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ABSTRACT

Learning on synthetic data and transferring the resulting properties to their real
counterparts is an important challenge for reducing costs and increasing safety in
machine learning. In this work, we focus on autoencoder architectures and aim at
learning latent space representations that are invariant to inductive biases caused
by the domain shift between simulated and real images showing the same scenario.
We train on synthetic images only, present approaches to increase generalizability
and improve the preservation of the semantics to real datasets of increasing visual
complexity. We show that pre-trained feature extractors (e.g. VGG) can be suf-
ficient for generalization on images of lower complexity, but additional improve-
ments are required for visually more complex scenes. To this end, we demonstrate
a new sampling technique, which matches semantically important parts of the im-
age, while randomizing the other parts, leads to salient feature extraction and a
neglection of unimportant parts. This helps the generalization to real data and we
further show that our approach outperforms fine-tuned classification models.

1 INTRODUCTION

The generation of synthetic data constitutes a cost efficient way for acquiring machine learning train-
ing data together with exact and free annotations. Notwithstanding this obvious advantage, bridging
the gap between synthetic and real data remains an open challenge, in particular for camera based
applications. Learning from synthetic data is an important tool in robotics: Lee et al. (2020) intro-
duced a method for training a quadrupedal robot on synthetic data by incorporating proprioceptive
feedback. Akkaya et al. (2019) trained a robot hand to solve real Rubik’s cubes by learning the
model in a simulation only. Zhang et al. (2019) made the robot feel at home by translating the real
world input data into synthetic data for their reinforcement learning agent. In view of safety critical
applications, synthetic data can provide the means to reduce costs related to acquiring samples for
edge cases, or which are difficult to obtain because they are too dangerous, e.g. accidents. We focus
on learning invariances empirically on synthetic data, which should transfer to real data, as opposed
to constructing invariances as in equivariant neural networks (Romero & Hoogendoorn, 2020).

We investigate the case of single independent images for which consistency between frames and
physical interactions cannot be taken advantage of. The latter is commonly used by reinforcement
learning methods (Lee et al., 2020). We focus on training on synthetic data only and limit our-
selves to autoencoder models which provide interesting properties due to their bottleneck design.
The low-dimensional latent space of autoencoders can be subject to metric constraints (Hoffer &
Ailon, 2015), allows for scene decomposition (Engelcke et al., 2020) and it is believed that latent
factor disentanglement can be useful for downstream tasks (van Steenkiste et al., 2019). We assess
to what extend we can generalize to real images and we highlight which design choices improve
the autoencoder models performance with respect to accuracy and reconstruction quality. To this
end, we first develop a method using features of pre-trained classifiers and show that we achieve
better results on MPI3D (Gondal et al., 2019) to generalize from synthetic (toy or realistic) to real
images compared to Autoencoder, Variational Autoencoder (VAE) (Kingma & Welling, 2014), β-
VAE (Higgins et al., 2017) and FactorVAE (Kim & Mnih, 2018). Although successful, we highlight
that insights and design choices on a simple dataset do not necessarily transfer to real applications
of higher visual complexity. To improve generalization, we propose to use the partially impossible
reconstruction loss (PIRL) (Dias Da Cruz et al., 2021) (matching semantically important parts while
randomizing the other parts) and we propose a novel variation thereof. We extensively show that
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Figure 1: Impossible Instance Extractor Triplet Autoencoder (II-E-TAE) model architecture.

our variation is the driving force for the improved generalization capacities. Additionally, we induce
structure in the latent space by a triplet loss regularization. We evaluate and justify the benefits of
the different design choices on an automotive application focusing on occupancy classification in
the vehicle interior. The challenge of training in a single vehicle interior and transferring results
between different vehicle interiors has been investigated by Dias Da Cruz et al. (2021). The latter
and similar industrial applications suffer from the limited availability and variability of training data.
A successful transfer from synthetic to real data would avoid the necessity of collecting real data for
each vehicle interior: the invariances could be learned and improved on synthetic data only.

