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ABSTRACT

The behavior of many dynamical systems follow complex, yet still unknown partial
differential equations (PDEs). While several machine learning methods have been
proposed to learn PDEs directly from data, previous methods are limited to discrete-
time approximations or make the limiting assumption of the observations arriving
at regular grids. We propose a general continuous-time differential model for dy-
namical systems whose governing equations are parameterized by message passing
graph neural networks. The model admits arbitrary space and time discretizations,
which removes constraints on the locations of observation points and time inter-
vals between the observations. The model is trained with continuous-time adjoint
method enabling efficient neural PDE inference. We demonstrate the model’s
ability to work with unstructured grids, arbitrary time steps, and noisy observations.
We compare our method with existing approaches on several well-known physical
systems that involve first and higher-order PDEs with state-of-the-art predictive
performance.

1 INTRODUCTION

We consider continuous dynamical systems with a state u(x, t) ∈ R that evolves over time t ∈ R+

and spatial locations x ∈ Ω ⊂ RD of a bounded domain Ω. We assume the system is governed by an
unknown partial differential equation (PDE)

u̇(x, t) :=
du(x, t)

dt
= F (x, u,∇xu,∇2

xu, . . .), (1)

where the temporal evolution u̇ of the system depends on the current state u and its spatial first and
higher-order partial derivatives w.r.t. the coordinates x. Such PDE models are the cornerstone of
natural sciences, and are widely applicable to modelling of propagative systems, such as behavior
of sound waves, fluid dynamics, heat dissipation, weather patterns, disease progression or cellular
kinetics (Courant & Hilbert, 2008). Our objective is to learn the differential F from data.

There is a long history of manually deriving mechanistic PDE equations for specific systems (Cajori,
1928), such as the Navier-Stokes fluid dynamics or the Schrödinger’s quantum equations, and approx-
imating their solution forward in time numerically (Ames, 2014). These efforts are complemented by
data-driven approaches to infer any unknown or latent coefficients in the otherwise known equations
(Isakov, 2006; Berg & Nyström, 2017; Santo et al., 2019), or in partially known equations (Freund
et al., 2019; Seo & Liu, 2019b; Seo et al., 2020). A series of methods have studied neural proxies of
known PDEs for solution acceleration (Lagaris et al., 1998; Raissi et al., 2017; Weinan & Yu, 2018;
Sirignano & Spiliopoulos, 2018) or for uncertainty quantification (Khoo et al., 2017).

Related work. Recently the pioneering work of Long et al. (2017) proposed a fully non-mechanistic
method PDE-Net, where the governing equation F is learned from system snapshot observations as a
convolutional neural network (CNN) over the input domain discretised into a spatio-temporal grid.
Further works have extended the approach with residual CNNs (Ruthotto & Haber, 2019), symbolic
neural networks (Long et al., 2019), high-order autoregressive networks (Geneva & Zabaras, 2020),
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and feed-forward networks (Xu et al., 2019). These models are fundamentally limited to discretizing
the input domain with a sample-inefficient grid, while they also do not support continuous evolution
over time, rendering them unable to handle temporally or spatially sparse or non-uniform observations
commonly encountered in realistic applications.

Models such as (Battaglia et al., 2016; Chang et al., 2016; Sanchez-Gonzalez et al., 2018) are related
to the interaction networks where object’s state evolves as a function of its neighboring objects, which
forms dynamic relational graphs instead of grids. In contrast to the dense solution fields of PDEs,
these models apply message-passing between small number of moving and interacting objects, which
deviates from PDEs that are strictly differential functions.

In Poli et al. (2019) graph neural ordinary differential equations (GNODE) were proposed as a
framework for modeling continuous-time signals on graphs. The main limitations of this framework
in application to learning PDEs are the lack of spatial information about physical node locations
and lack of motivation for why this type of model could be suitable. Our work can be viewed as
connecting graph-based continuous-time models with data-driven learning of PDEs in spatial domain
through a classical PDE solution technique.

