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Abstract

Limited labeling budget severely impedes data-driven research, such as medical
analysis, remote sensing and population census, and active inference is a solu-
tion to this problem. Prior works utilizing independent sampling have achieved
improvements over uniform sampling, but its insufficient usage of available infor-
mation undermines its statistical efficiency. In this paper, we propose balanced
active inference, a novel algorithm that incorporates balancing constraints based on
model uncertainty utilizing the cube method for label selection. Under regularity
conditions, we establish its asymptotic properties and also prove that the statis-
tical efficiency of the proposed algorithm is higher than its alternatives. Various
numerical experiments, including regression and classification in both synthetic
setups and real data analysis, demonstrate that the proposed algorithm outperforms
its alternatives while guaranteeing nominal coverage. Our code is available at:
https://github.com/Uninfty/Balanced_Active_Inference

1 Introduction

Machine learning has revolutionized data-driven fields, yet its success still hinges on access to
high-quality labeled data, which is a critical component for reliable inference. This dependency on
labeled data is particularly pronounced in precision-sensitive fields such as medical diagnostics [1],
financial risk assessment [2], and remote sensing [3], where the accuracy of predictions directly affects
decision making. However, labeling remains a costly and time-consuming process, resulting in a
persistent gap between the abundance of unlabeled data and the limitation of annotated resources [4, 5].
Conventional methods, including random sampling and heuristic-based selection, lack systematic
prioritization of informative instances, leading to inefficient labeling [6, 7].

Active learning addresses the labeling bottleneck by iteratively selecting uncertain instances to
maximize label efficiency [7, 8, 9]. Extending it to statistical inference, active inference [10]
strategically queries labels where the model exhibits high uncertainty using independent sampling,
and makes statistical inference, including confidence intervals and hypothesis tests, based on the
acquired labels. Combined with prediction-powered inference [11], integrating model predictions
with limited labeled instances, active inference outperforms random sampling in terms of statistical
efficiency. Nonetheless, its reliance on independent sampling induces variance inflation and often
yields imbalanced datasets. These issues may degrade estimation performance [12], especially under
systematic bias or distribution shifts, ultimately limiting the practical utility of existing methods.
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Therefore, a critical challenge in active inference is to further improve statistical efficiency under a
constrained labeling budget. To address the inefficiency introduced by traditional active inference
strategies, we propose balanced active inference. This method strategically selects informative
instances while maintaining statistical representativeness of the population. The key idea is to enforce
structural balance in the selected samples so that they preserve key characteristics of the overall data
distribution, thereby improving statistical efficiency without increasing the labeling budget. Our
method builds upon the principle of covariate balancing, a classical technique in survey sampling and
causal inference that aligns the distribution of sampled instances with population-level summaries of
auxiliary variables [13, 14].

To enforce covariate balance in active instance selection, we implement balanced active inference
using the cube method [15, 16], a sampling algorithm that by consecutively updating selection
probabilities to satisfy certain balancing constraints. The cube method operates in two phases: a
flight phase, which iteratively adjusts inclusion probabilities to approximate target distributions, and
a landing phase, which finalizes the selection by resolving residual imbalances through constrained
optimization.

Compared with existing works, the proposed balanced active inference framework offers three ad-
vantages. First, we reconceptualize model uncertainty estimates as dynamic auxiliary variables,
enabling simultaneous optimization for informativeness and representativeness during instance selec-
tion. Second, we introduce a balancing condition that constrains the weighted sum of uncertainties
among the labeled instances to match the corresponding population total, effectively preventing
oversampling from specific uncertainty regions and promoting more stable estimates. Third, we
provide a theoretical guarantee that he proposed balanced active inference framework yields lower
asymptotic variance compared to conventional active inference methods.

Our contributions can be summarized as follows.

• Innovatively increase the statistical efficiency of active inference through balanced sampling.

• Incorporate model uncertainty as an auxiliary covariate in balanced sampling using a cube method.

• Provide closed-form expressions for the asymptotic variance, illustrating the variance reduction
property of the proposed method.

• Demonstrate the broad applicability and superiority of our method through extensive experiments
on diverse real-world and synthetic datasets.

Related work. (1) Label Inference. The challenge of drawing valid inferences from partially
labeled data has inspired diverse methodological developments. Traditional methods for missing
data, such as inverse probability weighting and multiple imputation [17, 18], established foundational
principles for handling label scarcity. Semi-supervised inference methods [19, 20] demonstrated
how unlabeled data could improve efficiency in parameter estimation, particularly under smoothness
assumptions. A pivotal advancement emerged with prediction-powered inference (PPI) [11], which
integrates machine learning predictions with a small labeled dataset to estimate population quantities.
By treating predictions as noisy proxies for missing labels, PPI constructs debiased estimators while
maintaining statistical validity. However, its reliance on uniform random sampling undermines its
statistical efficiency, as it fails to prioritize informative instances for labeling.

