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Abstract

Chinese grammatical error correction (CGEC)001
faces serious overcorrection challenges when002
employing autoregressive generative models003
such as sequence-to-sequence (Seq2Seq) mod-004
els and decoder-only large language models005
(LLMs). While previous methods aim to ad-006
dress overcorrection in Seq2Seq models, they007
are difficult to adapt to decoder-only LLMs. In008
this paper, we propose an alignment-enhanced009
corrector for the overcorrection problem that010
applies to both Seq2Seq models and decoder-011
only LLMs. Our method first trains a correc-012
tion model to generate an initial correction of013
the source sentence. Then, we combine the014
source sentence with the initial correction and015
feed it through an alignment model for another016
round of correction, aiming to enforce the align-017
ment model to focus on potential overcorrec-018
tion. Moreover, to enhance the model’s ability019
to identify nuances, we further explore the re-020
verse alignment of the source sentence and the021
initial correction. Finally, we transfer the align-022
ment knowledge from two alignment models023
to the correction model, instructing it on how024
to avoid overcorrection. Experimental results025
on three CGEC datasets demonstrate the effec-026
tiveness of our approach in alleviating overcor-027
rection and improving overall performance.028

1 Introduction029

Chinese grammatical error correction (CGEC)030

(Zhao et al., 2018), which aims to identify and cor-031

rect potential grammatical errors in given Chinese032

sentences while adhering to the principle of min-033

imal editing, has broad applications in scenarios034

such as writing assistant and search engine (Wang035

et al., 2021). Chinese grammatical errors can be036

basically categorized into component missing, com-037

ponent redundancy, improper collocation, and im-038

proper word order (Ma et al., 2022), which are039

similar to those in English but tend to be more intri-040

cate due to the complexities of Chinese grammar.041

我校采取了一系列卓有成效的改进方法。

我校采取了一系列卓有成效的改进措施。

我们采取了一系列卓有成效的解决措施。

Source Sentence

Initial Correction

We have adopted a series of effective solution measures. 

Our school has adopted a series of effective improvement measures.

Correction Model

Our school has adopted a series of effective improvement methods.

Alignment Model

Alignment

Final Correction

Figure 1: An illustration of addressing overcorrection
through alignment of the source sentence and the initial
correction. Overcorrected characters and their error-free
counterparts are highlighted in red and orange, respec-
tively. Correct edits are highlighted in blue.

Existing CGEC methods can be mainly divided 042

into three categories: sequence-to-edit (Seq2Edit), 043

sequence-to-sequence (Seq2Seq), and decoder- 044

only large language models (LLMs). Seq2Edit 045

methods treat CGEC as a sequence tagging task by 046

predicting token-level edit operations (Liang et al., 047

2020; Zhang et al., 2022a). While offering fast 048

inference and robust error detection, these meth- 049

ods may compromise text fluency and exhibit weak 050

migration ability due to the reliance on language- 051

specific vocabulary (Li et al., 2022). Seq2Seq meth- 052

ods tackle CGEC using neural machine translation 053

techniques (Fu et al., 2018; Zhao and Wang, 2020) 054

and excel in generating fluent sentences but of- 055

ten lack controllability. More recently, decoder- 056

only LLMs have demonstrated breakthrough per- 057

formance in various NLP tasks, showing significant 058

potential in CGEC (Fang et al., 2023; Qu and Wu, 059

2023). However, research suggests that decoder- 060

only LLMs still fall short of surpassing lightweight 061

state-of-the-art models (Zhang et al., 2023). 062

Besides, Seq2Seq models and decoder-only 063

1



P R F0.5
30

40

50

60

70

Sc
or

es
 (%

) 62.9

44.5

58.1

67.2

45.6

61.4

NaCGEC

P R F0.5
30

40

50

60

70

Sc
or

es
 (%

)

51.8

38.1

48.3

62.6

37.4

55.2

FCGEC
baseline (w/o align) predict-and-align

Figure 2: Preliminary results of predict-and-align on
NaCGEC (Ma et al., 2022) and FCGEC (Xu et al., 2022)
datasets with Baichuan2-7B model (Yang et al., 2023).

LLMs may suffer from severe overcorrection is-064

sues, resulting in the modification of error-free char-065

acters of the source sentence (Park et al., 2020), as066

illustrated in Figure 1. This can be attributed to the067

tendency of these generative models to generate tar-068

get sequences with higher probabilities and replace069

low-frequency words with more frequent ones (Li070

et al., 2022). While increasing the number of train-071

ing examples empirically alleviates this problem,072

obtaining high-quality annotated examples remains073

a challenge. Previous studies have explored miti-074

gating overcorrection in Seq2Seq models. Among075

them, a copy module can be incorporated to enable076

the direct copying of correct tokens from source077

sentences to output sentences (Zhao et al., 2019).078

Another approach involves integrating error detec-079

tion results from a Seq2Edit model into a Seq2Seq080

correction model (Li et al., 2023a). However, these081

methods prove challenging to migrate to decoder-082

only LLMs due to differences in their architectures.083

Given the emerging breakthroughs of LLMs in var-084

ious NLP tasks, there is an urgent need to explore085

their potential in CGEC, where the overcorrection086

problem presents a significant obstacle.087

To fill this gap, we first explore a two-stage088

predict-and-align method for mitigating overcor-089

rection caused by Seq2Seq models and decoder-090

only LLMs. As illustrated in Figure 1, we first091

train a correction model to generate an initial cor-092

rection of the source sentence. Then, we combine093

the source sentence with the initial correction and094

feed it through an alignment model for another095

round of correction. The alignment model is tasked096

not only with copying correct edits in the initial cor-097

rection but also retaining error-free characters in098

the source sentence, thereby reducing overcorrec-099

tions. Preliminary results in Figure 2 show that the100

two-stage method substantially enhances the over-101

all performance of the original correction model.1102

1More preliminary results are provided in Section 4.3.

