
Published as a conference paper at ICLR 2025

QMP: Q-SWITCH MIXTURE OF POLICIES
FOR MULTI-TASK BEHAVIOR SHARING

Grace Zhang1∗ Ayush Jain1∗ Injune Hwang2 Shao-Hua Sun3 Joseph J. Lim2

1University of Southern California 2KAIST 3National Taiwan University

ABSTRACT

Multi-task reinforcement learning (MTRL) aims to learn several tasks simulta-
neously for better sample efficiency than learning them separately. Traditional
methods achieve this by sharing parameters or relabeled data between tasks. In
this work, we introduce a new framework for sharing behavioral policies across
tasks, which can be used in addition to existing MTRL methods. The key idea
is to improve each task’s off-policy data collection by employing behaviors from
other task policies. Selectively sharing helpful behaviors acquired in one task to
collect training data for another task can lead to higher-quality trajectories, leading
to more sample-efficient MTRL. Thus, we introduce a simple and principled frame-
work called Q-switch mixture of policies (QMP) that selectively shares behavior
between different task policies by using the task’s Q-function to evaluate and
select useful shareable behaviors. We theoretically analyze how QMP improves
the sample efficiency of the underlying RL algorithm. Our experiments show
that QMP’s behavioral policy sharing provides complementary gains over many
popular MTRL algorithms and outperforms alternative ways to share behaviors
in various manipulation, locomotion, and navigation environments. Videos are
available at https://qmp-mtrl.github.io/.

1 INTRODUCTION

Grasping
Drawer
Handle

Grasping
Door

Handle

𝜋!"#$%"	'(%)

𝜋!"#$%"	*+,-%

𝜋!,,"	'(%)

𝜋!,,"	*+,-%

Selective Behavior Sharing for Policy Training

Approaching
Tabletop

Figure 1: We propose a sample-efficient MTRL
framework that selectively shares behaviors by act-
ing with other task policies for data collection. For
example, Drawer Open and Drawer Close
can share behaviors performed for grasping drawer
handle, while Drawer Open and Door Close
share behaviors for approaching the tabletop.

In multi-task reinforcement learning, each task
can benefit from the behaviors learned in others.
Consider a robot learning four tasks simultane-
ously: opening and closing a drawer and a door
on a tabletop, as illustrated in Figure 1. A be-
havior is defined as the policy of how the robot
acts in a certain state, with the optimal behavior
representing the best response, such as opening
its gripper (action) when near the drawer handle
(state) in the drawer-open task. As the robot
learns, such behaviors are often shareable be-
tween tasks. For instance, both drawer-open and
drawer-close tasks require behaviors for grasp-
ing the handle. Consequently, as the robot re-
fines its ability to grasp the drawer handle in one
task, it can incorporate these behaviors into the
other, reducing the need to explore the entire
action space randomly. Following this intuition, can we develop a general framework that leverages
such behavior sharing across tasks to accelerate overall learning?

Most multi-task reinforcement learning (MTRL) methods share task information via policy parame-
ters (Vithayathil Varghese & Mahmoud, 2020) or data relabeling (Kaelbling, 1993). We propose a
new framework for MTRL: share behaviors between tasks to improve data collection by employing
potentially useful policies from other tasks for more informative training data. This approach offers a
simple, general, and sample-efficient approach that complements existing off-policy MTRL methods.

∗Equal contribution. Correspondence to: {gracez, ayushj}@usc.edu

1

https://qmp-mtrl.github.io/

Published as a conference paper at ICLR 2025

Prior works (Teh et al., 2017; Ghosh et al., 2018) share behaviors between task policies uniformly
by regularizing to one shared distilled policy (Rusu et al., 2015). This introduces a bias towards the
mean behavior and causes negative interference when tasks might require differing optimal behaviors
from the same state. In contrast, reusing other policies for data collection does not introduce any bias.

We propose selective behavioral policy sharing as a novel and general mechanism to improve sample
efficiency in any MTRL architecture. Our key insight is that behaviors being acquired in other tasks
can help when appropriately selected and shared, as shown in human learners (Tomov et al., 2021). In
the Drawer Open task, while learning to approach the drawer handle, the robot should share behaviors
between the Drawer policies, but avoid Door policies which would lead it to the wrong object.

The key question with selective behavioral policy sharing is how to identify helpful behaviors from
other policies in a principled way. We propose a principled way of selecting shared behaviors: a
Q-switch Mixture of Policies (QMP). At each state, one policy from a mixture of all policies is
selected to collect data. The Q-switch makes this selection based on which policy best optimizes the
current task’s soft Q-value because that is an estimate of the most helpful behavior for the current task.
We prove that this selection mechanism preserves the convergence guarantees of the underlying RL
algorithm and potentially improves sample efficiency. Crucially, QMP uses other tasks’ policies only
for data collection, allowing policy training to remain unbiased under any off-policy RL algorithm.

Our primary contribution is introducing behavioral policy sharing for MTRL as a novel avenue
of information sharing between tasks and addressing the problem of principled selective behavior
sharing. Our proposed framework, Q-switch Mixture of Policies (QMP), can effectively identify
shareable behaviors between tasks and incorporates them to gather more informative training data for
off-policy RL. We prove that QMP’s behavior sharing not only preserves the policy convergence of
the underlying RL algorithm, but is at least as sample efficient. We demonstrate that QMP provides
complementary gains to other forms of MTRL in a range of manipulation, locomotion, and navigation
tasks and performs well over diverse task families when compared to other behavior sharing methods.

2 RELATED WORK

Information Sharing in Multi-Task RL. There are multiple, mostly complementary ways to share
information in MTRL, including sharing data, sharing parameters or representations, and sharing
behaviors. In offline MTRL, prior works selectively share data between tasks (Yu et al., 2021; 2022).
Sharing parameters across policies can speed up MTRL through shared representations (Xu et al.,
2020; D’Eramo et al., 2020; Yang et al., 2020; Sodhani et al., 2021; Misra et al., 2016; Perez et al.,
2018; Devin et al., 2017; Vuorio et al., 2019; Rosenbaum et al., 2019; Yu et al., 2023; Cheng et al.,
2023; Hong et al., 2022) and can be easily combined with other types of information sharing. Most
similar to our work, Teh et al. (2017) and Ghosh et al. (2018) share behaviors between multiple
policies through policy distillation and regularization. Vuong et al. (2019) identify which states
between tasks share optimal behavior and regularize to each other there. These works share behaviors
through regularization, biasing the policy objective when tasks have differing optimal behaviors. In
contrast, our work selectively shares behavioral policies without modifying the training objective.

Multi-Task Learning for Diverse Task Families. Multi-task learning in diverse task families is
susceptible to negative transfer between dissimilar tasks, hindering training. Prior works combat
this by measuring task relatedness through validation loss on tasks (Liu et al., 2022; Ackermann
et al., 2021) or influence of one task to another (Fifty et al., 2021; Standley et al., 2020) to find task
groupings for training. Other works focus on the challenge of multi-objective optimization (Sener &
Koltun, 2018; Hessel et al., 2019; Yu et al., 2020; Liu et al., 2021; Schaul et al., 2019; Chen et al.,
2018; Kurin et al., 2022). Similar to these works, we identify that prior behavior-sharing MTRL
approaches are susceptible to negative transfer. However, we avoid the challenge of negative transfer
entirely by selectively sharing behaviors only during off-policy data collection.

Exploration in Multi-Task Reinforcement Learning. Our approach of modifying the behavioral
policy to leverage shared task structures can be seen as a form of MTRL exploration, which we
discuss further in Appendix Section 21c. Bangaru et al. (2016) encourage agents to increase their
state coverage by providing an exploration bonus. Zhang & Wang (2021) study sharing information
between agents to encourage exploration under tabular MDPs. Kalashnikov et al. (2021b) directly
leverage data from policies of other specialized tasks (like grasping a ball) for their general task

2

Published as a conference paper at ICLR 2025

variant (like grasping an object). In contrast to these approaches, we do not require a pre-defined task
similarity measure or exploration bonus; we demonstrate in Section 6 that QMP works across many
tasks and domains without these additional measures. Skill learning can be seen as behavior sharing
in a single task setting such as learning options for exploration or heirarchical RL (Machado et al.,
2017; Jinnai et al., 2019b;a; Hansen et al., 2019; Riemer et al., 2018). We also discuss the difference
to single-task exploration in Appendix Section G.3.

Using Q-functions as filters. Yu et al. (2021) uses Q-functions to filter which data should be shared
between tasks in a multi-task setting. In the imitation learning setting, Nair et al. (2018) and Sasaki &
Yamashina (2020) use Q-functions to filter out low-quality demonstrations, so they are not used for
training. In both cases, the Q-function is used to evaluate some data that can be used for training.
Zhang et al. (2022) reuses pre-trained policies to learn a new task, using a Q-function as a filter to
choose which pre-trained policies to regularize to as guidance. In contrast to prior works, our method
uses a Q-function to evaluate different task policies to gather training data.

3 PROBLEM FORMULATION

Multi-task reinforcement learning (MTRL) addresses sequential decision-making tasks, where an
agent learns a policy to act optimally in an environment (Kaelbling et al., 1996; Wilson et al., 2007).
Therefore, in addition to typical multi-task learning techniques, MTRL can also share behaviors,
i.e., actions, to improve sample efficiency. However, current approaches share behaviors uniformly
(Section 2), which assumes that different tasks’ behaviors do not conflict. To address this limitation,
we seek to develop a selective behavior-sharing method that can be applied in more general task
families for sample-efficient MTRL.

Multi-Task RL with Behavior Sharing. We aim to simultaneously learn a set {T1, . . . ,TN} of
N tasks. Each task Ti is a Markov Decision Process (MDP) defined by state space S, action space
A, transition probabilities Ti, reward functionsRi, initial state distribution ρi, and discount factor
γ ∈ [0, 1]. While we use S to denote shared state spaces for simplicity, our formulation extends to
tasks with different state spaces as it complements policy architectures that share state encoders. The
agent learns a set of N policies {π1, . . . , πN}, where each policy πi(a|s) represents the behavior on
task Ti. The objective is to maximize the average expected return over all tasks,

{π∗
1 , . . . , π

∗
N} = max

{π1,...,πN}

1

N

N∑
i=1

[
Eat∼πi

∞∑
t=0

γtRi(st, at)

]
.

Unlike prior works, our tasks can exhibit conflicting optimal behaviors: for any s, π∗
i (a|s) may

differ from π∗
j (a|s). Thus, prior methods that bias policy learning objectives like direct policy

sharing (Kalashnikov et al., 2021a) or behavior regularization (Teh et al., 2017) would be suboptimal.

4 APPROACH

To improve the sample efficiency of multi-task RL, we propose a framework that selectively incorpo-
rates behaviors from policies of other tasks without introducing bias into the RL objective for the
current task. We achieve this by using a mixture of all policies as the behavioral policy for the current
task, thereby modifying only its off-policy training data. However, naively mixing other policies into
the current task’s behavioral policy does not necessarily improve its sample efficiency. To address
this, we derive a specific definition of this mixture, named Q-switch Mixture of Policies (QMP), that
selects a policy based on the current task’s Q-function (see Figure 2 and Algorithm 1) and prove that
QMP guarantees greater than or equal sample efficiency than using the current task’s policy alone.

4.1 MULTI-TASK BEHAVIOR SHARING VIA OFF-POLICY DATA COLLECTION

MTRL methods like Teh et al. (2017) use regularization to a common average policy to enforce task
policies to share behaviors. However, this introduces bias to each policy’s RL objective, leading to
suboptimal actions in states where tasks require different actions. To address this, we propose using a
mixture of policies for off-policy data collection as the means of behavior-sharing. At each state in
any given task, one of the task policies is selected to gather training data as the current behavioral
policy. This approach is compatible with any off-policy RL algorithm (Watkins & Dayan, 1992)

3

Published as a conference paper at ICLR 2025

Behavior Proposals Mixture of Policies

! ! !