(2) Active Learning. Active learning addresses label efficiency by adaptively selecting instances
for annotation based on model uncertainty [7, 8, 9, 21]. While classical active learning focuses
on optimizing model training [22], recent work extends these principles to statistical inference.
Active inference [10] formalizes this paradigm, employing unequal-probability sampling to prioritize
uncertain instances. By combining actively acquired labels with model predictions via a GD (general
difference) estimator [23], it incorporates auxiliary information to correct for sampling bias and
improve estimation efficiency. Despite its advantages, the independent sampling mechanism inherent
to active inference introduces variance inflation, as independent label selections may yield imbalanced
instances that poorly represent critical regions of the data distribution.

(3) Balanced Sampling. The use of auxiliary information in finite population sampling is widely
recognized for enhancing estimation precision. Classical methods, such as stratification [12, 24]
and probability proportional-to-size sampling [25, 26], exploit known auxiliary variables to reduce
variance. More advanced balanced sampling techniques impose equality constraints, ensuring that
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weighted sample summations match population totals, guaranteeing significant variance reduction
[27, 28].

2 Problem setup

Suppose we have access to two datasets: a small labeled dataset Dl = {(Xj , Yj)}mj=1 with m
instances, independently and identically distributed (i.i.d.) from a distribution P = PX × PY |X ,
and a large unlabeled dataset Du = {Xi}ni=1 with n instances drawn i.i.d. from PX , where the
corresponding labels {Yi}ni=1 are unobserved. Denote X ⊆ Rd as the feature space, and Y ⊆ R as
the label space. The primary goal is to estimate the population mean of the unobserved labels in Du,
defined as

θ∗ = E(Y1). (1)

To leverage feature-label relationships, a predictive model f̂ : X → Y is trained on Dl. Additionally,
a labeling budget of nb allows the query of labels for a subset of Du. Let ξi ∈ {0, 1} denote an
indicator for whether the label Yi is acquired for the instance Xi ∈ Du with E[

∑n
i=1 ξi] = nb. The

challenge lies in designing an estimator that optimally combines the predictive power of f̂(·) with
strategically sampled labels to reduce the variance of an estimator of (1).

Active inference employs a machine learning model f̂(·) to predict labels for unobserved instances,
coupled with an adaptive sampling strategy that corrects potential prediction biases. The sampling
policy π : X → [0, 1] determines label acquisition probabilities through uncertainty quantification.
Specifically, let û(Xi) represent the model’s estimated uncertainty measure for instance i, typically
equal to |Yi − f̂(Xi)|. The sampling probabilities are then normalized as

π(Xi) =
nb

n
· û(Xi)

1
n

∑n
j=1 û(Xj)

, (2)

ensuring E(
∑n

i=1 ξi) = nb through scaling. This allocation prioritizes regions where the model
exhibits higher prediction uncertainty.

A GD estimator [23] of (1) for the inference,

θ̂ =
1

n

n∑
i=1

[
f̂(Xi) + (Yi − f̂(Xi))

ξi
π(Xi)

]
, (3)

which is unbiased regardless of the form of the predictive model f̂(·). Specifically, prediction-
powered inference [11] emerges as a special case when π(Xi) = nb/n, corresponding to uniform
random sampling.

3 Balanced active inference

Our framework advances active inference by integrating balanced sampling through the cube method,
which enforces structural constraints on auxiliary variables to improve statistical efficiency. Specifi-
cally, we impose the balancing condition

n∑
i=1

û(Xi)ξi
π(Xi)

=

n∑
i=1

û(Xi), (4)

where û(Xi) quantifies the uncertainty of the predictive model f̂(Xi). The balancing constraint (4)
ensures that the selected instances preserve the population structure of model uncertainties, mitigating
selection bias. To operationalize this, we employ the cube method, a two-phase sampling algorithm
that first iteratively adjusts inclusion probabilities to satisfy balancing constraints (flight phase), and
then resolves residual imbalances via a landing phase when exact balancing is infeasible [16]; see
Section S1 of Supplementary Material for an introduction to the cube method.

Once we obtain sampling indicators {ξi}ni=1 through the proposed balanced sampling strategy, we
still consider a GD estimator

θ̃ =
1

n

n∑
i=1

[
f̂(Xi) + (Yi − f̂(Xi))

ξi
π(Xi)

]
. (5)
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Different from (3), the sampling indicators associated with (5) satisfy the balancing constraint (4).

Remark 1. It may seem preferable to balance f̂(Xi) as well, since f̂(Xi) directly captures predictive
information about Yi. However, enforcing the balancing constraint on f̂(Xi) leads the estimator
in (5) to degenerate into the form n−1

∑n
i=1(Yiξi/πi), thereby forfeiting any benefits from active

sampling. In contrast, balancing on û(Xi) preserves the correction term in (5). If û(Xi) accurately
approximates the residual error, i.e., û(Xi) ≈ Yi − f̂(Xi), then the proposed estimator θ̃ ≈
n−1

∑n
i=1 Yi, thereby improving the statistical efficiency of the GD estimator.