The above predict-and-align method requires 103

deploying two models during inference, which 104

is inefficient in terms of both time and storage. 105

Therefore, we propose to enhance the correction 106

model with knowledge acquired from the align- 107

ment model, resulting in an alignment-enhanced 108

corrector (Alirector) better at alleviating the over- 109

correction problem. Moreover, previous studies 110

(Lu et al., 2022; Qin et al., 2023) have shown that 111

language models are sensitive to the ordering of 112

the input sequence. Hence, we train another align- 113

ment model to explore the reverse combination of 114

the source sentence and the initial correction. For 115

knowledge transfer, we apply KL-divergence to 116

constrain the output distributions of the correction 117

model and the two alignment models, guiding the 118

correction model on how to avoid overcorrection. 119

Note that the proposed alignment method applies 120

to both Seq2Seq models and decoder-only LLMs. 121

Extensive experiments were conducted on three 122

CGEC datasets, and the experimental results 123

demonstrate that our method achieves substantial 124

improvements over baselines and effectively alle- 125

viates the overcorrection problem. Among vari- 126

ous findings, our in-depth analysis reveals that the 127

alignment information between the source sentence 128

and the initial correction is crucial for mitigating 129

overcorrection and improving the robustness of the 130

correction model. Besides, we confirm that cur- 131

rent decoder-only LLMs underperform Seq2Seq 132

models, which warrants further investigation. 133

2 Related Work 134

2.1 Traditional CGEC Methods 135

Traditional CGEC methods typically follow the ap- 136

proaches used in English GEC, which are broadly 137

categorized into Seq2Edit and Seq2Seq methods. 138

Seq2Edit methods (Awasthi et al., 2019; 139

Omelianchuk et al., 2020; Liang et al., 2020; Zhang 140

et al., 2022a) treat GEC as a sequence editing task, 141

which predicts token-level edit operations for the 142

input sentence. PIE (Awasthi et al., 2019) uti- 143

lizes BERT to iteratively predict edit labels. GEC- 144

ToR (Omelianchuk et al., 2020) further extends the 145

tag vocabulary with fine-grained edit tags. Liang 146

et al. (2020) and Zhang et al. (2022a) explore 147

adapting GECToR for CGEC tasks. The strengths 148

of Seq2Edit methods lie in its high inference ef- 149

ficiency and strong error detection performance. 150

However, they rely heavily on manually designed 151

vocabularies and language-specific lexical rules, 152
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limiting their adaptability (Li et al., 2022).153

On the other hand, Seq2Seq methods (Zhao154

et al., 2019; Zhao and Wang, 2020; Kaneko et al.,155

2020; Zhang et al., 2022b) employ encoder-decoder156

models inspired by neural machine translation to157

model the GEC task, where the encoder encodes158

the source sentence and the decoder sequentially159

generates the target tokens. While Kaneko et al.160

(2020) further adapts pre-trained knowledge into161

the encoder-decoder model, Zhang et al. (2022b)162

explore incorporating syntax information. Besides,163

efforts have been made to combine Seq2Edit and164

Seq2Seq to enhance the inference efficiency (Chen165

et al., 2020) or improve the correction results (Yuan166

et al., 2021; Li et al., 2022, 2023a).167

2.2 LLMs for GEC168

With the success of LLMs across various NLP169

tasks, researchers have explored their potential for170

CGEC. Recent studies (Fang et al., 2023; Li et al.,171

2023b; Qu and Wu, 2023; Fan et al., 2023) as-172

sess the performance of diverse LLMs, including173

both closed-source and open-source models, on the174

CGEC task. Fang et al. (2023) evaluate ChatGPT’s175

performance on CGEC through in-context learning,176

highlighting its ability to generate fluent sentences177

but also its susceptibility to overcorrection. Fan178

et al. (2023) explore open-source LLMs for CGEC179

via instruction tuning (Ouyang et al., 2022). Zhang180

et al. (2023) suggest that fine-tuned LLMs still181

struggle to match the performance of existing state-182

of-the-art lightweight GEC models. Besides, some183

research endeavors (Kaneko and Okazaki, 2023;184

Song et al., 2023) aim at generating explanations185

for corrections utilizing LLMs’ powerful capabil-186

ity. While these studies often overlook the overcor-187

rection issue, our work presents a novel approach188

capable of mitigating overcorrection in LLMs.189

2.3 Overcorrection in GEC190

Seq2Seq models tend to generate sentences with191

higher probabilities and replace infrequent words192

with more frequent ones, leading to overcorrection.193

Previous works (Zhao et al., 2019; Li et al., 2022,194

2023a) expore various approaches to relieve this195

problem. Zhao et al. (2019) employ a copy mod-196

ule to directly copy the correct tokens from the197

source sentence to the output sentence. Li et al.198

(2022) propose a sequence-to-action module based199

on the seq2seq model to generate a token-level ac-200

tion sequence. Li et al. (2023a) propose a two-stage201

approach by integrating detection results from a202

Seq2Edit model into a Seq2Seq correction model. 203

While these methods are challenging when applied 204

to decoder-only LLMs due to architectural differ- 205

ences, the approach proposed in this work applies 206

to both Seq2Seq models and decoder-only LLMs. 207

3 Methodology 208

As depicted in Figure 3, our alignment-enhanced 209

corrector (Alirector) for Chinese grammatical er- 210

ror correction (CGEC) comprises three main steps 211

to build. First, we train a correction model to gener- 212

ate an initial correction of the source sentence. Sec- 213

ond, we perform bidirectional alignment by com- 214

bining the source sentence with the initial correc- 215

tion forward and backward respectively, and pass- 216

ing each combination through an alignment model 217

for another round of correction. Third, we employ 218

knowledge distillation to transfer the knowledge 219

from the two alignment models to the correction 220

model. In the following sections, we first formulate 221

the CGEC task and introduce the correction model 222

in Section 3.1. Then, we delve into the details of 223

the alignment models in Section 3.2 and specify 224

the knowledge distillation in Section 3.3. 225

3.1 Correction Model 226

Given a source sentence X = {x1, x2, .., xm} that 227

may contain grammatical errors, the goal of CGEC 228

is to identify and correct the potential grammati- 229

cal errors within X and output the corresponding 230

gold sentence Y = {y1, y2, .., yn}. The models 231

we investigate to implement the correction model 232

include Transformer-based (Vaswani et al., 2017) 233

Seq2Seq models and decoder-only LLMs. 234

Seq2Seq The training objective of the Seq2Seq 235

correction model is to minimize the negative log- 236

likelihood (NLL) loss (Williams and Zipser, 1989): 237

Lgec =
n∑

t=1

−logP (yt|y<t, X; θ1), (1) 238

where y<t represents the tokens preceding time 239

step t, and θ1 denotes the trainable parameters. 240

Decoder-only LLMs The input to the decoder- 241

only correction model is formulated by converting 242

X and Y into a natural language sequence Z with 243

an instruction template Tgec(X,Y ):2 244

Z = Tgec(X,Y )

= {
instruction︷ ︸︸ ︷
z1, ..., zi−1,

X︷ ︸︸ ︷
zi, ..., zj ,

Y︷ ︸︸ ︷
zj+1, ..., zj+n}.