Contributions. In this paper we propose to learn free-form, continuous-time, a priori fully unknown
PDE model F from sparse data measured on arbitrary timepoints and locations of the coordinate
domain Ω with graph neural networks (GNN). Our contributions are:

• We introduce continuous-time representation and learning of the dynamics of PDE-driven
systems
• We propose efficient graph representation of the domain structure using the method of lines

with message passing neural networks
• We achieve state-of-the-art learning performance on realistic PDE systems with irregular

data, and our model is highly robust to data sparsity

Scripts and data for reproducing the experiments can be found in this github repository.

Table 1: Comparison of machine-learning based PDE learning methods.

Unknown PDE Continuous Free-form Free-form
Model learning time spatial domain initial/boundary conditions Reference

PINN 7 3 7 7 Raissi et al. (2017)
AR 3 7 7 7 Geneva & Zabaras (2020)
PDE-net 3 7 7 3 Long et al. (2017)
DPM 7 3 7 3 Freund et al. (2019)
DPGN 3 7 3 3 Seo & Liu (2019b)
PA-DGN 7 3 3 3 Seo et al. (2020)

Ours 3 3 3 3

2 METHODS

In this Section we consider the problem of learning the unknown function F from observations
(y(t0), . . . ,y(tM )) ∈ RN×(M+1) of the system’s state u(t) = (u(x1, t), . . . , u(xN , t))

T at N
arbitrary spatial locations (x1, . . . ,xN ) and at M + 1 time points (t0, . . . , tM ). We introduce
efficient graph convolution neural networks surrogates operating over continuous-time to learn PDEs
from sparse data. Note that while we consider arbitrarily sampled spatial locations and time points,
we do not consider the case of partially observed vectors y(ti) i.e. when data at some location is
missing at some time point. Partially observed vectors, however, could be accounted by masking
the nodes with missing observations when calculating the loss. The function F is assumed to not
depend on global values of the spatial coordinates i.e. we assume the system does not contain
position-dependent fields (Section 2.1).

We apply the method of lines (MOL) (Schiesser, 2012) to numerically solve Equation 1. The MOL
consists of selecting N nodes in Ω and discretizing spatial derivatives in F at these nodes. We
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place the nodes to the observation locations (x1, . . . ,xN ). The discretization leads to F being
approximated by F̂ and produces the following system of ordinary differential equations (ODEs)
whose solution asymptotically approximates the solution of Equation 1

u̇(t) =

 u̇1(t)
...

u̇N (t)

 =


du(x1,t)

dt
...

du(xN ,t)
dt

 ≈
 F̂ (x1,xN (1), u1, uN (1))

...
F̂ (xN ,xN (N), uN , uN (N))

 ∈ RN . (2)

As the discretized F̂ inherits its unknown nature from the true PDE function F , we approximate F̂
by a learnable neural surrogate function.

The system’s state at xi is defined as ui, while N (i) is a set of indices of neighboring nodes other
than i that are required to evaluate F̂ at xi, and xN (i) with uN (i) are positions and states of nodes
N (i). This shows that the temporal derivative u̇i of ui depends not only on the location and state
at the node i, but also on locations and states of neighboring nodes, resulting in a locally coupled
system of ODEs.

Each ODE in the system follows the solution at a fixed location xi. Numerous ODE solvers have
been proposed (such as Euler and Runge-Kutta solvers) to solve the full system

u(t) = u(0) +

∫ t

0

u̇(τ)dτ, (3)

where 0 ≤ τ ≤ t is a cumulative intermediate time variable. Solving equation 3 forward in time
scales linearly both with respect to the number of nodes N and the number of evaluated time points
M , while saturating the input space Ω requires a large number of nodes. In practice, PDEs are often
applied for two- and three-dimensional spatial systems where the method is efficient.

2.1 POSITION-INVARIANT GRAPH NEURAL NETWORK DIFFERENTIAL

After introducing Equation 2, we transition from learning F to learning F̂ . The value of F̂ at a node
i must depend only on the nodes i and N (i). Furthermore, the number of arguments and their order
in F̂ is not known in advance and might be different for each node. This means that our model F̂
must be able to work with an arbitrary number of arguments and must be invariant to permutations
of their order. Graph neural networks (GNNs) (Wu et al., 2020) satisfy these requirements. In a
more restricted setting, where the number of neighbors and their order is known, (e.g. if the grid is
uniform) other types of models such as multilayer perceptrons and convolutional neural networks can
be used as well.

