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Abstract

Large language models have driven significant progress in natural language process-
ing, but their deployment requires substantial compute and memory resources. As
models scale, compression techniques become essential for balancing model quality
with computational efficiency. Structured pruning, which removes less critical com-
ponents of the model, is a promising strategy for reducing complexity. However,
one-shot pruning often results in significant quality degradation, particularly in
tasks requiring multi-step reasoning. To recover lost quality, supervised fine-tuning
(SFT) is commonly applied, but it can lead to catastrophic forgetting by shifting the
model’s learned data distribution. Therefore, addressing the degradation from both
pruning and SFT is essential to preserve the original model’s quality. In this work,
we propose self-data distilled fine-tuning to address these challenges. Our approach
leverages the original, unpruned model to generate a distilled dataset that preserves
semantic richness and mitigates catastrophic forgetting by maintaining alignment
with the base model’s knowledge. Empirically, we demonstrate that self-data
distillation consistently outperforms standard SFT, improving average accuracy
by up to 8% on the HuggingFace OpenLLM Leaderboard v1. Specifically, when
pruning 6 decoder blocks on Llama3.1-8B Instruct (i.e., 32 to 26 layers, reducing
the model size from 8.03B to 6.72B parameters), our method retains 91.2% of the
original model’s accuracy compared to 81.7% with SFT, while reducing real-world
FLOPs by 16.30%. Furthermore, our approach scales effectively across datasets,
with the quality improving as the dataset size increases.

1 Introduction
The advent of large language models (LLMs) such as GPT-4 (OpenAI et al., 2024), Gemini (Gemini
et al., 2024), and Llama 3 (Dubey et al., 2024) has revolutionized natural language processing (NLP),
driving significant advancements across various tasks through extensive pre-training on textual
data. These models, enhanced by supervised fine-tuning (SFT), demonstrate impressive instruction-
following abilities (Ouyang et al., 2022; Touvron et al., 2023a), but come with high computational
costs for both training and inference (Hoffmann et al., 2022; Kaplan et al., 2020). To address diverse
deployment requirements across varying model scales, sizes, and compute budgets, compressing
models for efficient inference is essential, particularly given the significant time, data, and resource
constraints associated with training multiple multi-billion parameter models from scratch.

Most model compression techniques can be grouped into four main categories: distillation (Hinton
et al., 2015), low-rank factorization (Hu et al., 2022), pruning (LeCun et al., 1989), and quantiza-
tion (Han et al., 2015). In our work, we focus on pruning, though we aim for our methodology to
inspire further developments across these other compression methods. Structured pruning, which
selectively removes less critical components of a neural network, has emerged as a promising method
for improving LLM efficiency (Ma et al., 2023). This method has gained attention for its ability to
reduce memory and computation requirements, making inference more efficient. Recent studies have
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shown that LLMs exhibit significant redundancy, particularly in the middle layers, where removing
these layers has a minimal impact on overall model quality (Gromov et al., 2024; Men et al., 2024).
The Transformer (Vaswani et al., 2017) architecture’s residual connections allow for the final output
to be a summation of earlier layers, enabling the removal of non-essential layers without drastically
harming model quality.
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Figure 1: Average quality recovery (%) of
pruned Llama3.1-8B Instruct models relative to
the unpruned baseline, across varying prune
block sizes on the HuggingFace OpenLLM
Leaderboard v1. The plot compares no fine-
tuning, supervised fine-tuning, and self-data dis-
tilled fine-tuning using the OpenMathInstruct
dataset. While model quality declines with
prune block sizes, self-data distillation consistently
achieves superior recovery.

Despite its potential advantages, depth-wise
structured pruning presents inherent challenges.
It often leads to accuracy degradation, especially
on tasks requiring multi-step reasoning, such as
ARC-C (Clark et al., 2018) or GSM8k (Cobbe
et al., 2021), where the structured order of layer
outputs plays a crucial role. In these cases, prun-
ing disrupts the flow of information between lay-
ers, resulting in poor model quality even after
supervised fine-tuning (SFT) (Sun et al., 2024).
While SFT can help recover some of the lost
quality, it is generally insufficient for tasks with
high reasoning complexity, where the structured
sequence of layer outputs is essential. In addi-
tion, fine-tuning can amplify catastrophic for-
getting (McCloskey and Cohen, 1989), where
the model loses previously learned information,
particularly on tasks not represented in the fine-
tuning data. Standard mitigation strategies, such
as data replay (Ostapenko et al., 2022) or pa-
rameter importance-based methods (Kirkpatrick
et al., 2017), often become impractical for LLMs
due to their scale. Moreover, fine-tuning often
leads to distribution shifts, further degrading model quality (Yang et al., 2024). As LLMs continue to
grow in size and complexity, developing more effective strategies to mitigate these challenges during
pruning is critical to unlocking its full potential.

In our work, we propose a novel approach to mitigate the adverse effects of structured pruning
by employing self-data distilled fine-tuning. Our method leverages the original, unpruned model
as a seed language model to generate a distilled dataset that upholds semantic equivalence with
the original task dataset. This approach not only preserves the semantic richness of the data but
also mitigates catastrophic forgetting, a phenomenon where fine-tuned models lose their general
instruction-following abilities due to the distribution shift introduced during standard SFT. As seen in
Figure 1, we show that self-data distillation improves average accuracy by up to 8% over SFT on the
HuggingFace OpenLLM Leaderboard v1 (Beeching et al., 2023). Specifically, when pruning 6 blocks
from Llama3.1-8B Instruct, our approach retains 91.2% of the original model’s accuracy compared
to 81.7% with SFT, while also reducing FLOPs by 16.30%. The main contributions of our work are:

• To our knowledge, we are the first to introduce self-data distillation as a fine-tuning method
for recovering the model quality of pruned models. Empirically, we show that self-data
distillation on Llama3.1-8B Instruct consistently outperforms SFT across all pruned models.

• We demonstrate that self-data distillation scales effectively across a wide range of open-
source fine-tuning datasets for LLMs, covering open-domain conversation, reasoning, and
instruction following, with quality recovery significantly improving as the dataset size
increases.

