
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

QMP: Q-SWITCH MIXTURE OF POLICIES
FOR MULTI-TASK BEHAVIOR SHARING

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-task reinforcement learning (MTRL) aims to learn several tasks simulta-
neously for better sample efficiency than learning them separately. Traditional
methods achieve this by sharing parameters or relabeled data between tasks. In
this work, we introduce a new framework for sharing behavioral policies across
tasks, which can be used in addition to existing MTRL methods. The key idea
is to improve each task’s off-policy data collection by employing behaviors from
other task policies. Selectively sharing helpful behaviors acquired in one task to
collect training data for another task can lead to higher-quality trajectories, leading
to more sample-efficient MTRL. Thus, we introduce a simple and principled frame-
work called Q-switch mixture of policies (QMP) that selectively shares behavior
between different task policies by using the task’s Q-function to evaluate and
select useful shareable behaviors. We theoretically analyze how QMP improves
the sample efficiency of the underlying RL algorithm. Our experiments show
that QMP’s behavioral policy sharing provides complementary gains over many
popular MTRL algorithms and outperforms alternative ways to share behaviors
in various manipulation, locomotion, and navigation environments. Videos are
available at https://sites.google.com/view/qmp-mtrl.

1 INTRODUCTION

Grasping
Drawer
Handle

Grasping
Door

Handle

𝜋!"#$%"	'(%)

𝜋!"#$%"	*+,-%

𝜋!,,"	'(%)

𝜋!,,"	*+,-%

Selective Behavior Sharing for Policy Training

Approaching
Tabletop

Figure 1: We propose a sample-efficient MTRL
framework that selectively shares behaviors by act-
ing with other task policies for data collection. For
example, Drawer Open and Drawer Close
can share behaviors performed for grasping drawer
handle, while Drawer Open and Door Close
share behaviors for approaching the tabletop.

In multi-task reinforcement learning, each task
can benefit from the behaviors learned in others.
Consider a robot learning four tasks simultane-
ously: opening and closing both a drawer and
a door on a tabletop, as illustrated in Figure 1.
A behavior is defined as the policy of how the
robot acts in response to a situation, with the
optimal behavior representing the best response,
such as opening its gripper (action) when near
the drawer handle (state) in the drawer-open
task. As the robot learns, such behaviors are of-
ten shareable between tasks. For instance, both
drawer-open and drawer-close tasks require be-
haviors for grasping the handle. Consequently,
as the robot refines its ability to grasp the drawer
handle in one task, it can incorporate these be-
haviors into the other, reducing the need to ex-
plore the entire action space randomly. Following this intuition, can we develop a general framework
that leverages such behavior sharing across tasks to accelerate overall learning?

Most multi-task reinforcement learning (MTRL) methods share task information via policy parame-
ters (Vithayathil Varghese & Mahmoud, 2020) or data relabeling (Kaelbling, 1993). We propose a
new framework for MTRL: share behaviors between tasks to improve data collection by employing
potentially useful policies from other tasks for more informative training data. This approach offers a
simple, general, and sample-efficient approach that complements existing off-policy MTRL methods.

1

https://sites.google.com/view/qmp-mtrl

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Prior works (Teh et al., 2017; Ghosh et al., 2018) share behaviors between task policies uniformly
by regularizing to one shared distilled policy (Rusu et al., 2015). This introduces a bias towards the
mean behavior and causes negative interference when tasks might require differing optimal behaviors
from the same state. In contrast, reusing other policies for data collection does not introduce any bias.

We propose selective behavioral policy sharing as a novel and general mechanism to improve sample
efficiency in any MTRL architecture. Our key insight is that behaviors being acquired in other tasks
can help when appropriately selected and shared, as shown in human learners (Tomov et al., 2021). In
the Drawer Open task, while learning to approach the drawer handle, the robot should share behaviors
between the Drawer policies, but avoid Door policies which would lead it to the wrong object.

The key question with selective behavioral policy sharing is how to identify helpful behaviors from
other policies in a principled way. We propose a principled way of selecting shared behaviors: a
Q-switch Mixture of Policies (QMP). At each state, one policy from a mixture of all policies is
selected to collect data. The Q-switch makes this selection based on which policy best optimizes the
current task’s soft Q-value because that is an estimate of the most helpful behavior for the current task.
We prove that this selection mechanism preserves the convergence guarantees of the underlying RL
algorithm and potentially improves sample efficiency. Crucially, QMP uses other tasks’ policies only
for data collection, allowing policy training to remain unbiased under any off-policy RL algorithm.

Our primary contribution is introducing behavioral policy sharing for MTRL as a novel avenue
of information sharing between tasks and addressing the problem of principled selective behavior
sharing. Our proposed framework, Q-switch Mixture of Policies (QMP), can effectively identify
shareable behaviors between tasks and incorporates them to gather more informative training data.
We prove that QMP’s behavior sharing not only preserves the policy convergence of the underlying
RL algorithm, but is at least as sample efficient. We demonstrate that QMP provides complementary
gains to other forms of MTRL in a range of manipulation, locomotion, and navigation tasks and
performs well over diverse task families when compared to other behavior sharing methods.

2 RELATED WORK

Information Sharing in Multi-Task RL. There are multiple, mostly complementary ways to share
information in MTRL, including sharing data, sharing parameters or representations, and sharing
behaviors. In offline MTRL, prior works selectively share data between tasks (Yu et al., 2021; 2022).
Sharing parameters across policies can speed up MTRL through shared representations (Xu et al.,
2020; D’Eramo et al., 2020; Yang et al., 2020; Sodhani et al., 2021; Misra et al., 2016; Perez et al.,
2018; Devin et al., 2017; Vuorio et al., 2019; Rosenbaum et al., 2019; Yu et al., 2023; Cheng et al.,
2023; Hong et al., 2022) and can be easily combined with other types of information sharing. Most
similar to our work, Teh et al. (2017) and Ghosh et al. (2018) share behaviors between multiple
policies through policy distillation and regularization. Vuong et al. (2019) identify which states
between tasks share optimal behavior and regularize to each other there. These works share behaviors
through regularization, biasing the policy objective when tasks have differing optimal behaviors. In
contrast, our work selectively shares behavioral policies without modifying the training objective.

Multi-Task Learning for Diverse Task Families. Multi-task learning in diverse task families is
susceptible to negative transfer between dissimilar tasks, hindering training. Prior works combat
this by measuring task relatedness through validation loss on tasks (Liu et al., 2022; Ackermann
et al., 2021) or influence of one task to another (Fifty et al., 2021; Standley et al., 2020) to find task
groupings for training. Other works focus on the challenge of multi-objective optimization (Sener &
Koltun, 2018; Hessel et al., 2019; Yu et al., 2020; Liu et al., 2021; Schaul et al., 2019; Chen et al.,
2018; Kurin et al., 2022). Similar to these works, we identify that prior behavior-sharing MTRL
approaches are susceptible to negative transfer. However, we avoid the challenge of negative transfer
entirely by selectively sharing behaviors only during off-policy data collection.

Exploration in Multi-Task Reinforcement Learning. Our approach of modifying the behavioral
policy to leverage shared task structures can be seen as a form of MTRL exploration, which we
discuss further in Appendix Section 20c. Bangaru et al. (2016) encourage agents to increase their
state coverage by providing an exploration bonus. Zhang & Wang (2021) study sharing information
between agents to encourage exploration under tabular MDPs. Kalashnikov et al. (2021b) directly
leverage data from policies of other specialized tasks (like grasping a ball) for their general task

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

variant (like grasping an object). In contrast to these approaches, we do not require a pre-defined task
similarity measure or exploration bonus; we demonstrate in Section 6 that QMP works across many
tasks and domains without these additional measures. Skill learning can be seen as behavior sharing
in a single task setting such as learning options for exploration or heirarchical RL (Machado et al.,
2017; Jinnai et al., 2019b;a; Hansen et al., 2019; Riemer et al., 2018). We also discuss the difference
to single-task exploration in Appendix Section H.3.

Using Q-functions as filters. Yu et al. (2021) uses Q-functions to filter which data should be shared
between tasks in a multi-task setting. In the imitation learning setting, Nair et al. (2018) and Sasaki &
Yamashina (2020) use Q-functions to filter out low-quality demonstrations, so they are not used for
training. In both cases, the Q-function is used to evaluate some data that can be used for training.
Zhang et al. (2022) reuses pre-trained policies to learn a new task, using a Q-function as a filter to
choose which pre-trained policies to regularize to as guidance. In contrast to prior works, our method
uses a Q-function to evaluate different task policies to gather training data.

3 PROBLEM FORMULATION

Multi-task reinforcement learning (MTRL) addresses sequential decision-making tasks, where an
agent learns a policy to act optimally in an environment (Kaelbling et al., 1996; Wilson et al., 2007).
Therefore, in addition to typical multi-task learning techniques, MTRL can also share behaviors,
i.e., actions, to improve sample efficiency. However, current approaches share behaviors uniformly
(Section 2), which assumes that different tasks’ behaviors do not conflict. To address this limitation,
we seek to develop a selective behavior-sharing method that can be applied in more general task
families for sample-efficient MTRL.

Multi-Task RL with Behavior Sharing. We aim to simultaneously learn a set {T1, . . . ,TN} of
N tasks. Each task Ti is a Markov Decision Process (MDP) defined by state space S, action space
A, transition probabilities Ti, reward functionsRi, initial state distribution ρi, and discount factor
γ ∈ [0, 1]. While we use S to denote shared state spaces for simplicity, our formulation extends to
tasks with different state spaces as it complements policy architectures that share state encoders. The
agent learns a set of N policies {π1, . . . , πN}, where each policy πi(a|s) represents the behavior on
task Ti. The objective is to maximize the average expected return over all tasks,

{π∗
1 , . . . , π

∗
N} = max

{π1,...,πN}

1

N

N∑
i=1

[
Eat∼πi

∞∑
t=0

γtRi(st, at)

]
.

Unlike prior works, our tasks can exhibit conflicting optimal behaviors: for any s, π∗
i (a|s) may

differ from π∗
j (a|s). Thus, prior methods that bias policy learning objectives like direct policy

sharing (Kalashnikov et al., 2021a) or behavior regularization (Teh et al., 2017) would be suboptimal.

4 APPROACH

To improve the sample efficiency of multi-task RL, we propose a framework that selectively incorpo-
rates behaviors from policies of other tasks without introducing bias into the RL objective for the
current task. We achieve this by using a mixture of all policies as the behavioral policy for the current
task, thereby modifying only its off-policy training data. However, naively mixing other policies into
the current task’s behavioral policy does not necessarily improve its sample efficiency. To address
this, we derive a specific definition of this mixture, named Q-switch Mixture of Policies (QMP), that
selects a policy based on the current task’s Q-function (see Figure 2 and Algorithm 1) and prove that
QMP guarantees greater than or equal sample efficiency than using the current task’s policy alone.

4.1 MULTI-TASK BEHAVIOR SHARING VIA OFF-POLICY DATA COLLECTION

MTRL methods like Teh et al. (2017) use regularization to a common average policy to enforce task
policies to share behaviors. However, this introduces bias to each policy’s RL objective, leading to
suboptimal actions in states where tasks require different actions. To address this, we propose using a
mixture of policies for off-policy data collection as the means of behavior-sharing. At each state in
any given task, one of the task policies is selected to gather training data as the current behavioral
policy. This approach is compatible with any off-policy RL algorithm (Watkins & Dayan, 1992)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Behavior Proposals Mixture of Policies

! ! !

!!