Uncertainty measures To effectively quantify prediction uncertainty for different task types, we
define specific uncertainty measures tailored to regression and classification settings. For regression
problems, the uncertainty is captured by the absolute residual |Yi − f(Xi; θ̂)|. For classification
tasks, let p(Xi) = (p1(Xi), . . . , pK(Xi)) represent the predicted class probabilities. The uncertainty
measure is defined as u(Xi) =

K
K−1

(
1−maxj∈[K] pj(Xi)

)
, which attains its maximum when the

model is maximally uncertain and decreases to zero when the model exhibits high confidence in a
single class. The results of using other uncertainty quantification are provided in Section S6 in the
Supplementary Material.

Stabilization via mixed sampling As suggested by the traditional active inference literature [10],
direct implementation of π(Xi) ∝ û(Xi) risks instability when û(Xi) is misspecified. To safeguard
against variance inflation from near-zero π(Xi), we consider the following τ -mixed rule:

π(τ)(Xi) = τ · nbû(Xi)∑n
j=1 û(Xj)

+ (1− τ) · nb

n
, (6)

where τ ∈ [0, 1] controls the trade-off between uncertainty prioritization and robustness. Empiri-
cal analysis demonstrates that τ = 0.5 achieves favorable bias-variance trade-offs across diverse
scenarios, aligning with findings in [10]. This mixture ensures π(τ)(Xi) > 0 universally while
retaining adaptivity to û(Xi). The relevant sensitivity analysis of τ is discussed in Section S5 in the
Supplementary Material.

Implementation Algorithm 1 outlines our cube-based balanced active inference procedure. The
flight phase enforces the balancing constraint via iterative geometric projections, followed by a
landing phase that minimizes deviation from target inclusion probabilities. The integration of the
cube method with uncertainty-aware sampling distinguishes it from conventional balanced sampling,
as the auxiliary variable û(x) directly links to the statistical efficiency of the GD estimator. The
computational complexity of the cube method is O(n× p 2) [16], where n is the population size and
p the number of balancing covariates. In our implementation, the uncertainty measure u is used as
the only auxiliary covariate, and the complexity of balanced sampling reduces to O(n).

This synthesis of balanced sampling and active inference provides a unified framework for semi-
supervised mean estimation, where model predictions guide sampling, while balancing constraints
safeguard against distributional shifts—a key advancement over existing works.

Extension to M-estimation Consider a general M-estimation problem that, given a class of
functions f(Xi; θ),

θ∗ = argmin
θ

E [L(X1, Y1; θ)] ,

where L(X1, Y1; θ) is a loss function measuring the discrepancy between the true label Y1 and the
predicted label f(X1; θ), and θ is the parameter of interest. The goal is to estimate θ∗ using the labeled
data Dl and the unlabeled data Du. Suppose that there have been an estimation f(Xi; θ̂) trained on
the labeled data Dl and a uncertainty estimator û(Xi) trained on L(Xi, Yi; θ̂)− L(Xi, f(Xi; θ̂); θ̂),
a sampling scheme {π(Xi)}ni=1 is derived following (2) given a budget nb. We use the cube method
to generate an assignment {ξi}ni=1 such that the balancing constraint in (4) holds. The proposed
estimator for M-estimation is then defined as

θ̃ = argmin
θ

1

n

n∑
i=1

{
L(Xi, f(Xi; θ̂); θ) +

[
L(Xi, Yi; θ)− L(Xi, f(Xi; θ̂); θ)

] ξi
π(Xi)

}
. (7)
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Algorithm 1 Balanced active inference

1: Train a prediction model f̂(·) on labeled training data Dl = {(Xj , Yj)}mj=1.
2: Compute residuals ej = f̂(Xj)− Yj and train an uncertainty model û(Xj) ≈ |ej |.
3: Sample nb instances for labeling given the label budget b = E[nb/n].
4: for Xi ∈ Du do
5: Predict label Ŷi = f̂(Xi).
6: Predict uncertainty ûi = û(Xi).
7: Compute active probability pa,i =

b·ûi

ū , where ū = 1
n

∑
ûi and uniform probability pe,i = b.

8: Blend with uniform sampling: π(τ)
i = τpa,i + (1− τ)pe,i.

9: end for
10: Apply the cube method on {π(τ)

i }ni=1 to get {ξi}ni=1 satisfying the balancing constraint
n∑

i=1

ûiξi

π
(τ)
i

=

n∑
i=1

ûi.

11: Compute θ̃ via (5).

The first term in the curly braces is the loss function evaluated at the predicted label f(Xi; θ̂), while
the second term is the correction term that accounts for the difference between the loss function
evaluated at the true label Yi and the predicted label f(Xi; θ̂). When the prediction f(Xi; θ̂) is poor,
the correction helps to reduce the variance of the estimator by adaptively adjusting the inclusion
probabilities based on the uncertainty of the predictions. By leveraging the cube method, we ensure
that the selected instances are balanced with respect to the uncertainty estimates, leading to a more
efficient estimation process.

4 Theoretical properties

Before presenting the main theoretical results, we introduce some generality assumptions under
which our analysis is conducted.
Assumption 1. There exists a function f , such that

Yi = f(Xi) + εi,

where εi satisfies E(εi|Xi) = 0.