2 RELATED WORKS

There have been successful applications of reinforcement learning systems being trained in a sim-
ulated environment and deployed to a real one, for example by combining real and synthetic data
during training (Kang et al., 2019; Rao et al., 2020; Fang et al., 2018; Bewley et al., 2019). How-
ever, these approaches can take into account temporal information and action-reaction causalities
while in this work we use independent frames only. A good overview on reinforcement learning
based simulation to real transferability is provided in (Zhao et al., 2020). Another line of research
uses generative adversarial networks (GAN) to make synthetic images look like real images or vice
versa (Ho et al., 2020; Carlson et al., 2019). This requires both synthetic and real images, whereas
we focus on training on synthetic images only. Part of our methodology is related to domain ran-
domization (Tremblay et al., 2018), where the environment is being randomized, but Tremblay et al.
(2018) deployed this to object detection and the resulting model needs to be fine-tuned on real data.
A similar idea of freezing the layers of a pre-trained model was investigated for object detection
(Hinterstoisser et al., 2018), but neither with a dedicated sampling strategy nor in the context of au-
toencoders. While Tobin et al. (2017) focuses on localization and training on synthetic images only,
the applicability is only tested on simple geometries. Although, we start our investigations on the
simple dataset MPI3D, we increase the visual complexity by incorporating human models and child
seats. Inoue et al. (2018) and Zhang et al. (2015) rely on the use of real images during training as
well for the minimization of the synthetic to real gap for autoencoders. Recent advances on synthetic
to real image segmentation (Chen et al., 2020; Yue et al., 2019; Pan et al., 2018) on the VisDA (Peng
et al., 2017) dataset show a promising direction to overcome the gap between synthetic and real
images, however, this cannot straightforwardly be compared against the investigation in this work,
particularly, since we are focusing on autoencoder models and their generative nature. While our
cost function variation is based on Dias Da Cruz et al. (2021), we show that our approach improves
generalization while needing less demanding training data such that it can easily be applied to any
commonly recorded dataset (i.e. no variations of the same scene are needed).

3 METHOD

Consider Ns sceneries and Nv variations of the same scenery, e.g. same scenery under different
illuminations, with different backgrounds or under different data augmentation transformations. Let
X = {Xj

i | 1 ≤ i ≤ Nv, 1 ≤ j ≤ Ns} denote the training data, where each Xj
i ∈ RC×H×W

is the ith variation of scene j consisting of C channels and being of height H and width W . Let
Xj = {Xj

i | 1 ≤ i ≤ Nv} be the set of all variations i of scenery j and Y = {Y j | 1 ≤ j ≤ Ns}
be the corresponding target classes of the scenes of X . Notice that the classes remain constant for
the variations i of each scene j. In the following, we will present the final model architecture as
illustrated in Fig. 1 and we provide evidences for each design choice in Section 4.

2



Under review as a conference paper at ICLR 2022

Input Target

(a) Vanilla reconstruction: Eq. 1

Input Target

(b) Impossible: Eq. 2

Input Target

(c) Impossible instance: Eq. 3

Figure 2: Illustration of the different input-target pairs for the autoencoder reconstruction loss.

3.1 MODEL ARCHITECTURE: EXTRACTOR AUTOENCODER

By an abuse of terminology, we will refer to our method as a variation of vanilla autoencoders,
although an encoder-decoder formulation would strictly speaking be more correct, because the goal
will not be to reconstruct the input image exactly. We propose to apply ideas from transfer learning
and use a pre-trained classification model to extract more general features from the input images.
Instead of using the images itself, the extracted features are used as input. Our autoencoder consists
of a summarization module which reduces the number of convolutional filters. This is fed to a simple
MLP encoder which is then decoded by a transposed convolutional network. We refer to this model
as extractor autoencoder (E-AE). Let eϕ be the encoder, dθ the decoder and extω be a pre-trained
classification model, referred to as extractor. For ease of notation, we define eϕ(extω(·)) = eeϕ,ω(·).
The model, using the vanilla reconstruction loss, can be formulated for a single input sample as

LR(X
j
i ; θ, ϕ) = r

(
dθ(eϕ(extω(X

j
i ))), X

j
i

)
= r

(
dθ(eeϕ,ω(X

j
i )), X

j
i

)
, (1)

where r(·, ·) computes the error loss between target and reconstruction. We use the structural similar-
ity index measure (SSIM) (Bergmann et al., 2018) and binary cross entropy (BCE), but our method
is not limited to them. Model details are provided in the appendix A.2.1.

3.2 SAMPLING STRATEGY: PARTIAL IMPOSSIBLE

An additional improvement to the autoencoder training approach is a dedicated sampling strategy
for which we provide two variations. The first one is the partially impossible reconstruction loss
(PIRL) as introduced by Dias Da Cruz et al. (2021) for illumination normalization. As our results
will show, this also helps the transfer between synthetic and real images. For sampling the individual
elements of a batch, we randomly select for each scene two images, one as input and the other one as
target. This sampling strategy preserves the semantics while varying the unimportant features such
that the model needs to focus on what remains constant. For random a, b ∈ [0, Nv] and a ̸= b:

LR,I(X
j
a; θ, ϕ) = r

(
dθ(eeϕ,ω(X

j
a)), X

j
b

)
. (2)

We refer to models using the PIRL by prepending an I, e.g. I-E-AE.

3.3 SAMPLING STRATEGY: PARTIAL IMPOSSIBLE CLASS INSTANCE

We propose a novel variation to further improve this strategy by sampling a target image of a dif-
ferent scene, but of the same class. This should cause the model to learn invariances with respect
to certain class variations which are not important for the task at hand, e.g. clothes, human poses,
textures. This sampling variation would be reflected in the reconstruction loss as follows

LR,II(X
j
a; θ, ϕ) = r

(
dθ(eeϕ,ω(X

j
a)), X

k
b

)
, (3)

for random a, b ∈ [0, Nv], j ̸= k and Y j = Y k. We refer to this method as impossible class instance
sampling marked by prepending II, e.g. II-E-AE. It is important to notice that our novel variation
can easily be applied to any common dataset. The sampling variations are visualized in Fig. 2.