(2) 245

2Instruction templates are provided in Appendix A.
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我校采取了一系列卓有成效的改进措施。

Target Sentence Y

Our school has adopted a series of effective 

improvement measures.

我们采取了一系列卓有成效的解决措施。

Initial Correction ෠𝑌

We have adopted a series of effective 

solution measures.

我校采取了一系列卓有成效的改进方法。

Source Sentence X

Our school has adopted a series of effective 

improvement methods.

Initial

Correction Model

+

Forward Alignment Model Reverse Alignment Model

X + [SEP] + ෠𝑌 ෠𝑌 + [SEP] + X

Step 1: Generate Initial Correction

Step 2: Bidirectional Alignment

Enhanced Correction Model

Step 3: Knowledge Distillation

X ෠𝑌

Figure 3: An overview of our proposed framework, which comprises three main steps. First, we train a correction
model to generate an initial correction of the source sentence. Second, we perform bidirectional alignment by
combining the source sentence with the initial correction forward and backward respectively, and passing each
combination through an alignment model for another round of correction. Third, we employ knowledge distillation
to transfer the knowledge from the two alignment models to the correction model.

Then, we compute the NLL loss on the target to-246

kens as the training objective:247

Lgec =

j+n∑
t=j+1

−logP (zt|z<t; θ2). (3)248

3.2 Alignment Model249

The purpose of our alignment model is to mitigate250

potential overcorrections in the initial correction251

generated by the aforementioned correction model.252

This is achieved by using a separate dataset and253

training the alignment model to predict the target254

sentence based on alignment information between255

the source sentence and the initial correction. Simi-256

lar to the correction model, both Seq2Seq models257

and decoder-only LLMs can be employed to build258

the alignment model. However, to reduce the diffi-259

culty of transferring knowledge from the alignment260

model to the correction model, we require the two261

stages to share the same architecture.262

Input Construction We use Ŷ to represent the263

initial output generated by the correction model264

for the source sentence X . Then, we construct265

the input to the alignment model based on X and266

Ŷ as follows. For Seq2Seq models, we simply267

concatenate X and Ŷ separated by “[SEP]” as the268

input, denoted as Xalign = X + [SEP] + Ŷ . As269

for decoder-only LLMs, we follow Eq. (2) and 270

construct the input by transforming X , Ŷ and Y 271

into a natural language sequence W using another 272

instruction template Talign: 273

W = Talign(X, Ŷ , Y )

= {...,
X︷ ︸︸ ︷

wi, ...,

Ŷ︷ ︸︸ ︷
wj , ..., wk,

Y︷ ︸︸ ︷
wk+1, ..., wk+n}.

(4) 274

Training Objective The alignment model aims 275

to predict Y based on the alignment of X and Ŷ . 276

For Seq2Seq models, the training objective is: 277

Lalign =
n∑

t=1

−logP (yt|y<t, Xalign; θ3), (5) 278

where θ3 denotes the trainable parameters in the 279

alignment model. As for decoder-only LLMs, the 280

NLL loss is computed on the target tokens in W : 281

Lalign =

k+n∑
t=k+1

−logP (wt|w<t; θ4). (6) 282

Bidirectional Alignment Previous studies (Lu 283

et al., 2022; Qin et al., 2023) have shown that lan- 284

guage models are sensitive to input ordering. Mo- 285

tivated by this, we further introduce bidirectional 286

alignment by incorporating a reverse alignment 287

model, which takes the combined source and initial 288
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correction in reverse order as input. For example,289

the input to the Seq2Seq-based reverse alignment290

model is Ŷ + [SEP] +X . Intuitively, the reverse291

alignment model may capture different information292

compared to the forward alignment model between293

the source sentence and the initial correction. Our294

empirical analysis in Section 5.2 also demonstrates295

that combining these two alignment models helps296

alleviate the impact of overcorrection and improves297

the overall robustness of the correction model.298

3.3 Bidirectional Alignment Distillation299

The alignment models described above can be em-300

ployed alongside the correction model in a two-301

stage predict-and-align paradigm to mitigate over-302

correction. However, this approach presents two303

potential issues. Firstly, deploying both the cor-304

rection model and the two alignment models dur-305

ing inference increases both time and storage re-306

quirements. Secondly, the correction model and307

the alignment models are trained separately, over-308

looking the possibility of mutual enhancement. To309

address these issues, we propose enhancing the cor-310

rection model with knowledge distilled from the311

alignment models, guiding the correction model312

to avoid overcorrection, as well as eliminating the313

need for the alignment models during inference.314

Knowledge Distillation We consider the two315

alignment models as the teachers and the correc-316

tion model as the student for knowledge distillation317

(Hinton et al., 2015). During this process, only318

the parameters of the correction model are updated,319

while the parameters of the alignment models re-320

main fixed. For training, we construct inputs for321

both the correction model and the alignment mod-322

els following the methods introduced in Section 3.1323

and Section 3.2, and obtain the final output logits324

over the target tokens. Let zc, zf , and zr denote325

the output logits from the correction model, the326

forward alignment model, and the reverse align-327

ment model, respectively. We use KL-divergence328

as the distillation objective. The forward and re-329

verse alignment distillation losses are defined as:330

Lf
kd = DKL(σ(

zf

τ
)||σ(z

c

τ
))