2 Methodology

In this section, we present our approach to enhancing the efficiency of LLMs through structured
layer pruning combined with self-data distillation. Our strategy involves systematically identifying
and removing redundant layers to optimize model efficiency while preserving task-specific accuracy.
Post-pruning, we employ self-data distillation to mitigate the effects of catastrophic forgetting during
the fine-tuning phase, thereby ensuring that the pruned model improves its quality over standard SFT.
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2.1 Layer-Pruning Algorithm for Language Models

Transformer networks (Vaswani et al., 2017) have become a foundational architecture in deep learning,
particularly for tasks involving natural language processing and sequence modeling. A standard
Transformer consists of L layers, each of which includes a multi-head self-attention mechanism
followed by a feedforward network. These layers sequentially transform an input sequence into
increasingly abstract representations, with each layer’s output serving as the input to the subsequent
layer. Let x(ℓ) denote the input to the ℓth layer, and h(ℓ) = f(x(ℓ)) denote the output of the ℓth layer
after applying the transformation function f(·). The output of the final layer, h(L), is typically used
for downstream tasks, such as classification or natural language generation.

Algorithm 1 Layer-Pruning Language Models

Require: Model M with L layers, Number of layers
to prune n, Dataset D

Ensure: Pruned model M ′

1: Initialize ℓ⋆ ← None, dmin ←∞
2: for each layer ℓ from 1 to L− n do
3: h(ℓ)(D)← activation at ℓ with input D
4: h(ℓ+n)(D)← activation at ℓ+ n with input D
5: Compute d(h(ℓ)(D), h(ℓ+n)(D)) using Eq. 1
6: if d(h(ℓ)(D), h(ℓ+n)(D)) < dmin then
7: dmin ← d(h(ℓ)(D), h(ℓ+n)(D))
8: ℓ⋆ ← ℓ
9: end if

10: end for
11: Prune layers ℓ⋆ to ℓ⋆ + n− 1 from M
12: Connect output of layer ℓ⋆ to input of layer ℓ⋆ + n
13: return pruned model M ′

Block Importance Metric Recent liter-
ature has introduced various metrics to
evaluate the importance of layers within
Transformer-based vision and language
models. For instance, Samragh et al. (2023)
proposed a metric based on the relative
magnitude,

∥∥∥ f(x(ℓ))
x(ℓ)+f(x(ℓ))

∥∥∥ to measure the
importance of a layer ℓ by characteriz-
ing its influence on the network’s output.
Here, x(ℓ) represents the input to layer ℓ,
and f(x(ℓ)) denotes the transformation ap-
plied by the layer. Additionally, Men et al.
(2024) introduced the Block Influence (BI)
score, which assumes that the degree to
which a Transformer block alters hidden
states correlates with its importance. The
BI score for the ℓth block is calculated as,

1− EX,i
x
(ℓ)
i ·x(ℓ+1)

i∥∥∥x(ℓ)
i

∥∥∥
2

∥∥∥x(ℓ+1)
i

∥∥∥
2

where x
(ℓ)
i repre-

sents the ith hidden state vector at layer ℓ, and x
(ℓ+1)
i represents the corresponding hidden state

vector at the subsequent layer ℓ+ 1. Gromov et al. (2024) proposed using an angular cosine metric
to measure the similarity between layer outputs as a criterion for pruning. This metric is based on
the premise that layers producing highly similar outputs can be pruned with minimal impact on
the model’s overall quality. Both the BI and the angular cosine metric fundamentally use cosine
distance to assess the importance of layers or blocks of layers within a model. However, based on
our ablation studies in Section 3, we found no significant difference in their effectiveness for layer
pruning. Consequently, we have opted to use the angular cosine metric from Gromov et al. (2024)
in our studies. This metric allows us to effectively quantify and identify redundancy in the model’s
layers. As described in Algorithm 1, the pruning process begins by selecting a block of consecutive
layers, denoted by n, for potential removal. The choice of n directly influences the extent of pruning,
which has important implications for both the model’s efficiency and overall quality.

Determine the Prune Block Size To determine which layers to prune, we calculate the angular
distance between the activation outputs of layer ℓ and layer ℓ+ n. For each potential starting layer
ℓ, the angular distance d(h(ℓ)(D), h(ℓ+n)(D)) is computed using a representative dataset D, which
may be a representative pre-training dataset or one that is tailored to a specific downstream task. In
our work, we use RedPajama (Computer, 2023) as the representative dataset to evaluate the sample
distances. The angular distance metric is formally defined as,

d(h(ℓ)(D), h(ℓ+n)(D)) ≡ 1

π
arccos

 h
(ℓ)
T (D) · h(ℓ+n)

T (D)∥∥∥h(ℓ)
T (D)

∥∥∥∥∥∥h(ℓ+n)
T (D)

∥∥∥
 , (1)

where h
(ℓ)
T (D) and h

(ℓ+n)
T (D) denote the activation vectors at the final token position T of the input

sequence, corresponding to layers ℓ and ℓ+ n, respectively. The activations are normalized using the
L2-norm ∥·∥, which ensures a consistent scale when comparing layer outputs. The choice to focus on
T is motivated by the autoregressive nature of Transformers, where the representation of the final
token encapsulates information from the entire input sequence due to the causal attention mechanism.
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Figure 2: Comparison of Llama3.1-8B Instruct using (left) angular cosine and (center) block influence
(BI) score metrics. (right) Distribution of embedding similarities on GSM8k after fine-tuning on
OpenMathInstruct for a pruned Llama3.1-8B Instruct model (i.e., 26 decoder layers, prune block
size n = 6). Self-data distilled fine-tuning (Self-Data FT) achieves higher similarity to the original
baseline, indicating reduced distribution shift compared to standard supervised fine-tuning (SFT).

Identify Optimal Pruning Block We identify the optimal block of layers for pruning by minimizing
the angular distance. Specifically, the starting layer ℓ⋆ of the block is selected as follows,

ℓ⋆(n) ≡ argmin
ℓ

d(h(ℓ)(D), h(ℓ+n)(D)),

where ℓ⋆ corresponds to the layer with the smallest angular distance to its corresponding n-th
successor layer. This optimization identifies a block of layers that exhibit high redundancy, as
measured by their similar output activations. Pruning such a block is expected to have minimal
impact on the model’s overall capacity. Once identified, layers from ℓ⋆ to ℓ⋆ + n− 1 are removed,
and the model is restructured by directly connecting the output of layer ℓ⋆ to the input of layer
ℓ⋆ + n. This pruning operation can be efficiently implemented in deep learning frameworks such as
PyTorch (Paszke et al., 2019), where the layers are typically encapsulated within a ModuleList or
similar data structure. The layers within the identified block are excluded when defining the new,
pruned model architecture.