!!

QMP

#1	~	!1(' |))

#2	~	!2(' |))

#3	~	!3(' |))

"1

Q-switch

Best Behavior

Train !! & "1

Gather Data
Replay
Buffer 1

Task 1
Task 2

Task 3

Q-switch

argmax! &1((, *#)

Figure 2: Our method (QMP) shares behavior between task policies in the data collection phase
using a mixture of these policies. For example, in Task 1, each task policy proposes an action aj .
The task-specific Q-switch evaluates each Q1(s, aj) and selects the best scored policy to gather
reward-labeled data to train Q1 and π1. Thus, Task 1 will be boosted by incorporating high-reward
shareable behaviors into π1 and improving Q1 for subsequent Q-switch evaluations.

because the environment rewards help determine the best actions from the collected data. However,
an effective mixture policy must choose the behavioral policies in a selective and principled way.
Definition 4.1 (Mixture of Policies). For each task Ti, the mixture policy πmix

i (a | s) is defined
as πmix

i (a | s) = π
fi

(
s,π1,...,πN

)(a | s), where fi(s, π1, . . . , πN) : S × ΠN → {1, . . . , N} is a

mixture-switch function that selects one of the policies π1, . . . , πN based on the current state s.

Our intuition of policy mixture shares inspiration with hierarchical RL (Çelik et al., 2021; Daniel
et al., 2016; End et al., 2017; Goyal et al., 2019) where a mixture of options is learned according
to the downstream task(s). However, a key difference in an MTRL mixture is that each policy is
optimized for its own specific task and not designed to fit the task where the mixture is employed.

4.2 Q-SWITCH MIXTURE OF POLICIES (QMP)

We aim to derive a principled mixture-switch function fi such that the mixture policy πmix
i selectively

incorporates behaviors from other policies while being guaranteed to be no worse than the current
task’s policy πi. We recall the generalized policy iteration procedure (Sutton & Barto, 2018)
underlying single-task SAC (Haarnoja et al., 2018): policy evaluation learns Q by minimizing the
bellman error on the collected data, and policy improvement follows Q by minimizing the KL
divergence between the new policy and the exponential of the current Q-function, Qπold

:

πnew = arg min
π′∈Π

DKL

π′(· | st)
∥∥∥∥∥exp

(
1
αQ

πold
(st, ·)

)
Zπold(st)

 (1)

In practice, the gradient updates in SAC are gradual and do not instantly achieve this optimization in
Eq. 1, leaving a suboptimality gap to catch up to the Q-function. Thus, a mixture policy πmix

i that
selects the best policy from a set of all given policy candidates, including the current policy, ensures
that πmix

i is at least as good as πi for the current state s, while potentially being a better optimizer of
Eq. 1 due to shareable behaviors from the other task policies:

min
π′∈{π1,...,πN}

DKL

(
π′(· | s)

∥∥∥∥∥exp(1
αQ

πi(s, ·))
Zπi(s)

)
≤ DKL

(
πi(· | st)

∥∥∥∥∥exp(1
αQ

πi(s, ·))
Zπi(s)

)
(2)

Simplifying the expression on the left results in the following definition (derivation in Appendix B).
Definition 4.2 (Q-switch Mixture of Policies: QMP). For a task Ti and available candidate policies
{π1, ..., πN}, the QMP πmix

i (a | s) selects a policy according to:

πmix
i = arg max

π′∈{π1,...,πN}
Ea∼π′(·|s) [Q

πi(s, a)] + αH [π′(· | s)] (3)

4

Published as a conference paper at ICLR 2025

Algorithm 1 Q-switch Mixture of Policies (QMP)

Input: Task Set {T1, . . . ,TN}
Initialize {πi}Ni=1, {Qi}Ni=1, Data buffers {Di}Ni=1
for each epoch do

for i = 1 to N do
while Task Ti episode not terminated do

Observe state s
Compute πmix

i as in Eq. 3.
Take action proposal from a ∼ πmix

i
Di ←Di ∪ (s, a, ri, s

′)
end while

end for
for i = 1 to N do

Update πi, Qi using Di with SAC
end for

end for
Output: Trained policies {πi}Ni=1

Algorithm 1 shows that QMP can be
plugged into any MTRL framework, mak-
ing it complementary with various MTRL
frameworks like parameter-sharing and data
relabeling (see Section 7.1). In practice, we
estimate the expectation in Eq. 3 by evaluat-
ing the Q-value for the mean action of each
task policy’s distribution π′(·|s) ignoring
the entropy term. We do not find any empir-
ical difference when using a sampled esti-
mate of the expectation (see Appendix G.2)
or including the entropy term, as the Q-value
is the primary distinguishing factor between
policies. In terms of compute, sampling
from QMP’s πmix

i (a|s) does require more
policy and Q-function evaluations. However,
evaluations are parallelized and impact run-
time negligibly, as shown in Appendix G.4.

While πmix
i can mistakenly choose a poor

policy due to estimation error in Qπi , this is identical to Q-learning or SAC, where the Q-function
would be inaccurate at less-seen states. In both Q-learning and QMP, this is corrected with online
interactions where the Q-function is trained to be more accurate in a subsequent iteration. Furthermore,
πmix
i actually better maximizes Qπi than πi, which is the objective under generalized policy iteration.

Note that QMP does not exacerbate the problem of overestimation because the soft policy evaluation
step stays the same, i.e., it uses πi and not πmix

i .

5 WHY QMP WORKS: THEORY AND DIDACTIC EXAMPLE

5.1 QMP: CONVERGENCE AND IMPROVEMENT GUARANTEES

QMP performs simultaneous MTRL by collecting data using a Q-switch guided mixture of poli-
cies πmix

i . In Appendix C, we prove that QMP with underlying RL algorithm Soft-Actor Critic
(SAC) (Haarnoja et al., 2018) shares the same convergence guarantees in a tabular setting. Par-
ticularly, we show that under QMP, policy evaluation converges because QMP only modifies data
collection of off-policy RL, policy improvement guarantees are preserved (Theorem 5.1), and policy
iteration converges to an optimal policy at least as sample-efficiently (Theorem C.2).

The key reason for better policy improvement of QMP over the current task policy πi is the argmax
operation in Eq. 3, which ensures that the selected policy πmix

i ∈ {πj}Nj=1 optimizes the SAC
objective at least as well as πi itself. We formalize this in Theorem 5.1 with proof in Appendix C.1.
Due to the suboptimality gap in Eq. 1 in SAC, QMP can actually achieve better policy improvement
when there are shareable behaviors between policies.

Theorem 5.1 (Mixture Soft Policy Improvement). Consider πold
i and its associated Q-function Qi.

Apply SAC’s policy improvement πold
i → πi and then πi → πmix

i from Eq. 3. Then, Qπmix
i (st,at) ≥

Qπi(st,at) ≥ Qπold
i (st,at) for all tasks Ti and for all (st, at) ∈ S ×A with |A| <∞.

Figure 3: QMP generalized policy iteration

While QMP in Def. 4.2 applies to any set of candidate
policies {π1, ..., πN}, one expects πmix

i to improve over
πi when some πj ̸= πi proposes an action candidate
better than πi for Task Ti. This is more likely in MTRL
policies that share structure between tasks than an arbi-
trary set of policies. For instance, if Ti and Tj share a
subtask that appears early in the episodes for Tj , then
πj would have already learned it before πi and be a
better policy for certain states of Ti, according to Qi.

QMP making bigger policy improvement steps results in each iteration of generalized policy iteration
making more progress towards optimality. This reduces the number of iterations required to converge,
improving the sample efficiency of the algorithm as illustrated in Fig. 3 and proved in Theorem C.2.

5

Published as a conference paper at ICLR 2025

(a) SAC: π (b) QMP: π ↑ → ↙ (c) QMP: π ↑ → ↗

Figure 4: 2D Point Reaching. We visualize the training trajectories of π with different sets of task
policies (fixed but stochastic) and color each step with the policy that proposed it. (a) The single-task
SAC policy cannot reach the goal. (b) With 3 diverse policies (↑ → ↙), QMP often selects other
policies, showing the suboptimality gap from Q in Eq. 1. (c) When a highly relevant↗ policy is
added, QMP often selects↗ as it is likely to best optimize the learned Q-function.

5.2 ILLUSTRATIVE EXAMPLE: 2D POINT REACHING

0.0 0.5 1.0 1.5 2.0

Environment Timesteps (10k)

−30

−20

−10

0

10

20

A
ve

ra
ge

R
et

ur
n

2D Point Reaching

SAC: π

QMP: π ↑→↙
QMP: π ↑→↗

Figure 5: QMP improves performance
using other policies, increasingly so
when they are task-relevant (5 seeds).

We demonstrate when QMP can utilize alternate policy can-
didates {π1, . . . , πN} to more effectively learn a policy by
bridging a policy improvement suboptimality gap as π tries
to follow Q in Eq. 1. Consider a 2D point-reaching task
where the agent must navigate from the bottom-left corner
(0, 0) to the goal in the top-right corner (10, 10). The point
agent receives dense rewards based on its proximity to the
goal and takes incremental 2D actions (∆x,∆y) ∈ [−1, 1]2.

Figure 5 shows that the SAC policy π converges to a subop-
timal solution. Fig. 4a confirms that the data collected by
SAC policy never reaches the goal. This shows that if the
suboptimality gap in π is not successfully bridged, it can
make the entire algorithm converge suboptimally.

To illustrate the effect of QMP, we add 3 fixed gaussian policies centered on (↑ → ↙) or (↑ → ↗),
and only let π be trainable. Fig. 4b, 4c show that πmix

i employs alternate policies at many states in data
collection as they optimize Eq. 3 better than π itself. This selectivity enables πmix

i to generate more
effective goal-reaching trajectories by bridging the suboptimality gap, resulting in better performance
in Fig. 5. A policy like↗ that is more relevant to the underlying task leads to a larger gain.

The same principle extends to the simultaneous multi-task RL setting. In MTRL, each task’s policy
continuously improves and can serve as a valuable candidate in the mixture for other tasks. QMP
enables tasks to selectively share their behaviors, allowing each task to benefit from the progress
of others. This mutual assistance accelerates learning across all tasks, as the mixture policy πmix

i
for each task Ti selects the most promising action proposals from all available policies according
to the task-specific Q-function, guaranteed to be at least as good as πi itself. Consequently, MTRL
combined with QMP leverages the collective knowledge of all tasks to bridge suboptimality gaps
more efficiently, leading to improved sample efficiency and overall performance.

6 EXPERIMENTS

6.1 ENVIRONMENTS

We evaluate our method in 7 multi-task designs in manipulation, navigation, and locomotion environ-
ments, shown in Figure 6. These tasks vary in the degree of shared and conflicting behaviors between
tasks and the number of tasks in the set. Further details in Appendix Section D.

Multistage Reacher: A 6 DoF Jaco arm learns 5 tasks with ordered subgoals. The first 4 tasks share
some subgoals, while the 5th conflicting task requires the agent to stay at its initial position.

Maze Navigation: Building on point mass maze navigation (Fu et al., 2020), we define 10 tasks with
various start and goal locations exhibiting coinciding and conflicting segments in the optimal paths.

6

Published as a conference paper at ICLR 2025

(a) Jaco Reacher (b) Maze Navigation (c) Meta-World (d) Walker2D (e) Franka Kitchen

Figure 6: Environments & Tasks: (a) Multistage Jaco Reacher. The agent must reach different
subgoals or stay still (Task 4). (b) Maze Navigation. The agent (green circle) must navigate to the
goal (red circle). 4 other tasks are shown in orange. (c) Meta-World: 10 table-top manipulation tasks.
(e) Franka Kitchen: 10 tasks, interacting with one appliance or cabinet.