Lr
kd = DKL(σ(

zr

τ
)||σ(z

c

τ
)),

(7)331

where τ is the temperature, σ is the softmax func-332

tion, and DKL(·) denotes the KL-divergence.333

The overall distillation loss is the weighted sum334

of these two distillation losses: 335

Lkd = αLf
kd + (1− α)Lr

kd, (8) 336

where α ∈ (0, 1) is a hyperparameter. 337

Overall Objective To train the correction model, 338

we formulate the overall objective by combining 339

the GEC loss with the alignment distillation loss: 340

L = Lgec + βLkd, (9) 341

where β is a hyperparameter that controls the im- 342

portance of the distillation loss. More training de- 343

tails are provided in Appendix C.1. 344

4 Experiments 345

4.1 Datasets and Metrics 346

Based on the data sources, the datasets uti- 347

lized in our experiments fall into two categories: 348

i) datasets sourced from Chinese-as-a-Second- 349

Language (CSL) learner texts, and ii) datasets 350

sourced from Chinese native speaker texts. For 351

CSL learner data, following previous works (Zhang 352

et al., 2022b; Li et al., 2023a), we employ a com- 353

bination of the Chinese Lang8 dataset (Zhao et al., 354

2018) and the HSK dataset (Zhang, 2009) as our 355

training set, MuCGEC-Dev (Zhang et al., 2022a) 356

as the development set, and NLPCC18-Test (Zhao 357

et al., 2018) as the test set. For native speaker data, 358

we first randomly partition 1000 samples from the 359

FCGEC (Xu et al., 2022) training set as the develop- 360

ment set, with the remainder used for training. For 361

testing, we utilize FCGEC-Dev and NaCGEC-Test 362

(Ma et al., 2022) as our test sets3. Further details 363

regarding the datasets can be found in Appendix B. 364

For evaluation metrics, we follow previous work 365

and report word-level precision (P)/recall (R)/F- 366

measure (F0.5) performance on NLPCC18-Test us- 367

ing the official MaxMatch scorer (Dahlmeier and 368

Ng, 2012) and PKUNLP word segmentation tool 369

provided by Zhao et al. (2018). For FCGEC-Dev 370

and NaCGEC-Test, we report the character-level 371

P/R/F0.5 scores using the ChERRANT scorer4. 372

4.2 Base Models and Baselines 373

As previously mentioned, the proposed method ap- 374

plies to both Seq2Seq models and decoder-only 375

LLMs. For Seq2Seq, we choose Transformer-large 376

and Chinese BART-large (Shao et al., 2021) as the 377

3We use FCGEC-Dev here since we can not access the
gold labels of FCGEC-Test.

4https://github.com/HillZhang1999/MuCGEC/tree/
main/scorers/ChERRANT
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Figure 4: Preliminary results of predict-and-align on NaCGEC and FCGEC datasets with Transformer and BART.

base models. For decoder-only LLMs, we choose378

Baichuan2-7B (Yang et al., 2023), a powerful Chi-379

nese LLM, and Chinese-LLaMA2-7B5, which is380

obtained by incremental training of LLaMA2 (Tou-381

vron et al., 2023b) with Chinese corpus.382

For comparison, we first employ the follow-383

ing Seq2Seq models as baselines. Vanilla Fine-384

tuning (FT) means directly fine-tuning the base385

models on the entire training set. TemplateGEC386

(Li et al., 2023a) constructs a detection template to387

integrate the Seq2Edit and Seq2Seq methods. Syn-388

GEC (Zhang et al., 2022b) incorporates syntax in-389

formation into Seq2Seq models. Copy (Zhao et al.,390

2019) employs a copy mechanism for Seq2Seq391

models to directly copy unchanged words from the392

source sentence to the target sentence. Besides, we393

also employ decoder-only baselines. Except for394

vanilla fine-tuning, we implement the copy method395

(Zhao et al., 2019) in decoder-only LLMs for com-396

parison. The implementation details and hyperpa-397

rameter settings are presented in Appendix C.2.398

4.3 Preliminary Results399

As mentioned earlier, we conducted preliminary400

experiments of the predict-and-align method on401

NaCGEC and FCGEC datasets. In addition to the402

results shown in Figure 2 using Baichuan2-7B, we403

also present the results with two Seq2Seq models,404

namely Transformer-large and BART-large, in Fig-405

ure 4. From these results, we observe that after406

alignment, both Baichuan2-7B and Transformer407

exhibit a substantial performance improvement,408

especially in precision, revealing the potential of409

alignment in enhancing overall performance and410

mitigating overcorrection. While BART’s perfor-411

mance improvement may not be as remarkable as412

Baichuan2, the alignment approach still demon-413

strates favorable enhancement. More analysis and414

discussion regarding the potential of the alignment415

5https://huggingface.co/Linly-AI/
Chinese-LLaMA-2-7B-hf

method are presented in Appendix D. 416

4.4 Main Results 417

The main results are shown in Table 1.6 We note 418

that our Alirector consistently outperforms all base- 419

lines in F0.5 across all the datasets, demonstrat- 420

ing the effectiveness of this method. In contrast, 421

the Copy method even underperforms vanilla fine- 422

tuning in some cases. Besides, Alirector achieves 423

considerable improvements in precision across all 424

the datasets, highlighting the efficacy of this ap- 425

proach in mitigating overcorrection. Further anal- 426

ysis regarding the effect of Alirector on reducing 427

overcorrection is presented in Section 5.1. 428

Moreover, we make several interesting obser- 429

vations. First, despite the notable enhancement 430

achieved by Alirector, the decoder-only LLMs 431

of Baichuan2 and Chinese-LLaMA2 still strug- 432

gle to outperform BART. This can be attributed 433

to the fact that BART’s pre-training involves a 434

series of denoising tasks utilizing strategies like 435

token masking, token deletion and text infilling, 436

which are naturally suitable for the CGEC/GEC 437

task (Lewis et al., 2020; Wang et al., 2023). Sec- 438

ond, different models exhibit varying degrees of im- 439

provement by employing Alirector, with decoder- 440

only LLMs generally experiencing more notable 441

improvements than Seq2Seq models. The perfor- 442

mance of Chinese-LLaMA2 is much worse than 443

Baichuan2, which may be attributed to their dif- 444

ferent capabilities achieved through pre-training. 445

Third, Alirector yields more pronounced improve- 446

ments on the FCGEC and NaCGEC datasets than 447

on the NLPCC18 dataset. We attribute this dis- 448

crepancy to the differing error distributions across 449

datasets. The errors in NLPCC18, derived from 450

Chinese-as-a-Second-Language learners, are less 451

common, while the errors in FCGEC and NaCGEC, 452

stemming from native speakers, exhibit more preva- 453

lent patterns that are easier for the model to learn. 454

6More experimental results can be found in Appedix E.
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Model Method NLPCC18-Test NaCGEC-Test FCGEC-Dev
P R F0.5 P R F0.5 P R F0.5