Assumption 2. Assume E(Y 2
1 + f(X1)

2 + f̂(X1)
2 + û(X1)

2) < ∞.

Assumption 3. There exists a positive constant c ∈ (0, 1), such that

P (ξi = 1 | X1, . . . , Xn) ∈ [c, 1− c].

Assumption 4. For any k ∈ N, we have with probability one,

lim
n→∞

sup
i1,...,ik

∣∣∣∣∣∣E
 k∏

j=1

(
ξij − πij

)
| X1, . . . , Xn

∣∣∣∣∣∣ = 0.

Assumption 5. The estimator f̂(Xi) and û(Xi) statisfy

E
{[

f(X1)− f̂(X1)− sgn
(
f(X1)− f̂(X1)

)
û(X1)

]2}
= o(1),

where sgn(x) = I{x > 0} − I{x < 0} with sgn(0) = 0.

Assumption 1 states that there exists an underlying regression function f such that the observed
outcomes Yi can be decomposed into a systematic component f (Xi) and a zero-mean noise term
εi, conditional on Xi. This is a standard assumption in supervised learning and nonparametric
regression, ensuring the model is well-specified in the conditional expectation sense. Assumption 2
imposes a moment condition that ensures the second moments of the response variable Yi, the true

5



regression function f (Xi), and its estimator f̂ (Xi) are all finite almost surely. Assumption 3 is
standard in the semi-supervised inference literature and has been adopted in works such as [29].
Assumption 4 follows a conjecture from [30], asserting that as n → ∞, the dependence among
inclusion indicators for any fixed subset of instances vanishes asymptotically. Assumption 5 states
that sgn(f(Xi)− f̂(Xi))û(Xi) is a good estimator of f(Xi)− f̂(Xi), and we impose this to facilitate
analytical tractability.
Theorem 1 (Asymptotic normality for mean estimation). Suppose Assumptions 1–5 hold,

(a) For the balanced active sampling scheme, the estimator θ̃ defined in (5) satisfies
√
n(θ̃ − θ∗)

d−→ N (0, V0),

where V0 = E(ε21/π1) + Var[f(X1)].

(b) For the traditional active inference with {ξi}ni=1 being independent, if E[f̂(X1)] = θ∗, the
estimator θ̂ in (3) satisfies:

√
n(θ̂ − θ∗)

d−→ N
(
0, V0 + E

[(
f(X1)− f̂(X1)

)2( 1

π(X1)
− 1

)])
.

The proof of Theorem 1 is provided in Appendix A. Theorem 1 establishes the asymptotic normality
of the balanced active inference estimator. Specifically, the asymptotic variance of the proposed
method consists of two components, including the scaled noise variance and the intrinsic variance of
f(X1). Notably, this variance is reduced compared to that of the classical active inference methods,
as the additional variability from estimation error in f̂(X1) and non-uniform sampling is mitigated
through the balancing constraint. Furthermore, the balanced active inference does not require the
predictive model f̂(·) to be unbiased, so it is more robust than existing active inference methods.
Remark 2. Assumption 5 is introduced to enable the derivation of an explicit expression for the
asymptotic variance of the proposed balanced active inference method, but it is not strictly necessary
in practice. We conjecture that the proposed estimator retains its variance reduction benefits even
when Assumption 5 is mildly violated. Empirical evidence in Section 5 supports our conjecture.

5 Experiments

In this section, we evaluate the performance of our proposed method through both numerical simula-
tions and real data applications. More numerical results about the real data analysis are shown in
Section S3 of the Supplementary Material.

Datasets We consider three synthetic experiments, including a linear setup, a nonlinear setup and
a Friedman setup [31]. Besides, we also consider real data applications, including six regression
datasets and two classification datasets. Regression datasets include Bike Sharing [32], Communities
and Crime [33], Concrete Compressive Strength [34], Energy Efficiency [35], Life Expectancy [36],
Superconductivity Data [37], and binary classification datasets including Credit Fraud Detection [38]
and Post-election Survey Research [39].

Baselines Our method (cube-active) is compared with three baseline methods across all exper-
iments. As introduced in Section 2 and Section 3, the baselines include: (i) a simple random
sampling labeling strategy using sample mean estimator θ̂ = 1

nb

∑nb

j=1 Yj with no involvement
of machine learning models (classical); (ii) prediction-powered inference with GD estimator
θ̂ = 1

n

∑n
i=1

[
f̂(Xi) + (Yi − f̂(Xi))

ξi
π

]
using a uniform random labeling strategy (uniform); and

(iii) active inference based on independent sampling strategies designed using machine learning
model predictions with GD estimator (traditional-active).