Meta-World Manipulation: We use three task sets based on the Meta-World environment (Yu et al.,
2019). Meta-World MT10 and Meta-World MT50 are sets of 10 and 50 table-top manipulation
tasks involving different objects and behaviors. Meta-World CDS is a 4-task setup proposed in Yu
et al. (2021) which places the door and drawer objects next to each other on the same tabletop so that
all 4 tasks (door open & close, drawer open & close) are solvable in a simultaneous multi-task setup.

Walker2D: Walker2D is a 9 DoF bipedal walker agent with the multi-task set containing 4 locomotion
tasks proposed in Lee et al. (2019): walking forward, walking backward, balancing, and crawling.
These tasks require different gaits without an obviously identifiable shared behavior in the optimal
policies but can still benefit from intermediate behaviors like balancing.

Kitchen: We use the challenging manipulation environment proposed by Gupta et al. (2019) where a
9 DoF Franka robot performs tasks in a kitchen. We create a task set out of 10 manipulation tasks:
turning on or off different burners and light switches, and opening or closing different cabinets.

6.2 BASELINES

We first select popular and representative MTRL methods that share other forms of information to
evaluate how behavior-sharing with QMP improves their performance:

• No-Sharing consists of N (refers to number of tasks) independent RL architectures where each
agent is assigned one task and trained to solve it without any information sharing with other agents.

• Data-Sharing (UDS) proposed in Yu et al. (2022) shares data between tasks, relabelling with
minimum task reward. We modified this offline RL algorithm to online.

• Parameter-Sharing a multi-head SAC policy sharing parameters but not behaviors over tasks.

We validate QMP’s approach to share behaviors via off-policy data collection with other approaches:

• No-Shared-Behaviors consists of N RL agents where each agent is assigned one task and trained
to solve it without any behavior sharing with other agents: no bias and no sharing.

• Fully-Shared-Behaviors is a single SAC agent that learns one shared policy for all tasks, outputting
the same action for a given state regardless of task (full parameter sharing): fully biased sharing.

• Divide-and-Conquer RL (DnC) (Ghosh et al. (2018)) uses N policies that share behaviors through
policy distillation and regularization to the mean (adapted for MTRL): biased objective for sharing.

• DnC (Regularization Only) is a no policy distillation variant of DnC we propose as a baseline.

• QMP (Ours) learns N policies that share behaviors in off-policy data collection: unbiased sharing.

Our code is available here https://github.com/clvrai/qmp. We used SAC Haarnoja et al. (2018)
for all environments and methods. All the non-parameter sharing baselines use the same SAC
hyperparameters. Please refer to Appendix H for complete details.

7 RESULTS

Our experiments address: (1) Does QMP provide complementary gains to other forms of MTRL? (2)
How does sharing behavioral policies compare with alternate forms of behavior sharing? (3) Can
QMP effectively identify shareable behaviors? (4) Ablating key components of QMP.

7

https://github.com/clvrai/qmp

Published as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Multistage Reacher

0 3 6 9 12
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Maze Navigation

0.0 2.5 5.0 7.5 10.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Meta-World CDS

0.00 1.25 2.50 3.75 5.00
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Kitchen

0 10 20 30 40
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Meta-World MT10

0.0 7.5 15.0 22.5 30.0
Environment steps (1M)

0

10

20

30

40

50

Su
cc

es
s R

at
e

(%
)

MT50

Parameter-SharingNo-Sharing + QMP No-Sharing Parameters + QMPData-Sharing + QMP Data-Sharing

QMP(Ours) No-Shared-Behavior Fully-Shared-Behavior DnC (reg-only)DnC

Figure 7: Behavioral policy sharing is complementary. QMP (solid lines) shows general improve-
ment over MTRL frameworks (same-colored dashed lines) like No shared architecture (blue), shared
parameters (pink), and shared data (green). Methods without parameter-sharing on MT50 converge
very slowly. Success rate means and std (shaded) are over N tasks, 10 episodes per task, and 5 seeds.

7.1 IS BEHAVIOR SHARING COMPLEMENTARY TO OTHER MTRL FRAMEWORKS?

We demonstrate that our method is compatible with and provides complementary performance gains
with other forms of MTRL that share different kinds of information, including parameter sharing
and data sharing. We compare the performance between 3 base MTRL algorithms, No-Sharing,
Parameter-Sharing, and Data-Sharing, with the addition of QMP in Figure 7. The No-Sharing baseline
provides a baseline comparison of QMP’s effectiveness on its own. For the Parameter-Sharing and
Data-Sharing baselines we chose the base algorithms for their popularity and simplicity. In each
case, we add QMP by simply replacing the data collection policy with πmix

i . We find that QMP
is complementary to all three baseline frameworks, mostly with additive performance gains in
sample efficiency and final performance, while not hurting the performance of the base method in all
but one case (Data-Sharing in Kitchen). We additionally see that QMP improves PCGrad’s (Yu et al.,
2020) performance significantly in 3 out of 4 environments tested in Appendix E.4. This shows that
QMP is a simple and complementary addition to other forms of MTRL.

QMP significantly improves upon the No-Sharing baseline in all environments except Meta-World
CDS where it performs comparatively. This demonstrates that sharing behavioral policies is a
promising avenue for efficient and performant MTRL. In the data-sharing comparison, we see that the
addition of QMP improves or performs comparatively to the base algorithm. In Multistage Reacher
and Maze Navigation, we see that both Data-Sharing and Data + QMP perform worse than the other
MTRL methods, highlighting the fact that sharing data directly between tasks can be ineffective
without access to a re-labeled task rewards like in our setting. In environments where data-sharing
does well, like Meta-World CDS, we see that adding QMP does improve sample efficiency.

We find that Parameters + QMP generally outperforms Parameter-Sharing, while inheriting its sample
efficiency gains. In many cases, the parameter-sharing methods converge sub-optimally, highlighting
that shared parameter MTRL has its own challenges. However, in Maze Navigation, we find that
sharing Parameters + Behaviors greatly improves the performance over both the Parameter-
Sharing baseline and No-Sharing + QMP variant of QMP. This demonstrates the additive effect
of these two forms of information sharing in MTRL. The agent initially benefits from the sample
efficiency gains of the multi-head parameter-sharing architecture, while behavior sharing accelerates
learning by selectively using other policies to keep learning even after the parameter-sharing effect
plateaus. demonstrating the compatibility between QMP and parameter sharing as key ingredients to
sample efficient MTRL. We further highlight that this benefit of QMP increases with the number
of tasks increasing from 10 to 50 in Meta-World, where we see that QMP is actually more effective

8

Published as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Multistage Reacher

0 3 6 9 12
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Maze Navigation

0.00 1.25 2.50 3.75 5.00
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Kitchen

0.0 2.5 5.0 7.5 10.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Meta-World CDS

0.0 12.5 25.0 37.5 50.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Meta-World MT10

0 2 4 6 8
Environment steps (1M)

0.000

0.667

1.334

2.001

2.668

3.335

Av
er

ag
e

Re
tu

rn

1e6 Walker

QMP(Ours) No-Share Fully-Share DnC (reg-only)DnC

QMP(Ours) No-Shared-Behavior Fully-Shared-Behavior DnC (reg-only)DnC

Figure 8: QMP reliably shares behaviors. In task sets exhibiting conflicting behaviors, QMP
consistently matches or exceeds baselines in rate of convergence and final performance.

when combined with parameter sharing in MT50 than in MT10. QMP scales well with the number of
tasks and can actually perform better likely due to more shared behaviors in the larger task set.

7.2 BASELINES: COMPARING DIFFERENT APPROACHES TO SHARE BEHAVIORS

To verify QMP’s efficacy as a behavior-sharing mechanism, we evaluate baselines that share behaviors
in different ways on 6 environments in Figure 8. QMP reliably matches or exceeds other methods,
especially in tasks that require conflicting behaviors, where alternate approaches are ineffective.

In the task sets with the most directly conflicting behaviors, Multistage Reacher and Maze Navigation,
our method clearly outperforms other behavior-sharing and data-sharing baselines. In Multistage
Reacher, our method reaches > 90% success rate at 0.5 million environment steps, while DnC (reg.),
the next best method, takes 3 times the number of steps to fully converge. The rest of the methods
fail to attain the maximum success rate. We also see that QMP scales better from 3 to 10 tasks in
Maze compared to other behavior sharing methods in Appendix Section E.2.

In the remaining task sets with no directly conflicting behaviors, we see that QMP is competitive with
the best-performing baseline for more complex manipulation and locomotion tasks. Particularly, in
Walker2D and Meta-World CDS, we see that QMP is the most sample-efficient method and converges
to a better final performance than any other behavior sharing method. In Meta-World MT10 and
Kitchen, DnC (regularization only) also performed very well, showing that well-tuned uniform
behavior sharing can be very effective in tasks without conflicting behavior. However, QMP also
performs competitively and more sample efficiently, showing that QMP is effective under the same
assumptions as uniform behavior-sharing methods but can do so adaptively and across more general
task families. The Fully-Shared-Behaviors baseline often performs poorly because it totally biases
the policies, while the No-Shared-Behavior is a surprisingly strong baseline as it introduces no bias.

7.3 CAN QMP EFFECTIVELY IDENTIFY SHAREABLE BEHAVIORS?

Figure 9a shows the average proportion of sharing from other tasks for Multistage Reacher Task 0
over the course of training. We see that QMP learns to generally share less behavior from Policy 4
than from Policies 1-3 (Appendix Figure 20). Conversely, QMP in Task 4 also shares the least total
cross-task behavior (Appendix Figure 19). We see this same trend across all 5 Multistage Reacher
tasks, showing that the Q-switch successfully identifies conflicting behaviors that should not be
shared. Further, Figure 9a also shows that total behavior-sharing from other tasks goes down over
training. Thus, Q-switch learns to prefer its own task-specific policy as it becomes more proficient.

We qualitatively analyze how behavior sharing varies within a single episode by visualizing a QMP
rollout during training for the Drawer Open task in Meta-World CDS (Figure 9b). We see that it
makes reasonable policy choices by (i) switching between all 4 task policies as it approaches the

9

Published as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

6

12

18

24

30

Po
lic

y
Pe

rc
en

ta
ge

 in
 M

ix
tu

re QMP Behavior Sharing Task 0
Policies 1, 2, 3
Policy 4

(a) Behavior-sharing over training

Step 250 Every Transition mod 10

Drawer Open

Step 80

Door Open

Step 110

Drawer Open

Step 130

Door Open

Step 140

Step 1

Door Close

Step 11

Door Open

Step 21

Drawer Open Door Open

Step 41

Drawer Close

Step 61 Step 71

Drawer Open

Drawer Open
Drawer Close

Door Open
Door Close

Policy Used

Drawer Open Task: Grasping Drawer Handle

Drawer Open Task: Pulling Drawer Handle

We visualize a QMP rollout during training for the Drawer Open task where we label each transition to a new policy. We break the episode into two subtasks: grasping the drawer
handle (top row) and pulling the drawer handle (bottom row). To learn to grasp the drawer handle, QMP uses all policies to approach the handle and then the drawer policies as
the agent nears the handle. To learn to pull the drawer open, QMP uses only Drawer Open and Door Open policies. For clarity, we first subsample the episode timesteps by 10.(b) Behavior-sharing in a single training episode.

Figure 9: (a) Mixture probabilities of other policies for Task 0 in Multistage Reacher with the
conflicting task Policy 4 shown in red. (b) Policies chosen by the QMP behavioral policy every 10
timesteps for the Drawer Open task throughout one training episode. The policy approaches and
grasps the handle (top row), then pulls the drawer open (bottom row).

drawer (top row), (ii) using drawer-specific policies as it grasps the drawer-handle, and (iii) using
Drawer Open and Door Open policies as it pulls the drawer open (bottom row). In conjunction with
the overall results, this supports our claim that QMP can effectively identify shareable behaviors
between tasks. For details on this visualization and the full analysis results see Appendix Section F.