2.2 Self-Data Distillation for Pruned Models

After pruning a Transformer, fine-tuning is typically required to adapt the pruned model to specific
downstream tasks. However, the fine-tuning process can amplify catastrophic forgetting, especially
when the fine-tuning data distribution diverges from the original training distribution. To address
this, we propose self-data distilled fine-tuning, which aligns the fine-tuning dataset with the original
model’s learned distribution, helping to mitigate forgetting and maintain model quality across tasks.

Supervised Fine-tuning Given a pruned model M ′ with parameters θ′, supervised fine-tuning aims
to adapt the model to a specific downstream task t using a task-specific dataset. For each example
(xt, yt) in the dataset, where xt is the input and yt is the corresponding target output, the model is
fine-tuned by minimizing the negative log-likelihood of producing the correct output yt given the
input xt and the context ct associated with the task,

LSFT(θ
′) = − log fθ′(yt | ct, xt),

where fθ′ represents the pruned model with parameters θ′. The objective is to align the model’s output
distribution with the distribution of the task-specific data, thereby improving quality on the target
task t. However, traditional supervised fine-tuning (SFT) can lead to catastrophic forgetting (Kotha
et al., 2024), particularly in cases where the task-specific data distribution diverges significantly from
the original training distribution.

Self-Data Distilled Fine-tuning First, the self-data distillation process begins with generating a
distilled dataset that aligns with the distribution of the original, unpruned model M . Specifically, for
each example in the fine-tuning dataset, the original seed model M is used to generate a distilled
output ỹ by rewriting the original response yt as, ỹ ∼ fθ(y | ct, xt, yt), where fθ represents the
original model with parameters θ. This distilled output ỹ is designed to stay within the distribution
of the original model, thereby minimizing the risk of catastrophic forgetting. Following Yang et al.
(2024), to ensure the quality of the distilled output, a conditional selection process is applied,

ỹ′ =

{
ỹ if Extract(ỹ) = yt,

yt otherwise.
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Figure 3: Quality of pruned Llama3.1-8B Instruct models across various datasets and pruning
block sizes. The plots show average accuracy across MMLU, GSM8k, ARC-C tasks for GSM8k,
OpenMathInstruct, Dolly, and Alpaca under three strategies: Self-Data FT, SFT, and No FT. Self-Data
FT consistently outperforms SFT and No FT, with the largest gains using OpenMathInstruct (50k).

This ensures that the distilled responses retain essential characteristics, such as correctness in struc-
tured tasks (e.g., mathematical reasoning). Once the distilled dataset is prepared, the pruned model
M ′ with parameters θ′ undergoes supervised fine-tuning. The fine-tuning process is defined by the
following objective,

LSelf-Data FT(θ
′) = − log fθ′(ỹ′ | ct, xt),

where fθ′ represents the pruned model fine-tuned on the distilled dataset. This objective helps align
the pruned model with the distilled data distribution, thereby reducing the impact of catastrophic
forgetting compared to standard supervised fine-tuning. Self-data distillation is key to minimizing
quality loss after pruning, significantly improving retention of model capabilities. While it may
not fully preserve the original model’s quality, it offers an effective balance between efficiency and
accuracy in LLMs, as evidenced by the results presented in the ablation studies in Section 3.

3 Ablation Studies on Layer-Pruning and Self-Data Distillation

In this section, we examine key factors affecting the quality of pruned Llama3.1-8B Instruct (Dubey
et al., 2024) models. Our experiments assess the impact of layer importance metrics, pruning block
sizes, and fine-tuning strategies. We compare BI and angular cosine metrics for determining layer
redundancy and analyze how these choices influence pruning outcomes. In addition, we evaluate the
effectiveness of self-data distilled fine-tuning across various datasets, showing its ability to recover
model quality post-pruning, outperforming standard supervised fine-tuning methods.

Effect of Layer Importance Metric We investigated two layer importance metrics, BI and angular
cosine distance, to guide pruning decisions in the Llama3.1-8B Instruct model (see Figure 2). Both
metrics assess the redundancy of layers by measuring the cosine distance between their inputs and
outputs but differ in their focus. BI quantifies the change in hidden states across layers, while angular
cosine distance emphasizes output similarity between consecutive layers. Despite minor differences
in middle layers, both metrics produced comparable pruning results across block sizes. We ultimately
chose the angular cosine metric due to its computational efficiency, leveraging cosine similarity
without the added complexity of BI. This efficiency makes it more scalable for large models, and
its direct measure of output similarity aligns with our intuition that layers producing highly similar
outputs are likely redundant, making it a more practical tool for structured pruning in this study.
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Table 1: Model quality results for pruned Llama3.1-8B Instruct models across various pruning
block sizes and fine-tuning strategies. Average accuracy is reported on the OpenLLM Leaderboard
v1, along with the recovery percentage relative to the baseline model. Self-data distillation consistently
outperforms other methods, particularly when combined with model merging (MM).

Prune
Block Size

Model
Savings

Fine-tuning
Method Dataset ARC-C

(25-shot)
HellaSwag
(10-shot)

TruthfulQA
(0-shot)

MMLU
(5-shot)

Winogrande
(5-shot)

GSM8k
(5-shot)

Avg.
Score

Avg.
Recovery

Baseline - No FT 60.92 80.16 54.02 68.15 77.58 75.59 69.40 -

4 10.86%
(7.16B)

No FT 55.20 75.70 52.40 67.79 75.29 56.18 64.06 92.31%
SFT OpenMathInstruct 51.62 71.70 49.40 61.65 73.25 44.35 58.66 84.52%
Self-Data Distillation OpenMathInstruct 53.93 74.27 50.61 65.34 74.90 69.44 64.75 93.29%
Self-Data Distillation + MM OpenMathInstruct + Alpaca 56.22 76.48 51.60 66.93 74.43 69.37 65.84 94.86%

6 16.30%
(6.72B)

No FT 49.49 68.72 53.63 67.42 70.40 1.29 51.82 74.67%
SFT OpenMathInstruct 46.93 68.51 50.81 59.98 70.01 43.82 56.68 81.66%
Self-Data Distillation OpenMathInstruct 50.00 71.57 53.14 64.96 73.64 66.64 63.33 91.24%
Self-Data Distillation + MM OpenMathInstruct + Alpaca 54.52 73.58 53.57 66.35 74.82 65.67 64.75 93.30%

