in the correct task, and M =, £t C; classes outside. Let the
local maximum

zZ* = max 2
ce{l,...,Cyx } e
and let Z1, ..., Z)s represent the logits of the M out-of-task classes. Then

Pr(jocal = Telobal) = Pr(Z* > max{Zi,..., ZM}).
If Z* is (roughly) NV (fuocal, 05y ) @nd each Z; is N'(p,, 02) (independent simplification), then
M
Pr(Z* > Z; forall j) = /[Pr(Zj < z)} Fye(z)dz.

When fijoca1 > 4o, this probability is high for moderate M, but as M grows, the chance that some
out-of-task class logit exceeds Z* increases, unless the gap fijocal — [0 1S large.

G.4 FACTORS INFLUENCING THE MATCH PROBABILITY

1. Feature Separation Across Tasks. If ¢(x) strongly separates tasks, then for x from task
t*, out-of-task logits z; . for t # ¢* are consistently lower. This increases the probability of
glocal = gglobab

2. Logit Magnitude & Variance. Even if the means of the correct task’s logits exceed those

of other tasks, high variance or overlap can cause out-of-task classes to occasionally exceed
the correct task’s maximum.

3. Regularization and Task Order. Continual-learning methods that regularize old task
weights or use replay data reduce the chance of weight drift, making it less likely that earlier
or other tasks overshadow the correct one.

4. Task Size Differences. Larger tasks (more classes) or tasks that were trained earlier might
have stronger classifier weights. Conversely, smaller tasks might have very tight, well-
separated features. Both can affect how likely a mismatch is.

G.5 A ROUGH ILLUSTRATIVE BOUND
As a simplistic illustration, suppose:

* For task t*, the local maximum logit Z* has mean u* and variance o*2.
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2

* All out-of-task classes have means j, < p* and variance ;.

e There are M out-of-task classes in total.

Then
M
Pr(glocal = @global) ~ /|:PI'(ZO < Z):| Fy- (Z) dz,

where Z, is the logit distribution for a single out-of-task class and Fz~ is the PDF of Z*. If u* is
sufficiently larger than i, (and variances are not too large), Z* will, with high probability, exceed
all M out-of-task logits. But as M grows large, this event can become less likely unless the margin
W — o is also large.

G.6 REMARKS

Overall, the probability that the local argmax (over the correct task only) coincides with the global
argmax (over all tasks/classes) depends on:

* How well the feature extractor ¢ separates tasks, so that out-of-task logits stay low for
samples of task t*.

* The relative scale and calibration of classifier weights W across tasks.

* The total number of classes from other tasks that could “compete” and produce a large logit
by chance.

If tasks are well-separated (and the classifier is carefully regularized or calibrated), this probability
can be very high. Conversely, if many classes from older or different tasks produce comparably large
logits, the global arg max may differ from the local arg max more frequently as the number of tasks
and classes increases.

Table 13: Accgiobar refers to the average accuracy (Eqn. 4)) calculated using the global head, and
Accpocqr refers to the same but by masking the logits not belonging to the task. Accr,.qqy, refers to
the accuracy calculated after the training on a task is complete, averaged over all the tasks.

| ViT-B | DEiT-Tiny
Method ‘ AccGlobal ‘ ACCL(,(;QZ ‘ ACCT,,,,m ‘ AccGlubal ‘ ACCLU(;M ‘ ACCT””' n

CODA-Prompt | 40.22 +1.22 | 79.70 £0.61 | 86.18 2 0.02 | 5.62+0.25 | 3472+ 1.62 | 67.53 £0.37
DualPrompt 33.824+0.35 | 83.61 £0.13 | 84.63 +:0.09 | 30.890 £0.29 | 68.17 +0.24 | 71.25 £0.10

L2p 26.61 £0.16 | 80.03 £ 0.58 | 84.95 £ 0.11 | 23.24 £ 0.14 | 60.79 £0.67 | 71.47 & 0.08
S-Prompts 81.62+0.35 | 8448 £0.18 | 84.48 £ 0.18 | 67.33 £0.38 | 70.71 = 0.40 | 70.71 £ 0.40
DIKI 76.42 +£0.04 | 84.50 £ 0.04 | 84.50 £0.04 | 67.63 = 0.06 | 70.86 £0.07 | 70.86 & 0.07