QMP

#1	~	!1(' |))

#2	~	!2(' |))

#3	~	!3(' |))

"1

Q-switch

Best Behavior

Train !! & "1

Gather Data
Replay
Buffer 1

Task 1
Task 2

Task 3

Q-switch

argmax! &1((, *#)

Figure 2: Our method (QMP) shares behavior between task policies in the data collection phase
using a mixture of these policies. For example, in Task 1, each task policy proposes an action aj .
The task-specific Q-switch evaluates each Q1(s, aj) and selects the best scored policy to gather
reward-labeled data to train Q1 and π1. Thus, Task 1 will be boosted by incorporating high-reward
shareable behaviors into π1 and improving Q1 for subsequent Q-switch evaluations.

because the environment rewards help determine the best actions from the collected data. However,
an effective mixture policy must choose the behavioral policies in a selective and principled way.
Definition 4.1 (Mixture of Policies). For each task Ti, the mixture policy πmix

i (a | s) is defined
as πmix

i (a | s) = π
fi

(
s,π1,...,πN

)(a | s), where fi(s, π1, . . . , πN) : S × ΠN → {1, . . . , N} is a

mixture-switch function that selects one of the policies π1, . . . , πN based on the current state s.

Our intuition of policy mixture shares inspiration with hierarchical RL (Çelik et al., 2021; Daniel
et al., 2016; End et al., 2017; Goyal et al., 2019) where a mixture of options is learned according
to the downstream task(s). However, a key difference in an MTRL mixture is that each policy is
optimized for its own specific task and not designed to fit the task where the mixture is employed.

4.2 Q-SWITCH MIXTURE OF POLICIES (QMP)

We aim to derive a principled mixture-switch function fi such that the mixture policy πmix
i selectively

incorporates behaviors from other policies while being guaranteed to be no worse than the current
task’s policy πi. We recall the generalized policy iteration procedure (Sutton & Barto, 2018)
underlying single-task SAC (Haarnoja et al., 2018): policy evaluation learns Q by minimizing the
bellman error on the collected data, and policy improvement follows Q by minimizing the KL
divergence between the new policy and the exponential of the current Q-function, Qπold

:

πnew = arg min
π′∈Π

DKL

π′(· | st)
∥∥∥∥∥exp

(
1
αQ

πold
(st, ·)

)
Zπold(st)

 (1)

In practice, the gradient updates in SAC are gradual and do not instantly achieve this optimization in
Eq. 1, leaving a suboptimality gap to catch up to the Q-function. Thus, a mixture policy πmix

i that
selects the best policy from a set of all given policy candidates, including the current policy, ensures
that πmix

i is at least as good as πi for the current state s, while potentially being a better optimizer of
Eq. 1 due to shareable behaviors from the other task policies:

min
π′∈{π1,...,πN}

DKL

(
π′(· | s)

∥∥∥∥∥exp(1
αQ

πi(s, ·))
Zπi(s)

)
≤ DKL

(
πi(· | st)

∥∥∥∥∥exp(1
αQ

πi(s, ·))
Zπi(s)

)
(2)

Simplifying the expression on the left results in the following definition (derivation in Appendix C).
Definition 4.2 (Q-switch Mixture of Policies: QMP). For a task Ti and available candidate policies
{π1, ..., πN}, the QMP πmix

i (a | s) selects a policy according to:

πmix
i = arg max

π′∈{π1,...,πN}
Ea∼π′(·|s) [Q

πi(s, a)] + αH [π′(· | s)] (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Q-switch Mixture of Policies (QMP)

Input: Task Set {T1, . . . ,TN}
Initialize {πi}Ni=1, {Qi}Ni=1, Data buffers {Di}Ni=1
for each epoch do

for i = 1 to N do
while Task Ti episode not terminated do

Observe state s
Compute πmix

i as in Eq. 3.
Take action proposal from a ∼ πmix

i
Di ←Di ∪ (s, a, ri, s

′)
end while

end for
for i = 1 to N do

Update πi, Qi using Di with SAC
end for

end for
Output: Trained policies {πi}Ni=1

Algorithm 1 shows that QMP can be
plugged into any MTRL framework, mak-
ing it complementary with various MTRL
frameworks like parameter-sharing and data
relabeling (see Section 7.1). In practice, we
estimate the expectation in Eq. 3 by evaluat-
ing the Q-value for the mean action of each
task policy’s distribution π′(·|s) ignoring
the entropy term. We do not find any empir-
ical difference when using a sampled esti-
mate of the expectation (see Appendix H.2)
or including the entropy term, as the Q-value
is the primary distinguishing factor between
policies. In terms of compute, sampling
from QMP’s πmix

i (a|s) does require more
policy and Q-function evaluations. However,
evaluations are parallelized and impact run-
time negligibly, as shown in Appendix H.4.

While πmix
i can mistakenly choose a poor

policy due to estimation error in Qπi , this is identical to Q-learning or SAC, where the Q-function
would be inaccurate at less-seen states. In both Q-learning and QMP, this is corrected with online
interactions where the Q-function is trained to be more accurate in a subsequent iteration. Furthermore,
πmix
i actually better maximizes Qπi than πi, which is the objective under generalized policy iteration.

Note that QMP does not exacerbate the problem of overestimation because the soft policy evaluation
step stays the same, i.e., it uses πi and not πmix

i .

5 WHY QMP WORKS: THEORY AND DIDACTIC EXAMPLE

5.1 QMP: CONVERGENCE AND IMPROVEMENT GUARANTEES

QMP performs simultaneous MTRL by collecting data using a Q-switch guided mixture of poli-
cies πmix

i . In Appendix D, we prove that QMP with underlying RL algorithm Soft-Actor Critic
(SAC) (Haarnoja et al., 2018) shares the same convergence guarantees in a tabular setting. Par-
ticularly, we show that under QMP, policy evaluation converges because QMP only modifies data
collection of off-policy RL, policy improvement guarantees are preserved (Theorem 5.1), and policy
iteration converges to an optimal policy at least as sample-efficiently (Theorem D.2).

The key reason for better policy improvement of QMP over the current task policy πi is the argmax
operation in Eq. 3, which ensures that the selected policy πmix

i ∈ {πj}Nj=1 optimizes the SAC
objective at least as well as πi itself. We formalize this in Theorem 5.1 with proof in Appendix D.1.
Due to the suboptimality gap in Eq. 1 in SAC, QMP can actually achieve better policy improvement
when there are shareable behaviors between policies.

Theorem 5.1 (Mixture Soft Policy Improvement). Consider πold
i and its associated Q-function Qi.

Apply SAC’s policy improvement πold
i → πi and then πi → πmix

i from Eq. 3. Then, Qπmix
i (st,at) ≥

Qπi(st,at) ≥ Qπold
i (st,at) for all tasks Ti and for all (st, at) ∈ S ×A with |A| <∞.

Figure 3: QMP generalized policy iteration

While QMP in Def. 4.2 applies to any set of candidate
policies {π1, ..., πN}, one expects πmix

i to improve over
πi when some πj ̸= πi proposes an action candidate
better than πi for Task Ti. This is more likely in MTRL
policies that share structure between tasks than an arbi-
trary set of policies. For instance, if Ti and Tj share a
subtask that appears early in the episodes for Tj , then
πj would have already learned it before πi and be a
better policy for certain states of Ti, according to Qi.

QMP making bigger policy improvement steps results in each iteration of generalized policy iteration
making more progress towards optimality. This reduces the number of iterations required to converge,
improving the sample efficiency of the algorithm as illustrated in Fig. 3 and proved in Theorem D.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) SAC: π (b) QMP: π ↑ → ↙ (c) QMP: π ↑ → ↗

Figure 4: 2D Point Reaching. We visualize the training trajectories of π with different sets of task
policies (fixed but stochastic) and color each step with the policy that proposed it. (a) The single-task
SAC policy cannot reach the goal. (b) With 3 diverse policies (↑ → ↙), QMP often selects other
policies, showing the suboptimality gap from Q in Eq. 1. (c) When a highly relevant↗ policy is
added, QMP often selects↗ as it is likely to best optimize the learned Q-function.

5.2 ILLUSTRATIVE EXAMPLE: 2D POINT REACHING

0.0 0.5 1.0 1.5 2.0

Environment Timesteps (10k)

−30

−20

−10

0

10

20

A
ve

ra
ge

R
et

ur
n

2D Point Reaching

SAC: π

QMP: π ↑→↙
QMP: π ↑→↗

Figure 5: QMP improves performance
using other policies, increasingly so
when they are task-relevant (5 seeds).

We demonstrate when QMP can utilize alternate policy can-
didates {π1, . . . , πN} to more effectively learn a policy by
bridging a policy improvement suboptimality gap as π tries
to follow Q in Eq. 1. Consider a 2D point-reaching task
where the agent must navigate from the bottom-left corner
(0, 0) to the goal in the top-right corner (10, 10). The point
agent receives dense rewards based on its proximity to the
goal and takes incremental 2D actions (∆x,∆y) ∈ [−1, 1]2.

Figure 5 shows that the SAC policy π converges to a subop-
timal solution. Fig. 4a confirms that the data collected by
SAC policy never reaches the goal. This shows that if the
suboptimality gap in π is not successfully bridged, it can
make the entire algorithm converge suboptimally.

To illustrate the effect of QMP, we add 3 fixed gaussian policies centered on (↑ → ↙) or (↑ → ↗),
and only let π be trainable. Fig. 4b, 4c show that πmix

i employs alternate policies at many states in data
collection as they optimize Eq. 3 better than π itself. This selectivity enables πmix

i to generate more
effective goal-reaching trajectories by bridging the suboptimality gap, resulting in better performance
in Fig. 5. A policy like↗ that is more relevant to the underlying task leads to a larger gain.

The same principle extends to the simultaneous multi-task RL setting. In MTRL, each task’s policy
continuously improves and can serve as a valuable candidate in the mixture for other tasks. QMP
enables tasks to selectively share their behaviors, allowing each task to benefit from the progress
of others. This mutual assistance accelerates learning across all tasks, as the mixture policy πmix

i
for each task Ti selects the most promising action proposals from all available policies according
to the task-specific Q-function, guaranteed to be at least as good as πi itself. Consequently, MTRL
combined with QMP leverages the collective knowledge of all tasks to bridge suboptimality gaps
more efficiently, leading to improved sample efficiency and overall performance.

6 EXPERIMENTS

6.1 ENVIRONMENTS

We evaluate our method in 7 multi-task designs in manipulation, navigation, and locomotion environ-
ments, shown in Figure 6. These tasks vary in the degree of shared and conflicting behaviors between
tasks and the number of tasks in the set. Further details in Appendix Section E.

Multistage Reacher: A 6 DoF Jaco arm learns 5 tasks with ordered subgoals. The first 4 tasks share
some subgoals, while the 5th conflicting task requires the agent to stay at its initial position.

Maze Navigation: Building on point mass maze navigation (Fu et al., 2020), we define 10 tasks with
various start and goal locations exhibiting coinciding and conflicting segments in the optimal paths.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Jaco Reacher (b) Maze Navigation (c) Meta-World (d) Walker2D (e) Franka Kitchen

Figure 6: Environments & Tasks: (a) Multistage Jaco Reacher. The agent must reach different
subgoals or stay still (Task 4). (b) Maze Navigation. The agent (green circle) must navigate to the
goal (red circle). 4 other tasks are shown in orange. (c) Meta-World: 10 table-top manipulation tasks.
(e) Franka Kitchen: 10 tasks, interacting with one appliance or cabinet.