Evaluation metrics For the four methods, we first report their Root Mean Squared Error (RMSE),
which directly quantifies the deviation between point estimates and the true population mean. Addi-
tionally, leveraging the asymptotic normality of each method and its respective variance estimator,
we compute the confidence intervals at a fixed confidence level 0.9, and compare their empirical
coverage rates with respect to the true population mean. The variance estimators of each method are
shown in Section S2 of the Supplementary Material.
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Experiment setup For all the datasets, the reported results are based on T = 10 000 Monte Carlo
simulations. Following recommendations from the traditional active inference literature [10], we
set τ = 0.5 in (6) across all experiments. All predictive models are obtained by XGBoost [40].
All experiments were conducted on a machine equipped with an Intel® Xeon® Gold 5118 CPU @
2.30GHz, featuring 12 cores and 24 threads.

Protocol The numerical analysis proceeds as follows. First, we generate (X,Y ) pairs and randomly
split them into training/test sets. Then, an XGBoost regressor f̂(·) is trained on the training set,
and an uncertainty model û(·) is fitted using XGBoost on |f̂(Xi)− Yi| in Dl. The specific model
hyperparameters used for each dataset are detailed in Section S4 of the Supplementary Material. The
details of computational resources and efficiency are provided in Section S3 of the Supplementary Ma-
terial for completeness. The cube method is implemented by the R package balancesampling via
Python’s rpy2 interface [41]. Other experimental details are provided in Section S4 in Supplementary
Material.

5.1 Performance across diverse budgets

In this subsection, we evaluate the proposed method on three representative datasets under different
labeling budgets, covering both synthetic and real-world scenarios. Specifically, we consider (i) a
synthetic regression dataset generated by the nonlinear model

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε,

where the predictors x1, . . . , x10 are uniformly distributed on [0, 1] and ε follows a standard nor-
mal distribution; (ii) a real regression dataset (UCI Bike Sharing); and (iii) a real classification
dataset (Credit Fraud Detection) with severe class imbalance. These datasets together provide a
comprehensive test bed to evaluate the method’s performance across different task types and data
characteristics.

The results in Figure 1 reveal that the proposed cube-active method consistently outperforms alterna-
tives across all labeling budgets. It achieves the lowest RMSE and the narrowest 90% confidence
intervals, demonstrating superior predictive performance and sharper uncertainty quantification.
Moreover, the empirical coverage rates closely match the nominal level in all cases, highlighting the
validity and robustness of the inference procedure. Notably, even in the imbalanced classification
setting, our method maintains stable coverage and tight intervals, highlighting its effectiveness across
varying scenarios and labeling budgets.

5.2 Efficiency improvement

Table 1 presents the confidence interval widths (with empirical coverage rates in parentheses) for
all methods under a labeling budget of 0.1. Across the majority of datasets, the empirical coverage
rates remain closely aligned with the nominal confidence level of 0.9, confirming the validity of the
asymptotic normal property and the statistical reliability of the proposed estimator.

Our proposed cube-active method achieves substantial and consistent efficiency gains over all
baselines. Compared to traditional active inference based on independent sampling, cube-active
reduces confidence interval widths by approximately 25%–85% across both synthetic and real-world
datasets. When benchmarked against classical methods including uniform and simple random
sampling, the improvement remains significant, with at least 30% narrower intervals on all tasks.

These gains can be attributed to the enhanced covariate balancing induced by the cube sampling
design, which effectively controls estimator variance by aligning the labeled set with the underlying
feature distribution. As a result, cube-active achieves sharper inference and more precise uncertainty
quantification without sacrificing coverage validity. This improvement is particularly valuable in
low-budget regimes, where efficient use of labeled data is crucial for reliable statistical inference.

5.3 Label budget saving

Label budget saving refers to the percentage reduction in the required sample size by our method
compared to raditional-active inference under a given estimation accuracy. We establish a precision
benchmark using the confidence interval width of traditional-active inference at label budget 0.2.
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Figure 1: Performance comparison across three datasets with varying sample sizes. The top row
(synthetic Friedman dataset), middle row (UCI Bike Sharing dataset), and bottom row (Credit Card
Fraud Detection dataset) each display: (a) Root mean squared error (RMSE); (b) Average width
of the 90% confidence intervals, reflecting inference precision; and (c) Empirical coverage rate,
confirming interval estimation validity. The proposed cube-active sampling method consistently
achieves superior performance across these datasets.

Table 1: Comparison of confidence interval width with 0.1 label budget across methods on 11 datasets.
The bold values indicate the narrowest confidence intervals under valid coverage.