We consider a type of GNNs called message passing neural networks (MPNNs) (Gilmer et al., 2017)
to represent F̂ as

F̂θ(xN (i) − xi, ui, uN (i)), (4)

where xN (i) − xi = {xj − xi : j ∈ N (i)} and θ denote parameters of the MPNN.

Figure 1: Delaunay triangula-
tion for a set of points. Green
and orange points are consid-
ered to be neighbors as they
share the same edge.

This formulation assumes the absence of position-dependent quan-
tities in F̂ , but models based on this formulation are invariant to
translations and rotations of Ω, which makes generalization to sys-
tems with different node positions feasible, and prevents overfitting
by memorizing position-specific dynamics.

We use MPNNs, which is a type of spatial-based GNNs, due to
their flexibility and computational efficiency. The main alternative –
spectral-based GNNs – have relatively poor scaling with the number
of nodes and learn global, or domain-dependent, filters due to the
need to perform eigenvalue decomposition of the Laplacian matrix.

2.2 MESSAGE PASSING NEURAL NETWORKS

Let a graph G = (V,E) contain nodes V = {xi}Ni=1, defined by
the measurement positions, and undirected edges E = {eij}, and
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assume each node and edge are associated with a node feature vi and an edge feature eij , respectively.
We use the node neighborhood N (i) to define edges. Neighbors for each node were selected by
applying Delaunay triangulation to the measurement positions. Two nodes were considered to be
neighbors if they lie on the same edge of at least one triangle (Figure 1). Delaunay triangulation has
such useful properties as maximizing the minimum angle within each triangle in the triangulation and
containing the nearest neighbor of each node which helps to obtain a good quality discretization of Ω.

In message passing graph neural networks we propagate a latent state for K ≥ 1 graph layers, where
each layer k consists of first aggregating messages m

(k)
i for each node i, and then updating the

corresponding node states h(k)
i ,

m
(k+1)
i =

⊕
j∈N (i)

φ(k)
(
h
(k)
i ,h

(k)
j , eij

)
, (5)

h
(k+1)
i = γ(k)

(
h
(k)
i ,m

(k+1)
i

)
, (6)

where ⊕ denotes a permutation invariant aggregation function (e.g. sum, mean, max), and φ(k), γ(k)
are differentiable functions parameterized by deep neural networks. At any time τ , we initialise the
latent states h(0)

i = vi = ui(τ) and node features to the current state ui(τ) of the system. We define
edge features eij := xj − xi as location differences. Finally, we use the node states at the last graph
layer of the MPNN to evaluate the PDE surrogate

dû(xi, t)

dt
= F̂θ(xN (i) − xi, ui, uN (i)) = h

(K)
i , (7)

which is used to solve Equation 3 for the estimated states û(t) = (û(x1, t), . . . , û(xN , t)).

2.3 ADJOINT METHOD FOR LEARNING CONTINUOUS-TIME MPNN SURROGATES

Parameters of F̂θ are defined by θ which is the union of parameters of functions φ(k), γ(k), k =
1, . . . ,K in the MPNN. We fit θ by minimizing the mean squared error between the observed states
(y(t0), . . . ,y(tM )) and the estimated states (û(t0), . . . , û(tM )),

L(θ) =

∫ tM

t0

`(t, û)dt =

∫ tM

t0

1

M + 1

M∑
i=0

||û(ti)− y(ti)||22δ(t− ti)dt (8)

=
1

M + 1

M∑
i=1

||û(ti)− y(ti)||22. (9)

While discrete-time neural PDE models evaluate the system state only at measurement time points,
more accurate continuous-time solution for the estimated state generally requires many more evalua-
tions of the system state. If an adaptive solver is used to obtain the estimated states, the number of
time steps performed by the solver might be significantly larger than M . The amount of memory
required to evaluate the gradient of L(θ) by backpropagation scales linearly with the number of
solver time steps. This typically makes backpropagation infeasible due to large memory requirements.
We use an alternative approach, which allows computing the gradient for memory cost, which is
independent from the number of the solver time steps. The approach was presented in Chen et al.
(2018) for neural ODEs and is based on the adjoint method (Pontryagin, 2018). The adjoint method
consists of a single forward ODE pass 3 until state û(tM ) at the final time tM , and subsequent
backward ODE pass solving the gradients. The backward pass is performed by first solving the
adjoint equation