Inspired by hierarchical RL (Dabney et al., 2021) and multi-task exploration (Xu et al., 2024), we
briefly investigate temporally extended behavior sharing in Appendix E.6. Recently, Xu et al. (2024)
showed that if one assumes a high overlap between optimal policies of different tasks, other task
policies can aid exploration. So, we simply roll out each policy QMP selects for a fixed number of
steps. QMP theory no longer holds as it requires selecting a policy at every step. Yet, this naive
temporally extended QMP yields improvements in some environments like Maze with strong overlap.

7.4 ABLATIONS

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Q-switch Ablations

QMP
QMP-Uniform
QMP-Domain-Knowledge

Figure 10: QMP outperforms alternate policy
mixtures in Multistage Reacher.

We show the importance of Q-switch in QMP
(Def. 4.2) against alternate forms of policy mixtures
(Def. 4.1). QMP-Uniform is a uniform distribution
over policies, fi = U({1, . . . , N}) and achieves only
60% success rate (Figure 10), showing the impor-
tance of selectivity. QMP-Domain-Knowledge is
a hand-crafted, fixed policy distribution based on
an estimate of similarity between tasks. Multistage
Reacher measures this similarity by the shared sub-
goal sequences between tasks (Appendix D). QMP-
Domain performs well initially but plateaus early,
showing that which behaviors are shareable depends
on the state and current policy. We further ablate the
argmax in Q-switch against a softmax varation re-
sulting in a probabilistic mixture policy in Appendix
Section G.1, and evaluating on the mean policy actions (Appendix Section G.2) to validate our design.

8 CONCLUSION

We propose an unbiased approach to sharing behaviors via off-policy data collection in MTRL:
Q-switch Mixture of Policies. We demonstrate empirically that QMP effectively improves the rate
of convergence and task performance in manipulation, locomotion, and navigation tasks, and is
guaranteed to be as good as the underlying RL algorithm and complementary to alternate MTRL.
QMP does not assume that optimal task behaviors always coincide. Thus, its improvement magnitude
is limited by the degree of shareable behaviors and the suboptimality gap that exists. At the same
time, this lets QMP be unbiased and find optimal policies with convergence guarantees while being
equally or more sample-efficient. Since QMP only shares behaviors via off-policy data collection, it
is not applicable to on-policy RL base algorithms like PPO (Schulman et al., 2017). Promising future
directions include temporally-extended behavior sharing and incorporating other forms of prior task
information on shareable behaviors, such as language embeddings in instruction-following tasks.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

We thank Jesse Zhang for his assistance with writing and discussions. This work was supported by
Institute of Information & communications Technology Planning & Evaluation (IITP) grant (No.RS-
2019-II190075, Artificial Intelligence Graduate School Program, KAIST) and National Research
Foundation of Korea (NRF) grant (NRF-2021H1D3A2A03103683, Brain Pool Research Program),
funded by the Korea government (MSIT). Grace Zhang and Ayush Jain were supported partly as
interns at Naver AI Lab during the initiation of the project. Shao-Hua Sun was supported by the
Yushan Fellow Program by the Ministry of Education, Taiwan.

REFERENCES

Johannes Ackermann, Oliver Richter, and Roger Wattenhofer. Unsupervised task clustering for multi-
task reinforcement learning. In Nuria Oliver, Fernando Pérez-Cruz, Stefan Kramer, Jesse Read,
and Jose A. Lozano (eds.), Machine Learning and Knowledge Discovery in Databases. Research
Track, pp. 222–237, Cham, 2021. Springer International Publishing. ISBN 978-3-030-86486-6.

Sai Praveen Bangaru, JS Suhas, and Balaraman Ravindran. Exploration for multi-task reinforcement
learning with deep generative models. arXiv preprint arXiv:1611.09894, 2016.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.
com/. Software available from wandb.com.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. GradNorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International Conference
on Machine Learning, 2018.

Yuan Cheng, Songtao Feng, Jing Yang, Hong Zhang, and Yingbin Liang. Provable benefit of multitask
representation learning in reinforcement learning. In Neural Information Processing Systems,
2023.

Will Dabney, Georg Ostrovski, and Andre Barreto. Temporally-extended ε-greedy exploration. In
International Conference on Learning Representations, 2021.

Christian Daniel, Gerhard Neumann, Oliver Kroemer, and Jan Peters. Hierarchical relative entropy
policy search. Journal of Machine Learning Research, 2016.

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, Jan Peters, et al. Sharing
knowledge in multi-task deep reinforcement learning. In International Conference on Learning
Representations, 2020.

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning modular
neural network policies for multi-task and multi-robot transfer. In IEEE International Conference
on Robotics and Automation, 2017.

Felix End, Riad Akrour, Jan Peters, and Gerhard Neumann. Layered direct policy search for learning
hierarchical skills. In IEEE International Conference on Robotics and Automation, 2017.

Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently identifying
task groupings for multi-task learning. In Neural Information Processing Systems, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

The garage contributors. Garage: A toolkit for reproducible reinforcement learning research. https:
//github.com/rlworkgroup/garage, 2019.

Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Kumar, and Sergey Levine. Divide-and-
conquer reinforcement learning. In International Conference on Learning Representations, 2018.

11

https://www.wandb.com/
https://www.wandb.com/
https://github.com/rlworkgroup/garage
https://github.com/rlworkgroup/garage

Published as a conference paper at ICLR 2025

Ruben Glatt, Felipe Leno Da Silva, Reinaldo Augusto da Costa Bianchi, and Anna Helena Reali
Costa. Decaf: Deep case-based policy inference for knowledge transfer in reinforcement learning.
Expert Systems with Applications, 2020.

Anirudh Goyal, Shagun Sodhani, Jonathan Binas, Xue Bin Peng, Sergey Levine, and Yoshua Bengio.
Reinforcement learning with competitive ensembles of information-constrained primitives. arXiv,
abs/1906.10667, 2019.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long horizon tasks via imitation and reinforcement learning. In Conference on
Robot Learning, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, 2018.

Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele, David Warde-Farley, and
Volodymyr Mnih. Fast task inference with variational intrinsic successor features. arXiv preprint
arXiv:1906.05030, 2019.

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and Hado van
Hasselt. Multi-task deep reinforcement learning with popart. In AAAI Conference on Artificial
Intelligence, 2019.

Sunghoon Hong, Deunsol Yoon, and Kee-Eung Kim. Structure-aware transformer policy for inhomo-
geneous multi-task reinforcement learning. In International Conference on Learning Representa-
tions, 2022.

Yuu Jinnai, Jee Won Park, David Abel, and George Konidaris. Discovering options for exploration
by minimizing cover time. In International Conference on Machine Learning, 2019a.

Yuu Jinnai, Jee Won Park, Marlos C Machado, and George Konidaris. Exploration in reinforcement
learning with deep covering options. In International Conference on Learning Representations,
2019b.

Leslie Pack Kaelbling. Learning to achieve goals. In International Joint Conference on Artificial
Intelligence, 1993.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 1996.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic rein-
forcement learning at scale. arXiv preprint arXiv:2104.08212, 2021a.

Dmitry Kalashnikov, Jake Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski, Chelsea
Finn, Sergey Levine, and Karol Hausman. Scaling up multi-task robotic reinforcement learning.
In Conference on Robot Learning, 2021b.

Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and M. Pawan Kumar. In
defense of the unitary scalarization for deep multi-task learning. arXiv preprint arXiv:2201.04122,
2022.

Youngwoon Lee, Shao-Hua Sun, Sriram Somasundaram, Edward S. Hu, and Joseph J. Lim. Com-
posing complex skills by learning transition policies. In International Conference on Learning
Representations, 2019.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for
multi-task learning. In Neural Information Processing Systems, 2021.

Shikun Liu, Stephen James, Andrew J Davison, and Edward Johns. Auto-lambda: Disentangling
dynamic task relationships. Transactions on Machine Learning Research, 2022.

12

Published as a conference paper at ICLR 2025

Marlos C Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
Campbell. Eigenoption discovery through the deep successor representation. arXiv preprint
arXiv:1710.11089, 2017.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for
multi-task learning. In IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Siddharth Mysore, George Cheng, Yunqi Zhao, Kate Saenko, and Meng Wu. Multi-critic actor learn-
ing: Teaching rl policies to act with style. In International Conference on Learning Representations,
2022.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Overcom-
ing exploration in reinforcement learning with demonstrations. In IEEE International Conference
on Robotics and Automation, 2018.

Taewook Nam, Shao-Hua Sun, Karl Pertsch, Sung Ju Hwang, and Joseph J. Lim. Skill-based
meta-reinforcement learning. In International Conference on Learning Representations, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Neural Information Processing Systems, 2019.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In AAAI Conference on Artificial Intelligence, 2018.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on Robot Learning, 2021.

Matthew Riemer, Miao Liu, and Gerald Tesauro. Learning abstract options. In Proceedings of
the 32nd International Conference on Neural Information Processing Systems, NIPS’18, pp.
10445–10455, Red Hook, NY, USA, 2018. Curran Associates Inc.

Clemens Rosenbaum, Ignacio Cases, Matthew Riemer, and Tim Klinger. Routing networks and the
challenges of modular and compositional computation. arXiv preprint arXiv:1904.12774, 2019.

Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. arXiv preprint arXiv:1511.06295, 2015.

Fumihiro Sasaki and Ryota Yamashina. Behavioral cloning from noisy demonstrations. In Interna-
tional Conference on Learning Representations, 2020.

Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan Pascanu. Ray interference: a source of
plateaus in deep reinforcement learning. arXiv preprint arXiv:1904.11455, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Neural
Information Processing Systems, 2018.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
based representations. In International Conference on Machine Learning, 2021.

Trevor Standley, Amir R. Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
Which tasks should be learned together in multi-task learning? In International Conference on
Machine Learning, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nico-
las Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. In Neural
Information Processing Systems, 2017.

13

Published as a conference paper at ICLR 2025

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In International Conference on Intelligent Robots and Systems, 2012.

Momchil S Tomov, Eric Schulz, and Samuel J Gershman. Multi-task reinforcement learning in
humans. Nature Human Behaviour, 2021.

Nelson Vithayathil Varghese and Qusay H Mahmoud. A survey of multi-task deep reinforcement
learning. Electronics, 2020.

Tung-Long Vuong, Do-Van Nguyen, Tai-Long Nguyen, Cong-Minh Bui, Hai-Dang Kieu, Viet-Cuong
Ta, Quoc-Long Tran, and Thanh-Ha Le. Sharing experience in multitask reinforcement learning.
In International Joint Conference on Artificial Intelligence, 2019.

Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J Lim. Multimodal model-agnostic meta-
learning via task-aware modulation. In Neural Information Processing Systems, 2019.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 1992.

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement learning: a
hierarchical bayesian approach. In International Conference on Machine Learning, 2007.

Zhiyuan Xu, Kun Wu, Zhengping Che, Jian Tang, and Jieping Ye. Knowledge transfer in multi-task
deep reinforcement learning for continuous control. In Neural Information Processing Systems,
2020.

Ziping Xu, Zifan Xu, Runxuan Jiang, Peter Stone, and Ambuj Tewari. Sample efficient myopic ex-
ploration through multitask reinforcement learning with diverse tasks. In International Conference
on Learning Representations, 2024.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. In Neural Information Processing Systems, 2020.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, 2019.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. In Neural Information Processing Systems, 2020.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Sergey Levine, and Chelsea Finn.
Conservative data sharing for multi-task offline reinforcement learning. In Neural Information
Processing Systems, 2021.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and Sergey Levine.
How to leverage unlabeled data in offline reinforcement learning. In International Conference on
Machine Learning, 2022.

Yuanqiang Yu, Tianpei Yang, Yongliang Lv, Yan Zheng, and Jianye Hao. T3s: Improving multi-task
reinforcement learning with task-specific feature selector and scheduler. In International Joint
Conference on Neural Networks, 2023.