Transformer

Vanilla FT 42.37 23.49 36.50 59.67 28.69 49.07 47.83 22.99 39.33
TemplateGEC 42.00 22.20 35.60 - - - - - -

SynGEC 41.44 28.28 37.91 51.45 39.69 48.57 38.00 32.18 36.67
Copy 43.16 23.58 37.01 64.61 26.42 50.12 48.95 19.77 37.79

Alirector 45.98 22.87 38.25 65.44 31.27 53.70 57.86 24.15 45.23

BART

Vanilla FT 50.63 31.83 45.28 65.85 40.79 58.64 56.26 40.71 52.27
TemplateGEC 54.50 27.40 45.50 - - - - - -

SynGEC 49.96 33.04 45.32 63.76 47.41 59.65 53.11 39.45 49.67
Copy 51.25 32.55 45.97 66.67 41.88 59.61 58.55 38.46 53.01

Alirector 51.76 33.49 46.67 68.11 43.87 61.33 58.78 39.15 53.42

Baichuan2-7B
Vanilla FT 51.69 27.92 44.17 62.93 44.50 58.12 51.77 38.10 48.31

Copy 51.56 28.53 44.39 62.27 44.20 57.56 53.47 35.51 48.56
Alirector 52.27 27.14 45.01 66.04 45.91 60.71 58.55 39.74 53.49

Chinese-LLaMA2-7B
Vanilla FT 45.85 27.44 40.43 61.93 30.31 51.24 50.15 26.19 42.39

Copy 46.53 27.93 41.06 62.15 30.54 51.49 48.04 28.35 42.18
Alirector 47.43 26.96 41.18 62.60 32.90 53.03 52.64 28.47 45.00

Table 1: Overall results on NLPCC18-Test, NaCGEC-Test, and FCGEC-Dev datasets. The results of TemplateGEC
(Li et al., 2023a) and SynGEC (Zhang et al., 2022b) on NLPCC18 are cited from the original papers, and other
results including Copy (Zhao et al., 2019) are implemented by us. Best results are highlighted in bold.
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Figure 5: Results of precision for different error types,
including missing (M), redundant (R), substitution (S),
and word-order (W), on the FCGEC-Dev test set.

5 Analysis455

5.1 Overcorrection Mitigation456

To further verify the effectiveness of Alirector in457

mitigating overcorrection, we use Baichuan2-7B458

as the backbone and present fine-grained precision459

results across the four categories of CGEC errors,460

including missing (M), redundant (R), substitution461

(S), and word-order (W), in Figure 5. Moreover,462

we present in Table 2 the number of overcorrec-463

tions and undercorrections that Alirector reduces464

on the four error types compared to Baichuan2-465

7B. The results depicted in Figure 5 and summa-466

rized in Table 2 demonstrate that Alirector signifi-467

cantly enhances precision for all error types while468

notably decreasing the number of overcorrections469

without deteriorating undercorrection, particularly470

for the redundant and substitution types. These471

findings support the effectiveness of Alirector in472

mitigating overcorrection induced by generative473

Type #Overcorrections / #Undercorrections
Vanilla FT Alirector

M 129 / 259 113 (-12.4%) / 245
R 203 / 181 152 (-25.1%) / 183
S 91 / 226 67 (-26.4%) / 215
W 39 / 140 34 (-12.8%) / 141
All 462 / 806 366 (-20.8%) / 784

Table 2: The number of overcorrections and undercor-
rections reduced by BiAlign over direct fine-tuning for
different error types on FCGEC-Dev.

language models and in enhancing the robustness 474

of our method across different error types. For a 475

more intuitive illustration of Alirector’s effective- 476

ness, we provide a case study in Appendix F. 477

5.2 Ablation Study 478

To investigate the contribution of key components 479

of our approach, we conduct in-depth ablation 480

experiments on NaCGEC-Test and FCGEC-Dev 481

datasets using BART and Baichuan2-7B. 482

Distillation from Alignment Models We first 483

ablate different alignment distillation components 484

in turn to analyze their contribution. As shown in 485

Table 3, while removing either forward distillation 486

Lf
kd or reverse distillation Lr

kd causes noticeable 487

performance degradation, there is a significant per- 488

formance drop after removing the overall distilla- 489

tion loss Lkd, particularly in recall and F0.5. This 490

indicates that bidirectional alignment contributes 491

more to performance improvement through knowl- 492
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Method NaCGEC-Test FCGEC-Dev
P R F0.5 P R F0.5

BART
Alirector 68.11 43.87 61.33 58.78 39.15 53.42

w/o Lf
kd 68.30 40.44 60.03 59.70 36.46 52.95

w/o Lr
kd 68.19 43.41 61.21 59.56 37.41 53.25

w/o Lkd 67.17 40.79 59.48 56.26 40.71 52.27
disc. source 65.44 41.87 58.82 57.62 38.69 52.48
disc. predict 67.93 39.53 59.40 59.22 35.08 52.05

Baichuan2-7B
Alirector 66.04 45.91 60.71 58.55 39.74 53.49

w/o Lf
kd 65.92 43.72 59.84 57.88 38.57 52.62

w/o Lr
kd 66.91 40.99 59.40 55.99 36.66 50.65

w/o Lkd 62.93 44.50 58.12 51.77 38.10 48.31
disc. source 59.98 49.46 57.53 51.46 39.22 48.44
disc. predict 66.05 41.78 59.18 53.47 35.51 48.56

Table 3: Results of ablation study on NaCGEC-Test and
FCGEC-Dev, where “disc.” is short for “discard”.