λ̇(t)T =
∂`

∂û(t)
− λ(t)T

∂F̂

∂û(t)
. (10)

for the adjoint variables λ from t = tM until t = 0 with λ(tM ) = 0, and then computing

dL
dθ

= −
∫ T

0

λ(t)T
∂F̂

∂θ
dt (11)

to obtain the final gradient.
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(a) (b)

Figure 2: a) Relative test errors for different grid sizes. b) Visualization of the true and learned system
dynamics (grids are shown in the first column).

3 EXPERIMENTS

We evaluate our model’s performance in learning the dynamics of known physical systems. We
compare to state-of-the-art competing methods, and begin by performing ablation studies to measure
how our model’s performance depends on measurement grid sizes, interval between observations,
irregular sampling, amount of data and amount of noise.

3.1 CONVECTION-DIFFUSION ABLATION STUDIES

The convection-diffusion equation is a partial differential equation that can be used to model a variety
of physical phenomena related to the transfer of particles, energy, and other physical quantities
inside a physical system. The transfer occurs due to two processes: convection and diffusion. The
convection-diffusion equation is defined as

∂u(x, y, t)

∂t
= D∇2u(x, y, t)− v · ∇u(x, y, t), (12)

where u is the concentration of some quantity of interest (full problem specification and setup are in
Appendix A). Quality of the model’s predictions was evaluated using the relative error between the
observed states y(ti) and the estimated states û(ti):

Err =
‖y(ti)− û(ti)‖
‖y(ti)‖

. (13)

In all following experiments, unless otherwise stated, the training data contains 24 simulations on
the time interval [0, 0.2] sec and the test data contains 50 simulations on the time interval [0, 0.6] sec.
The data is randomly downsampled from high fidelity simulations, thus all train and test simulations
have different node positions while the number of nodes remains constant. Examples from the train
and test sets are shown in Figure 14.

Different grid sizes. This experiment tests our model’s capability to learn from data with different
density of observation points. The time step was set to 0.02 sec resulting in 11 training time points
per simulation. The number of observation points xi (and consequently nodes in the GNN) was set to
3000, 1500 and 750. The resulting grids are shown in the first column of Figure 2b. Figure 2 shows
relative test errors and models’ predictions.

The performance of the model decreases with the number of nodes in the grid. Nonetheless, even with
the smallest grid, the model was able to learn a reasonably accurate approximation of the system’s
dynamics and generalize beyond the training time interval.

Different measurement time interval. As will be shown in the following experiments, models
with a constant time step are sensitive to the length of the time interval between observations. While
showing good performance when the time step is small, such models fail to generalize if the time
step is increased. This experiment shows our model’s ability to learn from data with relatively large
time intervals between observations.
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(a) (b)

Figure 3: a) Relative test errors for different time grids. b) Visualization of the true and learned
system dynamics (grids are shown in the first column).

We used 11, 4 and 2 evenly spaced time points for training. The number of nodes was set to
3000. Figure 3 shows relative test errors and models’ predictions. The model is able to recover
the continuous-time dynamics of the system even when trained with four time point per simulation.
Increasing the frequency of observation does not significantly improve the performance. An example
of a training simulation with four time points is shown in Figure 11.

Irregular time step. Observations used for training might not be recorded with a constant time
step. This might cause trouble for models that are built with this assumption. This experiment tests
our model’s ability to learn from data observed at random points in time.

Figure 4: Relative test errors for regular
and irregular time grids.

The model is trained on two time grids. The first time grid
has a constant time step 0.02 sec. The second grid is the
same as the first one but with each time point perturbed
by noise ε ∼ N (0, ( 0.02

6 )2). This gives a time grid with
an irregular time step. The time step for test data was
set to 0.01 sec. The number of nodes was set to 3000.
Relative test errors are shown in Figure 4. In both cases the
model achieves similar performance. This demonstrates
the continuous-time nature of our model as training and
predictions are not restricted to evenly spaced time grids
as with most other methods. None of the previous methods
that learn free form (i.e., neural network parameterised)
PDEs can be trained with data that is sampled irregularly
over time.