8 21.73%
(6.29B)

No FT 44.71 61.22 56.11 65.57 65.98 0.00 48.93 70.50%
SFT OpenMathInstruct 42.15 64.49 54.69 60.65 66.38 29.64 53.00 76.37%
Self-Data Distillation OpenMathInstruct 46.67 65.70 53.32 64.87 71.27 57.70 59.92 86.38%
Self-Data Distillation + MM OpenMathInstruct + Alpaca 46.93 67.85 53.33 65.81 72.30 56.41 61.24 88.24%

10 27.16%
(5.85B)

No FT 37.46 54.45 55.06 64.09 67.25 0.00 46.39 66.83%
SFT OpenMathInstruct 39.33 57.38 51.47 57.44 64.48 15.39 47.58 68.56%
Self-Data Distillation OpenMathInstruct 40.88 61.11 53.46 64.54 70.88 44.58 55.91 80.56%
Self-Data Distillation + MM OpenMathInstruct + Alpaca 41.72 63.30 52.87 65.57 70.33 42.26 56.08 80.70%

Analysis on Self-Data Distilled Datasets We assess the role of fine-tuning datasets in the self-
data distillation process for recovering quality in pruned Llama3.1-8B Instruct models, comparing
LoRA (Hu et al., 2022) fine-tuning on standard versus self-distilled datasets. We fine-tuned the pruned
models on a range of open-source datasets, including GSM8k (math word problems), Dolly (Conover
et al., 2023) (open-domain conversation), OpenMathInstruct (Toshniwal et al., 2024) (math and
reasoning), and Alpaca (Taori et al., 2023) (instruction-following), with a primary focus on reasoning-
heavy tasks. Therefore, we evaluated the orginal baseline and pruned models’ accuracy on ARC-C
(25-shot), GSM8k (5-shot), and MMLU (Hendrycks et al., 2021a) (5-shot) tasks using the LM-eval-
harness (Gao et al., 2024). We provide additional details on the experimental setup in Appendix A,
and extended results from our fine-tuning ablation studies can be found in Appendix B.

The results, presented in Figure 3, show that self-data distillation offers significant quality improve-
ments over SFT and one-shot pruned models, particularly with larger datasets like the 50k-sample
OpenMathInstruct. Self-data distilled models achieved 5-10% higher accuracy across all pruning
block sizes, demonstrating the effectiveness of self-data distillation in recovering a substantial portion
of the model’s quality post-pruning. Our ablations revealed a strong correlation between dataset size
and quality recovery, with larger datasets consistently outperforming smaller ones. The improve-
ments being most pronounced with medium to large block sizes, where self-data distillation notably
enhanced generalization, especially in reasoning tasks. These findings highlight the importance of
dataset scale and the self-data distillation process, with the 50k-sample OpenMathInstruct dataset
delivering the best overall results, and will be the focus of subsequent experiments.

Mitigating Catastrophic Forgetting The right plot in Figure 2 clearly illustrates the advantages
of self-data distilled fine-tuning (Self-Data FT) over SFT in mitigating catastrophic forgetting after
pruning. We study the similarities between Llama3.1-8B Instruct models fine-tuned on a supervised
50k-sample OpenMathInstruct dataset and a self-data distilled version of the same dataset. The plot
compares the sentence embeddings of the two models’ generated responses on the GSM8k task to
the baseline unpruned Llama3.1-8B Instruct model. Self-Data FT maintains a narrower distribution
of embedding similarities, with a higher mean score of 0.92, indicating better preservation of the
original model’s learned representations. In contrast, SFT exhibits a wider spread of similarity scores
and a lower mean of 0.83, reflecting a more significant distribution shift and a greater risk of quality
degradation. The tighter distribution in Self-Data FT highlights its ability to retain model quality
across tasks, while the wider distribution in SFT suggests a greater distribution shift, leading to higher
risk of catastrophic forgetting (see Appendix C). This highlights Self-Data FT as a more effective
method for mitigating model quality degradation post-pruning.

4 Empirical Results
We evaluated the quality of Llama3.1-8B Instruct models pruned at various block sizes under three
fine-tuning strategies: no fine-tuning (No FT), supervised fine-tuning (SFT), and our proposed self-
data distillation. As shown in Table 1, pruned models without fine-tuning experience substantial
accuracy losses, particularly at larger block sizes (e.g., a 46.39% average score at block size 10),
highlighting the critical need for post-pruning adaptation. SFT improves quality, with an average
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recovery of 81.66% at block size 6, but struggles on reasoning-heavy tasks like GSM8k and ARC-C.
In contrast, self-data distillation significantly enhances quality recovery, achieving 91.24% at block
size 6, with GSM8k accuracy reaching 66.64% (compared to 43.82% with SFT). Even at block size
10, self-data distillation maintains an 80.56% recovery, outperforming SFT’s 68.56%. These findings
establish self-data distillation as the most effective method for preserving model quality post-pruning,
particularly for reasoning-intensive tasks, making it essential for large-scale model compression.

Improving Self-Data Distillation with Model Merging We extend self-data distillation by in-
troducing model merging using Spherical Linear Interpolation (SLERP) (Shoemake, 1985). While
self-data distillation has shown significant improvements in maintaining model quality post-pruning,
we investigate whether merging models fine-tuned on different datasets can provide further gains.
Specifically, we merge Llama3.1-8B Instruct models fine-tuned on OpenMathInstruct and Alpaca,
as these datasets delivered the best results in our ablations in Section 3. SLERP enables smooth
interpolation between model parameters, preserving the geometric properties of the parameter space
(see Appendix D for details). Our results, as shown in Table 1, demonstrate that self-data distillation
with model merging via SLERP yields the highest recovery in quality across all pruning block
sizes. At block size 6, the merged model achieves a 93.30% recovery, compared to 91.24% for the
OpenMathInstruct model alone. These findings suggest that SLERP-based model merging not only
mitigates pruning-related quality loss but also improves generalization, particularly on tasks such as
GSM8k and ARC-C.