edge distillation compared to unidirectional align-493

ment. Moreover, the notable drops in precision494

when removing any of the forward or reverse distil-495

lation loss suggest that the alignment distillation is496

essential for our method to mitigate overcorrection.497

Input of Alignment Models To further investi-498

gate the effect of the alignment between the source499

sentence and the initial correction, we conduct addi-500

tional experiments by ablating the source sentence501

or initial correction from the input of the align-502

ment models during training Alirector. To keep503

the format of the input, we ablate the source sen-504

tence by replacing it with the initial correction, e.g.,505

Ŷ + [SEP] + Ŷ for Seq2Seq. Similarly, we con-506

struct the input as X + [SEP] +X when ablating507

the initial correction. As shown in Table 3, we508

observe that ablating the source sentence causes509

an obvious decline in precision while ablating the510

initial correction leads to a notable drop in recall.511

These findings highlight the role of alignment in512

reducing both overcorrection and undercorrection.513

5.3 Impact of α and β514

The training objective of Alirector involves α to515

control the weight of forward and reverse alignment516

losses, as well as β to balance between the original517

GEC loss and the distillation loss. To investigate518

their impact on model performance, we use BART519

as the backbone and show the results of different520

values of α and β on the FCGEC development set521

in Figure 6, where we change one while fixing the522

other. From the first subfigure, we observe that as523

α increases, the P/R/F0.5 scores consistently rise524

and achieve the best results around 0.9. The second525

subfigure shows that as β increases, the precision526
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Figure 6: Results of our method on FCGEC develop-
ment set with different values of α and β that control
the weight of forward and reverse alignment losses.

rises accordingly while recall gradually falls. This 527

trend indicates that β plays a role in balancing 528

between precision and recall. Similar trends can be 529

observed when other models are employed, and the 530

optimal values of α and β are provided in Table 6. 531

6 Conclusion 532

In this paper, we first investigate a predict-and-align 533

method that effectively leverages alignment infor- 534

mation between the source sentence and the initial 535

correction to alleviate the overcorrection issue in 536

CGEC. Then, we propose transferring knowledge 537

from the alignment process to enhance the correc- 538

tion model, resulting in an improved model termed 539

Alirector. Experimental results on three CGEC 540

datasets showcase the efficacy of our approach in 541

mitigating overcorrection for both Seq2Seq models 542

and decoder-only LLMs. Detailed analysis fur- 543

ther demonstrates the effectiveness of this method 544

across various error types, as well as the pivotal 545

role of alignment in enhancing performance. 546

Broadly speaking, the overcorrection challenge 547

falls within the realm of uncontrollability of gen- 548

erative language models. Besides straightforward 549

efforts to acquire more high-quality training data 550

or employ specific pre-training strategies such as 551

BART, this study introduces an alignment-based 552

method that has demonstrated effectiveness in ad- 553

dressing this issue. Despite the improvement of 554

our approach for decoder-only LLMs, their per- 555

formance in CGEC still lags behind that of the 556

strongest Seq2Seq models, even though they are 557

smaller in size, which contradicts their outstand- 558

ing performance in other NLP tasks. In future 559

research, we will further exploring enhancing the 560

performance of decoder-only LLMs for CGEC. 561
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Limitations562

The potential limitations of our work are threefold.563

First, we have exclusively validated our approach564

on Chinese GEC datasets. However, our approach565

is language-independent, and it can be investigated566

in other languages. Second, our approach incurs ad-567

ditional training costs, as training alignment mod-568

els and performing knowledge distillation are re-569

quired. Third, our experiments are confined to570

7B-scale LLMs using the QLoRA efficient fine-571

tuning technique. Due to computational resource572

constraints, we have not explored the impact of573

larger-scale LLMs and full-parameter fine-tuning,574

which may lead to improved performance.575

Ethics Statement576

This work aims to propose a technical method to577

mitigate overcorrection caused by Seq2Seq models578

and decoder-only LLMs in Chinese grammatical579

error correction, which will not cause ethical is-580

sues. All datasets and models used in this work are581

publicly available, and we adhere strictly to their582

usage policies. We are committed to conducting583

our research in an ethical and responsible manner.584
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A Instruction Templates865

In our experiments, we explored various instruction866

templates and observed that the choice of instruc-867

tion templates has a limited impact on the exper-868

imental results, particularly when the amount of869

training data is sufficient. Table 4 presents the in-870

struction templates Tgec and Talign used in our exper-871

iments for tuning LLMs. The instruction template872

comprises an input field that provides the source873

text and a response field that denotes the target text.874

LLM Instruction for correction model Tgec

Baichuan2 纠正输入句子中的语法错误，并输出
正确的句子。
(Trans.: Correct grammatical errors
in the input sentence and output the
correct sentence.)
Input: {Source}
Response: {Target/Output}

Chinese-LLaMA2 ### Instruction: 纠正输入句子中的语
法错误，并输出正确的句子。
(Trans.: Correct grammatical errors
in the input sentence and output the
correct sentence.)
### Input: {Source}
### Response: {Target/Output}

LLM Instruction for alignment model Talign

Baichuan2 对齐输入中用“\t”分隔的两个句子，并输
出没有语法错误的句子。
(Trans.: Align the two sentences separated
by “\t” in the input and output the sentence
without grammatical errors.)
Input: {Source} \t {Initial Correction}
Response: {Target/Output}

Chinese-LLaMA2 ### Instruction: 对齐输入中用“\t”分隔的两
个句子，并输出没有语法错误的句子。
(Trans.: Align the two sentences separated
by “\t” in the input and output the sentence
without grammatical errors.)
### Input: {Source} \t {Initial Correction}
### Response: {Target/Output}

Table 4: Instruction templates for the correction model
and alignment models, where “Trans.” denotes the trans-
lation of the instruction.