Figure 5: Relative test errors for differ-
ent amounts of training data.

Different amount of data. In this experiment, the
model is trained on 1, 5, 10 and 24 simulations. The
test data contains 50 simulations. The time step was set
to 0.01 sec. The number of nodes was set to 3000. Rela-
tive test errors are shown in Figure 5. Performance of the
model improves as the amount of training data increases.
It should be noted that despite using more data, the relative
error does not converge to zero.

Varying amount of additive noise. We apply additive
noise ε ∼ N (0, σ2) to training data with σ set to 0.01,
0.02, and 0.04 while the largest magnitude of the observed
states is 1. The time step was set to 0.01 sec. The number
of nodes was set to 3000. Noise was added only to the
training data. The relative test errors are shown in Figure 6. The model’s performance decreases as σ
grows but even at σ = 0.04 it remains quite high.
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3.2 BENCHMARK METHOD COMPARISON

Figure 6: Relative test errors for differ-
ent amounts of noise in the training data.

The proposed model was compared to two models pre-
sented in the literature: PDE-Net (Long et al., 2017) and
DPGN (Seo & Liu, 2019a). PDE-Net is based on a con-
volutional neural network and employs a constant time-
stepping scheme resembling the Euler method. DPGN is
based on a graph neural network and implements time-
stepping as an evolution map in the latent space.

We used the PDE-Net implementation provided in Long
et al. (2017) except that we pass filter values through an
MLP consisting of 2 hidden layers 60 neurons each and
tanh nonlinearities which helps to improve stability and
performance of the model. We use 5× 5 and 3× 3 filters
without moment constraints and maximum PDE order set
to 4 and 2 respectively.The number of δt-blocks was set
to the number of time steps in the training data. Our implementation of DPGN followed that from
Seo & Liu (2019a) with latent diffusivity α = 0.001. The number of parameters in all models was
close to 20k.

Figure 7: Mean relative errors of models
trained with different time steps.

The training data contains 24 simulations on the time
interval [0, 0.2] sec with the following time steps: 0.01,
0.02 and 0.04 sec. The test data contains 50 simulations
on the time interval [0, 0.6] sec with the same time steps.
The data was generated on a 50 × 50 regular grid as PDE-
net cannot be applied to arbitrary spatial grids. Separate
models were trained for each time step. The performance
of the models was evaluated using the mean of relative test
error averaged over time.

Mean relative test errors of the models are shown in Figure
7. The figure shows that performance of the discrete-
time models is strongly dependent on the time step while
performance of the continuous-time model remains at the
same level. At the smallest timestep, PDE-Net with 5× 5
filters outperforms other models due to having access to a
larger neighborhood of nodes which allows the model to make more accurate predictions. However,
larger filter size does not improve stability.

We note that some discrete-time models, e.g. DPGN, could be modified to incorporate the time
step as their input. Comparison with this type of models would be redundant since Figure 7 already
demonstrates the best case performance for such models (when trained and tested with constant time
step).

Figure 8: Mean relative test errors of
models with and without relative node
positions.

Importance of relative positional information. We
test our model with and without relative node positions
that are encoded as the edge features in our MPNN on
grids with a different number of nodes. Smaller number
of nodes results in higher distance variability between
neighboring nodes (Figure 12) which should increase the
dependence of the model accuracy on the relative spatial
information. By removing spatial information from our
model, we recover GNODE. The models were tested on
the heat (Appendix B) and convection-diffusion equations.
A full description of the experiment is in Appendix D. The
results are shown in Figure 8.

Surprisingly, GNODE shows good results on the purely
diffusive heat equation. Nonetheless, the performance of
GNODE noticeably differs from that of our model that
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(a) (b)

Figure 9: a) Relative test errors for heat equation. b) True and learned system dynamics.

(a) (b)

Figure 10: a) Relative test errors for Burgers’ equations. b) True and learned system dynamics.

includes the spatial information. Furthermore, the performance difference almost doubles as the
number of nodes is decreased from 100% to 50%.