Dataset classical uniform traditional-active cube-active

Linear (synthetic) 0.3171 (0.8998) 0.1690 (0.9053) 0.1443 (0.8973) 0.0722 (0.8998)
Nonlinear (synthetic) 0.7786 (0.8931) 0.3626 (0.8923) 0.2963 (0.8967) 0.1370 (0.9063)
Friedman (synthetic) 0.6803 (0.8975) 0.3798 (0.9040) 0.3305 (0.8979) 0.1052 (0.9056)
Bike 19.2033 (0.9028) 2.8213 (0.8987) 2.2052 (0.8977) 0.3316 (0.8969)
Communities 0.0722 (0.8912) 0.0516 (0.8942) 0.0509 (0.8900) 0.0466 (0.8885)
Concrete 7.1217 (0.8970) 3.9367 (0.9024) 3.7415 (0.8999) 2.6406 (0.8943)
Credit-fraud-detection 0.0011 (0.8981) 0.0007 (0.8930) 0.0006 (0.8985) 0.0005 (0.8700)
Energy 5.1520 (0.8938) 2.0364 (0.8954) 1.8944 (0.9055) 0.4136 (0.8025)
Life 3.0828 (0.8967) 1.4509 (0.8963) 1.3050 (0.9036) 0.7265 (0.8959)
Post-election 0.0571 (0.8949) 0.0426 (0.9019) 0.0403 (0.8998) 0.0381 (0.8980)
Superconductor 3.2664 (0.9040) 1.6711 (0.9067) 1.5950 (0.9002) 1.1680 (0.9003)
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For each dataset, we determine the minimal label budget required by alternative methods to achieve
the most similar confidence interval width of the benchmark. Given our experimental grid of label
budgets (0.03˘0.45 with 0.01 increments), we employ linear interpolation between adjacent budget
points for precision matching. When a method’s precision at the minimal tested budget (0.03) exceeds
the benchmark, its required budget is conservatively denoted as “< 10%”. Conversely, if precision
remains below benchmark at the maximal budget (0.45), the required budget is cautiously reported as
“> 150%”.

Table 2 quantifies the label budget efficiency required by different methods to match the precision
benchmark of traditional-active at 0.2 label budget. Our method achieves substantial budget savings
across all datasets, requiring less label budget of the benchmark to attain equivalent precision. In
several cases, our method attains superior precision with less than 40% of the benchmark budget,
demonstrating exceptional statistical efficiency. Compared to uniform sampling, our method only
needs 5% or less labeled instances to achieve higher precision in real-world applications. These sav-
ings stem from our method’s optimal balanced sampling that simultaneously maximizes information
gain and minimizes distributional discrepancy. The method’s adaptive balancing mechanism proves
particularly effective in high-dimensional settings where conventional active learning methods exhibit
diminishing returns due to covariate mismatch. This systematic budget reduction, coupled with
maintained statistical validity, establishes cube-active as a practical solution for label-constrained
inference scenarios.

Table 2: Comparison of budget saving with the precision benchmarks across methods on 11 datasets.

Dataset classical uniform traditional-active cube-active

Linear(synthetic) >150% 127% 100% 37%
Nonlinear(synthetic) >150% 117% 100% 70%
Friedman(synthetic) >150% 123% 100% 33%
Bike >150% 147% 100% 63%
Communities 150% 103% 100% 90%
Concrete >150% 110% 100% 67%
Credit-fraud-detection >150% 110% 100% 63%
Energy >150% 113% 100% <10%
Life >150% 123% 100% 43%
Post-election >150% 107% 100% 93%
Superconductor >150% 110% 100% 63%

5.4 Performance of M-estimation problems

Figure 2 summarizes the statistical performance of our method in estimating linear regression coeffi-
cients for selected variables across the Linear and Bike Sharing datasets. Owing to the complexity of
the underlying estimation procedures, deriving closed-form variance expressions for the estimators is
intractable. Instead, we report the RMSE under different settings, which serves as a robust indicator
of statistical efficiency and allows for clear performance comparisons across methods.

The results in Figure 2 consistently highlight the advantages of the proposed cube-active sampling
strategy. For both the synthetic linear dataset and the real-world Bike Sharing dataset, cube-active
sampling yields substantially lower RMSE values compared to all baseline methods, including
uniform sampling, classical inference, and traditional active inference. These improvements illustrate
the method’s ability to provide more accurate coefficient estimation, thereby enhancing the overall
statistical efficiency of the inference procedure.

6 Discussion

In this paper, we propose balanced active inference and demonstrate its superior statistical efficiency
theoretically and numerically in various synthetic setups and real data analysis; see Section S8 and S9
of Supplementary Material for the limitations and societal impacts. A natural direction for future
research is to explore the extension of this method into a sequential active inference framework.

Transitioning balanced active inference to a sequential setting introduces intriguing yet challenging
methodological considerations. The principal challenge lies in the dynamic balancing requirement.
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Figure 2: Root mean squared error (RMSE) of the least squares estimator in linear regression across
two datasets with varying sample sizes. (a) the parameter of x1 in synthetic Linear dataset ; (b)
the parameter of temperature variable in Bike Sharing dataset. The proposed cube-active sampling
method consistently achieves superior performance across these datasets.

In contrast to the batch scenario, where auxiliary variables are fixed, sequential balanced sampling
involves continuously updating auxiliary variables when new instances become available. An adaptive
implementation of the cube method, or a similar balanced sampling procedure, needs to integrate
seamlessly with evolving model predictions and uncertainties in a computationally efficient manner.
This dynamical adjustment could further reduce variance and improve representativeness, allowing
for more precise allocation of labeling resources.

However, theoretical justification for such sequentially balanced sampling remains open. Extending
existing results, such as martingale-based analyses that underpin sequential active inference, to
balanced sampling contexts is not straightforward due to dependencies and complexity introduced
by continually updated balancing constraints. Establishing rigorous statistical properties, such
as unbiasedness, variance reduction, and asymptotic normality, within this sequential balanced
framework will likely require novel analytical techniques or approximations.