3.4 STRUCTURE IN THE LATENT SPACE: TRIPLET LOSS

The final adjustment to our training strategy is the incorporation of the triplet loss regularization in
the latent space (Hoffer & Ailon, 2015) to induce structure. This can be integrated by

LT (X
j
a;ϕ) = max

(
0,
∥∥eeϕ,ω(Xj

a)− eeϕ,ω(X
k
b )
∥∥2 − ∥∥eeϕ,ω(Xj

a)− eeϕ,ω(X
l
c)
∥∥2 + 0.2

)
, (4)
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for random a, b, c ∈ [0, Nv], j ̸= k ̸= l and Y j = Y k ̸= Y l. We refer to this model as triplet
autoencoder (TAE) either with or without using the PIRL. We can sample impossible target instances
for the positive and negative triplet samples such that the total loss becomes (for some α and β):

L(Xj
a; θ, ϕ) = αLT (X

j
a;ϕ) + β

(
LR,II(X

j
a; θ, ϕ) + LR,II(X

k
b ; θ, ϕ) + LR,II(X

l
c; θ, ϕ)

)
. (5)

4 EXPERIMENTS

This section is organized in observations, formulated as subsections, which are built on one an-
other and contain results highlighting the improvements. This provides explanations for the design
choices leading to our final model architecture and cost function formulations presented in Section
3. Improvements regarding the transfer to real images when only being trained on synthetic images
are assessed qualitatively based on reconstruction quality and latent space structure and quantita-
tively on classification accuracy. All experiments use the same hyperparameters whenever possible.
Training details and additional results are provided in the appendix and in our implementation.

We perform a baseline evaluation on MPI3D (Gondal et al., 2019), which provides simple and re-
alistic renderings and real counterparts. We reduced the dataset to contain only the large objects.
For a higher visual complexity, we use as synthetic images the SVIRO (Dias Da Cruz et al., 2020)
dataset. TICaM (Katrolia et al., 2021) is used to evaluate the performance on a real dataset of a
similar application. The latter datasets are grayscale images from the vehicle interior and consider
the task of classification (empty, infant, child or adult) for each seat position. The design choices
made on MPI3D and the available synthetic images are not sufficient to obtain a good transferabil-
ity to real images from the vehicle interior. Hence, we release an additional dataset, see Section
4.5 and A.1.4. We introduce step by step modifications to the autoencoder architecture leading to
steady quantitative and qualitative improvements. MPI3D and the vehicle interior share interesting
properties: they have almost identical backgrounds and the environment is more tractable than many
computer vision datasets. The transfer from SVIRO to TICaM is further complicated by new unseen
attributes, e.g. steering wheel. An additional ablation study shows that our novel variation of PIRL
is the driving force for the improved generalization capacity. Finally, to be in line with common
benchmark datasets, we show that our design choices also improve the transfer from training on
MNIST (LeCun et al., 1998) to generalizing to real images of digits (De Campos et al., 2009).

4.1 AUTOENCODERS STRUGGLE ON REAL IMAGES WHEN TRAINED ON SYNTHETIC IMAGES

In the first, albeit naı̈ve experiment we assumed that due to the bottleneck of autoencoders, the
latter should generalize to some extent to real images when trained on synthetic ones. We trained
convolutional autoencoders (AE) on the toy and realistic MPI3D images, respectively, and evaluated
the resulting models on the real recordings. The first row of Fig. 3b shows the reconstruction of real
images when trained on the realistic synthetic images: the model preserves some of the semantics.
The model fails to perform senseful reconstructions when trained on toy images, see Fig. 3c.

4.2 AUTOENCODERS OVERFIT TO THE SYNTHETIC DISTRIBUTION

An immediate consequence of the results of the previous section is the assumption that the autoen-
coder overfits to the synthetic distribution and takes into consideration some artefacts (e.g. rendering
noise). We followed the idea of Gondal et al. (2019) and trained Variational Autoencoder (VAE)
(Kingma & Welling, 2014), β-VAE (Higgins et al., 2017) and FactorVAE (Kim & Mnih, 2018) on
the same data as before using the BCE reconstruction loss. The results in the second (β-VAE with
β = 8) and third (FactorVAE with γ = 50) row of Fig. 3b show that the models reconstruct real im-
ages better and more of the semantics are preserved. If trained on toy renderings, the representation
gap is too large, causing the reconstruction of the real images to be bad: see Fig. 3c.

4.3 MORE GENERAL INPUT FEATURES IMPROVE AUTOENCODER RECONSTRUCTIONS

A small gap between the synthetic and real distribution can potentially be closed by a dedicated data
augmentation approach to avoid overfitting to synthetic artefacts. Nevertheless, and while making
sense, an abstraction from toy to real images cannot be achieved by means of simple data trans-
formations or model constraints (e.g. denoising autoencoder). To this end we propose to use a
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Figure 3: Reconstruction of unseen real data for different autoencoders: Autoencoder (AE), β Vari-
ational Autoencoder (β-VAE), FactorVAE (F-VAE) and Extractor Autoencoder (E-AE).