When applied to the convection-diffusion equation, GNODE fail to learn the dynamics irrespective
of the number of nodes. This can be explained by the presence of the convective term which
transports the field in a specific direction thus making positional information particularly important
for accurately predicting changes in the field.

3.3 OTHER DYNAMICAL SYSTEMS

The model was tested on two more dynamical systems in order to evaluate its ability to work with a
wider range of problems. We selected the heat equation and the Burgers’ equations for that purpose.
The heat equation is one of the simplest PDEs while the Burgers’ equations are more complex than
the convection-diffusion equation due to the presence of nonlinear convective terms. The increase
in the problems’ difficulty allows to trace the change in the model’s performance as we move from
simpler to more complex dynamics while keeping the number of model parameters fixed.

Heat equation. The heat equation describes the behavior of diffusive systems. The equation is
defined as ∂u

∂t = D∇2u, where u is the temperature field (see Appendix B for details). Figure 9
shows relative errors and model predictions for a random test case. The heat equation describes
simpler dynamics than the convection diffusion equation which allowed the model to achieve slightly
smaller test errors.

Burgers’ equations. The Burgers’ equations is a system of two coupled nonlinear PDEs. It
describes the behavior of dissipative systems with nonlinear propagation effects. The equations
are defined in a vector form as ∂u(x,y,t)

∂t = D∇2u(x, y, t)− u(x, y, t) · ∇u(x, y, t), where u is the
velocity vector field (see Appendix C for details). For visualization and error measurement purposes,
the velocity vector field is converted to a scalar field defined by the velocity magnitude at each node.
Figure 10 shows relative errors and model predictions for a random test case.

The Burgers’ equations describe more complex dynamics than the previous two cases which is
reflected in higher relative test errors. Visual comparison of the true and predicted states shows that
the model was able to achieve sufficient accuracy at approximating the unknown dynamics.
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4 CONCLUSION

We present a continuous-time model of dynamical systems whose behavior is governed by PDEs.
The model accurately recovers the system’s dynamics even when observation points are sparse and
the data is recorded at irregular time intervals. Comparison with discrete-time models reveals the
advantage of continuous-time models for datasets with larger time intervals between observations,
which is typical for real-world applications where measurements can be either tedious or costly, or
both. Discretization of the coordinate domain with the method of lines provides a general modeling
framework in which arbitrary surrogate functions can be used for approximating F̂ . The continuous-
time nature of the model enables the use of various time integrators ranging from the Euler method to
highly accurate adaptive methods. This allows to optimize the choice of the surrogate function and
time integration scheme depending on the structure of the data.
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A CONVECTION-DIFFUSION ABLATION STUDIES

The convection-diffusion equation is a partial differential equation that can be used to model a variety
of physical phenomena related to the transfer of particles, energy, and other physical quantities inside
a physical system. The transfer occurs due to two processes: convection and diffusion.

Training and testing data was obtained by solving the following initial-boundary value problem on
Ω = [0, 2π]× [0, 2π] with periodic boundary conditions:

∂u(x, y, t)

∂t
= D∇2u(x, y, t)− v · ∇u(x, y, t), (x, y) ∈ Ω, t ≥ 0,

u(x, 0, t) = u(x, 2π, t), x ∈ [0, 2π], t ≥ 0,

u(0, y, t) = u(2π, y, t), y ∈ [0, 2π], t ≥ 0,

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

(14)
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where the diffusion coefficient D was set to 0.25 and the velocity field v was set to (5.0, 2.0)T . The
initial conditions u0(x, y) were generated as follows:

ũ0(x, y) =

N∑
k,l=−N

λkl cos (kx+ ly) + γkl sin (kx+ ly) (15)

u0(x, y) =
ũ0(x, y)−min ũ0(x, y)

max ũ0(x, y)−min ũ0(x, y)
, (16)

where N = 4 and λkl, γkl ∼ N (0, 1). The generated data contains Ns simulations. Each simulation
contains values of u(x, y, t) at time points (t1, . . . , tM ) and locations (x1, . . . ,xN ), where xn =
(xn, yn). Numerical solutions that represent the true dynamics were obtained using the backward
Euler solver with the time step of 0.0002 seconds on a computational grid with 4100 nodes. Training
and testing data used in the following experiments is downsampled from these solutions. Quality of
the model’s predictions was evaluated using the relative error between the observed states y(ti) and
the estimated states û(ti):