Chicheng Zhang and Zhi Wang. Provably efficient multi-task reinforcement learning with model
transfer. In Neural Information Processing Systems, 2021.

Jesse Zhang, Haonan Yu, and Wei Xu. Hierarchical reinforcement learning by discovering intrinsic
options. In International Conference on Learning Representations, 2020.

Jin Zhang, Siyuan Li, and Chongjie Zhang. CUP: Critic-guided policy reuse. In Neural Information
Processing Systems, 2022.

Onur Çelik, Dongzhuoran Zhou, Gen Li, Philipp Becker, and Gerhard Neumann. Specializing
versatile skill libraries using local mixture of experts. In Conference on Robot Learning, 2021.

14

Published as a conference paper at ICLR 2025

APPENDIX

Table of Contents
A Qualitative Results 16

B QMP Derivation 16

C QMP Convergence Guarantees 16

D Environment Details 19
D.1 Multistage Reacher . 19
D.2 Maze Navigation . 20
D.3 Meta-World Manipulation . 20
D.4 Walker2D . 21
D.5 Kitchen . 21

E Additional Results 21
E.1 Multistage Reacher Per Task Results . 21
E.2 QMP Scales with Task Set Size in Maze Navigation 22
E.3 QMP Outperforms Data Sharing with Reward Labeling 22
E.4 PCGrad Results . 23
E.5 Additional MTRL Comparisons . 23
E.6 Temporally-Extended Behavior Sharing . 24

F QMP Behavior Sharing Analysis 25
F.1 Qualitative Visualization of Behavior-Sharing 26

G Additional Ablations and Analysis 26
G.1 Probabilistic Mixture v/s Arg-Max . 26
G.2 Approximation Expected Q-value Over Policy Action Distribution 27
G.3 QMP v/s Increasing Single Task Exploration 27
G.4 QMP Runtime . 27

H Implementation Details 27
H.1 Hyperparameters . 28
H.2 No-Shared-Behaviors . 28
H.3 Fully-Shared-Behaviors . 28
H.4 DnC . 28
H.5 QMP (Ours) . 29
H.6 Online UDS . 29

15

Published as a conference paper at ICLR 2025

A QUALITATIVE RESULTS

The qualitative result videos are provided at https://qmp-mtrl.github.io/

B QMP DERIVATION

Following Section 4.2, we aim to derive the mixture-switch function fi such that the mixture policy
πmix
i is guaranteed to be better than the current task’s policy πi. We use the generalized policy

iteration procedure (Sutton & Barto, 2018) underlying single-task SAC (Haarnoja et al., 2018): policy
evaluation learns Q by minimizing the bellman error on the collected data, and policy improvement
follows Q by minimizing the KL divergence between the new policy and the exponential of the
current Q-function, Qπold

, shown in Eq. 1.

In practice, the gradient updates in SAC are gradual and do not instantly achieve this optimization
in Eq. 1, leaving a suboptimality gap to catch up to the Q-function. We observe that due to the
potential similarity of some tasks in MTRL, this suboptimality gap can be bridged using other policies.
Concretely, a mixture policy πmix

i that selects the best policy from a set of all given policy candidates,
including the current policy, ensures that πmix

i is an improvement over πi for the current state s:

Given a set of policies {π1 . . . πN} including the current task policy πi and a given state s, consider
the following mixture policy:

πmix
i = arg min

π′∈{πi,...πN}
DKL

(
π′(· | s)

∥∥∥∥∥exp(1
αQ

πi(s, ·))
Zπi(s)

)
(4)

This πmix
i is a better policy improvement solution to Eq. 1 than πi, because:

min
π′∈{πi,...πN}

DKL

(
π′(· | s)

∥∥∥∥∥exp(1
αQ

πi(s, ·))
Zπi(s)

)
≤ DKL

(
πi(· | st)

∥∥∥∥∥exp(1
αQ

πi(st, ·))
Zπi(st)

)

Now, we can simplify Eq. 4 to obtain Definition 4.2:

πmix
i = arg min

π′∈{πi,...πN}
DKL

(
π′(· | s)

∥∥∥∥∥exp(1
αQ

πi(s, ·))
Zπi(s)

)

= arg min
π′∈{πi,...πN}

Ea∼π′(·|s)

[
log π′(a|s)− log

{
exp(1

αQ
πi(s, a))

Zπi(s)

}]
= arg max

π′∈{πi,...πN}
Ea∼π′(·|s)

[
− log π′(a|s) + 1

α
Qπi(s, a)− logZπi(s)

]
= arg max

π′∈{πi,...πN}
Ea∼π′(·|s) [− log π′(a|s)] + Ea∼π′(·|s)

[
1

α
Qπi(s, a)

]
= arg max

π′∈{πi,...πN}
Ea∼π′(·|s) [Q

πi(s, a)] + αH [π′(· | s)]

Thus, the following mixture policy guarantees improvement over πi

πmix
i = arg max

π′∈{πi,...πN}
Ea∼π′(·|s) [Q

πi(s, a)] + αH [π′(· | s)]

C QMP CONVERGENCE GUARANTEES

We derive the convergence guarantees for mixture soft policy iteration used in the QMP Algorithm 1.
We augment the derivation of soft policy iteration in SAC (Haarnoja et al., 2018), which is our

16

https://qmp-mtrl.github.io/

Published as a conference paper at ICLR 2025

base algorithm, with our proposed QMP’s mixture policy. Soft policy iteration follows generalized
policy iteration (Sutton & Barto, 2018) which refers to the general idea of repeated application of
(1) policy evaluation to update the critics and (2) policy improvement based on the updated critics,
until convergence. Like SAC, we consider the tabular setting and show that QMP’s modification to
soft policy iteration converges to the optimal policy. Further, QMP can lead to an improved policy
improvement step when there are shareable behaviors between tasks, consequently improving the
sample efficiency. The derivation sketch follows:

1. Soft Policy Evaluation: QMP modifies the off-policy data collection pipeline by replacing
the primary task policy πi with the mixture policy πmix

i . However, it does not affect the soft
Bellman backup operator of SAC, as shown in Haarnoja et al. (2018), and therefore the Q
function still converges as in SAC.

2. Mixture Soft Policy Improvement: QMP performs policy improvement in two steps: SAC’s
policy update from πold

i → πi and applying the mixture of policies from πi→ πmix
i .

• Soft Policy Improvement: Since QMP does not modify the SAC update proce-
dure πold

i → πi , we directly use SAC’s guarantees of policy improvement following
Lemma 2 from Haarnoja et al. (2018).

• Mixture Policy Improvement: We demonstrate QMP’s mixture policy πmix
i guarantees

a better policy improvement over the per-task policies πi that compose the mixture.
In Theorem C.1, we show convergence guarantee by proving that the expected return
following πmix

i is better than following πold
i .

3. Mixture Soft Policy Iteration: In Theorem C.2, we show that the repeated application of
the above steps in QMP converges to an optimal policy for each task. Furthermore, the
convergence rate is faster because of a greedier policy improvement due to Mixture Policy
Improvement.

For a given stochastic policy π and task Ti ∈ {T1 . . .TN}, define V π
i as the expected return of acting

with π. Given another stochastic policy π′, define Qπ
i (s, π

′(s)) = Ea∼π′(s)Q
π
i (s, a) as the expected

return of acting with π′ only in s and thereafter with π.

Theorem C.1 (Mixture Soft Policy Improvement). Consider πold
i and its associated Q-function Qi.

Apply SAC’s policy improvement πold
i → πi and then πi → πmix

i from Eq. 3. Then, Qπmix
i (st,at) ≥

Qπi(st,at) ≥ Qπold
i (st,at) for all tasks Ti and for all (st,at) ∈ S ×A with |A| <∞.

Proof. From Soft Policy Improvement, Lemma 2 of Haarnoja et al. (2018), we have

Eat∼πi

[
Qπold

i (st,at)− log πi(at|st)
]
≥ V πold

i (st).

Rewrite the difference as δ(st),

δ(st) = Eat∼πi

[
Qπold

i (st,at)− log πi(at|st)
]
− V πold

i (st) ≥ 0.

From Eq. 3,

πmix
i = arg max

π′∈{π1,...,πN}
Ea∼π′(·|s) [Q

πi(s, a)] + αH [π′(· | s)] .

Therefore, we have a positive difference ω(st),

ω(st) = Eat∼πmix
i

[
Qπold

i (st,at)− log πmix
i (at|st)

]
− Eat∼πi

[
Qπold

i (st,at)− log πi(at|st)
]
≥ 0.

17

Published as a conference paper at ICLR 2025

We use δ to expand the soft Bellman equation to derive the relationship between Qπold
i and Qπi ,

Qπold
i (st,at) = r(st,at) + γ Est+1∼p

[
V πold

i (st+1)
]

= r(st,at) + γ Est+1∼p

[
Eat+1∼πi

(
Qπold

i (st+1,at+1)− log πi(at+1|st+1)
)
− δ(st+1)

]
...

=

∞∑
k=0

γk Est+k∼p, at+k∼πi [r(st+k,at+k)− log πi(at+k|st+k)]︸ ︷︷ ︸
Qπi (st,at)

−
∞∑
k=1

γk Est+k∼p [δ(st+k)]︸ ︷︷ ︸
∆1

= Qπi(st,at)−∆1

Likewise, we use δ and ω to derive the relationship between Qπold
i and Qπmix

i ,

Qπold
i (st,at) = r(st,at) + γ Est+1∼p

[
V πold

i (st+1)
]

= r(st,at) + γ Est+1∼p

[
Eat+1∼πi

(
Qπold

i (st+1,at+1)− log πi(at+1|st+1)
)
− δ(st+1)

]
= r(st,at) + γ Est+1∼p

[
Eat+1∼πmix

i

(
Qπold

i (st+1,at+1)− log πmix
i (at+1|st+1)

)
− δ(st+1)− ω(st+1)

]
...

=

∞∑
k=0

γk Est+k∼p, at+k∼πmix
i

[
r(st+k,at+k)− log πmix

i (at+k|st+k)
]

︸ ︷︷ ︸
Qπmix

i (st,at)

−
∞∑
k=1

γk Est+k∼p [δ(st+k)]︸ ︷︷ ︸
∆2

−
∞∑
k=1

γk Est+k∼p [ω(st+k)]︸ ︷︷ ︸
Ω

= Qπmix
i (st,at)−∆2 − Ω,

We assume that the effect of the difference ∆2−∆1 due to different state coverage is lower compared
to the effect of Ω because ω is accumulated at every state, i.e., ∆2+Ω = ∆1+(∆2−∆1)+Ω ≥ ∆1

Since ∆1,∆2 ≥ 0 and Ω ≥ 0, we have

Qπmix
i (st,at) ≥ Qπi(st,at) ≥ Qπold

i (st,at)

Theorem C.2 (Mixture Soft Policy Iteration). Repeated application of (i) soft policy evaluation
and (ii) mixture soft policy improvement (Theorem C.1) to any πi ∈ Π converges to an optimal
policy π∗

i such that Qπ∗
i

i (st,at) ≥ Qπi
i (st,at) for all πi ∈ Π and (st,at) ∈ S × A with |A| < ∞.

Furthermore, the sample efficiency and rate of convergence is at least as good as SAC in the presence
of mixture policy improvement.

Proof. Let πk
i be the policy at iteration k. By SAC’s soft policy iteration, the sequence Q

πk
i

i is
monotonically increasing, because πmix

i only modifies the online data collected and SAC is an off-
policy algorithm. Thus, Theorem 1 (Soft Policy Iteration) from Haarnoja et al. (2018) Appendix B.3
directly applies here and proves that repeated application of soft policy evaluation and soft policy
improvement converges to an optimal policy π∗

i .