(a) AE (b) β-VAE (c) FactorVAE (d) E-AE

Figure 4: t-SNE projection of the 10 dimensional latent space representation of the realistic training
(blue circle) together with the real (orange cross) images. Autoencoder (AE), β Variational Autoen-
coder (β-VAE), FactorVAE and Extractor Autoencoder (E-AE). The extractor approach is the only
method clustering both synthetic and real images together.

pre-trained feature extractor as presented in Section 3 and as defined by Eq. 1. In the following, we
used the VGG-11 model pre-trained on Imagenet as the extractor if not stated otherwise.

The results from the fourth row of Fig. 3b and Fig. 3c, respectively, show that the proposed modi-
fications enable the model to generalize to real images when trained on synthetic ones. Much more
of the semantics are preserved even when the model was only trained on toy images. Our method
produces semantically more correct and less noisy reconstructions compared to the VAE and Factor-
VAE baseline results. Additional qualitative improvements are highlighted by visualizing the latent
space: both the 10-dimensional training (synthetic) and test (real) data latent spaces are projected
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Table 1: We report the L1, SSIM and LIPIPS (Zhang et al., 2018) norm between the reconstructions
of the real images (unknown) and the corresponding synthetic (Synth.) training images (realistic or
toy) or input images (Real). We report the mean of the norms across the dataset: for SSIM larger ↑
and for the others smaller ↓ is better. E-AE performs best.

L1 ↓ SSIM ↑ LPIPS ↓
Trained on Model Variant Synth. Real Synth. Real Synth. Real

Toy AE SSIM 932 1763 0.56 0.42 0.35 0.40
Toy VAE BCE 659 1497 0.50 0.33 0.34 0.42
Toy β-VAE BCE, β = 4 710 1542 0.53 0.38 0.31 0.44
Toy β-VAE BCE, β = 8 406 1321 0.71 0.48 0.26 0.37
Toy FactorVAE BCE, γ = 10 521 1288 0.66 0.45 0.26 0.39
Toy FactorVAE BCE, γ = 50 430 1295 0.71 0.51 0.22 0.35
Toy E-AE (ours) SSIM 177 1165 0.90 0.58 0.10 0.28

Realistic AE SSIM 568 1133 0.83 0.62 0.20 0.24
Realistic VAE BCE 482 890 0.74 0.61 0.20 0.23
Realistic β-VAE BCE, β = 4 372 833 0.81 0.64 0.18 0.20
Realistic β-VAE BCE, β = 8 384 854 0.79 0.64 0.19 0.21
Realistic FactorVAE BCE, γ = 10 218 734 0.88 0.68 0.15 0.19
Realistic FactorVAE BCE, γ = 50 391 830 0.78 0.64 0.16 0.18
Realistic E-AE (ours) SSIM 251 841 0.92 0.70 0.08 0.14

together into a 2-dimensional representation using t-SNE. In Fig. 4 we can observe that VAE and
FactorVAE improve the representation of real and synthetic images in the same region in the latent
space, however, only partially, indicating a different representation for real and synthetic images.
When using E-AE, real and synthetic images are represented more similarly in the latent space and
the clusters are completely overlapping. Even when trained on the toy dataset, the latent space rep-
resentation for synthetic and real images produced by E-AE overlaps partially as visualized in the
appendix Fig. 8. Finally, we report in Table 1 a quantitative evaluation between the reconstructions
of the real images against their synthetic training counterparts across all dataset images for different
norms. We compute the same metrics between the real input images and their reconstruction to
measure whether the semantics are being preserved : in all cases E-AE performs best. Additional
results can be found in the appendix in Table 8 and reconstructions of synthetic input images in Fig
9. The latter shows that all models perform similarly well on the training data, hence the training
was successful, but our proposed design choices generalize best to the real images.

4.4 IT WORKS FOR VISUALLY SIMPLE IMAGES - MORE IS NEEDED ON MORE COMPLEX DATA

Since the method introduced in the previous section achieved good results, even when being trained
on toy images, we were optimistic to apply it to images of higher visual complexity, e.g. a vehicle
interior. We trained the same model architecture as in the previous section, but with a 64-dimensional
latent space, on images from the Tesla vehicle from SVIRO and the Kodiaq vehicle from SVIRO-
Illumination dataset, respectively, and evaluated the model on the real TICaM images. Examples of
the resulting model’s reconstructions are plotted in Fig. 5 (b) and in the appendix Fig. 10. In both
cases only blurry human models are being reconstructed, which is similar to the mode collapse in
the first row of Fig. 3c. We concluded that more robust features are needed.