5 Related Work

Pruning for Model Compression Pruning is a well-established method for reducing the complexity
of overparameterized models in both computer vision and NLP (Hassibi et al., 1993; LeCun et al.,
1989). It is typically classified into structured and unstructured pruning. Unstructured pruning
removes individual weights and can achieve high compression rates in LLMs, particularly when
paired with hardware accelerators like the Cerebras CS-3 (Lie, 2022; Thangarasa et al., 2024a) or
Neural Magic DeepSparse (Neural Magic, 2021), which exploit sparsity for significant speedups.
However, without specialized infrastructure, unstructured pruning can result in inefficient acceleration.
Structured pruning, which removes entire channels, layers, or attention heads, is more effective in
models with architectural redundancy, but can degrade model quality, especially in complex tasks
which require multi-step reasoning (Kurtic et al., 2023; Ma et al., 2023; Sun et al., 2024).

To address these challenges, several metrics have been developed to guide pruning decisions more
effectively. For instance, Shortened Llama (Kim et al., 2024) demonstrated that depth pruning
(removing layers) can be as effective as width pruning (removing units within layers), or even a
combination of both. The Block Influence (BI) score (Men et al., 2024), applied in Llama-2 (Touvron
et al., 2023b), measures block importance by evaluating changes in hidden state magnitudes. Addi-
tionally, the angular cosine similarity metric (Gromov et al., 2024) identifies layers with redundant
activations, allowing for selective pruning in models such as Llama-2 and Mistral (Jiang et al., 2023).
Gromov et al. (2024) also proposed a healing method using low-rank adapters (Hu et al., 2022)
to recover lost quality. Despite these advancements, pruning LLMs still results in sharp accuracy
degradation (Sun et al., 2024), and traditional recovery methods such as fine-tuning or re-pretraining
are resource-intensive (Sreenivas et al., 2024; Xia et al., 2024). Our self-data distillation approach
extends this by leveraging the unpruned model to generate a distilled dataset for fine-tuning the
pruned model, ensuring semantic alignment and mitigating the quality degradation caused by pruning.
While combining this with standard KD techniques could further improve generalization, we leave
that exploration for future work.

Distillation Knowledge distillation (KD) (Hinton et al., 2015) is a widely-used model compression
technique where a smaller student model learns from a larger teacher model, enabling efficient model
quality retention. In NLP, KD has been applied in various contexts to align student models with
teacher outputs (Agarwal et al., 2024; Gu et al., 2024; Liang et al., 2021), hidden states (Jiao et al.,
2020), and attention mechanisms (Wang et al., 2021). Recent work on Llama3.2 (Llama Team,
2024) extends this by using logits from larger Llama3.1 models (e.g., 8B, 70B) as token-level
targets during pre-training, allowing the smaller models (e.g., 1B, 3B) to achieve superior quality
compared to training from scratch (Llama Team, 2024). Supervised fine-tuning (SFT) has been
widely employed in various self-distillation frameworks to train student models using sequences
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generated by teacher LLMs (Sun et al., 2023; Wang et al., 2023; Zelikman et al., 2022). Yang et al.
(2024) investigated self-distillation as a way to alleviate distribution shifts, improving model quality
during SFT while improving generalization across tasks. Our self-data distillation method builds
on these techniques by leveraging the original unpruned model to generate a distilled dataset for
fine-tuning the pruned model. This ensures semantic alignment and mitigates the quality degradation
seen after pruning. Furthermore, while our approach can be combined with standard KD techniques
to enhance generalization and recover quality while lowering computational costs, we leave the
exploration of such combinations for future work.

Catastrophic Forgetting One of the major challenges of pruning and distillation techniques in
LLMs is catastrophic forgetting, where a model loses its previously learned capabilities during
fine-tuning (Korbak et al., 2022; Kotha et al., 2024). Regularization techniques such as Elastic Weight
Consolidation (EWC) (Kirkpatrick et al., 2017) aim to alleviate this by controlling parameter updates,
but are task-dependent and require careful tuning (Huang et al., 2021). Architecture-based methods,
which allocate separate parameters for each task (Razdaibiedina et al., 2023), preserve task-specific
knowledge but add complexity and overhead, reducing the overall efficiency of model compression.
Replay-based techniques (Ostapenko et al., 2022; Rolnick et al., 2019; Sun et al., 2019) store data
subsets from previous tasks for rehearsal, either through direct storage or synthesis via generative
models. However, these methods demand substantial memory to store large datasets and are often
impractical due to privacy concerns or lack of access to past data. Our self-data distilled fine-tuning
approach avoids these challenges by aligning the fine-tuning dataset with the original model’s learned
distribution, preserving knowledge across tasks without requiring new parameters or architectural
changes. This method offers a robust solution for mitigating catastrophic forgetting while maintaining
model quality after pruning.

6 Conclusion
In conclusion, we introduced self-data distilled fine-tuning as an effective method to counteract
quality degradation in pruned Llama3.1-8B Instruct models, addressing catastrophic forgetting while
preserving alignment with the model’s original distribution. Our approach consistently outperforms
standard supervised fine-tuning, demonstrating superior accuracy recovery post-pruning across
various downstream tasks on the HuggingFace OpenLLM Leaderboard v1. Additionally, model
merging via SLERP further enhances recovery, achieving significant quality retention. We also show
that our method scales with dataset size, where larger self-distilled datasets lead to improved quality
recovery. These findings highlight self-data distilled fine-tuning as a critical tool for maintaining
high model quality post-pruning, offering an efficient solution for large-scale model compression.
Future work may involve integrating self-data distilled fine-tuning with complementary model
compression techniques such as sparsity, quantization or teacher distillation, potentially yielding
greater efficiency without sacrificing model quality. Furthermore, adopting fine-tuning strategies
that leverage dynamically generated datasets or incorporate multi-modal inputs could enhance the
retention of critical knowledge, broadening the scope of self-data distillation to a wider array of tasks.
Extending these methodologies to next-generation LLM architectures presents a promising avenue
for unlocking additional computational efficiency and model robustness.
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A Experimental Setup Details

A.1 Baseline Model

We used Llama3.1-8B Instruct1(Dubey et al., 2024) as the baseline model for all experiments. This
model comprises a total of 32 decoder layers, pretrained on a diverse array of instruction-following
datasets. This model was chosen for its strong generalization performance across a wide range of
natural language processing (NLP) tasks, making it an ideal candidate for studying the impact of
structured pruning and fine-tuning. The 8B model size strikes a balance between computational
efficiency and model quality, providing a robust foundation for the experiments in this study. Hence,
served as the starting point for our structured layer pruning ablations and experiments in Sections 3
and 4, respectively.