Mixture soft policy improvement (Theorem C.1) shows that πmix
i is a greedier policy improvement

over πiwith respect to each estimate of Qπk
i

i . Thus, the expected returns in the data collected by QMP

policy, Qπmix; k
i

i , is greater than or equal to that collected by the individual task policy, Qπk
i

i . Therefore,

18

Published as a conference paper at ICLR 2025

every mixture soft policy improvement step constitutes a larger policy improvement step than SAC’s
soft policy improvement step. This makes the convergence of mixture soft policy iteration (repeated
application of soft policy evaluation and Theorem C.1) an improvement over soft policy iteration.

D ENVIRONMENT DETAILS

D.1 MULTISTAGE REACHER

We implement multistage reacher tasks on the Open AI Gym (Brockman et al., 2016) Reacher
environment simulated in the MuJoCo physics engine (Todorov et al., 2012) by defining a sequence
of 3 subgoals per task, as specified in Table 1. For all tasks, the reacher is initialized at the same start
position with a small random perturbation sampled uniformly from [−0.01, 0.01] for each coordinate.
The observation includes the agent’s proprioceptive state and how many subgoals have been reached
but not subgoal locations, as they must be inferred from the respective task’s reward function.

We set up the tasks to ensure that we can evaluate behavior sharing when the task rewards are
qualitatively different (see Figure 6a):

• For every task except Task 3, the reward function is the default gym reward function based
on the distance to the goal, plus an additional bonus for every subgoal completed.

• For Task 1, the reward is shifted by -2 at every timestep.
• Task 3 receives only a sparse reward of 1 for every subgoal reached.
• Task 4 has one fixed goal set at its initial position.

Subgoal 1 Subgoal 2 Subgoal 3
T0 (0.2, 0.3, 0.5) (0.3, 0, 0.3) (0.4, -0.3, 0.4)
T1 (0.2, 0.3, 0.5) (0.3, 0, 0.3) (0.4, 0.3, 0.2)
T2 (0.3, 0, 0.3) (0.4, 0.3, 0.2) (0.4, -0.3, 0.4)
T3 (0.3, 0, 0.3) (0.4, -0.3, 0.4) (0.2, 0.3, 0.5)
T4 initial initial initial

Table 1: Coordinates of subgoal locations for each task in Multistage Reacher. Shared subgoals are
highlighted in the same color. For Task 4, the only goal is to stay in the initial position.

QMP-Domain: Section 7.4 ablates the importance of an adaptive and state-dependent Q-switch by
replacing it with a domain-dependent distribution over other tasks based on apparent task similarity.
Specifically, to define the mixture probabilities for QMP-Domain in Multistage Reacher, we use the
domain knowledge of the subgoal locations of the tasks to determine the mixture probabilities. We
use the ratio of shared sub-goal sequences between each pair of tasks (not necessarily the shared
subgoals) over the total number of sub-goal sequences, 3, to calculate how much behavior must
be shared between two tasks. For that ratio of shared behavior, we distribute the probability mass
uniformly between all task policies that share that behavior. For Task 4, the conflicting task, we do
not do any behavior sharing and only use π4 to gather data.

Each Task Ti consists of 3 sub-goal sequences {S0, S1, S2} (e.g. [initial→ Subgoal 1], [Subgoal
1→ Subgoal 2], and [Subgoal 2→ Subgoal 3]). For each sequence s ∈ {S0, S1, S2}, we divide
equally the contribution of each task Tj’s policy πj that shares the sequence s (i.e. if T0 and T1 both
contain sequence s, where we use the notation 1(s ∈ Ti) as the indicator function for whether Task
Ti contains sequence s, then π0 and π1 both have 1

2 contribution for s). Each sequence contributes
equally to the overall mixture probabilities for Task i (i.e. all policies that shares sequence Si

contributes in total 1
3 to the mixture probability for the behavior policy of Task Ti). Thus, the

contribution probability of Policy πj to Task Ti is:

pj→i =
∑

s∈{S0,S1,S2}

1

3
· 1(s ∈ Tj)∑

k 1(s ∈ Tk)

πmix
i =

∑
j

pj→i πj

19

Published as a conference paper at ICLR 2025

Reusing notation for mixture probabilities, we have,

πmix
0 =

2

3
π0 +

1

3
π1

πmix
1 =

1

3
π0 +

2

3
π1

πmix
2 =

5

6
π2 +

1

6
π3

πmix
3 =

1

6
π2 +

5

6
π3

πmix
4 = π4

D.2 MAZE NAVIGATION

The layout and dynamics of the maze follow Fu et al. (2020), but since their original design aims to
train a single agent to reach a fixed goal from multiple start locations, we modified it to have both
start and goal locations fixed in each task, as in Nam et al. (2022). The start location is still perturbed
with a small noise to avoid memorizing the task. The observation consists of the agent’s current
position and velocity. But, it lacks the goal location, which should be inferred from the dense reward
based on the distance to the goal. The action space is the target 2D velocity of the point mass agent.

The layout we used is LARGE MAZE which is an 8×11 maze with paths blocked by walls. The
complete set of 10 tasks is visualized in Figure 12, where green and red spots correspond to the start
and goal locations, respectively. The environment provides an agent a dense reward of exp(−dist)
where dist is a linear distance between the agent’s current position and the goal location. It also gives
a penalty of 1 at each timestep in order to prevent the agent from exploiting the reward by staying
near the goal. The episode terminates either as soon as the goal is reached by having dist < 0.5 or
when 600 timesteps have passed.

Figure 12: Ten tasks defined for the Maze Navigation. The start and goal locations in each task are
shown in green and red spots, respectively, and an example path is shown in green.

D.3 META-WORLD MANIPULATION

For Meta-World CDS, we reproduce the Meta-world environment proposed by Yu et al. (2021)
using the Meta-world codebase (Yu et al., 2019), where the door and drawer are both placed side-
by-side on the tabletop for all tasks (see Figure 6c). The observation space consists of the robot’s
proprioceptive state, the drawer handle state, the door handle state, and the goal location, which
varies based on the task. Unlike Yu et al. (2021), we additionally remove the previous state from
the observation space so the policies cannot easily infer the current task, making it a challenging
multi-task environment. The environment also uses the default Meta-World reward functions which
is composed of two distance-based rewards: distance between the agent end effector and the object,
and distance between the object and its goal location. We use this modified environment instead of
the Meta-world benchmark because our problem formulation of simultaneous multi-task RL requires

20

Published as a conference paper at ICLR 2025

a consistent environment across tasks. For Meta-World MT10, we directly use the implementation
provided in (Yu et al., 2019) without changes.

In both cases, the observation space consists of the robot’s proprioceptive state, locations for objects
present in the environment (ie. door and drawer handle for CDS, the single target object location
for MT10) and the goal location. In Meta-World CDS, due to the shared environment, there are no
directly conflicting task behaviors, since the policies either go to the door or the drawer, they should
ignore the irrelevant behaviors of policies interacting with the other object. In Meta-World MT10,
each task interacts with a different object but in an overlapping state space so there is a mix of shared
and conflicting behaviors.

D.4 WALKER2D

Walker2D is a 9 DoF bipedal walker agent with the multi-task set of 4 tasks proposed and implemented
by Lee et al. (2019): walking forward at a target velocity, walking backward at a target velocity,
balancing under random external forces, and crawling under a ceiling. Each of these tasks involves
different gaits or body positions to accomplish successfully without any obviously identifiable shared
behavior in the optimal policies. Behavior sharing can still be effective during training to aid
exploration and share helpful intermediate behaviors, like balancing. However, there is no obviously
identifiable conflicting behavior either in this task set. Because each task requires a different gait, it
is unlikely for states to recur between tasks and even less likely for states that are shared to require
conflicting behaviors. For instance, it is common for all policies to struggle and fall at the beginning
of training, but all tasks would require similar stabilizing and correcting behavior over these states.

D.5 KITCHEN

We modify the Franka Kitchen environment proposed by Gupta et al. (2019) and based on the
implementation from Fu et al. (2020). Since this environment is typically used for long horizon or
offline RL, we chose shorter tasks that are learnable with online RL. Furthermore, we added a dense
reward based on the Meta-World reward function. We formed our 10 task MTRL set by choosing
10 available tasks in the kitchen environment that interacted with the same objects: turning the top
burner on or off, turning the bottom burner on or off, turning the light switch on and off, open or
closing the sliding cabinet, and opening and closing the hinge cabinet. The observation space consists
of the robot’s state, the location of the target object, and the goal location for that object. Similar to
the Meta-World CDS environment, these tasks may share behaviors navigating around the kitchen
to the target object but have plenty of irrelevant behavior between tasks that interact with different
objects and conflicting behaviors when opening or closing the same object.

E ADDITIONAL RESULTS

E.1 MULTISTAGE REACHER PER TASK RESULTS

Additional results and analysis on Multistage Reacher are shown in Figure 13. QMP outperforms all
the baselines in this task set, as shown in Figure 8. Task 3 receives only a sparse reward and, thus,
can benefit the most from shared exploration. We observe that QMP gains the most performance
boost due to selective behavior-sharing in Task 3. The No-Shared-Behavior baseline is unable to
solve Task 3 at all due to its sparse reward nature. The other baselines which share uniformly suffer
at Task 3, likely because they also share behaviors from other conflicting tasks, especially Task 4. We
explore this further in the following Section F.

For all tasks, QMP outperforms or is comparable to No-Shared-Behavior, which shows that selective
behavior-sharing can help accelerate learning when task behaviors are shareable and is robust when
tasks conflict. Fully-Shared-Behavior especially underperforms in Tasks 2 and 3, which require
conflicting behaviors upon reaching Subgoal 1, as defined in Table 1. In contrast, it excels at the
beginning of Task 0 and Task 1 as their required behaviors are completely shared. However, it suffers
after Subgoal 2, as the task objectives diverge.

21

Published as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Task0

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Task1

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Task2

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Task3

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Task4

QMP(Ours) No-Share Fully-Share DnC (reg-only)DnC

QMP(Ours) No-Shared-Behavior Fully-Shared-Behavior DnC (reg-only)DnC

QMP(Ours) No-Shared-Behavior Fully-Shared-Behavior DnC (reg)DnC UDS

Figure 13: Success rates for individual tasks in Multistage Reacher. Our method especially helps in
learning Task 3, which requires extra exploration because it only receives a sparse reward.

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Maze Navigation 3 Tasks

No-QMP
Shared
DnC
DnC (reg. only)
QMP

(a) Maze Navigation 3 Tasks

0 3 6 9 12
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Maze Navigation
No-QMP
Shared
DnC
DnC (reg. only)
QMP (H=1)

(b) Maze Navigation 10 Tasks

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100
Su

cc
es

s R
at

e
(%

)
Multistage Reacher

QMP
UDS k=0
UDS k=80
CDS k=0
CDS k=50
CDS k=80

(c) Data Sharing Comparison

Figure 14: QMP scales well from (a) 3 tasks to (b) 10 tasks in Maze Navigation, especially in
comparison to other behavior sharing methods. (c) Online data sharing is very efficient when given
task reward functions (all CDS versions), but suffers without (all UDS versions).

E.2 QMP SCALES WITH TASK SET SIZE IN MAZE NAVIGATION

We look at the behavior sharing methods in the Maze Navigation task for a task set with 3 tasks
(Figure 14a) and 10 tasks (Figure 14b) and see that QMP scales well from 3 to 10 tasks, even
compared to other behavior sharing methods. Similar to Meta-World, we hypothesize QMP scales
better with a larger task set size of similar tasks due to there being more shareable behaviors between
tasks. We see that by selectively sharing behaviors, QMP is able to identify and share helpful
behaviors in the larger tasks sets whereas other behavior sharing methods struggle.