4.5 PARTIALLY IMPOSSIBLE RECONSTRUCTION LOSS HELPS GENERALIZATION

As defined by Eq. 2, a partially impossible reconstruction loss (PIRL) for autoencoders has proven
to work well for image normalization (Dias Da Cruz et al., 2021). We hypothesized that the same
approach could lead to a better generalization to real vehicle interiors. In a first approach, we applied
this strategy to variations of the same scene under different illumination conditions, but realized that
the learned invariances are not suitable for the transfer between synthetic and real. An example is
provided in Fig. 5 (c) where we trained on the Kodiaq images from the SVIRO-Illumination dataset.
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Figure 5: Reconstructions of unseen real data (a) from TICaM: (b) E-AE and (c) I-E-AE trained
on Kodiaq SVIRO-Illumination, (d) E-AE, (e) I-E-AE, (f) II-E-AE and (g) II-E-TAE trained on our
new dataset. A red (wrong) or green (correct) box highlights whether the classes are preserved.

We concluded that, for learning more general features by applying the PIRL, we needed input-target
pairs where both images are of the same scene, but differ in the properties we want to become
invariant to: the dominant background. To this end we created 5919 synthetic scenes where we
placed humans, child and infant seats as if they would be sitting in a vehicle interior, but instead of a
vehicle, the background was replaced by selecting randomly from a pool of available HDRI images.
Each scene was rendered using 10 different backgrounds. Examples from the dataset are shown in
Fig. 7 in the appendix. During training, we randomly select two images per scene and use one as
input and the other as target, i.e. as defined in Eq. 2. When applied to real images, see Fig. 5 (e), the
model better preserves the semantics of the real images: the model starts to reconstruct child seats
and not people only, anymore. We also trained a model without the PIRL to show that the success is
not due to the design choice of the dataset: in Fig. 5 (d) the model performs worse.

Finally, we extended this idea further with our novel PIRL loss formulation: instead of taking the
same scene with a different background as target image, we randomly selected a different scene of
the same class, e.g. if a person is sitting at the left seat position, we would take another image with
a person on the left seat, potentially a different person with a different pose. This approach is for-
mulated in Eq. 3. While this leads to a blurrier object reconstruction, which is expected because the
autoencoder needs to learn an average class representation, the classes are preserved more robustly
and the reconstructions look better than before, see Fig. 5 (f). Moreover, this additional randomiza-
tion improves classification accuracy as discussed in Section 4.7 and in Section 5. A visualization of
the different input-target pair combinations can be found in Fig. 2. The dataset can been downloaded
from this link (Google Drive - Anonymous user) and it will be made publicly available.

4.6 STRUCTURE IN THE LATENT SPACE HELPS GENERALIZATION

The final improvement is based on the assumption that structure in the latent space should help
the model performance. Class labels are included by formulating a triplet loss regularization to the
latent space representation as defined by Eq. 4: images of the same class should be mapped closely
together and images of different classes pushed away. The triplet loss induces a more meaningful
L2-norm in the latent space (Dias Da Cruz et al., 2021) such that a k-nearest neighbor (KNN)
classifier can be used in the next section. As the results of Fig. 5 (g) and in the appendix show,
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Figure 6: Comparison of the training performance distribution for each epoch over 250 epochs.
II-E-TAE is compared against training the corresponding extractor from scratch or fine-tuning the
layers after the features which are used by the extractor in our autoencoder approach.

these final improvements, together with the previous changes, yield the semantically most correct
reconstructions. In the appendix we show that due to the triplet loss the nearest neighbour of (g)
makes sense and yields a clearer reconstruction. The triplet loss without the PIRL is not sufficient
and in Section 5 we show that the II-PIRL loss is the driving force for the improved performance.

4.7 KNN WITH TRIPLET LOSS OUT-PERFORMS FINE TUNED CLASSIFICATION MODELS

We investigated whether the qualitative improvements also transfer to a quantitative improvement.
We took the most basic approach: we combined the E-TAE with a k-nearest neighbor classifier in
the latent space and used our new dataset for training. We retrieve the latent space vectors for all
flipped training images as well and used only a single image per scene (i.e. not all 10 variations).
We choose k =

√
N = 115, where N is the size of the training data together with its flipped version

(Jirina et al., 2011). The model should classify occupancy (empty, infant, child or adult) for each seat
position and we used the same hyperparameters for all methods and variations thereof. We froze the
same layers of the pre-trained models for fine-tuning the later layers in case of classification models
or to train our autoencoder using it as an extractor. We evaluated the model performance after each
epoch on the real TICaM images (normal and flipped images of the training and test splits) for both
the autoencoder and the corresponding classification model. This provides a measure on the best
possible result for each method, but is of course not a valid approach for model selection. We report
in Fig. 6 the training results for seeds 1 to 10 and summarize the training performance by plotting
the mean and standard deviation per epoch per method. Our approach converges more robustly and
consistently to a better mean accuracy. For each experiment, we retrieve the best accuracy across
all epochs and compute the mean, standard deviation and maximum of these values across all runs:
these statistics are reported in Table 2. See the appendix for training from scratch and Densenet-
121 results. The model weights corresponding to the epochs selected by the previous heuristics
were applied on the SVIRO dataset to verify whether the learned representations are universally
applicable to other vehicle interiors. For SVIRO, we used the training images and excluded all
images containing empty child seats or empty infant seats, treated everyday objects as background.
The results show that our E-AE significantly outperforms the classification models across three
different pre-trained models and across all datasets. A consistent improvement for the different
modifications is achieved: I-E-TAE outperforms E-TAE and II-E-TAE outperforms I-E-TAE.