A.2 Structured Layer Pruning

In this study, we focus on structured layer pruning of decoder layers to reduce the computational
footprint of the LLM while maintaining its quality. Specifically, we prune in block sizes of {2, 4, 6,
8, 10} layers, corresponding to {30, 28, 26, 24, 22} decoder layers, respectively. Each block size
reduction effectively removes a group of layers from the original architecture, creating progressively
smaller models. These pruned models allow us to systematically evaluate the trade-offs between
computational efficiency (fewer layers) and the accuracy on various downstream tasks. By examining
multiple block sizes, we analyze how varying degrees of pruning impact model quality, especially in
the context of self-data distilled fine-tuning, our proposed methodology.

A.3 Fine-tuning Datasets

The following datasets were used for ablation studies and fine-tuning experiments, representing a
range of open-domain conversation, instruction-following, reasoning, and mathematical tasks:

• Dolly 15k (Conover et al., 2023) The Dolly dataset is an open-source collection of 15,000
instruction-following records generated by thousands of Databricks employees. It covers a
wide range of behavioral categories, as outlined in InstructGPT(Ouyang et al., 2022), includ-
ing brainstorming, classification, closed question answering (QA), generation, information
extraction, open QA, and summarization. Dolly is designed to provide a benchmark for
general-purpose instruction-following models, emphasizing diverse task types and behav-
ioral categories.

• GSM8k (Cobbe et al., 2021) The GSM8k dataset is a collection of 8,000 high-quality
grade-school-level math word problems, developed by OpenAI. Each problem is designed
to assess a model’s ability to perform multi-step reasoning and problem-solving, making it
an essential benchmark for evaluating arithmetic, algebraic, and logical reasoning abilities
in large models. Fine-tuning on GSM8k highlights the model’s capacity for mathematical
reasoning, a key focus of our ablation studies.

• Alpaca Cleaned2 (Taori et al., 2023) The Alpaca Cleaned dataset is a cleaned version
of the original Stanford Alpaca dataset, containing 50,000 instruction-following exam-
ples. It addresses several issues present in the original release, such as hallucinations,
incorrect instructions, and output inconsistencies. This dataset provides high-quality gen-
eral instruction-following tasks, spanning text generation, summarization, reasoning, and
more. The cleaned version offers improved consistency and accuracy, making it ideal for
fine-tuning large models in real-world instruction-following tasks.

• OpenMathInstruct (Toshniwal et al., 2024)T The OpenMathInstruct-1 dataset is specifi-
cally designed for fine-tuning language models on mathematical instruction tasks. It contains
1.8 million problem-solution pairs, generated using Mixtral-8x7B (Jiang et al., 2024). The
problem sets are drawn from well-established mathematical benchmarks, including the
GSM8K and MATH (Hendrycks et al., 2021b) datasets, ensuring a diverse and challenging
range of mathematical reasoning tasks. Solutions are generated synthetically by allowing

1https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
2https://huggingface.co/datasets/yahma/alpaca-cleaned
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the Mixtral model to leverage a combination of natural language reasoning and executable
Python code, which allows for both symbolic computation and procedural solutions. This
combination of text and code execution makes the dataset particularly suited for training
models to handle complex reasoning, problem-solving, and algebraic tasks.

A.3.1 Data Sampling and Experimental Consistency

To maintain consistency across ablation studies, we fixed the dataset size at 8,000 samples for GSM8k,
Alpaca, and OpenMathInstruct, aligning them with the standard GSM8k dataset size. However, the
Dolly dataset retained its default size of 15,000 samples to preserve the integrity of this benchmark.
To evaluate the impact of dataset size on self-data distillation, we extended the sample sizes for some
experiments, using the full 50,000 samples from Alpaca Cleaned and randomly sampling 50,000
training samples from OpenMathInstruct. This allowed us to control for the effects of larger datasets,
providing insights into how dataset size influences generalization and model retention following
pruning.

A.4 Fine-tuning Pruned Models

For fine-tuning, we employed Low-Rank Adaptation (LoRA) (Hu et al., 2022), as it provides
an efficient approach to training while preserving the pretrained model’s capacity. Although full
fine-tuning is feasible, we focused on LoRA fine-tuning in this study, leaving full parameter fine-
tuning for future work. We conducted a comprehensive grid search on an 8k-sample version of the
OpenMathInstruct dataset to identify the most effective hyperparameters for LoRA-based fine-tuning.
The search was performed across a range of values to ensure optimal performance. We explored
different rank sizes ∈ {4, 8, 16, 32}, aiming to balance model capacity and parameter efficiency.
For the number of epochs, we tested values ranging ∈ {3, 5, 7, 10}, ensuring that the models were
fine-tuned enough to converge without overfitting. The learning rate was swept across five values
{2×10−5, 4×10−5, 6×10−5, 8×10−5, 1×10−4}. Finally, we tested batch sizes ∈ {8, 16, 32, 64,
128} to determine the optimal balance between training stability and computational efficiency.

Through this grid search, the optimal configuration was identified as a rank size = 8, epochs = 5,
a batch size = 64, and learning rate = 1×10−4. These hyperparameters were used consistently
across all fine-tuning experiments (i.e., both standard supervised fine-tuning and self-data distilled
fine-tuning) in this study to ensure a fair comparison of the models and their quality post-pruning.
We conduct our model training using LLaMA-Factory v0.8.33, a versatile framework designed
for large-scale language model training and fine-tuning. This version offers extensive support for
efficient parallelism, optimized memory usage, and integration with popular datasets, making it ideal
for large model fine-tuning tasks such as those performed in this study.

A.4.1 Computational Resources

Fine-tuning and evaluations were conducted on Nvidia H100 GPUs. For experiments involving
larger self-data distillation datasets, we utilized Cerebras CS-3 Inference (Thangarasa et al., 2024b),
which achieves output generation speeds exceeding 1800 tokens per second. The CS-3 system was
particularly useful for generating large-scale self-distilled datasets. However, for smaller datasets
(e.g., up to 15k samples), the H100 GPUs were sufficient for both fine-tuning and generation.

B Extended Results on Fine-tuning Ablations

In this section, we provide extended results from our fine-tuning ablation study to further clarify the
impact of dataset choice on self-data distillation efficacy in pruned Llama3.1-8B Instruct models.
As detailed in the Section 3, we observed that self-data distillation consistently outperformed SFT
across various datasets. Table 2 shows that the largest gains were achieved using the 50k-sample
OpenMathInstruct dataset, particularly at medium and large pruning block sizes (e.g., block size
6). At this configuration, self-data distillation was able to recover 95.96% of the baseline model
quality, which is a significant improvement compared to other datasets and fine-tuning methods. This
result highlights the robustness of the self-data distillation process, especially in recovering quality
post-pruning on reasoning-heavy tasks like those in GSM8k, ARC-C, and MMLU.