E.3 QMP OUTPERFORMS DATA SHARING WITH REWARD LABELING

In Figure 14c, we report multiple sharing percentiles for UDS and for CDS (Yu et al., 2021) which
assumes access to ground truth task reward functions which it uses to re-label the shared data. When
the shared data is relabeled with task reward functions, thereby bypassing the conflicting behavior
problem, online data sharing approaches can work very well. But when unsupervised, we see that
online data sharing can actually harm performance in environments with conflicting tasks, with

22

Published as a conference paper at ICLR 2025

the more conservative data sharing approach (UDS k=80) out-performing sharing all data. k is
the percentile above with we share a transition between tasks, with higher k representing more
conservative data sharing. Full details on our online UDS and CDS implementation are in Section H.6

E.4 PCGRAD RESULTS

We evaluate whether QMP combined with PCGrad (Yu et al., 2020) results in complementary benefits.
PCGrad is a popular MTRL algorithm that learns a policy with shared parameters and alleviates
negative interference between tasks by modifying the multi-task gradients. In Figure 15 and Table 2 ,
we see that QMP + PCGrad significantly improves PCGrad performance in 3 out of 4 environments.

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Multistage Reacher
QMP + PCGrad
PCGrad

0.00 1.75 3.50 5.25 7.00
Environment steps (1M)

0

20

40

60

80

100
Su

cc
es

s R
at

e
(%

)
Maze Navigation

PCGrad
QMP + PCGrad

0.00 0.56 1.12 1.69 2.25
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Kitchen
PCGrad
QMP + PCGrad

0.0 2.5 5.0 7.5 10.0
Environment steps (1M)

0.0

0.1

0.2

0.3

0.4

Su
cc

es
s R

at
e

(%
)

MetaWorld MT50
PCGrad
QMP + PCGrad

Figure 15: Combining QMP with PCGrad yields complementary improvement in 3 out of the 4
environments we tested on. Dashed lines are PCGrad only and solid lines are QMP + PCGrad.

Approach Reacher Maze Kitchen Meta-World 50
PCGrad 0.78 0.90 0.55 0.35
QMP + PCGrad 0.78 1.00 0.60 0.42

Table 2: QMP improves performance of PCGrad across various benchmarks

E.5 ADDITIONAL MTRL COMPARISONS

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Multistage Reacher
Multi-Critic AL-MN
QMP + Multi-Critic AL-MN
Multi-Critic AL-MH
QMP + Multi-Critic AL-MH

(a) MCAL Comparison

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Multistage Reacher
DECAF
QMP

(b) DECAF Sharing Comparison

0.0 2.5 5.0 7.5 10.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Meta-World CDS
DECAF
QMP

(c) DECAF Sharing Comparison

Figure 16: Combining our method with another parameter sharing method, MCAL, shows comple-
mentary benefits in (a). Our method outperforms DECAF in Multistage Reacher (b) and Meta-World
CDS(c), demonstrating that learning to directly use Q-functions from other tasks is more challenging
and sample inefficient than using the current task’s Q-function to evaluate other tasks’ policies.

Multi-Critic Actor Learning (MCAL) (Mysore et al., 2022) is a parameter sharing MTRL method
that aims to tackle potential negative interference between tasks by learning separate critics for each
task while training a single multi-task actor. We add QMP to two variants of MCAL, Multi-Critic
AL-MN which maintains separate networks for each critic and Multi-Critic AL-MH which uses a
single multi-head network for the critic, in Multistage Reacher in Figure 16a. We see that adding
QMP provides around a 20% final success rate gain in both variants and is more sample efficient.

We also compare our method with DECAF (Glatt et al., 2020), a MTRL method which shared
Q-functions between tasks instead of behavioral policies. DECAF learns task specific weights to
linearly combine the task Q-functions which is used to train the task policy. In contrast, our method
uses the task Q-function to evaluate different tasks’ policies to incorporate into the task’s behavioral

23

Published as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Multistage Reacher

QMP (H=10)
QMP (H=1)
No-QMP

0 3 6 9 12
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Maze Navigation
QMP (H=25)
QMP (H=1)
No-QMP

0.0 2.5 5.0 7.5 10.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Meta-World CDS
QMP (H=10)
QMP (H=1)
No-QMP

0.00 1.25 2.50 3.75 5.00
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Kitchen
QMP (H=10)
QMP (H=1)
No-QMP

Figure 17: In each case above, QMP with H-step rollouts of the behavioral policy (blue) performs no
worse than QMP with 1-step rollouts (red), with the H-step rollouts helping significantly in some
tasks. Additionally both versions of QMP outperform the No-QMP baseline.

policy. Our method only modifies the data collection process, not the RL objective, and does not have
a learned component. In Multistage Reacher (Figure 16b) and Meta-World CDS (Figure 16c), we see
that QMP outperforms DECAF by more that 20% final success rate.

E.6 TEMPORALLY-EXTENDED BEHAVIOR SHARING

0 3 6 9 12
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Policy Sampling Frequency in Maze

QMP (H=1)
QMP (H=5)
QMP (H=10)
QMP (H=25)
QMP (H=50)

Figure 18: QMP consistently improves
performance as H increases in Maze.

Motivated by prior work in heirarchical RL (Machado
et al., 2017; Jinnai et al., 2019b;a; Hansen et al., 2019;
Zhang et al., 2020) and skill learning (Pertsch et al., 2021)
, we explore temporally extended behavior sharing by sim-
ply following the actions of the policy πj selected by πi

mix

for H steps before re-evaluating πi
mix. Furthermore, a re-

cent work Xu et al. (2024) provides theoretical results that
shows myopic (ϵ-greedy) policy sharing can be sample
efficient in sufficiently diverse multi-task settings, provid-
ing theoretical support for temporally extended multi-task
behavior sharing in some settings.

We study the effect of sharing temporally extended be-
haviors of length H in Maze Navigation in Figure 18, by
rolling out the chosen task policy for 1, 5, 10, 25, and
50 timesteps. We see that performance improves when
sharing longer behaviors (25 and 50 timesteps) which are more coherent and temporally extended.
This is true even though we choose the behavioral policy greedily, only evaluating the current state s
every H steps. Importantly, the guarantees from Theorem C.1 do not extend to H-step policy roll-outs
and increasing H does not help in all environments. We compare the performance of No-QMP, QMP,
and QMP with temporally extended behavior sharing where we choose the best performance out of
H = 10 and H = 25 in Table 3 and Figure 17. Nevertheless, the impressive results in Maze suggest
that multi-task temporally extended behavior sharing is worth exploring in future work.

24

Published as a conference paper at ICLR 2025

Table 3: Temporally Extended Behavior Sharing

Environment H-value No-QMP QMP QMP (H>1)

Reacher 10 80 ± 0 100 ± 0 100 ± 0
Maze 25 57.9 ± 0.09 72.9 ± 0.1 99.9 ± 0.0
MT-CDS 10 97.5 ± 4.5 93.7 ± 8.5 98.8 ± 2.0
MT10 10 79.1 ± 5.97 89.0 ± 0.01 82. ± 4.48
Kitchen 10 65.5 ± 11.0 77.3 ± 5.3 84.5 ± 8.7
Walker 10 3110 ± 220 3205 ± 218 3310 ± 203

F QMP BEHAVIOR SHARING ANALYSIS

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

6

12

18

24

30

Po
lic

y
Pe

rc
en

ta
ge

 in
 M

ix
tu

re Task 0

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

6

12

18

24

30
Po

lic
y

Pe
rc

en
ta

ge
 in

 M
ix

tu
re Task 1

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

6

12

18

24

30

Po
lic

y
Pe

rc
en

ta
ge

 in
 M

ix
tu

re Task 2

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

6

12

18

24

30

Po
lic

y
Pe

rc
en

ta
ge

 in
 M

ix
tu

re Task 3

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

6

12

18

24

30

Po
lic

y
Pe

rc
en

ta
ge

 in
 M

ix
tu

re Task 4

Multistage Reacher % Behavior Shared from Other Tasks in Mixture Policy

Policies 0-3
Policy 4

We highlight policy 4 because Task 4 requires different behaviors than the other tasks. Throughout learning, we see that QMP generally shares
less behavior from Policy 4 than other policies in Tasks 0-3 and shares the least total behavior in Task 4. Furthermore, total behavior sharing
decreases throughout training in all tasks.

Figure 19: Mixture probabilities per task of other policies over the course of training for Multistage
Reacher. The conflicting task Policy 4, which requires staying stationary, is highlighted in red.

0 1 2 3 4

Policy

0

1

2

3

4

Ta
sk

Average Mixture Composition

0.00

0.01

0.02

0.03

0.04

0.05

Figure 20: Average contribution of each Policy j
(col j) in each Task i’s (row i) data collection on
Reacher Multistage (diagonal zeroed for contrast).

QMP learns to not share from conflicting
tasks: We visualize the mixture probabilities
per task of other policies in Figure 19 for Multi-
stage Reacher, highlighting the conflicting Task
4 in red. Throughout training, we see that QMP
learns to share less behavior from Policy 4 than
other policies in Tasks 0-3 and shares the least to-
tal cross-task behavior in Task 4. This supports
our claim that the Q-switch can identify con-
flicting behaviors that should not be shared. We
note that Task 3 has a relatively larger amount of
sharing than other tasks. Since Task 3 has sparse
rewards, it benefits the most from exploration
via selective behavior-sharing from other tasks.

Figure 20 analyzes the effectiveness of the Q-
switch in identifying shareable behaviors by
visualizing the average proportion that each
task policy is selected for another task over the
course of training in the Multistage Reacher en-
vironment. This average mixture composition statistic intuitively analyzes whether QMP identifies
shareable behaviors between similar tasks and avoids behavior sharing between conflicting or irrel-
evant tasks. As we expect, the Q-switch for Task 4 utilizes the least behavior from other policies

25

Published as a conference paper at ICLR 2025

0.00 0.19 0.38 0.56 0.75
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Multistage Reacher

QMP
QMP Softmax T=0.01
QMP Softmax T=1
QMP Softmax T=100

(a) Probabilistic Mixture Ablation

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Multistage Reacher

QMP (H=10)
QMP-Expectation (H=10)
QMP (H=1)
QMP-Expectation (H=1)
Parameters + Behaviors
Parameters + QMP-Expectation

(b) Expected Q-value Approxima-
tions

0 3 6 9 12
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Maze Navigation with SAC Exploration

QMP
SAC Target Ent. = -2
SAC Target Ent. = -1
SAC Target Ent. = +1

(c) Single-Task Exploration

Figure 21: (a) Using probabilistic mixtures with QMP by using a softmax over Q values with
temperature T, which determines the spread of the distribution. (b)Across different QMP versions,
evaluating mean policy actions (solid lines) vs. sampling 10 actions to estimate expected Q-values
(dashed lines) result in similar performance. (c) Single-task exploration by varying SAC target
entropy. QMP reaches a higher success rate because it shares exploratory behavior across tasks.

(bottom row), and Policy 4 shares the least with other tasks (rightmost column). Since the agent at
Task 4 is rewarded to stay at its initial position, this behavior conflicts with all the other goal-reaching
tasks. Of the remaining tasks, Task 0 and 1 share the most similar goal sequence, so it is intuitive why
they benefit from shared exploration and are often selected by their respective Q-switches. Finally,
unlike the other tasks, Task 3 receives only a sparse reward and therefore relies heavily on shared
exploration. In fact, QMP demonstrates the greatest advantage in this task (Appendix Figure 13).

Behavior-sharing reduces over training: Figure 19 shows that the total amount of behavior-sharing
decreases over the course of training in all tasks, which demonstrates a naturally arising preference in
the Q-switch for the task-specific policy as it becomes more proficient at its own task.