5 DISCUSSION AND LIMITATIONS

We want to highlight that most of the contribution to the success of our introduced model variations
stems from the novel II variation of the PIRL loss. To this end we trained several types of classifiers
in the latent space of different autoencoder model variations and report the results in Table 3. The
II variation of the PIRL loss largely improves the classification accuracy compared to the I varia-
tion. Moreover, the performance is better compared to the triplet loss variation which uses the label
information explcitily as a latent space constraints, compared to the implicit use by the II-PIRL.
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Table 2: For each experiment, the best accuracy on real TICaM images across all epochs is taken
and the mean, standard deviation and maximum of those values across all 10 runs is reported. The
model weights achieving maximum performance per run on TiCAM are evaluated on SVIRO. Our
approach outperforms the corresponding classification models significantly.

TICaM SVIRO

Model Variant Mean Max Mean Max

VGG-11 Pre-trained 75.5± 1.5 78.0 78.7± 2.9 84.0
Resnet-50 Pre-trained 78.1± 1.7 80.4 83.5± 2.7 88.1

VGG-11 E-TAE 76.7± 2.3 81.5 78.6± 2.6 82.3
Resnet-50 E-TAE 83.8± 1.3 86.0 85.8± 2.4 89.1

VGG-11 I-E-TAE 79.7± 2.1 82.2 80.9± 4.0 85.6
Resnet-50 I-E-TAE 83.5± 1.3 85.6 89.2± 1.0 90.3

VGG-11 II-E-TAE 81.0± 0.6 82.0 79.1± 3.9 84.8
Resnet-50 II-E-TAE 83.7± 0.5 84.5 93.0± 0.8 94.1

Table 3: For each of the 10 experimental runs per method after 250 epochs (i.e. not the best model
weights per training were selected) and using the VGG-11 extractor we trained different classifiers
in the latent space: k-nearest neighbour (KNN), random forest (RForest) and support vector machine
with a linear kernel (SVM). The results show that most of the contribution to the synthetic to real
generalization is due to the novel II variation of the PIRL cost function.

TICaM SVIRO

Variant KNN RForest SVM KNN RForest SVM

E-AE 17.1± 6.7 24.2± 4.1 40.6± 8.5 38.7± 2.9 58.2± 2.0 72.9± 2.3
I-E-AE 18.2± 7.3 42.4± 6.5 50.1± 3.7 61.0± 3.5 72.2± 2.5 73.8± 2.3

II-E-AE 73.2± 3.9 68.8± 5.7 66.9± 6.7 83.7± 1.9 79.8± 2.7 81.4± 2.2
E-TAE 69.2± 3.4 66.4± 4.0 68.7± 2.2 76.2± 2.3 71.2± 2.5 75.3± 2.5

The II variation of the PIRL loss implicitly assumes that the classes are uni-modal, i.e. objects of the
same class should be mapped onto a similar point in the latent space. This characteristic can either
improve generalization or have a detrimental effect on the performance depending on the task to be
solved. Under its current form there is no guarantee that, for example, facial landmarks or poses
would be presereved. Nevertheless, we believe that extensions of our proposed loss, for example
based on constraints (e.g. preservation of poses) could be an interesting direction for future work.
It can be observed that our model is not perfect and sometimes struggles: e.g. in case an object
(e.g. backpack) is located on the seat and for more complex human poses (e.g. people turning over).
However, we believe that these problems are related to the training data: a more versatile synthetic
dataset would probably improve the model performance on more challenging real images.

Finally, we show that improvements reported in this work are not limited to the application in the
vehicle interior. To this end, we trained models using the same design choices on MNIST LeCun
et al. (1998) and evaluate the generalization onto real digits De Campos et al. (2009) in Fig. 12 and
Table 10 in the appendix: similar improvements by the different design choices can be observed.

6 CONCLUSION

We introduced an autoencoder model which uses a pre-trained classification model as a feature ex-
tractor. Our results showed that the resulting model produces superior reconstructions for synthetic
to real generalization. However, we highlighted that design choices made on simple datasets do not
necessarily transfer to visually more complex tasks. We performed a step-by-step investigation of
additional model changes and showcased the improvements of each change. Although only a sim-
ple k-nearest neigbor classifier is being used in the latent space, our proposed autoencoder model
outperforms consistently and more robustly all classification model counterparts.