3https://github.com/hiyouga/LLaMA-Factory/releases/tag/v0.8.3
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Moreover, the recovery rates exhibited a clear trend where, larger datasets such as the 50k OpenMath-
Instruct consistently led to higher quality retention, especially when combined with more aggressive
pruning. This suggests that the dataset’s ability to approximate the model’s original data distribution
is critical for maintaining generalization capabilities after pruning. In contrast, smaller datasets like
Alpaca or Dolly showed comparatively lower recovery rates, which further confirms the importance
of dataset scale in the distillation process. Our results suggest that larger datasets are crucial for
mitigating quality degradation in pruned models, with the 50k OpenMathInstruct dataset emerging
as the most effective in retaining and enhancing model quality across block sizes, particularly in
challenging reasoning tasks.

C Experimental Setup for Understanding Catastrophic Forgetting

To understand the impact of distribution shift on catastrophic forgetting, we conducted experiments
using the baseline model (i.e., Llama3.1-8B Instruct) and its pruned variants fine-tuned with both
supervised fine-tuning (SFT) and self-data distilled fine-tuning (Self-Data FT). Specifically, we
pruned 6 decoder layers, reducing the model from 32 to 26 layers, and evaluated the models on
the GSM8k dataset. For these experiments, we generated model responses using the baseline and
pruned variants on the GSM8k dataset to capture how the distribution shift affects reasoning tasks
post-pruning. Following Yang et al. (2024), to quantify the distribution shift, we employed Sentence-
BERT (Reimers and Gurevych, 2019) to derive sentence embeddings from the model-generated
responses. Then, similar to the method proposed by Zhang et al. (2023), we calculated the cosine
similarity between the sentence embeddings of the pruned models and those generated by the original
Llama3.1-8B Instruct model.

A lower cosine similarity score indicates a greater distribution shift, suggesting a higher risk of
catastrophic forgetting. Conversely, higher similarity scores indicate better preservation of the
original model’s knowledge and a lower risk of forgetting. These metrics allowed us to assess the
extent to which SFT and Self-Data FT preserved the learned distribution of the base model, with the
latter showing superior performance in mitigating forgetting, as detailed in our ablations in Section 3.

D Model Merging Self-Data Distilled Models

We employ the Spherical Linear Interpolation (SLERP) method for merging pruned models, which
ensures smooth, geometrically consistent interpolation between two pruned model parameter vectors.
SLERP operates within the unit sphere’s geometry, contrasting with traditional linear interpolation
that may destabilize or yield suboptimal parameter combinations by ignoring the geometric properties
of the high-dimensional parameter space. SLERP preserves model integrity during interpolation,
leading to more stable and consistent outcomes.

Given two pruned model parameter vectors, θ′
0 and θ′

1, corresponding to pruned models M ′
0 (fine-

tuned on OpenMathInstruct) and M ′
1 (fine-tuned on Alpaca), SLERP generates an interpolated

parameter vector θ′
t for any interpolation factor t ∈ [0, 1]. When t = 0, the parameters of the

OpenMathInstruct fine-tuned model θ′
0 are retrieved, and when t = 1, the parameters of the Alpaca

fine-tuned model θ′
1 are retrieved.

Normalization to Unit Sphere The first step in SLERP is to normalize both pruned model parame-
ter vectors to lie on the unit sphere,

θ̂
′
0 =

θ′
0

∥θ′
0∥

, θ̂
′
1 =

θ′
1

∥θ′
1∥

.

This normalization ensures that both parameter vectors have unit norms, placing them on the surface
of the unit sphere in the parameter space. Next, we compute the angle θangle between the normalized
pruned model vectors θ̂

′
0 and θ̂

′
1. This angle is computed using the dot product, cos(θangle) = θ̂

′
0 · θ̂

′
1,

and the actual angle is given by θangle = arccos(cos(θangle)). This angle represents the angular
separation between the two pruned models’ parameter vectors on the unit sphere.

Spherical Interpolation With the angle θangle determined, SLERP performs spherical interpolation
along the great circle connecting θ̂

′
0 and θ̂

′
1. The interpolated parameter vector θ′

t is computed as,
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θ′
t =

sin((1− t)θangle)

sin(θangle)
· θ̂

′
0 +

sin(tθangle)

sin(θangle)
· θ̂

′
1.

This formula ensures that the interpolation remains on the surface of the unit sphere, respecting the
geometric structure of the parameter space. The interpolation factor t controls the contribution from
each pruned model, when t = 0, θ′

t = θ̂
′
0 (i.e., OpenMathInstruct fine-tuned model), and when t = 1,

θ′
t = θ̂

′
1 (i.e., Alpaca fine-tuned model). The intermediate values of t produce a smooth, spherical

blend of the two pruned models.

D.1 Geometric Consistency and Application

By operating within the unit sphere, SLERP respects the Riemannian geometry of the high-
dimensional parameter space, ensuring a smooth transition between the two pruned models. Tradi-
tional linear interpolation in such spaces can distort the relationships between parameters, leading to
suboptimal combinations and degraded model performance. In contrast, SLERP maintains geometric
consistency, ensuring that the interpolation follows a natural path on the unit sphere.

Merging the pruned OpenMathInstruct and Alpaca models using SLERP combines the unique
strengths of both models. For instance, OpenMathInstruct’s emphasis on mathematical reasoning and
logical structure complements Alpaca’s broader instruction-following capabilities. By adjusting the
interpolation factor t, the merged model can balance these capabilities, resulting in a versatile and
robust model for a range of downstream tasks. We use Arcee.ai’s mergekit4 for efficiently merging
model checkpoints.

4https://github.com/arcee-ai/mergekit
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Table 2: Model quality results for pruned Llama3.1-8B Instruct models across various pruning
block sizes and fine-tuning strategies. This table reports the quality of different fine-tuning methods
(No Fine-tuning, Standard Fine-tuning (SFT), and Self-Data Distillation) on various datasets, with
average accuracy across ARC-C, GSM8k, and MMLU tasks. The "Avg. Recovery" column shows
the percentage of model quality recovered relative to the unpruned baseline. The table highlights
that the self-data distillation strategy consistently yields superior recovery rates, particularly with
the 50k-sample OpenMathInstruct dataset. For instance, at a pruning block size of 6, the self-data
distilled OpenMathInstruct model retains 95.96% of the original unpruned Llama3.1-8B Instruct (i.e.,
32 layers) model’s quality, the highest recovery observed among all datasets and fine-tuning methods.