875

B Datasets876

The statistics of the datasets used in our exper-877

iments are shown in Table 5. For CSL learner878

data, we adopted the same training set as Zhang879

et al. (2022a), which involves discarding all sam-880

ples without grammatical errors in the Lang8 and881

HSK datasets and replicating the HSK dataset five882

times and combining with the Lang8 dataset, re-883

sulting in a total of 1,568,885 sentence pairs.884

Train Source #Sent #Error
Lang8 Learner 1,220,906 1,092,285 (89.5%)
HSK Learner 15,6870 95,320 (60.8%)
FCGEC Native 35,341 19,183 (54.3%)
Dev Source #Sent #Error
MuCGEC-Dev Learner 2,467 2,409 (97.6%)
FCGEC Native 1,000 563 (56.3%)
Test Source #Sent #Error
NLPCC18-Test Learner 2,000 1,983 (99.2%)
FCGEC-Dev Native 2,000 1,101 (55.1%)
NaCGEC-Test Native 5,869 5,612 (95.6%)

Table 5: Statistics of the used CGEC datasets. #Sent
denotes the number of the sentences and #Error denotes
the number (the percentage) of the erroneous sentences.

C Experimental Details 885

C.1 Training Details 886

Training on Native Speaker Datasets Since 887

FCGEC contains only 35,341 training samples, 888

which is insufficient for model training, we per- 889

formed continuous training on the FCGEC training 890

set with the model trained on the CSL learner data. 891

Training of Alignment Models As described in 892

Section 3.2, before training the alignment models, 893

we need to obtain initial corrections using an initial 894

correction model. For this purpose, we divided the 895

training data into two parts, one for training the 896

initial correction model and the other for training 897

the alignment models. In the case of CSL learner 898

data, 80%7 of the training samples are randomly 899

selected to train the initial correction model. Then, 900

this correction model is used to generate initial cor- 901

rections for the remaining training samples. These 902

initial corrections along with their corresponding 903

source and target sentences are used to train the 904

alignment models. For the native speaker datasets, 905

we used the correction model trained on the CSL 906

learner data to generate initial corrections on the 907

FCGEC training set. 908

Training of Alirector As outlined in Section 3.3, 909

we perform knowledge distillation using the correc- 910

tion model as the student and the alignment models 911

as the teachers. For this training, we used the same 912

training set as that used for training the teachers. 913

The student was initialized with the weights of the 914

well-trained initial correction model. 915

7We experimented with different ratios, including 4:6, 5:5,
and 8:2, and found that 8:2 works the best.
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Hyperparameter NLPCC18 FCGEC/NaCGEC
Seq2Seq

Backbone Transformer-large BART-large Transformer-large BART-large
Batch size 1024 1024 256 256
Max Epochs 20 10 20 10
Max Length 128 (Source); 128 (Target)
Learning Rate 3× 10−4 3× 10−5 3× 10−5 3× 10−5

Warmup Steps 3000 1000 100 100
Dropout 0.3 0.1 0.3 0.1
Dropout-Src 0.2 0.2 0.2 0.2
α 0.7 0.5 0.5 0.9
β 1.0 1.5 0.5 0.5
τ 1 1 1 1
Beam Size 10 10 10 10

LLMs
Backbone Baichuan2-7B Chinese-LLaMA2-7B Baichuan2-7B Chinese-LLaMA2-7B
Batch size 1024 1024 256 256
Max Epochs 3 5 10 10
Max Length 192 (GEC); 256 (Alignment)
Learning Rate 3× 10−5 3× 10−4 3× 10−5 3× 10−5

Warmup Steps 1000 1000 100 100
LoRA target modules = all linears; lora rank = 8; lora alpha = 16, lora dropout = 0.05
α 0.3 0.5 0.3 0.5
β 1.5 2.0 0.5 1.0
τ 1 1 1 1
Beam Size 10 10 10 10

Table 6: Hyperparameter settings in our experiments.

C.2 Implementation Details916

For Seq2Seq model training, following Zhang917

et al. (2022b), we utilized the Dropout-Src tech-918

nique (Junczys-Dowmunt et al., 2018) that ap-919

plies dropout on input embeddings for alleviat-920

ing over-fitting. As for LLMs tuning, consider-921

ing the time and computational resources, we ap-922

plied QLoRA (Dettmers et al., 2023) for efficient923

fine-tuning instead of full-parameter fine-tuning.924

Our code implementation mainly follows the Al-925

paca LoRA project8, and is based on the Hugging-926

face Transformers (Wolf et al., 2020) and bitsand-927

bytes9 (Dettmers et al., 2022) toolkit in Pytorch. We928

searched for the optimal value of α in {0.1, 0.3,929

0.5, 0.7, 0.9}, β in {0.5, 1.0, 1.5, 2.0} and the tem-930

perature τ in {1, 2, 3, 4, 5} on the development931

set. We used the Adam optimizer (Kingma and932

Ba, 2014) and polynomial learning rate decay. The933

hyperparameter settings are presented in Table 6.934

All experiments are carried out on 8 GeForce RTX935

4090 24GB GPUs.936

8https://github.com/tloen/alpaca-lora
9https://github.com/TimDettmers/bitsandbytes

Method NaCGEC-Test FCGEC-Dev
P R F0.5 P R F0.5

Vanilla FT 62.93 44.50 58.12 56.26 40.71 52.27
predict-and-align 67.21 45.61 61.39 62.60 37.43 55.18

repl. src+src 66.05 41.78 59.18 61.50 32.25 52.06
repl. pred+pred 59.98 49.56 57.53 50.59 42.48 48.73

Alirector 66.04 45.91 60.71 58.55 39.74 53.49

Table 7: Results of the potential of alignment on
FCGEC-Dev, where "repl." is short for "replace".