Meta-World Manipulation: We use three task sets based on the Meta-World environment (Yu et al.,
2019). Meta-World MT10 and Meta-World MT50 are sets of 10 and 50 table-top manipulation
tasks involving different objects and behaviors. Meta-World CDS is a 4-task setup proposed in Yu
et al. (2021) which places the door and drawer objects next to each other on the same tabletop so that
all 4 tasks (door open & close, drawer open & close) are solvable in a simultaneous multi-task setup.

Walker2D: Walker2D is a 9 DoF bipedal walker agent with the multi-task set containing 4 locomotion
tasks proposed in Lee et al. (2019): walking forward, walking backward, balancing, and crawling.
These tasks require different gaits without an obviously identifiable shared behavior in the optimal
policies but can still benefit from intermediate behaviors like balancing.

Kitchen: We use the challenging manipulation environment proposed by Gupta et al. (2019) where a
9 DoF Franka robot performs tasks in a kitchen. We create a task set out of 10 manipulation tasks:
turning on or off different burners and light switches, and opening or closing different cabinets.

6.2 BASELINES

We first select popular and representative MTRL methods that share other forms of information to
evaluate how behavior-sharing with QMP improves their performance:

• No-Sharing consists of N (refers to number of tasks) independent RL architectures where each
agent is assigned one task and trained to solve it without any information sharing with other agents.

• Data-Sharing (UDS) proposed in Yu et al. (2022) shares data between tasks, relabelling with
minimum task reward. We modified this offline RL algorithm to online.

• Parameter-Sharing a multi-head SAC policy sharing parameters but not behaviors over tasks.

We validate QMP’s approach to share behaviors via off-policy data collection with other approaches:

• No-Shared-Behaviors consists of N RL agents where each agent is assigned one task and trained
to solve it without any behavior sharing with other agents: no bias and no sharing.

• Fully-Shared-Behaviors is a single SAC agent that learns one shared policy for all tasks, outputting
the same action for a given state regardless of task (full parameter sharing): fully biased sharing.

• Divide-and-Conquer RL (DnC) (Ghosh et al. (2018)) uses N policies that share behaviors through
policy distillation and regularization to the mean (adapted for MTRL): biased objective for sharing.

• DnC (Regularization Only) is a no policy distillation variant of DnC we propose as a baseline.

• QMP (Ours) learns N policies that share behaviors in off-policy data collection: unbiased sharing.

We used SAC Haarnoja et al. (2018) for all environments and methods. All the non-parameter sharing
baselines use the same SAC hyperparameters. Please refer to Appendix I for complete details.

7 RESULTS

Our experiments address: (1) Does QMP provide complementary gains to other forms of MTRL? (2)
How does sharing behavioral policies compare with alternate forms of behavior sharing? (3) Can
QMP effectively identify shareable behaviors? (4) Ablating key components of QMP.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Multistage Reacher

0 3 6 9 12
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Maze Navigation

0.0 2.5 5.0 7.5 10.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Meta-World CDS

0.00 1.25 2.50 3.75 5.00
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Kitchen

0 10 20 30 40
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Meta-World MT10

0.0 7.5 15.0 22.5 30.0
Environment steps (1M)

0

10

20

30

40

50

Su
cc

es
s R

at
e

(%
)

MT50

Parameter-SharingNo-Sharing + QMP No-Sharing Parameters + QMPData-Sharing + QMP Data-Sharing

QMP(Ours) No-Shared-Behavior Fully-Shared-Behavior DnC (reg-only)DnC

Figure 7: Behavioral policy sharing is complementary. QMP (solid lines) shows general improve-
ment over MTRL frameworks (same-colored dashed lines) like No shared architecture (blue), shared
parameters (pink), and shared data (green). Methods without parameter-sharing on MT50 converge
very slowly. Success rate means and std (shaded) are over N tasks, 10 episodes per task, and 5 seeds.

7.1 IS BEHAVIOR SHARING COMPLEMENTARY TO OTHER MTRL FRAMEWORKS?

We demonstrate that our method is compatible with and provides complementary performance gains
with other forms of MTRL that share different kinds of information, including parameter sharing
and data sharing. We compare the performance between 3 base MTRL algorithms, No-Sharing,
Parameter-Sharing, and Data-Sharing, with the addition of QMP in Figure 7. The No-Sharing baseline
provides a baseline comparison of QMP’s effectiveness on its own. For the Parameter-Sharing and
Data-Sharing baselines we chose the base algorithms for their popularity and simplicity. In each
case, we add QMP by simply replacing the data collection policy with πmix

i . We find that QMP
is complementary to all three baseline frameworks, mostly with additive performance gains in
sample efficiency and final performance, while not hurting the performance of the base method in all
but one case (Data-Sharing in Kitchen). We additionally see that QMP improves PCGrad’s (Yu et al.,
2020) performance significantly in 3 out of 4 environments tested in Appendix F.3. This shows that
QMP is a simple and complementary addition to other forms of MTRL.

QMP significantly improves upon the No-Sharing baseline in all environments except Meta-World
CDS where it performs comparatively. This demonstrates that sharing behavioral policies is a
promising avenue for efficient and performant MTRL. In the data-sharing comparison, we see that the
addition of QMP improves or performs comparatively to the base algorithm. In Multistage Reacher
and Maze Navigation, we see that both Data-Sharing and Data + QMP perform worse than the other
MTRL methods, highlighting the fact that sharing data directly between tasks can be ineffective
without access to a re-labeled task rewards like in our setting. In environments where data-sharing
does well, like Meta-World CDS, we see that adding QMP does improve sample efficiency.

We find that Parameters + QMP generally outperforms Parameter-Sharing, while inheriting its sample
efficiency gains. In many cases, the parameter-sharing methods converge sub-optimally, highlighting
that shared parameter MTRL has its own challenges. However, in Maze Navigation, we find that
sharing Parameters + Behaviors greatly improves the performance over both the Parameter-
Sharing baseline and No-Sharing + QMP variant of QMP. This demonstrates the additive effect
of these two forms of information sharing in MTRL. The agent initially benefits from the sample
efficiency gains of the multi-head parameter-sharing architecture, while behavior sharing accelerates
learning by selectively using other policies to keep learning even after the parameter-sharing effect
plateaus. demonstrating the compatibility between QMP and parameter sharing as key ingredients to
sample efficient MTRL. We further highlight that this benefit of QMP increases with the number
of tasks increasing from 10 to 50 in Meta-World, where we see that QMP is actually more effective

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Multistage Reacher

0 3 6 9 12
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Maze Navigation

0.00 1.25 2.50 3.75 5.00
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Kitchen

0.0 2.5 5.0 7.5 10.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Meta-World CDS

0.0 12.5 25.0 37.5 50.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Meta-World MT10

0 2 4 6 8
Environment steps (1M)

0.000

0.667

1.334

2.001

2.668

3.335

Av
er

ag
e

Re
tu

rn

1e6 Walker

QMP(Ours) No-Share Fully-Share DnC (reg-only)DnC

QMP(Ours) No-Shared-Behavior Fully-Shared-Behavior DnC (reg-only)DnC

Figure 8: QMP reliably shares behaviors. In task sets exhibiting conflicting behaviors, QMP
consistently matches or exceeds baselines in rate of convergence and final performance.

when combined with parameter sharing in MT50 than in MT10. QMP scales well with the number of
tasks and can actually perform better likely due to more shared behaviors in the larger task set.

7.2 BASELINES: COMPARING DIFFERENT APPROACHES TO SHARE BEHAVIORS

To verify QMP’s efficacy as a behavior-sharing mechanism, we evaluate baselines that share behaviors
in different ways on 6 environments in Figure 8. QMP reliably matches or exceeds other methods,
especially in tasks that require conflicting behaviors, where alternate approaches are ineffective.

In the task sets with the most directly conflicting behaviors, Multistage Reacher and Maze Navigation,
our method clearly outperforms other behavior-sharing and data-sharing baselines. In Multistage
Reacher, our method reaches > 90% success rate at 0.5 million environment steps, while DnC (reg.),
the next best method, takes 3 times the number of steps to fully converge. The rest of the methods
fail to attain the maximum success rate. The UDS baseline performs particularly poorly, illustrating
that data sharing can be ineffective without ground truth rewards. We also see that QMP scales better
from 3 to 10 tasks in Maze compared to other behavior sharing methods in Appendix Section F.4.

In the remaining task sets with no directly conflicting behaviors, we see that QMP is competitive with
the best-performing baseline for more complex manipulation and locomotion tasks. Particularly, in
Walker2D and Meta-World CDS, we see that QMP is the most sample-efficient method and converges
to a better final performance than any other behavior sharing method. In Meta-World MT10 and
Kitchen, DnC (regularization only) also performed very well, showing that well-tuned uniform
behavior sharing can be very effective in tasks without conflicting behavior. However, QMP also
performs competitively and more sample efficiently, showing that QMP is effective under the same
assumptions as uniform behavior-sharing methods but can do so adaptively and across more general
task families. The Fully-Shared-Behaviors baseline often performs poorly because it totally biases
the policies, while the No-Shared-Behavior is a surprisingly strong baseline as it introduces no bias.

7.3 CAN QMP EFFECTIVELY IDENTIFY SHAREABLE BEHAVIORS?

Figure 9a shows the average proportion of sharing from other tasks for Multistage Reacher Task 0
over the course of training. We see that QMP learns to generally share less behavior from Policy 4
than from Policies 1-3 (Appendix Figure 18). Conversely, QMP in Task 4 also shares the least total
cross-task behavior (Appendix Figure 19). We see this same trend across all 5 Multistage Reacher
tasks, showing that the Q-switch successfully identifies conflicting behaviors that should not be
shared. Further, Figure 9a also shows that total behavior-sharing from other tasks goes down over
training. Thus, Q-switch learns to prefer its own task-specific policy as it becomes more proficient.

We qualitatively analyze how behavior sharing varies within a single episode by visualizing a QMP
rollout during training for the Drawer Open task in Meta-World CDS (Figure 9b). We see that it

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

6

12

18

24

30

Po
lic

y
Pe

rc
en

ta
ge

 in
 M

ix
tu

re QMP Behavior Sharing Task 0
Policies 1, 2, 3
Policy 4

(a) Behavior-sharing over training

Step 250 Every Transition mod 10

Drawer Open

Step 80

Door Open

Step 110

Drawer Open

Step 130

Door Open

Step 140

Step 1

Door Close

Step 11

Door Open

Step 21

Drawer Open Door Open

Step 41

Drawer Close

Step 61 Step 71

Drawer Open

Drawer Open
Drawer Close

Door Open
Door Close

Policy Used

Drawer Open Task: Grasping Drawer Handle

Drawer Open Task: Pulling Drawer Handle

We visualize a QMP rollout during training for the Drawer Open task where we label each transition to a new policy. We break the episode into two subtasks: grasping the drawer
handle (top row) and pulling the drawer handle (bottom row). To learn to grasp the drawer handle, QMP uses all policies to approach the handle and then the drawer policies as
the agent nears the handle. To learn to pull the drawer open, QMP uses only Drawer Open and Door Open policies. For clarity, we first subsample the episode timesteps by 10.(b) Behavior-sharing in a single training episode.

Figure 9: (a) Mixture probabilities of other policies for Task 0 in Multistage Reacher with the
conflicting task Policy 4 shown in red. (b) Policies chosen by the QMP behavioral policy every 10
timesteps for the Drawer Open task throughout one training episode. The policy approaches and
grasps the handle (top row), then pulls the drawer open (bottom row).

makes reasonable policy choices by (i) switching between all 4 task policies as it approaches the
drawer (top row), (ii) using drawer-specific policies as it grasps the drawer-handle, and (iii) using
Drawer Open and Door Open policies as it pulls the drawer open (bottom row). In conjunction with
the overall results, this supports our claim that QMP can effectively identify shareable behaviors
between tasks. For details on this visualization and the full analysis results see Appendix Section G.