9
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REPRODUCIBILITY STATEMENT

Reproducibility of our results is ensured by the code implementation provided in the supplementary
material. Moreover, the model weights for all results reported in this work are available for download
(anonymously): see the readme file in the supplementary material for download links. This readme
file also explains how the code implementation can be used and how the results of the paper can
be reproduced. The code implementation contains all the evaluation scripts necessary to get the
results reported in this work. The appendix contains additional details about the training and models
details as well as the datasets and data pre-processing part. For the latter, we also implemented pre-
processing functions for all datasets used in our work together with links to the different datasets to
download them. The datasets used in this work are all publicly available. The newly created dataset
used in this work is also readily available for download. Lastly, the licenses of all datasets used are
detailed in the readme file as well.

CODE OF ETHICS

Our proposed improvements on reducing the performance gap between synthetic and real images
could reduce the necessity for human labelling and improve privacy since fewer human subjects
are needed for data recordings. It would reduce the financial investment and time investment of
companies, institutions and individuals. The question arises whether the usage of a pre-trained
extractor introduces biases in the sub-sequent model, whether better disentanglement properties can
be achieved and how it is affected by the choice of the latter. The first part of this work investigates
model design choices on a simpler dataset without human subjects. The second part investigates the
application in the vehicle interior. According to the authors of the TICaM dataset, written consent
of the human participants was obtained together with their signature. Regarding the application in
the vehicle interior - insights and improvements for the transfer from synthetic to real could be used
to cover important edge cases (e.g. accidents) by simulations such that security and safety could be
improved. The licenses for all publicly available datasets used in this work is referenced as well.
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A APPENDIX

A.1 DATASET DETAILS

If not specified otherwise, all images have been centre cropped and resized to 128 pixels.

A.1.1 MPI3D

We used the synthetic realistic and toy images as well as the real images, but we restricted the dataset
to use only large objects, since even for humans the small objects cannot always be distinguished
reliably. The dataset can be downloaded from Github.

A.1.2 SVIRO

We only used the grayscale training images from the SVIRO dataset. We considered everyday
objects as background and removed all images containing empty child and infant seats. For the
classification evaluation we used all the images from all the different vehicles, but we used training
images only. Occupancy classification is performed on the entire image such that all three seats need
to be classified simultaneously. Since four classes are available per seat (empty, infant seat, child
seat and adult) this results in a total of 43 = 64 classes. The dataset can be downloaded from their
website.

A.1.3 SVIRO-ILLUMINATION

For the classification evaluation we used all the training and test images from all the different vehi-
cles. We used all the variations per scenes, i.e. not just a single variation per illumination variation.
The dataset can be downloaded from their website.

A.1.4 OUR NEWLY RELEASED DATASET

We created 2938 training and 2981 test sceneries where each scenery is rendered with 10 different
backgrounds out of a pool of 450 backgrounds. The background and the corresponding illumination
conditions were defined using high dynamic range images (HDRI). The latter were downloaded
from https://hdrihaven.com/. Human models, child seats and infant seats were randomly placed as if
they were located inside a vehicle, but no vehicle is visible. There are four possible classes for each
seat position (empty, infant seat, child seat and adult) leading to a total of 43 = 64 classes for the
whole image. We created randomly 172 adults using http://www.makehumancommunity.org/ and
we used 6 child seats and 7 infant seats which were textured using randomly one out of five textures.
Since the dataset is synthetic, there are no consent and privacy concerns. We will release the dataset
under the license CC BY-NC-SA 4.0. At the moment, it can be downloaded from this link (Google
Drive - Anonymous user). Examples are visualized in Fig. 7. We noticed that a larger number of
different human models increases the transferability to real images.

A.1.5 TICAM

We used all training and test images and also flipped the images for the classification evaluation.
This was done, because otherwise the class variability is quite low and there is a strong bias towards
people sitting on the right driver seat. Moreover, the steering wheel would always be placed at the
same right position. We also needed to perform some pre-processing to make the real TICaM images
compatible with the synthetic images. First, we adapted the labels: we extracted the labels for the
left and right seat from the filename. The file name is split at the character after which the third
(right seat) and ninth (left seat) part is responsible for the class definition. If the latter was a 0 or
contained an o, we kept it as a 0. If it contained a p, it was changed into a 3. We changed the value
to 2 if it was one of the child seats s03, s13, s04, s14 or the variation g00 for the child seats s01,
s11, s02, s12. In all other cases, it was transformed to a 1, i.e. for the child seats s05, s15, s06,
s16 and variations g01 g11 g10 for s01, s11, s02, s12. Second, the illumination of the images was
normalized using a histogram equalization. After that the images were cropped at height position
120 with height 300 and left position 106 with width 300. Finally, the images were resized to 128
pixels. The dataset can be downloaded from their website.
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Figure 7: Examples of sceneries with different backgrounds from the newly generated dataset.

A.2 TRAINING DETAILS

All our experiments were conducted using PyTorch 1.8. Pre-defined and models pre-trained on
Imagenet were taken from torchvision 0.9.0.

We used the same hyperparameters for all training experiments and for all autoencoder and clas-
sification models respectively. We used the AdamW optimizer with a learning rate of 1e − 4 and
weight decay of 1e − 5. We used a batch size of 64 and the only augmentation performed was a
random horizontal flip. All models were trained for 100 epochs on MPI3D and 250 epochs for the
other datasets.