Empirically, preliminary exploration through synthetic experiments and real data applications would
be a valuable first step toward understanding sequential balanced active inference. Future studies
should investigate various update strategies, examining how frequently and substantially the balancing
conditions should be adjusted. Developing heuristics and computationally efficient algorithms capable
of handling online updates of the balancing constraints would substantially advance the feasibility
of sequential balanced active inference. Such advancements have great potential to further enhance
labeling efficiency in practical applications, where data arrives continuously, and timely decision-
making is critical.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The formulation of the proposed balanced active inference can be found in
Section 3. Theoretical properties can be found in Section 4, and numerical results can be
found in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our proposed method are discussed in Section S8 of the
Supplementary material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All the assumptions can be found in Section 4, and all the detailed proofs can
be found in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed descriptions and formulations required to reproduce the
main experimental results, including information on the model, datasets, baselines, and
evaluation metrics. Additionally, we present the implementation details in Section S4 of
Supplementary Material to offer clearer implementation guidance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets utilized in this study are publicly accessible via the cited refer-
ences, and the implementation code is available upon request.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The main settings can be found in Section 5, and detailed settings and additional
experiments are presented in Section S4 and S3 of Supplementary Material to provide further
insights into the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The coverage rates of the proposed estimator and its alternatives are reported
in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Compute resources are clearly stated in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed the NeurIPS Code of Ethics and have ensured that
all aspects of our research fully comply with its guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The societal impacts of our proposed method are discussed in Section S9 of
the supplementary material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We believe that our work poses no foreseeable risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets used in our experiments are properly cited, and source links are
provided for reference.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our work does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer:[NA]
Justification: The core method development in this work does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Proof

In this section, we provide the detailed proof of Theorem 1. Before the formal proof, some technical
lemmas are presented.

A.1 Technical Lemmas

Lemma 1 (Proposition 1 in [30]). Suppose Assumptions 2 and 3 hold, and a cube method is conducted
to balance auxiliary information {Xi : i = 1, . . . , n} under a sampling scheme {πi : 1 = 1, . . . , n},
then

1

n

n∑
i=1

Xiξi
πi

− 1

n

n∑
i=1

Xi = op

(
q√
n

)
,

where ξi ∈ {0, 1} indicates if the i-th instance is selected.

Lemma 2 (Lemma C.2 in [30]). Let f and g be two functions such that for fi = f (δi(1), δi(0), Xi)
and gi = g (δi(1), δi(0), Xi) we have E

(
f2
i + g2i

)
< ∞ and E [fi | Xi] = E [gi | Xi] = 0.

If Assumptions 2, 3 and 4 hold. Then, conditional on (Xi)i≥1,

1√
n

n∑
i=1

fi + giDi
d−→ N (0, V0)

with V0 = E
[
f2
1 +

(
2g1f1 + g21

)
π1

]
.

Lemma 3 (Theorem 2 in [42]). Let Un, Vn be two sequences of random variables and Bn be a
σ-algebra. Assume that
(1) there exists σ1n > 0 such that σ−1

1n Vn → N(0, 1) in distribution as n → ∞, and Vn is Bn

measurable;
(2) E {Un | Bn} = 0 and Var (Un | Bn) = σ2

2n such that

sup
t

∣∣P (σ−1
2n Un ≤ t | Bn

)
− Φ(t)

∣∣ = op(1),

where Φ(t) is the cumulative distribution function of the standard normal random variable;
(3) γ2

n = σ2
1n/σ

2
2n → γ2 in probability as n → ∞. Then

Un + Vn√
σ2
1n + σ2

2n

→ N (0, 1)

in distribution as n → ∞.

A.2 Proof of Theorem 1

By definition, we have

θ̃ − θ∗ =
1

n

n∑
i=1

[
f̂(Xi) +

(
Yi − f̂(Xi)

) ξi
π(Xi)

]
− EY1

=
1

n

n∑
i=1

[
f̂(Xi)− f(Xi) +

(
Yi − f̂(Xi)

) ξi
π(Xi)

]
+

1

n

n∑
i=1

(f(Xi)− EY ) . (8)
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For the first term in (8), we have

1

n

n∑
i=1

[
f̂(Xi)− f(Xi) +

(
Yi − f̂(Xi)

) ξi
π(Xi)

]

=
1

n

n∑
i=1

[
f̂(Xi)− f(Xi) + sgn

(
f̂(Xi)− f(Xi)

)
û(Xi)

+
(
fi − f̂(Xi) + εi − sgn

(
f̂(Xi)− f(Xi)

)
û(Xi)

) ξi
π(Xi)

]
− 1

n

n∑
i=1

û(Xi) +
1

n

n∑
i=1

û(Xi)
ξi

π(Xi)

=
1

n

n∑
i=1

{[
f̂(Xi)− f(Xi) + sgn

(
f̂(Xi)− f(Xi)

)
û(Xi)

](
1− ξi

π(Xi)

)}
(9)

+
1

n

n∑
i=1

εi
ξi

π(Xi)
+ op

(
1√
n

)
.