Inspired by hierarchical RL (Dabney et al., 2021) and multi-task exploration (Xu et al., 2024), we
briefly investigate temporally extended behavior sharing in Appendix F.6.Recently, Xu et al. (2024)
showed that if one assumes a high overlap between optimal policies of different tasks, other task
policies can aid exploration. So, we simply roll out each policy QMP selects for a fixed number of
steps. QMP theory no longer holds as it requires selecting a policy at every step. Yet, this naive
temporally extended QMP yields improvements in some environments like Maze with strong overlap.

7.4 ABLATIONS

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Q-switch Ablations

QMP
QMP-Uniform
QMP-Domain-Knowledge

Figure 10: QMP outperforms alternate policy
mixtures in Multistage Reacher.

We show the importance of Q-switch in QMP
(Def. 4.2) against alternate forms of policy mixtures
(Def. 4.1). QMP-Uniform is a uniform distribution
over policies, fi = U({1, . . . , N}) and achieves only
60% success rate (Figure 10), showing the impor-
tance of selectivity. QMP-Domain-Knowledge is
a hand-crafted, fixed policy distribution based on
an estimate of similarity between tasks. Multistage
Reacher measures this similarity by the shared sub-
goal sequences between tasks (Appendix E). QMP-
Domain performs well initially but plateaus early,
showing that which behaviors are shareable depends
on the state and current policy. We further ablate the
argmax in Q-switch against a softmax varation re-
sulting in a probabilistic mixture policy in Appendix
Section H.1, and evaluating on the mean policy actions (Appendix Section H.2) to validate our design.

8 CONCLUSION

We propose an unbiased approach to sharing behaviors via off-policy data collection in MTRL:
Q-switch Mixture of Policies. We demonstrate empirically that QMP effectively improves the rate
of convergence and task performance in manipulation, locomotion, and navigation tasks, and is
guaranteed to be as good as the underlying RL algorithm and complementary to alternate MTRL.
QMP does not assume that optimal task behaviors always coincide. Thus, its improvement magnitude
is limited by the degree of shareable behaviors and the suboptimality gap that exists. At the same
time, this lets QMP be unbiased and find optimal policies with convergence guarantees while being
equally or more sample-efficient. Since QMP only shares behaviors via off-policy data collection, it
is not applicable to on-policy RL base algorithms like PPO (Schulman et al., 2017). Promising future
directions include temporally-extended behavior sharing and incorporating other forms of prior task
information on shareable behaviors, such as language embeddings in instruction-following tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Johannes Ackermann, Oliver Richter, and Roger Wattenhofer. Unsupervised task clustering for multi-
task reinforcement learning. In Nuria Oliver, Fernando Pérez-Cruz, Stefan Kramer, Jesse Read,
and Jose A. Lozano (eds.), Machine Learning and Knowledge Discovery in Databases. Research
Track, pp. 222–237, Cham, 2021. Springer International Publishing. ISBN 978-3-030-86486-6.

Sai Praveen Bangaru, JS Suhas, and Balaraman Ravindran. Exploration for multi-task reinforcement
learning with deep generative models. arXiv preprint arXiv:1611.09894, 2016.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.
com/. Software available from wandb.com.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. GradNorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International Conference
on Machine Learning, 2018.

Yuan Cheng, Songtao Feng, Jing Yang, Hong Zhang, and Yingbin Liang. Provable benefit of multitask
representation learning in reinforcement learning. In Neural Information Processing Systems,
2023.

Will Dabney, Georg Ostrovski, and Andre Barreto. Temporally-extended ε-greedy exploration. In
International Conference on Learning Representations, 2021.

Christian Daniel, Gerhard Neumann, Oliver Kroemer, and Jan Peters. Hierarchical relative entropy
policy search. Journal of Machine Learning Research, 2016.

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, Jan Peters, et al. Sharing
knowledge in multi-task deep reinforcement learning. In International Conference on Learning
Representations, 2020.

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning modular
neural network policies for multi-task and multi-robot transfer. In IEEE International Conference
on Robotics and Automation, 2017.

Felix End, Riad Akrour, Jan Peters, and Gerhard Neumann. Layered direct policy search for learning
hierarchical skills. In IEEE International Conference on Robotics and Automation, 2017.

Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently identifying
task groupings for multi-task learning. In Neural Information Processing Systems, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

The garage contributors. Garage: A toolkit for reproducible reinforcement learning research. https:
//github.com/rlworkgroup/garage, 2019.

Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Kumar, and Sergey Levine. Divide-and-
conquer reinforcement learning. In International Conference on Learning Representations, 2018.

Ruben Glatt, Felipe Leno Da Silva, Reinaldo Augusto da Costa Bianchi, and Anna Helena Reali
Costa. Decaf: Deep case-based policy inference for knowledge transfer in reinforcement learning.
Expert Systems with Applications, 2020.

Anirudh Goyal, Shagun Sodhani, Jonathan Binas, Xue Bin Peng, Sergey Levine, and Yoshua Bengio.
Reinforcement learning with competitive ensembles of information-constrained primitives. arXiv,
abs/1906.10667, 2019.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long horizon tasks via imitation and reinforcement learning. In Conference on
Robot Learning, 2019.

11

https://www.wandb.com/
https://www.wandb.com/
https://github.com/rlworkgroup/garage
https://github.com/rlworkgroup/garage

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, 2018.

Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele, David Warde-Farley, and
Volodymyr Mnih. Fast task inference with variational intrinsic successor features. arXiv preprint
arXiv:1906.05030, 2019.

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and Hado van
Hasselt. Multi-task deep reinforcement learning with popart. In AAAI Conference on Artificial
Intelligence, 2019.

Sunghoon Hong, Deunsol Yoon, and Kee-Eung Kim. Structure-aware transformer policy for inhomo-
geneous multi-task reinforcement learning. In International Conference on Learning Representa-
tions, 2022.

Yuu Jinnai, Jee Won Park, David Abel, and George Konidaris. Discovering options for exploration
by minimizing cover time. In International Conference on Machine Learning, 2019a.

Yuu Jinnai, Jee Won Park, Marlos C Machado, and George Konidaris. Exploration in reinforcement
learning with deep covering options. In International Conference on Learning Representations,
2019b.

Leslie Pack Kaelbling. Learning to achieve goals. In International Joint Conference on Artificial
Intelligence, 1993.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 1996.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic rein-
forcement learning at scale. arXiv preprint arXiv:2104.08212, 2021a.

Dmitry Kalashnikov, Jake Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski, Chelsea
Finn, Sergey Levine, and Karol Hausman. Scaling up multi-task robotic reinforcement learning.
In Conference on Robot Learning, 2021b.

Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and M. Pawan Kumar. In
defense of the unitary scalarization for deep multi-task learning. arXiv preprint arXiv:2201.04122,
2022.

Youngwoon Lee, Shao-Hua Sun, Sriram Somasundaram, Edward S. Hu, and Joseph J. Lim. Com-
posing complex skills by learning transition policies. In International Conference on Learning
Representations, 2019.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for
multi-task learning. In Neural Information Processing Systems, 2021.

Shikun Liu, Stephen James, Andrew J Davison, and Edward Johns. Auto-lambda: Disentangling
dynamic task relationships. Transactions on Machine Learning Research, 2022.

Marlos C Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
Campbell. Eigenoption discovery through the deep successor representation. arXiv preprint
arXiv:1710.11089, 2017.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for
multi-task learning. In IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Siddharth Mysore, George Cheng, Yunqi Zhao, Kate Saenko, and Meng Wu. Multi-critic actor learn-
ing: Teaching rl policies to act with style. In International Conference on Learning Representations,
2022.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Overcom-
ing exploration in reinforcement learning with demonstrations. In IEEE International Conference
on Robotics and Automation, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Taewook Nam, Shao-Hua Sun, Karl Pertsch, Sung Ju Hwang, and Joseph J. Lim. Skill-based
meta-reinforcement learning. In International Conference on Learning Representations, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Neural Information Processing Systems, 2019.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In AAAI Conference on Artificial Intelligence, 2018.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on Robot Learning, 2021.

Matthew Riemer, Miao Liu, and Gerald Tesauro. Learning abstract options. In Proceedings of
the 32nd International Conference on Neural Information Processing Systems, NIPS’18, pp.
10445–10455, Red Hook, NY, USA, 2018. Curran Associates Inc.

Clemens Rosenbaum, Ignacio Cases, Matthew Riemer, and Tim Klinger. Routing networks and the
challenges of modular and compositional computation. arXiv preprint arXiv:1904.12774, 2019.

Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. arXiv preprint arXiv:1511.06295, 2015.

Fumihiro Sasaki and Ryota Yamashina. Behavioral cloning from noisy demonstrations. In Interna-
tional Conference on Learning Representations, 2020.

Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan Pascanu. Ray interference: a source of
plateaus in deep reinforcement learning. arXiv preprint arXiv:1904.11455, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Neural
Information Processing Systems, 2018.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
based representations. In International Conference on Machine Learning, 2021.

Trevor Standley, Amir R. Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
Which tasks should be learned together in multi-task learning? In International Conference on
Machine Learning, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nico-
las Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. In Neural
Information Processing Systems, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In International Conference on Intelligent Robots and Systems, 2012.

Momchil S Tomov, Eric Schulz, and Samuel J Gershman. Multi-task reinforcement learning in
humans. Nature Human Behaviour, 2021.

Nelson Vithayathil Varghese and Qusay H Mahmoud. A survey of multi-task deep reinforcement
learning. Electronics, 2020.

Tung-Long Vuong, Do-Van Nguyen, Tai-Long Nguyen, Cong-Minh Bui, Hai-Dang Kieu, Viet-Cuong
Ta, Quoc-Long Tran, and Thanh-Ha Le. Sharing experience in multitask reinforcement learning.
In International Joint Conference on Artificial Intelligence, 2019.

Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J Lim. Multimodal model-agnostic meta-
learning via task-aware modulation. In Neural Information Processing Systems, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 1992.

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement learning: a
hierarchical bayesian approach. In International Conference on Machine Learning, 2007.

Zhiyuan Xu, Kun Wu, Zhengping Che, Jian Tang, and Jieping Ye. Knowledge transfer in multi-task
deep reinforcement learning for continuous control. In Neural Information Processing Systems,
2020.

Ziping Xu, Zifan Xu, Runxuan Jiang, Peter Stone, and Ambuj Tewari. Sample efficient myopic ex-
ploration through multitask reinforcement learning with diverse tasks. In International Conference
on Learning Representations, 2024.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. In Neural Information Processing Systems, 2020.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, 2019.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. In Neural Information Processing Systems, 2020.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Sergey Levine, and Chelsea Finn.
Conservative data sharing for multi-task offline reinforcement learning. In Neural Information
Processing Systems, 2021.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and Sergey Levine.
How to leverage unlabeled data in offline reinforcement learning. In International Conference on
Machine Learning, 2022.

Yuanqiang Yu, Tianpei Yang, Yongliang Lv, Yan Zheng, and Jianye Hao. T3s: Improving multi-task
reinforcement learning with task-specific feature selector and scheduler. In International Joint
Conference on Neural Networks, 2023.

Chicheng Zhang and Zhi Wang. Provably efficient multi-task reinforcement learning with model
transfer. In Neural Information Processing Systems, 2021.

Jesse Zhang, Haonan Yu, and Wei Xu. Hierarchical reinforcement learning by discovering intrinsic
options. In International Conference on Learning Representations, 2020.