Prune
Block Size

Model
Savings

Fine-tuning
Method Dataset ARC-C

(25-shot)
GSM8k
(5-shot)

MMLU
(5-shot)

Avg.
Score

Avg.
Recovery

Baseline - No FT 58.70 63.15 67.40 63.08 100.00%

2 5.43%
(7.59B)

No FT 55.20 67.79 56.18 59.72 94.67%
SFT GSM8k 58.45 56.25 65.22 59.97 95.07%
Self-Data Distillation GSM8k 57.34 64.44 66.60 62.79 99.54%

SFT Dolly 55.67 61.64 65.71 61.01 96.71%
Self-Data Distillation Dolly 56.48 62.24 66.46 61.73 97.87%

SFT Alpaca (50k) 56.61 63.19 65.60 61.80 97.98%
Self-Data Distillation Alpaca (50k) 56.91 68.60 66.50 63.34 100.41%

SFT OpenMathInstruct (50k) 52.91 44.95 60.93 52.93 83.88%
Self-Data Distillation OpenMathInstruct (50k) 56.43 69.97 66.17 64.19 101.76%

4 10.86%
(7.16B)

No FT 55.20 56.18 67.79 59.72 94.67%
SFT GSM8k 54.27 43.47 65.40 54.38 86.22%
Self-Data Distillation GSM8k 55.20 62.55 66.68 61.48 97.49%

SFT Dolly 54.78 59.36 63.65 59.26 93.95%
Self-Data Distillation Dolly 51.71 55.96 65.40 57.69 91.44%

SFT Alpaca (50k) 56.05 54.40 65.34 58.60 92.89%
Self-Data Distillation Alpaca (50k) 57.27 66.20 66.24 63.24 100.26%
SFT OpenMathInstruct (50k) 51.62 44.35 61.65 52.54 83.30%
Self-Data Distillation OpenMathInstruct (50k) 53.93 69.44 65.34 62.24 98.66%

6 16.30%
(6.72B)

No FT 49.49 0.00 67.42 48.93 70.50%
SFT GSM8k 46.67 62.09 64.67 57.81 91.63%
Self-Data Distillation GSM8k 51.45 60.05 66.28 59.93 95.02%

SFT Dolly 47.18 33.89 65.33 48.13 76.31%
Self-Data Distillation Dolly 51.96 50.95 62.56 55.82 88.47%

SFT Alpaca (50k) 54.62 56.11 64.39 58.37 92.53%
Self-Data Distillation Alpaca (50k) 53.80 59.15 66.29 59.75 94.71%

SFT OpenMathInstruct (50k) 46.93 43.82 59.98 50.91 80.71%
Self-Data Distillation OpenMathInstruct (50k) 50.00 66.64 64.96 60.53 95.96%

8 21.73%
(6.29B)

No FT 44.71 0.00 65.57 36.76 58.27%
SFT GSM8k 44.79 50.86 64.38 53.34 84.56%
Self-Data Distillation GSM8k 46.16 50.11 65.53 53.93 85.50%

SFT Dolly 39.33 15.39 57.44 37.39 59.27%
Self-Data Distillation Dolly 46.50 28.73 62.93 46.05 73.00%

SFT Alpaca (50k) 49.15 39.59 64.81 51.85 82.19%
Self-Data Distillation Alpaca (50k) 48.09 42.77 65.20 52.69 83.51%

SFT OpenMathInstruct (50k) 42.15 29.64 60.65 44.81 71.05%
Self-Data Distillation OpenMathInstruct (50k) 46.67 57.70 64.87 56.41 89.44%

10 27.16%
(5.85B)

No FT 37.46 0.00 64.09 33.85 53.65%
SFT GSM8k 39.85 37.45 61.47 46.92 74.36%
Self-Data Distillation GSM8k 41.55 37.47 62.33 47.12 74.70%

SFT Dolly 38.40 0.76 46.94 28.70 45.51%
Self-Data Distillation Dolly 43.60 12.28 62.47 39.45 62.53%

SFT Alpaca (50k) 45.22 17.51 63.72 42.82 67.88%
Self-Data Distillation Alpaca (50k) 44.91 20.05 64.73 43.90 69.56%

SFT OpenMathInstruct (50k) 39.33 15.39 57.44 37.39 59.25%
Self-Data Distillation OpenMathInstruct (50k) 40.88 44.58 64.54 50.33 79.79%
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper’s abstract clearly states the main contribution of proposing
self-data distilled fine-tuning to mitigate the performance loss from structured pruning.
The experimental results and scope align with the claims regarding quality recovery
and generalization across datasets.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper acknowledges that while self-data distillation improves quality
recovery, it does not fully preserve the original model’s performance and may not
generalize equally across all tasks. It also briefly mentions the computational trade-offs
for dataset size.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not focus on theoretical proofs but instead relies on
empirical evaluations and methods without formal theoretical results.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides sufficient details on the datasets, model configurations,
fine-tuning methods, and pruning strategies to allow reproduction of the experiments

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The paper does not mention whether the code or datasets are publicly
available, although it uses open datasets like OpenMathInstruct.
Guidelines:

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides detailed descriptions of dataset splits, hyperparame-
ters, and fine-tuning methods, which are necessary for understanding the results.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Standard error is included in the Eleuther eval harness but is often
omitted in LLM literature as variance across runs is small, especially with large
datasets. Many papers prioritize reporting mean performance for quick comparisons
in high-level benchmarks (e.g., HuggingFace Leaderboard), where standard error is
seen as redundant.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides information about the use of Nvidia H100 GPUs and
Cerebras CS-3 systems for larger datasets.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: There is no indication of ethical violations in the research, and the methods
seem to adhere to standard practices in NLP research.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper does not discuss broader societal impacts, though the applica-
tion of model compression has implications for resource efficiency and accessibility.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not include high-risk models, and thus safeguards are not
required.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper cites and credits datasets like OpenMathInstruct and Dolly,
respecting their terms of use.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are introduced; the focus is on existing models and datasets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve research with human subjects.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects are involved.
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