D Potential of Alignment 937

The alignment models are introduced to mitigate 938

overcorrection by leveraging the alignment infor- 939

mation between the source sentence and the initial 940

correction. To demonstrate the potential of the 941

alignment models, we employed a BART-based 942

alignment model to align the predictions of a 943

Baichuan2-based correction model, and present the 944

comparison results between vanilla fine-tuning (i.e., 945

without alignment) and predict-and-align method 946

in Table 7. From the results, we note that predict- 947

and-align improves precision and F0.5 by a large 948

margin compared to vanilla fine-tuning. Notably, 949

predict-and-align even outperforms our Alirector, 950

highlighting the effectiveness and the potential of 951

the two-stage alignment method. Moreover, when 952
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only source information is retained in the input953

(namely repl. src+src), we observe high precision954

but low recall, while retaining only prediction in-955

formation (namely repl. pred+pred) exhibits the956

opposite trend. This observation once again em-957

phasizes the role of alignment in reducing both958

overcorrection and undercorrection.959

E Additional Experimental Results960

E.1 Results on FCGEC-Test961

We conducted additional experiments on FCGEC-962

Test10, the test set of FCGEC (Xu et al., 2022),963

for more comprehensive evaluation. As shown in964

Table 8, our Alirector improves the P/F0.5 score by965

5.59/1.77 over vanilla fine-tuning on BART, while966

the improvement is 4.37/2.25 on Baichuan2-7B.967

In contrast, the Copy method has only a minor968

improvement over vanilla fine-tuning.969

Model Method FCGEC-Test
P R F0.5

BART
Vanilla FT 63.85 40.16 57.11

Copy 65.31 39.45 57.74
Alirector 69.44 36.60 58.88

Baichuan2-7B
Vanilla FT 60.12 37.21 53.53

Copy 62.14 35.47 54.01
Alirector 64.49 36.22 55.78

Table 8: Results on FCGEC-Test.

E.2 Results on More LLMs970

We also implemented our Alirector method on971

other Chinese LLMs, namely Yi-6B11, a Chi-972

nese LLM that employs the same architecture as973

LLaMA (Touvron et al., 2023a), and ChatGLM3-974

6B12, a chat model based on GLM (Du et al., 2022).975

The results on NLPCC18-Test are shown in Table 9.976

We observe that our Alirector method improves977

the precision/F0.5 score over vanilla fine-tuning by978

3.62/1.75 on Yi-6B and 3.14/1.05 on ChatGLM3-979

6B, respectively. This highlights the generalizabil-980

ity of Alirector across other LLMs. However, the981

performance of Yi-6B and ChatGLM3-6B lags sig-982

nificantly behind that of Baichuan2-7B. This dis-983

crepancy can be attributed to the different capabili-984

ties achieved through pre-training.985

10FCGEC-Test provides online evaluation at https://
codalab.lisn.upsaclay.fr/competitions/8020.

11https://huggingface.co/01-ai/Yi-6B
12https://huggingface.co/THUDM/

chatglm3-6b-base

Model Method NLPCC18-Test
P R F0.5

Yi-6B
Vanilla FT 50.61 25.22 42.13

Copy 50.11 25.01 41.73
Alirector 54.23 24.89 43.88

ChatGLM3-6B
Vanilla FT 48.61 26.46 41.64

Copy 49.64 25.23 41.59
Alirector 51.75 25.11 42.69

Table 9: Results on Yi-6B and ChatGLM3-6B.

F Case Study 986

We provide four examples in Table 10 to illustrate 987

the effectiveness of our Alirector in mitigating over- 988

correction. We can note that the vanilla fine-tuned 989

model often tends to overcorrect by modifying the 990

error-free characters. In contrast, Alirector is able 991

to correct all the errors in the sentence while pre- 992

serving the error-free characters. These cases in- 993

tuitively show that Alirector learns to identify and 994

correct the potential errors in the sentence while ac- 995

tively avoiding overcorrection as much as possible. 996

997
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Source 在过去一年，我校采取了一系列卓有成效的改进方法。
In the past year, our school has adopted a series of effective improvement methods.

Target 在过去一年，我校采取了一系列卓有成效的改进措施。
In the past year, our school has adopted a series of effective improvement measures.

Vanilla FT 在过去一年，我们采取了一系列卓有成效的解决措施。(%)
In the past year, we have adopted a series of effective solution measures.

Alirector 在过去一年，我校采取了一系列卓有成效的改进措施。(!)
In the past year, our school has adopted a series of effective improvement measures.

Source
他已经回国，现就任于北大医学部体育教授。
He has returned to China and is now serving in a professor of physical education in the Peking University
Health Science Center.

Target
他已经回国，现就任于北大医学部，担任体育教授。
He has returned to China and is now serving as a professor of physical education in the Peking University
Health Science Center.

Vanilla FT 他已经回国，现就任于北大医学部体育教授。(%)
He has returned to China and is now serving in the Peking University Health Science Center.

Alirector
他已经回国，现就任于北大医学部，担任体育教授。(!)
He has returned to China and is now serving as a professor of physical education in the Peking University
Health Science Center.

Source 斯诺登虽然决定了自己的住处，而且出于安全考虑他不会公布住址。
Snowden has decided where he is going to live, though, and he will not release his address for security reasons.

Target 斯诺登虽然决定了自己的住处，但是出于安全考虑他不会公布住址。
Snowden has decided where he will live, but he will not release his address for security reasons.

Vanilla FT 虽然斯诺登决定了自己的住处，但是出于安全考虑他不会公布住址。(%)
Although Snowden has decided where he will live, he will not release his address for security reasons.

Alirector 斯诺登虽然决定了自己的住处，但是出于安全考虑他不会公布住址。(!)
Snowden has decided where he will live, but he will not release his address for security reasons.

Source
这样不仅有助于维护国家安全和社会稳定，而且有利于提高工作效率，有利于金融机构落实存款实名制。
This will not only help maintain national security and social stability, but also help improve work efficiency and
help financial institutions implement the real-name deposit system.

Target
这样不仅有利于提高工作效率，有利于金融机构落实存款实名制，而且有助于维护国家安全和社会稳定。
This will not only help improve work efficiency, but also help financial institutions implement the real-name
deposit system and help maintain national security and social stability.

Vanilla FT
这样不仅有利于提高工作效率，有利于金融机构落实存款实名制，而且有助于维护国家安全和社会稳定。(%)
This will not only help financial institutions implement the real-name deposit system, but also help maintain
national security and social stability.

Alirector
这样不仅有利于提高工作效率，有利于金融机构落实存款实名制，而且有助于维护国家安全和社会稳定。(!)
This will not only help improve work efficiency, but also help financial institutions implement the real-name
deposit system and help maintain national security and social stability.

Table 10: A case study of vanilla fine-tuning and our Alirector using Baichuan2-7B on FCGEC-dev and NaCGEC-
Test, where overcorrected characters and their error-free counterparts are highlighted in red and orange, respectively,
and correct edits are highlighted in blue.
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