Jin Zhang, Siyuan Li, and Chongjie Zhang. CUP: Critic-guided policy reuse. In Neural Information
Processing Systems, 2022.

Onur Çelik, Dongzhuoran Zhou, Gen Li, Philipp Becker, and Gerhard Neumann. Specializing
versatile skill libraries using local mixture of experts. In Conference on Robot Learning, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

Table of Contents
A Qualitative Results 15

B Code Submission 15

C QMP Derivation 16

D QMP Convergence Guarantees 16

E Environment Details 18
E.1 Multistage Reacher . 18
E.2 Maze Navigation . 20
E.3 Meta-World Manipulation . 20
E.4 Walker2D . 21
E.5 Kitchen . 21

F Additional Results 21
F.1 Multistage Reacher Per Task Results . 21
F.2 Data Sharing Results . 22
F.3 PCGrad Results . 22
F.4 QMP Scales with Task Set Size in Maze Navigation 23
F.5 Additional Comparisons . 23
F.6 Temporally-Extended Behavior Sharing . 24

G QMP Behavior Sharing Analysis 24
G.1 Qualitative Visualization of Behavior-Sharing 25

H Additional Ablations and Analysis 26
H.1 Probabilistic Mixture v/s Arg-Max . 26
H.2 Approximation Expected Q-value Over Policy Action Distribution 26
H.3 QMP v/s Increasing Single Task Exploration 26
H.4 QMP Runtime . 27

I Implementation Details 27
I.1 Hyperparameters . 27
I.2 No-Shared-Behaviors . 27
I.3 Fully-Shared-Behaviors . 27
I.4 DnC . 28
I.5 QMP (Ours) . 28
I.6 Online UDS . 28

A QUALITATIVE RESULTS

The qualitative result videos are provided at https://sites.google.com/view/
qmp-mtrl

B CODE SUBMISSION

In the supplementary submission, we provide the complete code to reproduce all the experiments,
including QMP (ours) and baselines on all the environments.

15

https://sites.google.com/view/qmp-mtrl
https://sites.google.com/view/qmp-mtrl

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C QMP DERIVATION

Following Section 4.2, we aim to derive the mixture-switch function fi such that the mixture policy
πmix
i is guaranteed to be better than the current task’s policy πi. We use the generalized policy

iteration procedure (Sutton & Barto, 2018) underlying single-task SAC (Haarnoja et al., 2018): policy
evaluation learns Q by minimizing the bellman error on the collected data, and policy improvement
follows Q by minimizing the KL divergence between the new policy and the exponential of the
current Q-function, Qπold

, shown in Eq. 1.

In practice, the gradient updates in SAC are gradual and do not instantly achieve this optimization
in Eq. 1, leaving a suboptimality gap to catch up to the Q-function. We observe that due to the
potential similarity of some tasks in MTRL, this suboptimality gap can be bridged using other policies.
Concretely, a mixture policy πmix

i that selects the best policy from a set of all given policy candidates,
including the current policy, ensures that πmix

i is an improvement over πi for the current state s:

Given a set of policies {π1 . . . πN} including the current task policy πi and a given state s, consider
the following mixture policy:

πmix
i = arg min

π′∈{πi,...πN}
DKL

(
π′(· | s)

∥∥∥∥∥exp(1
αQ

πi(s, ·))
Zπi(s)

)
(4)

This πmix
i is a better policy improvement solution to Eq. 1 than πi, because:

min
π′∈{πi,...πN}

DKL

(
π′(· | s)

∥∥∥∥∥exp(1
αQ

πi(s, ·))
Zπi(s)

)
≤ DKL

(
πi(· | st)

∥∥∥∥∥exp(1
αQ

πi(st, ·))
Zπi(st)

)

Now, we can simplify Eq. 4 to obtain Definition 4.2:

πmix
i = arg min

π′∈{πi,...πN}
DKL

(
π′(· | s)

∥∥∥∥∥exp(1
αQ

πi(s, ·))
Zπi(s)

)

= arg min
π′∈{πi,...πN}

Ea∼π′(·|s)

[
log π′(a|s)− log

{
exp(1

αQ
πi(s, a))

Zπi(s)

}]
= arg max

π′∈{πi,...πN}
Ea∼π′(·|s)

[
− log π′(a|s) + 1

α
Qπi(s, a)− logZπi(s)

]
= arg max

π′∈{πi,...πN}
Ea∼π′(·|s) [− log π′(a|s)] + Ea∼π′(·|s)

[
1

α
Qπi(s, a)

]
= arg max

π′∈{πi,...πN}
Ea∼π′(·|s) [Q

πi(s, a)] + αH [π′(· | s)]

Thus, the following mixture policy guarantees improvement over πi

πmix
i = arg max

π′∈{πi,...πN}
Ea∼π′(·|s) [Q

πi(s, a)] + αH [π′(· | s)]

D QMP CONVERGENCE GUARANTEES

We derive the convergence guarantees for mixture soft policy iteration used in the QMP Algorithm 1.
We augment the derivation of soft policy iteration in SAC (Haarnoja et al., 2018), which is our
base algorithm, with our proposed QMP’s mixture policy. Soft policy iteration follows generalized
policy iteration (Sutton & Barto, 2018) which refers to the general idea of repeated application of
(1) policy evaluation to update the critics and (2) policy improvement based on the updated critics,
until convergence. Like SAC, we consider the tabular setting and show that QMP’s modification to
soft policy iteration converges to the optimal policy. Further, QMP can lead to an improved policy
improvement step when there are shareable behaviors between tasks, consequently improving the
sample efficiency. The derivation sketch follows:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

1. Soft Policy Evaluation: QMP modifies the off-policy data collection pipeline by replacing
the primary task policy πi with the mixture policy πmix

i . However, it does not affect the soft
Bellman backup operator of SAC, as shown in Haarnoja et al. (2018), and therefore the Q
function still converges as in SAC.

2. Mixture Soft Policy Improvement: QMP performs policy improvement in two steps: SAC’s
policy update from πold

i → πi and applying the mixture of policies from πi→ πmix
i .

• Soft Policy Improvement: Since QMP does not modify the SAC update proce-
dure πold

i → πi , we directly use SAC’s guarantees of policy improvement following
Lemma 2 from Haarnoja et al. (2018).

• Mixture Policy Improvement: We demonstrate QMP’s mixture policy πmix
i guarantees

a better policy improvement over the per-task policies πi that compose the mixture.
In Theorem D.1, we show convergence guarantee by proving that the expected return
following πmix

i is better than following πold
i .

3. Mixture Soft Policy Iteration: In Theorem D.2, we show that the repeated application of
the above steps in QMP converges to an optimal policy for each task. Furthermore, the
convergence rate is faster because of a greedier policy improvement due to Mixture Policy
Improvement.

For a given stochastic policy π and task Ti ∈ {T1 . . .TN}, define V π
i as the expected return of acting

with π. Given another stochastic policy π′, define Qπ
i (s, π

′(s)) = Ea∼π′(s)Q
π
i (s, a) as the expected

return of acting with π′ only in s and thereafter with π.

Theorem D.1 (Mixture Soft Policy Improvement). Consider πold
i and its associated Q-function Qi.

Apply SAC’s policy improvement πold
i → πi and then πi → πmix

i from Eq. 3. Then, Qπmix
i (st,at) ≥

Qπi(st,at) ≥ Qπold
i (st,at) for all tasks Ti and for all (st,at) ∈ S ×A with |A| <∞.

Proof. From Soft Policy Improvement, Lemma 2 of Haarnoja et al. (2018), we have

Eat∼πi

[
Qπold

i (st,at)− log πi(at|st)
]
≥ V πold

i (st).

Rewrite the difference as δ(st),

δ(st) = Eat∼πi

[
Qπold

i (st,at)− log πi(at|st)
]
− V πold

i (st) ≥ 0.

From Eq. 3,

πmix
i = arg max

π′∈{π1,...,πN}
Ea∼π′(·|s) [Q

πi(s, a)] + αH [π′(· | s)] .

Therefore, we have a positive difference ω(st),

ω(st) = Eat∼πmix
i

[
Qπold

i (st,at)− log πmix
i (at|st)

]
− Eat∼πi

[
Qπold

i (st,at)− log πi(at|st)
]
≥ 0.

We use δ to expand the soft Bellman equation to derive the relationship between Qπold
i and Qπi ,

Qπold
i (st,at) = r(st,at) + γ Est+1∼p

[
V πold

i (st+1)
]

= r(st,at) + γ Est+1∼p

[
Eat+1∼πi

(
Qπold

i (st+1,at+1)− log πi(at+1|st+1)
)
− δ(st+1)

]
...

=

∞∑
k=0

γk Est+k∼p, at+k∼πi
[r(st+k,at+k)− log πi(at+k|st+k)]︸ ︷︷ ︸
Qπi (st,at)

−
∞∑
k=1

γk Est+k∼p [δ(st+k)]︸ ︷︷ ︸
∆1

= Qπi(st,at)−∆1

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Likewise, we use δ and ω to derive the relationship between Qπold
i and Qπmix

i ,

Qπold
i (st,at) = r(st,at) + γ Est+1∼p

[
V πold

i (st+1)
]

= r(st,at) + γ Est+1∼p

[
Eat+1∼πi

(
Qπold

i (st+1,at+1)− log πi(at+1|st+1)
)
− δ(st+1)

]
= r(st,at) + γ Est+1∼p

[
Eat+1∼πmix

i

(
Qπold

i (st+1,at+1)− log πmix
i (at+1|st+1)

)
− δ(st+1)− ω(st+1)

]
...

=

∞∑
k=0

γk Est+k∼p, at+k∼πmix
i

[
r(st+k,at+k)− log πmix

i (at+k|st+k)
]

︸ ︷︷ ︸
Qπmix

i (st,at)

−
∞∑
k=1

γk Est+k∼p [δ(st+k)]︸ ︷︷ ︸
∆2

−
∞∑
k=1

γk Est+k∼p [ω(st+k)]︸ ︷︷ ︸
Ω

= Qπmix
i (st,at)−∆2 − Ω,

We assume that the effect of the difference ∆2−∆1 due to different state coverage is lower compared
to the effect of Ω because ω is accumulated at every state, i.e., ∆2+Ω = ∆1+(∆2−∆1)+Ω ≥ ∆1

Since ∆1,∆2 ≥ 0 and Ω ≥ 0, we have

Qπmix
i (st,at) ≥ Qπi(st,at) ≥ Qπold

i (st,at)

Theorem D.2 (Mixture Soft Policy Iteration). Repeated application of (i) soft policy evaluation
and (ii) mixture soft policy improvement (Theorem D.1) to any πi ∈ Π converges to an optimal
policy π∗

i such that Qπ∗
i

i (st,at) ≥ Qπi
i (st,at) for all πi ∈ Π and (st,at) ∈ S × A with |A| < ∞.

Furthermore, the sample efficiency and rate of convergence is at least as good as SAC in the presence
of mixture policy improvement.

Proof. Let πk
i be the policy at iteration k. By SAC’s soft policy iteration, the sequence Q

πk
i

i is
monotonically increasing, because πmix

i only modifies the online data collected and SAC is an off-
policy algorithm. Thus, Theorem 1 (Soft Policy Iteration) from Haarnoja et al. (2018) Appendix B.3
directly applies here and proves that repeated application of soft policy evaluation and soft policy
improvement converges to an optimal policy π∗

i .