F.1 QUALITATIVE VISUALIZATION OF BEHAVIOR-SHARING

We qualitatively analyze behavior sharing by visualizing a rollout of QMP during training for the
Drawer Open task in Meta-World Manipulation (Figure 9b). To generate this visualization, we use a
QMP rollout during training before the policy converges to see how behaviors are shared and aid
learning. For clarity, we first subsample the episodes timesteps by 10 and only report timesteps when
the activated policy changes to a new one (ie. from timestep 80 to 110, QMP chose the Drawer Open
policy). We qualitatively break down the episode into when the agent is approaching the drawer (top
row; Steps 1-60), grasping the handle (top row; Steps 61-80), and pulling the drawer open (bottom
row). This allows us to see that it switches between all task policies as it approaches the drawer, uses
drawer-specific policies as it grasps the handle, and opening-specific policies as it pulls the drawer
open. This suggests that in addition to ignoring conflicting behaviors, QMP is able to identify helpful
behaviors to share. We note that QMP is not perfect at policy selection throughout the entire rollout,
and it is also hard to interpret these shared behaviors exactly because the policies themselves are
only partially trained, as this rollout is from the middle of training. However, in conjunction with
the overall results and analysis, this supports our claim that QMP can effectively identify shareable
behaviors between tasks.

G ADDITIONAL ABLATIONS AND ANALYSIS

G.1 PROBABILISTIC MIXTURE V/S ARG-MAX

A probabilistic mixture of policies is a design choice of our approach where arg-max is replaced with
softmax. However, in our initial experiments, we found no significant improvement in performance
and it came with an additional hyperparameter of tuning the temperature coefficient. As we see in
Figure 21a, QMP actually outperforms a probabilistic mixture over a range of softmax temperatures,
justifying the design choice of argmax over softmax due to its reliable performance and simplicity.

26

Published as a conference paper at ICLR 2025

G.2 APPROXIMATION EXPECTED Q-VALUE OVER POLICY ACTION DISTRIBUTION

QMP’s behavior policy is defined as πmix
i = argmax

πj∈{π1,...,πN}
Ea∼πj(s)Qi(s, a), which picks the task

policy with the best expected Q value over its action distribution. We approximate the expectation by
evaluating the Q-value of only the mean of each policy’s action distribution which is computationally
cheaper πmix

i ≈ argmax
πj∈{π1,...,πN}

Qi(s,Ea∼πj(s)[a]). We compare this to a empirical estimate that

samples 10 actions from the policy distribution and picks the policy with highest average Q-value in
Figure 21b, and find no significant performance difference between the two approximations. This
validates that our simple approximation works well in practice, which we hypothesize is due to the
low variance of the task policies.

G.3 QMP V/S INCREASING SINGLE TASK EXPLORATION

Since QMP seeks to gather more informative training data for the task by modifying the behavioral
policy, it can be viewed as a form of multi-task exploration. We briefly investigate how single task ex-
ploration differs from multi-task exploration by tuning the target entropy in SAC in Figure 21c which
influences the policy entropy and therefore exploration. We see that while tuning this exploration
parameter affects the sample efficiency by more quickly learning each individual task, QMP achieves
a higher final success rate by incorporating behaviors form other tasks, and therefore doing multi-task
exploration. The benefit of exploration or behavior sharing algorithms specialized for multi-task RL
is precisely this ability to transfer and share information between tasks.

G.4 QMP RUNTIME

While QMP does require more policy and q-function evaluations to sample from πi
mix in comparison

to the base RL method, these evaluations can be greatly parallelized and do not significantly increase
runtime (see Table 4) for average runtimes for our experiments). Each sample from πi

mix requires
querying N policy proposals and N Q-values. In QMP + Parameter-Sharing, thanks to the multihead
architectures of the policy and Q-networks, all N evaluations are done in one single pass. Thus, with
two passes through neural networks, we can get N action candidates and their N Q-values. Therefore,
the increase in time is negligible. Even without parameter-sharing, Qi(s, aj) evaluations can be
batched ∀j and the policy evaluations πj(aj |s) are all independent, and can be obtained in parallel.
In our implementation, we batch the Q evaluations, but do not parallelize the policy evaluations.

Table 4: Runtime Comparison

Environment No-Sharing QMP + Parameter-Sharing QMP +
No-Sharing Parameter-Sharing

Reacher Multistage 12.5 hr 14.2 hr 14 hr 16.2 hr
MT50 – – 7 days, 3hr 7 days, 6 hr

H IMPLEMENTATION DETAILS

The SAC implementation we used in all our experiments is based on the open-source implementation
from Garage (garage contributors, 2019). We used fully connected layers for the policies and Q-
functions with the default hyperparameters listed in Table 5. For DnC baselines, we reproduced the
method in Garage to the best of our ability with minimal modifications.

We used PyTorch (Paszke et al., 2019) for our implementation. We run the experiments primarily on
machines with either NVIDIA GeForce RTX 2080 Ti or RTX 3090. Most experiments take around
one day or less on an RTX 3090 to run. We use the Weights & Biases tool (Biewald, 2020) for
logging and tracking experiments. All the environments were developed using the OpenAI Gym
interface (Brockman et al., 2016).

27

Published as a conference paper at ICLR 2025

H.1 HYPERPARAMETERS

Table 5 details the list of important hyperparameters on all the 3 environments. For all environments,
we used a 2 layer fully connected network with hidden dimension 256 and a tanh activation function
for the policies and Q functions. We use a target network for the Q function with target update
τ = 0.995 and trained with an RL discount of γ = 0.99.

Table 5: Hyperparameters.

Hyperparameter Multistage Maze Meta-World
Reacher Navigation CDS

Minimum buffer size (per task) 10000 3000 10000
Environment steps per update (per task) 1000 600 500
Gradient steps per update (per task) 100 100 50
Batch size 32 256 256
Learning rates for π, Q and α 0.0003 0.0003 0.0015

Hyperparameter Meta-World Walker Kitchen
MT10

Minimum buffer size (per task) 500 2500 200
Environment steps per update (per task) 500 1000 200
Gradient steps per update (per task) 50 1500 50
Batch size 2560 256 1280
Learning rates for π, Q and α 0.0015 0.0003 0.0003

H.2 NO-SHARED-BEHAVIORS

All N networks have the same architecture with the hyperparameters presented in Table 5.

H.3 FULLY-SHARED-BEHAVIORS

Since it is the only model with a single policy, we increased the number of parameters in the network
to match others and tuned the learning rate. The hidden dimension of each layer is 600 in Multistage
Reacher, 834 in Maze Navigation, and 512 in Meta-World Manipulation, and we kept the number
of layers at 2. The number of environment steps as well as the number of gradient steps per update
were increased by N times so that the total number of steps could match those in other models. For
the learning rate, we tried 4 different values (0.0003, 0.0005, 0.001, 0.0015) and chose the most
performant one. The actual learning rate used for each experiment is 0.0003 in Multistage Reacher
and Maze Navigation, and 0.001 in Meta-World Manipulation.

This modification also applies to the Shared Multihead baseline, but with separate tuning for the
network size and learning rates. In Multistage Reacher, we used layers with hidden dimensions of
512 and 0.001 as the final learning rate. In Maze Navigation, we used 834 for hidden dimensions and
0.0003 for the learning rate.

H.4 DNC

We used the same hyperparameters as in Separated, while the policy distillation parameters and the
regularization coefficients were manually tuned. Following the settings in the original DnC (Ghosh
et al., 2018), we adjusted the period of policy distillation to have 10 distillations over the course of
training. The number of distillation epochs was set to 500 to ensure that the distillation is completed.
The regularization coefficients were searched among 5 values (0.0001, 0.001, 0.01, 0.1, 1), and we
chose the best one. Note that this search was done separately for DnC and DnC with regularization
only. For DnC, the coefficients we used are: 0.001 in Multistage Reacher and Maze Navigation,
and 0.001 in Meta-World Manipulation. For Dnc with regularization only, the values are: 0.001 in
Multistage Reacher, 0.0001 in Maze Navigation, and 0.001 in Meta-World Manipulation.

28

Published as a conference paper at ICLR 2025

H.5 QMP (OURS)

Our method also uses the default hyperparameters. QMP does not require any task specific hyperpa-
rameters. The exception is Meta-World MT10, where we found it helpful to have more conservative
behavior sharing by choosing the task-specific policy 70% of the time. The remaining 30% we use
the Q-filter to select a policy as usual.

Like in Baseline Multihead (Parameters-Only), the QMP Multihead architecture (Parame-
ters+Behaviors) also required a separate tuning. Since QMP Multihead effectively has one network,
we increased the network size in accordance with Baseline Multihead and tuned the learning rate in
addition to the mixture warmup period. The best-performing combinations of these parameters we
found are 0 and 0.001 in Multistage Reacher, and 100 and 0.0003 in Maze Navigation, respectively.

H.6 ONLINE UDS

Yu et al. (2022) proposes an offline multi-task RL method (UDS) that shares data between tasks if
their conservative Q value falls above the kth percentile of the task data. Specifically, before training,
you would go through all the tasks’ data and share some data from Task j to Task i if the Task i Q
value of that data is greater than k% of the Q values of Task i’s data. UDS does not require access to
task reward functions like other data-sharing approaches. It simply re-labels any shared data with
the minimum task reward, making it applicable to our problem setting as we also do not assume that
reward relabeling is possible.

In order to adapt UDS to online RL, instead of doing data sharing once on the given multi-task dataset,
we apply UDS data sharing before every training iteration to the data in the multi-task replay buffers.
Concretely, we implement this on-the-fly for every batch of sampled data by sampling one batch of
data from Task i’s replay buffer, βi, and one batch of data from the other task’s replay buffers βj ̸=i.
Then following UDS, we would form the effective batch βeff

i by sharing data from βj ̸=i if it falls
above the kth percentile of Q values for βi:

UDSonline : (s, a, ri, s
′) ∼ βj ̸=i ∈ βeff

i

if ∆π(s, a) := Q̂π(s, a, i)− Pkth [Q̂π(s′, a′, i) : s′, a′ ∼ βi] ≥ 0

Note the differences here: (i) the ‘data’ used for data-sharing is the sampled replay buffer batch
instead of the offline dataset, and (ii) we use the standard Q-function to evaluate data instead of the
conservative Q-function since we are doing online (not offline) RL. We implement it this way as a
practical approximation to avoid having to process the entire replay buffer every training iteration.

We use the same default hyperparameters as the other baseline methods. Additionally, we need to
tune the sharing percentile k. For this, we tried 0th percentile (sharing all data) and 80th percentile,
and chose the best-performing one.

29

	Introduction
	Related Work
	Problem Formulation
	Approach
	Multi-Task Behavior Sharing via Off-Policy Data Collection
	Q-switch Mixture of Policies (QMP)

	Why QMP Works: Theory and Didactic Example
	QMP: Convergence and Improvement Guarantees
	Illustrative Example: 2D Point Reaching

	Experiments
	Environments
	Baselines

	Results
	Is Behavior Sharing Complementary to other MTRL frameworks?
	Baselines: Comparing Different Approaches to Share Behaviors
	Can QMP effectively identify shareable behaviors?
	Ablations

	Conclusion
	References
	
	Qualitative Results
	QMP Derivation
	QMP Convergence Guarantees
	Environment Details
	Multistage Reacher
	Maze Navigation
	Meta-World Manipulation
	Walker2D
	Kitchen

	Additional Results
	Multistage Reacher Per Task Results
	QMP Scales with Task Set Size in Maze Navigation
	QMP Outperforms Data Sharing with Reward Labeling
	PCGrad Results
	Additional MTRL Comparisons
	Temporally-Extended Behavior Sharing

	QMP Behavior Sharing Analysis
	Qualitative Visualization of Behavior-Sharing

	Additional Ablations and Analysis
	Probabilistic Mixture v/s Arg-Max
	Approximation Expected Q-value Over Policy Action Distribution
	QMP v/s Increasing Single Task Exploration
	QMP Runtime

	Implementation Details
	Hyperparameters
	No-Shared-Behaviors
	Fully-Shared-Behaviors
	DnC
	QMP (Ours)
	Online UDS