CHEEM 85.88 +0.29 | 88.68 £0.16 | 88.68 & 0.16 | 74.51 £0.28 | 78.11 £ 0.31 | 78.11 £0.31

H IDENTIFYING THE TASK-SYNERGY INTERNAL MEMORY IN VITS

The left of Fig. |l| shows a ViT block. Denote by 7, 4 an input sequence consisting of L tokens
encoded in a d-dimensional space. In ViTs, the first token is the so-called class-token, CLS. The
remaining L — 1 tokens are formed by patchifying an input image and then embedding patches,
together with additive positional encoding. A ViT block is defined by,

21a = @r,0 + Proj(MHSA(LN: (21.4)) ), ©)

yr.a = 2+ FPN(LN (22.4) ) (10)

where LN(+) represents the layer normalization (Ba et al.l 2016)), and Proj(-) is a linear transformation
fusing the multi-head outputs from MHSA module. The MHSA realizes the dot-product self-
attention between Query and Key, followed by aggregating with Value, where Query/Key/Value are
linear transformatons of the input token sequence. The FFN is often implemented by a multi-layer
perceptron (MLP) with a feature expansion layer MLPYP and a feature reduction layer MLPP°"" with
a nonlinear activation function (such as the GELU (Hendrycks & Gimpel, [2016)) in the between, i.e.,

FFN(-) = MLPPo™ (GELU (MLPUP(~))) .

The proposed identification process is straightforward. Without introducing any modules handling
forgetting, we compare both the task-to-task forward transferrability and the sequential forgetting
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Table 14: Ablation studies of identifying where to place our proposed CHEEM in ViT by testing 11
components or composite components (Eqns. [§]and[T0).
Index | Finetuned Component | Avg. Acc. | Avg. Forgetting

1 | LN; +LN; | 8L76 | 21.24
2 FFN 84.20 | 44.76
3 MLPPov® 83.66 37.99
4 LN, 80.04 | 16.35
5 MHSA +LN; 85.26 54.38
6 LN; 81.18 19.04
7 Query 81.57 19.69
8 Key 81.56 19.19
9 Query+Key 81.49 31.10
10 Value 84.99 37.58
11 Projection 85.11 30.50

for different components in a ViT block. Our intuition is that a desirable component for placing
the task-synergy parameter memory must enable strong transferrability with manageable
forgetting, while being lightweight to account for the trade-off between stability and plasticity.

To that end, we use the VDD benchmark (Rebuffi et al.| 2017) (see Fig. E]) We first train a ViT-
Base (Dosovitskiy et al., [2021)) on the first task, ImageNet (Russakovsky et al.,|2015)), as the base
model F (-). To measure the task-to-task transferability, we individually fine-tune F in a task-to-task
transfer learning manner for the remaining 9 streaming tasks. Let F;); be the backbone fine-tuned for
task 7; (for ¢t > 1), and C} the head classifier trained from scratch. The average Top-1 accuracy is
defined by Equation |4| where Acc() uses the Top-1 classification accuracy.

To measure the sequential forgetting, we continually fine-tune the backbone started from F} on the 9
tasks in a randomly sampled and fixed streaming order (as shown in Fig.[2alin the main text). Let F} .,
be the backbone trained sequentially and continually after task 7} and H; is its head classifier. The
average forgetting (Chaudhry et al.,2018)) on the first N — 1 streaming tasks is defined by Equation
where a;; = Acc(Ty; Fi.j, H).

As shown in Table[T4] we compare 11 components or composite components in ViT. Consider the
strong forward transfer ability, manageable forgetting, maintaining simplicity and for less invasive
implementation in practice, we select either the Projection layer after the MHSA or the MLPPo""
as the task-synergy internal (parameter) memory to realize our proposed CHEEM for ExfCCL
(Fig.[I). We test both in experiments and provide ablation studies in Section[3.3]
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