Mixture soft policy improvement (Theorem D.1) shows that πmix
i is a greedier policy improvement

over πiwith respect to each estimate of Qπk
i

i . Thus, the expected returns in the data collected by QMP

policy, Qπmix; k
i

i , is greater than or equal to that collected by the individual task policy, Qπk
i

i . Therefore,
every mixture soft policy improvement step constitutes a larger policy improvement step than SAC’s
soft policy improvement step. This makes the convergence of mixture soft policy iteration (repeated
application of soft policy evaluation and Theorem D.1) an improvement over soft policy iteration.

E ENVIRONMENT DETAILS

E.1 MULTISTAGE REACHER

We implement our multistage reacher tasks on top of the Open AI Gym (Brockman et al., 2016)
Reacher environment simulated in the MuJoCo physics engine (Todorov et al., 2012) by defining a
sequence of 3 subgoals per task which are specified in Table 1. For all tasks, the reacher is initialized
at the same start position with a small random perturbation sampled uniformly from [−0.01, 0.01] for

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

each coordinate. The observation includes the agent’s proprioceptive state and how many sub-goals
have been reached but not subgoal locations, as they must be inferred from the respective task’s
reward function.

We set up the tasks to ensure that we can evaluate behavior sharing when the task rewards are
qualitatively different (see Figure 6a):

• For every task except Task 3, the reward function is the default gym reward function based
on the distance to the goal, plus an additional bonus for every subgoal completed.

• For Task 1, the reward is shifted by -2 at every timestep.

• Task 3 receives only a sparse reward of 1 for every subgoal reached.

• Task 4 has one fixed goal set at its initial position.

Subgoal 1 Subgoal 2 Subgoal 3
T0 (0.2, 0.3, 0.5) (0.3, 0, 0.3) (0.4, -0.3, 0.4)
T1 (0.2, 0.3, 0.5) (0.3, 0, 0.3) (0.4, 0.3, 0.2)
T2 (0.3, 0, 0.3) (0.4, 0.3, 0.2) (0.4, -0.3, 0.4)
T3 (0.3, 0, 0.3) (0.4, -0.3, 0.4) (0.2, 0.3, 0.5)
T4 initial initial initial

Table 1: Coordinates of subgoal locations for each task in Multistage Reacher. Shared subgoals are
highlighted in the same color. For Task 4, the only goal is to stay in the initial position.

QMP-Domain: Section 7.4 ablates the importance of an adaptive and state-dependent Q-switch by
replacing it with a domain-dependent distribution over other tasks based on apparent task similarity.
Specifically, to define the mixture probabilities for QMP-Domain in Multistage Reacher, we use the
domain knowledge of the subgoal locations of the tasks to determine the mixture probabilities. We
use the ratio of shared sub-goal sequences between each pair of tasks (not necessarily the shared
subgoals) over the total number of sub-goal sequences, 3, to calculate how much behavior must
be shared between two tasks. For that ratio of shared behavior, we distribute the probability mass
uniformly between all task policies that share that behavior. For Task 4, the conflicting task, we do
not do any behavior sharing and only use π4 to gather data.

Each Task Ti consists of 3 sub-goal sequences {S0, S1, S2} (e.g. [initial→ Subgoal 1], [Subgoal
1→ Subgoal 2], and [Subgoal 2→ Subgoal 3]). For each sequence s ∈ {S0, S1, S2}, we divide
equally the contribution of each task Tj’s policy πj that shares the sequence s (i.e. if T0 and T1 both
contain sequence s, where we use the notation 1(s ∈ Ti) as the indicator function for whether Task
Ti contains sequence s, then π0 and π1 both have 1

2 contribution for s). Each sequence contributes
equally to the overall mixture probabilities for Task i (i.e. all policies that shares sequence Si

contributes in total 1
3 to the mixture probability for the behavior policy of Task Ti). Thus, the

contribution probability of Policy πj to Task Ti is:

pj→i =
∑

s∈{S0,S1,S2}

1

3
· 1(s ∈ Tj)∑

k 1(s ∈ Tk)

πmix
i =

∑
j

pj→i πj

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Reusing notation for mixture probabilities, we have,

πmix
0 =

2

3
π0 +

1

3
π1

πmix
1 =

1

3
π0 +

2

3
π1

πmix
2 =

5

6
π2 +

1

6
π3

πmix
3 =

1

6
π2 +

5

6
π3

πmix
4 = π4

E.2 MAZE NAVIGATION

The layout and dynamics of the maze follow Fu et al. (2020), but since their original design aims to
train a single agent to reach a fixed goal from multiple start locations, we modified it to have both start
and goal locations fixed in each task, as in Nam et al. (2022). The start location is still perturbed with
a small noise to avoid memorizing the task. The observation consists of the agent’s current position
and velocity. But, it lacks the goal location, which should be inferred from the dense reward based
on the distance to the goal. The action space is the target 2D velocity of the point mass agent. The
layout we used is LARGE MAZE which is an 8×11 maze with paths blocked by walls. The complete
set of 10 tasks is visualized in Figure 12, where green and red spots correspond to the start and goal
locations, respectively. The environment provides an agent a dense reward of exp(−dist) where dist
is a linear distance between the agent’s current position and the goal location. It also gives a penalty
of 1 at each timestep in order to prevent the agent from exploiting the reward by staying near the
goal. The episode terminates either as soon as the goal is reached by having dist < 0.5 or when 600
timesteps have passed.

Figure 12: Ten tasks defined for the Maze Navigation. The start and goal locations in each task are
shown in green and red spots, respectively, and an example path is shown in green.

E.3 META-WORLD MANIPULATION

For Meta-World CDS, we reproduce the Meta-world environment proposed by Yu et al. (2021)
using the Meta-world codebase (Yu et al., 2019), where the door and drawer are both placed side-
by-side on the tabletop for all tasks (see Figure 6c). The observation space consists of the robot’s
proprioceptive state, the drawer handle state, the door handle state, and the goal location, which
varies based on the task. Unlike Yu et al. (2021), we additionally remove the previous state from
the observation space so the policies cannot easily infer the current task, making it a challenging
multi-task environment. The environment also uses the default Meta-World reward functions which
is composed of two distance-based rewards: distance between the agent end effector and the object,
and distance between the object and its goal location. We use this modified environment instead of
the Meta-world benchmark because our problem formulation of simultaneous multi-task RL requires

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

a consistent environment across tasks. For Meta-World MT10, we directly use the implementation
provided in (Yu et al., 2019) without changes.

In both cases, the observation space consists of the robot’s proprioceptive state, locations for objects
present in the environment (ie. door and drawer handle for CDS, the single target object location
for MT10) and the goal location. In Meta-World CDS, due to the shared environment, there are no
directly conflicting task behaviors, since the policies either go to the door or the drawer, they should
ignore the irrelevant behaviors of policies interacting with the other object. In Meta-World MT10,
each task interacts with a different object but in an overlapping state space so there is a mix of shared
and conflicting behaviors.

E.4 WALKER2D

Walker2D is a 9 DoF bipedal walker agent with the multi-task set of 4 tasks proposed and implemented
by Lee et al. (2019): walking forward at a target velocity, walking backward at a target velocity,
balancing under random external forces, and crawling under a ceiling. Each of these tasks involves
different gaits or body positions to accomplish successfully without any obviously identifiable shared
behavior in the optimal policies. Behavior sharing can still be effective during training to aid
exploration and share helpful intermediate behaviors, like balancing. However, there is no obviously
identifiable conflicting behavior either in this task set. Because each task requires a different gait, it
is unlikely for states to recur between tasks and even less likely for states that are shared to require
conflicting behaviors. For instance, it is common for all policies to struggle and fall at the beginning
of training, but all tasks would require similar stabilizing and correcting behavior over these states.

E.5 KITCHEN

We modify the Franka Kitchen environment proposed by Gupta et al. (2019) and based on the
implementation from Fu et al. (2020). Since this environment is typically used for long horizon or
offline RL, we chose shorter tasks that are learnable with online RL. Furthermore, we added a dense
reward based on the Meta-World reward function. We formed our 10 task MTRL set by choosing
10 available tasks in the kitchen environment that interacted with the same objects: turning the top
burner on or off, turning the bottom burner on or off, turning the light switch on and off, open or
closing the sliding cabinet, and opening and closing the hinge cabinet. The observation space consists
of the robot’s state, the location of the target object, and the goal location for that object. Similar to
the Meta-World CDS environment, these tasks may share behaviors navigating around the kitchen
to the target object but have plenty of irrelevant behavior between tasks that interact with different
objects and conflicting behaviors when opening or closing the same object.

F ADDITIONAL RESULTS

F.1 MULTISTAGE REACHER PER TASK RESULTS

Additional results and analysis on Multistage Reacher are shown in Figure 13. QMP outperforms all
the baselines in this task set, as shown in Figure 8. Task 3 receives only a sparse reward and, thus,
can benefit the most from shared exploration. We observe that QMP gains the most performance
boost due to selective behavior-sharing in Task 3. The No-Shared-Behavior baseline is unable to
solve Task 3 at all due to its sparse reward nature. The other baselines which share uniformly suffer
at Task 3, likely because they also share behaviors from other conflicting tasks, especially Task 4. We
explore this further in the following Section G.

For all tasks, QMP outperforms or is comparable to No-Shared-Behavior, which shows that selective
behavior-sharing can help accelerate learning when task behaviors are shareable and is robust when
tasks conflict. Fully-Shared-Behavior especially underperforms in Tasks 2 and 3, which require
conflicting behaviors upon reaching Subgoal 1, as defined in Table 1. In contrast, it excels at the
beginning of Task 0 and Task 1 as their required behaviors are completely shared. However, it suffers
after Subgoal 2, as the task objectives diverge.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Task0

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Task1

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Task2

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Task3

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Task4

QMP(Ours) No-Share Fully-Share DnC (reg-only)DnC

QMP(Ours) No-Shared-Behavior Fully-Shared-Behavior DnC (reg-only)DnC

QMP(Ours) No-Shared-Behavior Fully-Shared-Behavior DnC (reg)DnC UDS

Figure 13: Success rates for individual tasks in Multistage Reacher. Our method especially helps in
learning Task 3, which requires extra exploration because it only receives a sparse reward.

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Maze Navigation 3 Tasks

No-QMP
Shared
DnC
DnC (reg. only)
QMP

(a) Maze Navigation 3 Tasks

0 3 6 9 12
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Maze Navigation
No-QMP
Shared
DnC
DnC (reg. only)
QMP (H=1)

(b) Maze Navigation 10 Tasks

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Multistage Reacher

QMP
UDS k=0
UDS k=80
CDS k=0
CDS k=50
CDS k=80

(c) Data Sharing Comparison

Figure 14: QMP scales well from (a) 3 tasks to (b) 10 tasks in Maze Navigation, especially in
comparison to other behavior sharing methods. (c) Online data sharing is very efficient when given
task reward functions (all CDS versions), but suffers without (all UDS versions).

F.2 DATA SHARING RESULTS

In Figure 14c, we report multiple sharing percentiles for UDS and for CDS (Yu et al., 2021)
which assumes access to ground truth task reward functions which it uses to re-label the shared
data. When the shared data is relabeled with task reward functions, thereby bypassing the conflicting
behavior problem, online data sharing approaches can work very well. But when unsupervised, we
see that online data sharing can actually harm performance in environments with conflicting tasks,
with the more conservative data sharing approach (UDS k=80) out-performing sharing all data. k
is the percentile above with we share a transition between tasks, with higher k representing more
conservative data sharing. Full details on our online UDS and CDS implementation are in Section I.6

F.3 PCGRAD RESULTS

We evaluate whether QMP can be combined with PCGrad (Yu et al., 2020) with complementary
benefits. PCGrad is a popular MTRL algorithm that learns a policy with shared parameters and
alleviates negative interference between tasks by modifying the multi-task gradients. We see in Figure

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Multistage Reacher
QMP + PCGrad
PCGrad

0.00 2.25 4.50 6.75 9.00
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Maze Navigation

QMP + PCGrad
PCGrad

0 1 2 3 4
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Kitchen
QMP + PCGrad
PCGrad

0.0 2.5 5.0 7.5 10.0
Environment steps (1M)

0.0

0.1

0.2

0.3

0.4

Su
cc

es
s R

at
e

(%
)

MetaWorld MT50
PCGrad
QMP + PCGrad

Figure 15: Combining QMP with PCGrad yields complementary improvement in 3 out of the 4
environments we tested on. Dashed lines are PCGrad only and solid lines are QMP + PCGrad.