Denoting
[
f̂(Xi)− f(Xi) + sgn

(
f̂(Xi)− f(Xi)

)
û(Xi)

] (
1− ξi

π(Xi)

)
by Ai and applying

Chebyshev’s inequality on (9), we have

P

(∣∣∣∣∣ 1n
n∑

i=1

Ai − EAi

∣∣∣∣∣ ≥ 1√
n

)
≤ 1

n
Var

(
n∑

i=1

Ai

)
. (10)

Further, we have Var (
∑n

i=1 Ai) =
∑n

i=1 Var(Ai) +
∑

i ̸=j Cov(Ai, Aj). For Var(Ai), we have

Var(Ai) =E

[(
f̂(Xi)− f(Xi) + sgn

(
f̂(Xi)− f(Xi)

)
û(Xi)

)2(
1− ξi

π(Xi)

)2
]

− E
{[

f̂(Xi)− f(Xi) + sgn
(
f̂(Xi)− f(Xi)

)
û(Xi)

](
1− ξi

π(Xi)

)}2

.

Since π(Xi) is bounded from c to 1− c, there exists a positive constant C such that

E

[(
f̂(Xi)− f(Xi) + sgn

(
f̂(Xi)− f(Xi)

)
û(Xi)

)2(
1− ξi

π(Xi)

)2
]

≤C · E
[(

f̂(Xi)− f(Xi) + sgn
(
f̂(Xi)− f(Xi)

)
û(Xi)

)2]
.

Further, by the assumption that E
[
f(Xi)− f̂(Xi)− sgn

(
f̂(Xi)− f(Xi)

)
û(Xi)

]2
= op(1), we

have Var(Ai) = op(1). For Cov(Ai, Aj) = E [AiAj ]− E [Ai]E [Aj ], first,

E [AiAj ]

=E
[(

f̂(Xi)− f(Xi) + sgn
(
f̂(Xi)− f(Xi)

)
û(Xi)

) ξi − π(Xi)

π(Xi)(
f̂(Xj)− f(Xj) + sgn

(
f̂(Xi)− f(Xi)

)
û(Xj)

) ξj − π(Xj)

π(Xj)

]

=E
{ f̂(Xi)− f(Xi) + sgn

(
f̂(Xi)− f(Xi)

)
û(Xi)

π(Xi)

·
f̂(Xj)− f(Xj) + sgn

(
f̂(Xi)− f(Xi)

)
û(Xj)

π(Xj)

· E
[
(ξi − π(Xi)) (ξj − π(Xj))

∣∣∣Xi, Xj

]}
.
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By Assumption 4, we have with probability 1, limn→∞ E
[
(ξi − π(Xi)) (ξj − π(Xj))

∣∣∣Xi, Xj

]
= 0.

Thus, with probability 1,limn→∞ E [AiAj ] = 0. And by a similar argument, we have E [Ai] =

E
[(

f̂(Xi)− f(Xi) + sgn
(
f̂(Xi)− f(Xi)

)
û(Xi)

)
ξi−π(Xi)
π(Xi)

]
= 0 as n → ∞. Thus, it can

be concluded that, with probability 1,limn→∞
∑

i̸=j Cov(Ai, Aj) = 0. Therefore, we have
Var (

∑n
i=1 Ai) = op(1), then (10) implies that

P

(∣∣∣∣∣ 1n
n∑

i=1

Ai − EAi

∣∣∣∣∣ ≥ 1√
n

)
= op(1).

Thus we have

1

n

n∑
i=1

{[
f̂(Xi)− f(Xi) + sgn

(
f̂(Xi)− f(Xi)

)
û(Xi)

](
1− ξi

π(Xi)

)}
= op(

1√
n
).

By Lemma 2, we have conditional on X1, X2, . . . , Xn

1√
n

n∑
i=1

εi
ξi

π(Xi)

d−→ N
(
0,E

(
ε2i
πi

))
.

Thus, applying Lemma 3, we have

√
n
(
Ỹ − EY

)
d−→ N

(
0,E

(
ε21
π1

)
+Var [f(X1)]

)
.

If a Poisson sampling is used, by a standard CLT, we have
√
n(θ̂ − θ∗)

d−→ N (0, V1),

where

V1 =Var

(
f̂ (X1) +

(
Y1 − f̂ (X1)

) ξ1
π (X1)

)
=Var

[
E
(
f̂ (X1) +

(
Y1 − f̂ (X1)

) ξ1
π (X1)

∣∣X1

)]
+ E

[
Var

(
f̂ (X1) +

(
Y1 − f̂ (X1)

) ξ1
π (X1)

∣∣X1

)]
=Var(Y1) + E

[(
Y1 − f̂ (X1)

)2 1− π(X1)

π (X1)

]
=Var(f1) + E

(
ε21
π1

)
+ E

[(
f(x)− f̂(x)

)2( 1

π(x)
− 1

)]
.

Then, the proof is completed.
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