Err =
‖y(ti)− û(ti)‖
‖y(ti)‖

. (17)

The model used for all following experiments contains a single graph layer. The mean was selected
as the aggregation function. Functions φ(1)(ui, ·) and γ(1)(ui, uj − ui,xj − xi) were represented by
multilayer perceptrons with 3 hidden layers and hyperbolic tangent activation functions. Input/output
sizes for φ(1) and γ(1) were set to 4/40 and 41/1 respectively. The number of hidden neurons was set
to 60. This gives approximately 20k trainable parameters.

We followed the implementation of the adjoint method and ODE solvers from torchdiffeq
Python package (Chen et al., 2018). In all following experiments, adaptive-order implicit Adams
solver was used with rtol and atol set to 1.0 · 10−7. Rprop (Riedmiller & Braun, 1992) optimizer
was used with learning rate set to 1.0 · 10−6 and batch size set to 24.

B HEAT EQUATION EXPERIMENT

Training and testing data was obtained by solving the following initial-boundary value problem on
Ω = (0, 1)× (0, 1) with Dirichlet boundary conditions:

∂u(x, y, t)

∂t
= D∇2u(x, y, t), (x, y) ∈ Ω, t ≥ 0,

u(x, y, t) = u0(x, y), (x, y) ∈ ∂Ω, t ≥ 0,

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

(18)

where ∂Ω denotes the boundaries of Ω and diffusion coefficient D was set to 0.2. The initial
conditions u0(x, y) were generated as follows:

ũ0(x, y) =

N∑
k,l=−N

λkl cos (kx+ ly) + γkl sin (kx+ ly) (19)

u0(x, y) =
ũ0(x, y)−min ũ0(x, y)

max ũ0(x, y)−min ũ0(x, y)
, (20)

whereN = 10 and λkl, γkl ∼ N (0, 1). The generated data containsNs simulations. Each simulation
contains values of u(x, y, t) at time points (t1, . . . , tM ) and locations (x1, . . . ,xN ), where xn =
(xn, yn). Numerical solutions that represent the true dynamics were obtained using the backward
Euler solver with the time step of 0.0001 seconds on a computational grid with 4100 nodes. Training
and testing data used in the experiments with the heat equation is downsampled from these solutions.

The model used for all experiments with the heat equation contains a single graph layer. The
mean was selected as the aggregation function. Functions φ(1)(ui, ·) and γ(1)(ui, uj − ui,xj − xi)
were represented by multilayer perceptrons with 3 hidden layers and hyperbolic tangent activation
functions. Input/output sizes for φ(1) and γ(1) were set to 4/40 and 41/1 respectively. The number of
hidden neurons was set to 60. This gives approximately 20k trainable parameters.

11
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We followed the implementation of the adjoint method and ODE solvers from torchdiffeq
Python package (Chen et al., 2018). In all following experiments, adaptive-order implicit Adams
solver was used with rtol and atol set to 1.0 · 10−7. Rprop (Riedmiller & Braun, 1992) optimizer
was used with learning rate set to 1.0 · 10−6 and batch size set to 24.

In the experiment, the training data contains 24 simulations on the time interval [0, 0.1] sec with time
step 0.005 sec resulting in 21 time point. The test data contains 50 simulations on the time interval
[0, 0.3] sec with the same time step. The number of observation points xi was set to 4100.

C BURGERS’ EQUATIONS EXPERIMENT

Training and testing data was obtained by solving the following initial-boundary value problem on
Ω = [0, 2π]× [0, 2π] with periodic boundary conditions:

∂u(x, y, t)

∂t
= D∇2u(x, y, t)− u(x, y, t) · ∇u(x, y, t), (x, y) ∈ Ω, t ≥ 0,

u(x, 0, t) = u(x, 2π, t), t ≥ 0,

u(0, y, t) = u(2π, y, t), t ≥ 0,

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω, t = 0,

(21)

where the diffusion coefficient D was set to 0.15. The unknown function is now vector-valued.
Therefore, the initial conditions u0(x, y) for each component were generated as follows:

ũ0(x, y) =

N∑
k,l=−N

λkl cos (kx+ ly) + γkl sin (kx+ ly) (22)

u0(x, y) = 6×
(

ũ0(x, y)−min ũ0(x, y)

max ũ0(x, y)−min ũ0(x, y)
− 0.5

)
, (23)

where N = 2 and λkl, γkl ∼ N (0, 1). The generated data contains Ns simulations. Each simulation
contains values of u(x, y, t) at time points (t1, . . . , tM ) and locations (x1, . . . ,xN ), where xn =
(xn, yn). Numerical solutions that represent the true dynamics were obtained using the backward
Euler solver with the time step of 0.0016 seconds on a computational grid with 5446 nodes. Training
and testing data used in the experiments with the heat equation is downsampled from these solutions.

The model used for all experiments with the Burgers’ equations contains a single graph layer. The
mean was selected as the aggregation function. Functions φ(1)(ui, ·) and γ(1)(ui, uj − ui,xj − xi)
were represented by multilayer perceptrons with 3 hidden layers and hyperbolic tangent activation
functions. Input/output sizes for φ(1) and γ(1) were set to 6/40 and 41/2 respectively. The number of
hidden neurons was set to 60. This gives approximately 20k trainable parameters.

We followed the implementation of the adjoint method and ODE solvers from torchdiffeq
Python package (Chen et al., 2018). In all following experiments, adaptive-order implicit Adams
solver was used with rtol and atol set to 1.0 · 10−7. Rprop (Riedmiller & Braun, 1992) optimizer
was used with learning rate set to 1.0 · 10−6 and batch size set to 24.

In the experiment, the training data contains 24 simulations on the time interval [0, 0.8] sec with time
step 0.04 sec resulting in 21 time point. The test data contains 50 simulations on the time interval
[0, 2.4] sec with the same time step. The number of observation points xi was set to 5000.

D RELATIVE POSITIONAL INFORMATION EXPERIMENT

Data generation, time intervals, models and hyper parameters for this experiment are described in
Appendix B for the heat equation, and Appendix A and Section 3.1 for the convection diffusion
equation.

For the heat equation, 100% of nodes corresponds to 1000 nodes while for the convection-diffusion
equation it corresponds to 3000 nodes. The number of training time points was set to 21 in both
cases.
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E EXTRA FIGURES

Figure 11: Differences between observations in a train case with 4 time points.

(a)

(b)

(c)

Figure 12: Relative node distances for graphs with different number of nodes. a) 1000 nodes, b) 750
nodes, c) 500 nodes.
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(a) (b)

Figure 13: Snapshots of train (a) and test (b) simulations for the heat equation.

(a) (b)

Figure 14: Snapshots of train (a) and test (b) simulations for the convection-diffusion equation.
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(a) (b)

Figure 15: Snapshots of train (a) and test (b) simulations for the Burgers’ equations.

F APPLYING TRAINED MODELS TO GRIDS OF DIFFERENT SIZES

Figure 2b shows grids with different numbers of nodes. The grid with 3000 nodes nodes contains
neighborhoods of similar shapes and sizes while neighborhoods in the grid with 750 nodes differ
in shapes and sizes over a much larger range. This suggests that models trained on the grid with
750 nodes would work reasonably well on grids with 1500 and 3000 nodes, but not vice versa. We
demonstrate this in the table below. The data and models used for this experiments are the same as in
Section 3.1.

Table 2: Mean relative errors of models trained on some grid and applied to other grids.

Grid size
Model 3000 1500 750

3000 0.013± 0.001 0.017± 0.001 0.043± 0.004
1500 0.050± 0.005 0.032± 0.001 0.036± 0.001
750 0.142± 0.034 0.086± 0.004 0.073± 0.004

The model trained on 3000 nodes generalizes poorly to coarser grids while the model trained on 750
grids performs fairly well on all grids. The model trained on 750 nodes performs better on test data
with 3000 and 1500 nodes than with 750 nodes. This is because the finer grid allows to make more
accurate predictions, therefore the error does not grow as large as for the coarse grid with 750 nodes.
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