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Multistage Reacher
Multi-Critic AL-MN
QMP + Multi-Critic AL-MN
Multi-Critic AL-MH
QMP + Multi-Critic AL-MH

(a) MCAL Comparison

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Multistage Reacher
DECAF
QMP

(b) DECAF Sharing Comparison

0.0 2.5 5.0 7.5 10.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Meta-World CDS
DECAF
QMP

(c) DECAF Sharing Comparison

Figure 16: Combining our method with another parameter sharing method, MCAL, shows comple-
mentary benefits in (a). Our method outperforms DECAF in Multistage Reacher (b) and Meta-World
CDS(c), demonstrating that learning to directly use Q-functions from other tasks is more challenging
and sample inefficient than using the current task’s Q-function to evaluate other tasks’ policies.

15 that QMP improves PCGrad’s performance significantly in 3 out of 4 environments and does not
hurt in the last environment.

Approach Reacher Maze Kitchen Meta-World 50
PCGrad 0.78 0.90 0.55 0.35
QMP + PCGrad 0.78 1.00 0.60 0.42

Table 2: QMP improves performance of PCGrad across various benchmarks

F.4 QMP SCALES WITH TASK SET SIZE IN MAZE NAVIGATION

We look at the behavior sharing methods in the Maze Navigation task for a task set with 3 tasks
(Figure 14a) and 10 tasks (Figure 14b) and see that QMP scales well from 3 to 10 tasks, even
compared to other behavior sharing methods. Similar to Meta-World, we hypothesize QMP scales
better with a larger task set size of similar tasks due to there being more shareable behaviors between
tasks. We see that by selectively sharing behaviors, QMP is able to identify and share helpful
behaviors in the larger tasks sets whereas other behavior sharing methods struggle.

F.5 ADDITIONAL COMPARISONS

Multi-Critic Actor Learning (MCAL) Mysore et al. (2022) is a parameter sharing MTRL method
that aims to tackle potential negative interference between tasks by learning separate critics for each
task while training a single multi-task actor. We evaluate the addition of QMP to two variants of
MCAL, Multi-Critic AL-MN which maintains separate networks for each critic and Multi-Critic
AL-MH which uses a single multi-head network for the critic, in Multistage Reacher in Figure 16a.
We see that adding QMP provides around a 20% final success rate gain in both variants and is more
sample efficient.

We also compare our method with DECAF Glatt et al. (2020), a MTRL method which shared
Q-functions between tasks instead of behavioral policies. DECAF learns task specific weights to
linearly combine the task Q-functions which is used to train the task policy. In contrast, our method
uses the task Q-function to evaluate different tasks’ policies to incorporate into the task’s behavioral

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

policy. Our method only modifies the data collection process, not the RL objective, and does not have
a learned component. In Multistage Reacher (Figure 16b) and Meta-World CDS (Figure 16c), we see
that QMP outperforms DECAF by more that 20% final success rate.

F.6 TEMPORALLY-EXTENDED BEHAVIOR SHARING

0 3 6 9 12
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Policy Sampling Frequency in Maze

QMP (H=1)
QMP (H=5)
QMP (H=10)
QMP (H=25)
QMP (H=50)

Figure 17: QMP consistently improves
performance as H increases in Maze.

Motivated by prior work in heirarchical RL (Machado
et al., 2017; Jinnai et al., 2019b;a; Hansen et al., 2019;
Zhang et al., 2020) and skill learning (Pertsch et al., 2021)
, we explore temporally extended behavior sharing by sim-
ply following the actions of the policy πj selected by πi

mix

for H steps before re-evaluating πi
mix. Furthermore, a re-

cent work Xu et al. (2024) provides theoretical results that
shows myopic (ϵ-greedy) policy sharing can be sample
efficient in sufficiently diverse multi-task settings, provid-
ing theoretical support for temporally extended multi-task
behavior sharing in some settings. We study the effect
of sharing temporally extended behaviors of length H in
Maze Navigation in Figure 17, by rolling out the chosen
task policy for 1, 5, 10, 25, and 50 timesteps. We see that
performance improves when sharing longer behaviors (25
and 50 timesteps) which are more coherent and temporally
extended. This is true even though we choose the behav-
ioral policy greedily, only evaluating the current state s every H steps. Importantly, the guarantees
from Theorem D.1 do not extend to H-step policy roll-outs and increasing H does not help in all
environments. We compare the performance of No-QMP, QMP, and QMP with temporally extended
behavior sharing where we choose the best performance out of H = 10 and H = 25 in Table 3 and
Figure 21. Nevertheless, the impressive results in Maze suggest that multi-task temporally extended
behavior sharing is worth exploring in future work.

Table 3: Temporally Extended Behavior Sharing

Environment H-value No-QMP QMP QMP (H¿1)

Reacher 10 80 ± 0 100 ± 0 100 ± 0
Maze 25 57.9 ± 0.09 72.9 ± 0.1 99.9 ± 0.0
MT-CDS 10 97.5 ± 4.5 93.7 ± 8.5 98.8 ± 2.0
MT10 10 79.1 ± 5.97 89.0 ± 0.01 82. ± 4.48
Kitchen 10 65.5 ± 11.0 77.3 ± 5.3 84.5 ± 8.7
Walker 10 3110 ± 220 3205 ± 218 3310 ± 203

G QMP BEHAVIOR SHARING ANALYSIS

QMP learns to not share from conflicting tasks: We visualize the mixture probabilities per task
of other policies in Figure 19 for Multistage Reacher, highlighting the conflicting Task 4 in red.
Throughout the training, we see that QMP learns to generally share less behavior from Policy 4 than
other policies in Tasks 0-3 and shares the least total cross-task behavior in Task 4. This supports our
claim that the Q-switch can identify conflicting behaviors that should not be shared. We also note
that Task 3 has a relatively larger amount of sharing than other tasks. The sparse reward nature of
Task 3 makes it benefit the most from exploration via selective behavior-sharing from other tasks.

Figure 18 analyzes the effectiveness of the Q-switch in identifying shareable behaviors by visualizing
the average proportion that each task policy is selected for another task over the course of training in
the Multistage Reacher environment. This average mixture composition statistic intuitively analyzes
whether QMP identifies shareable behaviors between similar tasks and avoids behavior sharing
between conflicting or irrelevant tasks. As we expect, the Q-switch for Task 4 utilizes the least
behavior from other policies (bottom row), and Policy 4 shares the least with other tasks (rightmost
column). Since the agent at Task 4 is rewarded to stay at its initial position, this behavior conflicts

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 1 2 3 4

Policy

0

1

2

3

4

Ta
sk

Average Mixture Composition

0.00

0.01

0.02

0.03

0.04

0.05

Figure 18: Proportion of shared behavior on Reacher Multistage averaged over training: Each cell
(row i, col j) represents sharing contribution of Policy j for Task i (diagonal zeroed out for contrast).

with all the other goal-reaching tasks. Of the remaining tasks, Task 0 and 1 share the most similar
goal sequence, so it is intuitive why they benefit from shared exploration and are often selected by
their respective Q-switches. Finally, unlike the other tasks, Task 3 receives only a sparse reward and
therefore relies heavily on shared exploration. In fact, QMP demonstrates the greatest advantage in
this task (Appendix Figure 13).

Behavior-sharing reduces over training: Figure 19 shows that the total amount of behavior-sharing
decreases over the course of training in all tasks, which demonstrates a naturally arising preference in
the Q-switch for the task-specific policy as it becomes more proficient at its own task.

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

6

12

18

24

30

Po
lic

y
Pe

rc
en

ta
ge

 in
 M

ix
tu

re Task 0

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

6

12

18

24

30

Po
lic

y
Pe

rc
en

ta
ge

 in
 M

ix
tu

re Task 1

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

6

12

18

24

30

Po
lic

y
Pe

rc
en

ta
ge

 in
 M

ix
tu

re Task 2

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

6

12

18

24

30

Po
lic

y
Pe

rc
en

ta
ge

 in
 M

ix
tu

re Task 3

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

6

12

18

24

30

Po
lic

y
Pe

rc
en

ta
ge

 in
 M

ix
tu

re Task 4

Multistage Reacher % Behavior Shared from Other Tasks in Mixture Policy

Policies 0-3
Policy 4

We highlight policy 4 because Task 4 requires different behaviors than the other tasks. Throughout learning, we see that QMP generally shares
less behavior from Policy 4 than other policies in Tasks 0-3 and shares the least total behavior in Task 4. Furthermore, total behavior sharing
decreases throughout training in all tasks.

Figure 19: Mixture probabilities per task of other policies over the course of training for Multistage
Reacher. The conflicting task Policy 4, which requires staying stationary, is highlighted in red.

G.1 QUALITATIVE VISUALIZATION OF BEHAVIOR-SHARING

We qualitatively analyze behavior sharing by visualizing a rollout of QMP during training for the
Drawer Open task in Meta-World Manipulation (Figure 9b). To generate this visualization, we use a
QMP rollout during training before the policy converges to see how behaviors are shared and aid
learning. For clarity, we first subsample the episodes timesteps by 10 and only report timesteps when
the activated policy changes to a new one (ie. from timestep 80 to 110, QMP chose the Drawer Open
policy). We qualitatively break down the episode into when the agent is approaching the drawer (top

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0.00 0.19 0.38 0.56 0.75
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Multistage Reacher

QMP
QMP Softmax T=0.01
QMP Softmax T=1
QMP Softmax T=100

(a) Probabilistic Mixture Ablation

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Multistage Reacher

QMP (H=10)
QMP-Expectation (H=10)
QMP (H=1)
QMP-Expectation (H=1)
Parameters + Behaviors
Parameters + QMP-Expectation

(b) Expected Q-value Approxima-
tions

0 3 6 9 12
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Maze Navigation with SAC Exploration

QMP
SAC Target Ent. = -2
SAC Target Ent. = -1
SAC Target Ent. = +1

(c) Single-Task Exploration

Figure 20: (a) Using probabilistic mixtures with QMP by using a softmax over Q values with
temperature T, which determines the spread of the distribution. (b)Across different QMP versions,
evaluating mean policy actions (solid lines) vs. sampling 10 actions to estimate expected Q-values
(dashed lines) result in similar performance. (c) Single-task exploration by varying SAC target
entropy. QMP reaches a higher success rate because it shares exploratory behavior across tasks.

row; Steps 1-60), grasping the handle (top row; Steps 61-80), and pulling the drawer open (bottom
row). This allows us to see that it switches between all task policies as it approaches the drawer, uses
drawer-specific policies as it grasps the handle, and opening-specific policies as it pulls the drawer
open. This suggests that in addition to ignoring conflicting behaviors, QMP is able to identify helpful
behaviors to share. We note that QMP is not perfect at policy selection throughout the entire rollout,
and it is also hard to interpret these shared behaviors exactly because the policies themselves are
only partially trained, as this rollout is from the middle of training. However, in conjunction with
the overall results and analysis, this supports our claim that QMP can effectively identify shareable
behaviors between tasks.

H ADDITIONAL ABLATIONS AND ANALYSIS

H.1 PROBABILISTIC MIXTURE V/S ARG-MAX

A probabilistic mixture of policies is a design choice of our approach where arg-max is replaced with
softmax. However, in our initial experiments, we found no significant improvement in performance
and it came with an additional hyperparameter of tuning the temperature coefficient. As we see in
Figure 20a, QMP actually outperforms a probabilistic mixture over a range of softmax temperatures,
justifying the design choice of argmax over softmax due to its reliable performance and simplicity.

H.2 APPROXIMATION EXPECTED Q-VALUE OVER POLICY ACTION DISTRIBUTION

QMP’s behavior policy is defined as πmix
i = argmax

πj∈{π1,...,πN}
Ea∼πj(s)Qi(s, a), which picks the task

policy with the best expected Q value over its action distribution. We approximate the expectation by
evaluating the Q-value of only the mean of each policy’s action distribution which is computationally
cheaper πmix

i ≈ argmax
πj∈{π1,...,πN}

Qi(s,Ea∼πj(s)[a]). We compare this to a empirical estimate that

samples 10 actions from the policy distribution and picks the policy with highest average Q-value in
Figure 20b, and find no significant performance difference between the two approximations. This
validates that our simple approximation works well in practice, which we hypothesize is due to the
low variance of the task policies.

H.3 QMP V/S INCREASING SINGLE TASK EXPLORATION

Since QMP seeks to gather more informative training data for the task by modifying the behavioral
policy, it can be viewed as a form of multi-task exploration. We briefly investigate how single task ex-
ploration differs from multi-task exploration by tuning the target entropy in SAC in Figure 20c which
influences the policy entropy and therefore exploration. We see that while tuning this exploration

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

parameter affects the sample efficiency by more quickly learning each individual task, QMP achieves
a higher final success rate by incorporating behaviors form other tasks, and therefore doing multi-task
exploration. The benefit of exploration or behavior sharing algorithms specialized for multi-task RL
is precisely this ability to transfer and share information between tasks.

H.4 QMP RUNTIME

While QMP does require more policy and q-function evaluations to sample from πi
mix in comparison

to the base RL method, these evaluations can be greatly parallelized and do not significantly increase
runtime (see Figure 4) for average runtimes for our experiments). Each sample from πi

mix requires
querying N policy proposals and N Q-values. In QMP + Parameter-Sharing, thanks to the multihead
architectures of the policy and Q-networks, all N evaluations are done in one single pass. Thus, with
two passes through neural networks, we can get N action candidates and their N Q-values. Therefore,
the increase in time is negligible. Even without parameter-sharing, Qi(s, aj) evaluations can be
batched ∀j and the policy evaluations πj(aj |s) are all independent, and can be obtained in parallel.
In our implementation, we batch the Q evaluations, but do not parallelize the policy evaluations.

Table 4: Runtime Comparison

Environment No-Sharing QMP + Parameter-Sharing QMP +
No-Sharing Parameter-Sharing

Reacher Multistage 12.5 hr 14.2 hr 14 hr 16.2 hr
MT50 – – 7 days, 3hr 7 days, 6 hr

I IMPLEMENTATION DETAILS

The SAC implementation we used in all our experiments is based on the open-source implementation
from Garage (garage contributors, 2019). We used fully connected layers for the policies and Q-
functions with the default hyperparameters listed in Table 5. For DnC baselines, we reproduced the
method in Garage to the best of our ability with minimal modifications.

We used PyTorch (Paszke et al., 2019) for our implementation. We run the experiments primarily on
machines with either NVIDIA GeForce RTX 2080 Ti or RTX 3090. Most experiments take around
one day or less on an RTX 3090 to run. We use the Weights & Biases tool (Biewald, 2020) for
logging and tracking experiments. All the environments were developed using the OpenAI Gym
interface (Brockman et al., 2016).

I.1 HYPERPARAMETERS

Table 5 details the list of important hyperparameters on all the 3 environments. For all environments,
we used a 2 layer fully connected network with hidden dimension 256 and a tanh activation function
for the policies and Q functions. We use a target network for the Q function with target update
τ = 0.995 and trained with an RL discount of γ = 0.99.

I.2 NO-SHARED-BEHAVIORS

All N networks have the same architecture with the hyperparameters presented in Table 5.

I.3 FULLY-SHARED-BEHAVIORS

Since it is the only model with a single policy, we increased the number of parameters in the network
to match others and tuned the learning rate. The hidden dimension of each layer is 600 in Multistage
Reacher, 834 in Maze Navigation, and 512 in Meta-World Manipulation, and we kept the number
of layers at 2. The number of environment steps as well as the number of gradient steps per update
were increased by N times so that the total number of steps could match those in other models. For
the learning rate, we tried 4 different values (0.0003, 0.0005, 0.001, 0.0015) and chose the most

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 5: Hyperparameters.

Hyperparameter Multistage Maze Meta-World
Reacher Navigation CDS

Minimum buffer size (per task) 10000 3000 10000
Environment steps per update (per task) 1000 600 500
Gradient steps per update (per task) 100 100 50
Batch size 32 256 256
Learning rates for π, Q and α 0.0003 0.0003 0.0015

Hyperparameter Meta-World Walker Kitchen
MT10

Minimum buffer size (per task) 500 2500 200
Environment steps per update (per task) 500 1000 200
Gradient steps per update (per task) 50 1500 50
Batch size 2560 256 1280
Learning rates for π, Q and α 0.0015 0.0003 0.0003

performant one. The actual learning rate used for each experiment is 0.0003 in Multistage Reacher
and Maze Navigation, and 0.001 in Meta-World Manipulation.

This modification also applies to the Shared Multihead baseline, but with separate tuning for the
network size and learning rates. In Multistage Reacher, we used layers with hidden dimensions of
512 and 0.001 as the final learning rate. In Maze Navigation, we used 834 for hidden dimensions and
0.0003 for the learning rate.

I.4 DNC

We used the same hyperparameters as in Separated, while the policy distillation parameters and the
regularization coefficients were manually tuned. Following the settings in the original DnC (Ghosh
et al., 2018), we adjusted the period of policy distillation to have 10 distillations over the course of
training. The number of distillation epochs was set to 500 to ensure that the distillation is completed.
The regularization coefficients were searched among 5 values (0.0001, 0.001, 0.01, 0.1, 1), and we
chose the best one. Note that this search was done separately for DnC and DnC with regularization
only. For DnC, the coefficients we used are: 0.001 in Multistage Reacher and Maze Navigation,
and 0.001 in Meta-World Manipulation. For Dnc with regularization only, the values are: 0.001 in
Multistage Reacher, 0.0001 in Maze Navigation, and 0.001 in Meta-World Manipulation.

I.5 QMP (OURS)

Our method also uses the default hyperparameters. QMP does not require any task specific hyperpa-
rameters. The exception is Meta-World MT10, where we found it helpful to have more conservative
behavior sharing by choosing the task-specific policy 70% of the time. The remaining 30% we use
the Q-filter to select a policy as usual.

Like in Baseline Multihead (Parameters-Only), the QMP Multihead architecture (Parame-
ters+Behaviors) also required a separate tuning. Since QMP Multihead effectively has one network,
we increased the network size in accordance with Baseline Multihead and tuned the learning rate in
addition to the mixture warmup period. The best-performing combinations of these parameters we
found are 0 and 0.001 in Multistage Reacher, and 100 and 0.0003 in Maze Navigation, respectively.

I.6 ONLINE UDS

Yu et al. (2022) proposes an offline multi-task RL method (UDS) that shares data between tasks if
their conservative Q value falls above the kth percentile of the task data. Specifically, before training,
you would go through all the tasks’ data and share some data from Task j to Task i if the Task i Q

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Multistage Reacher

QMP (H=10)
QMP (H=1)
No-QMP

0 3 6 9 12
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Maze Navigation
QMP (H=25)
QMP (H=1)
No-QMP

0.0 2.5 5.0 7.5 10.0
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Meta-World CDS
QMP (H=10)
QMP (H=1)
No-QMP

0.00 1.25 2.50 3.75 5.00
Environment steps (1M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Kitchen
QMP (H=10)
QMP (H=1)
No-QMP

Figure 21: In each case above, QMP with H-step rollouts of the behavioral policy (blue) performs no
worse than QMP with 1-step rollouts (red), with the H-step rollouts helping significantly in some
tasks. Additionally both versions of QMP outperform the No-QMP baseline.

value of that data is greater than k% of the Q values of Task i’s data. UDS does not require access to
task reward functions like other data-sharing approaches. It simply re-labels any shared data with
the minimum task reward, making it applicable to our problem setting as we also do not assume that
reward relabeling is possible.

In order to adapt UDS to online RL, instead of doing data sharing once on the given multi-task dataset,
we apply UDS data sharing before every training iteration to the data in the multi-task replay buffers.
Concretely, we implement this on-the-fly for every batch of sampled data by sampling one batch of
data from Task i’s replay buffer, βi, and one batch of data from the other task’s replay buffers βj ̸=i.
Then following UDS, we would form the effective batch βeff

i by sharing data from βj ̸=i if it falls
above the kth percentile of Q values for βi:

UDSonline : (s, a, ri, s
′) ∼ βj ̸=i ∈ βeff

i

if ∆π(s, a) := Q̂π(s, a, i)− Pkth [Q̂π(s′, a′, i) : s′, a′ ∼ βi] ≥ 0

Note the differences here: (i) the ‘data’ used for data-sharing is the sampled replay buffer batch
instead of the offline dataset, and (ii) we use the standard Q-function to evaluate data instead of the
conservative Q-function since we are doing online (not offline) RL. We implement it this way as a
practical approximation to avoid having to process the entire replay buffer every training iteration.

We use the same default hyperparameters as the other baseline methods. Additionally, we need to
tune the sharing percentile k. For this, we tried 0th percentile (sharing all data) and 80th percentile,
and chose the best-performing one.

29

	Introduction
	Related Work
	Problem Formulation
	Approach
	Multi-Task Behavior Sharing via Off-Policy Data Collection
	Q-switch Mixture of Policies (QMP)

	Why QMP Works: Theory and Didactic Example
	QMP: Convergence and Improvement Guarantees
	Illustrative Example: 2D Point Reaching

	Experiments
	Environments
	Baselines

	Results
	Is Behavior Sharing Complementary to other MTRL frameworks?
	Baselines: Comparing Different Approaches to Share Behaviors
	Can QMP effectively identify shareable behaviors?
	Ablations

	Conclusion
	References
	
	Qualitative Results
	Code Submission
	QMP Derivation
	QMP Convergence Guarantees
	Environment Details
	Multistage Reacher
	Maze Navigation
	Meta-World Manipulation
	Walker2D
	Kitchen

	Additional Results
	Multistage Reacher Per Task Results
	Data Sharing Results
	PCGrad Results
	QMP Scales with Task Set Size in Maze Navigation
	Additional Comparisons
	Temporally-Extended Behavior Sharing

	QMP Behavior Sharing Analysis
	Qualitative Visualization of Behavior-Sharing

	Additional Ablations and Analysis
	Probabilistic Mixture v/s Arg-Max
	Approximation Expected Q-value Over Policy Action Distribution
	QMP v/s Increasing Single Task Exploration
	QMP Runtime

	Implementation Details
	Hyperparameters
	No-Shared-Behaviors
	Fully-Shared-Behaviors
	DnC
	QMP (Ours)
	Online UDS