Both the extractor autoencoder and the classification models used the same layer for extracting
the features from the pre-trained models. In both cases and for all pre-trained models we used
layer level −3 in our implementation: those features were used to fine-tune the rest of the pre-
trained classification model or to train from scratch our added autoencoder layers. In all cases, we
interpolated the input images to be of size 224 and copied the single grayscale image channel twice
along the channel dimension.

For the autoencoder training, we used the structural similarity index measure (SSIM) Bergmann
et al. (2018) or the binary cross entropy (BCE) to measure the error between reconstruction and
target image. We used PyTorch MS-SSIM Gongfan (2019) to compute the SSIM. In Eq. 5 we chose
α = 1 and β = 1. We used a latent space dimension of 64 for all models trained on the vehicle
interior and a latent space dimension of 10 for the MPI3D dataset. Further, we used the ReLU
activation function. In case of a triplet loss, we used the swap parameter of Pytorch to make the
negative mining more challenging Balntas et al. (2016). As a positive sample, we selected an image
of a different scenery of the same class, i.e. the same objects are at the same seat position. For the
negative sample we selected a scenery which differs in a single seat position and we did not allow
sceneries with empty seats only. In case the partially impossible reconstruction loss was used, the
target images for the positive and negative samples are chosen to be partially impossible as well.

A.2.1 MODEL DETAILS

The autoencoder model architecture details are provided in Table 4, 6 and 7. Regarding the pre-
trained models, we used the output of the following layers to retrieve the extracted features. The
notations is according to the torchvision model definitions:
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VGG-11
(16): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(17): ReLU(inplace=True)

Resnet-50
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)

)

Densenet-121
(denselayer24): _DenseLayer(
(norm1): BatchNorm2d(992, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(992, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

)

Table 4: Model architecture for AE, VAE and β-VAE on MPI3D

Encoder Decoder

Input: 3 x 64 x 64 Input: 10

Conv, 4x4, 32, padding 1, stride 2 FC, 256, bias True
ReLU ReLU

Conv, 4x4, 32, padding 1, stride 2 FC, 1024, bias True
ReLU ReLU

Conv, 4x4, 64, padding 1, stride 2 ConvTranspose, 4x4, 64, padding 1, stride 2
ReLU ReLU

Conv, 4x4, 64, padding 1, stride 2 ConvTranspose, 4x4, 32, padding 1, stride 2
ReLU ReLU

FC, 256, bias True ConvTranspose, 4x4, 32, padding 1, stride 2
ReLU ReLU

FC, 10, bias True (twice in case of VAE) ConvTranspose, 4x4, 3, padding 1, stride 2
Sigmoid
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Table 5: Model architecture for FactorVAE on MPI3D. The model is exactly the same as the VAE
model and uses the following discriminator.

Discriminator

Input: 10

FC, 1000, bias True
LeakyReLU(0.2)

FC, 1000, bias True
LeakyReLU(0.2)

FC, 1000, bias True
LeakyReLU(0.2)

FC, 1000, bias True
LeakyReLU(0.2)

FC, 1000, bias True
LeakyReLU(0.2)

FC, 2, bias True

Table 6: Model architecture for E-AE on MPI3D. The extractor is fixed during training.

Extractor + Summarizer + Encoder Decoder

Input: 3 x 224 x 224 Input: 10

VGG-11 extractor after 7th Conv layer + ReLU FC, 256, bias True
Avgpool, 2x2, stride 2, padding 0 ReLU

Conv, 4x4, 256, padding 0, stride 1 FC, 1024, bias True
ReLU ReLU

FC, 256, bias True ConvTranspose, 4x4, 64, padding 1, stride 2
ReLU ReLU

FC, 10, bias True ConvTranspose, 4x4, 32, padding 1, stride 2
ReLU

ConvTranspose, 4x4, 32, padding 1, stride 2
ReLU

ConvTranspose, 4x4, 3, padding 1, stride 2
Sigmoid
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Table 7: Model architecture for E-AE on SVIRO, SVIRO-Illumination and TICaM. C is the channel
dimension which is 1 for all datasets. The extractor is fixed during training.

Extractor + Summarizer + Encoder Decoder

Input: C x 224 x 224 Input: 64

VGG-11 extractor after 7th Conv layer + ReLU FC, 256, bias True
Avgpool, 2x2, stride 2, padding 0 ReLU

Conv, 4x4, 256, padding 0, stride 1 FC, 4096, bias True
ReLU ReLU

FC, 256, bias True ConvTranspose, 4x4, 64, padding 1, stride 2
ReLU ReLU

FC, 64, bias True ConvTranspose, 4x4, 32, padding 1, stride 2
ReLU

ConvTranspose, 4x4, 32, padding 1, stride 2
ReLU

ConvTranspose, 4x4, C, padding 1, stride 2
Sigmoid
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A.3 ADDITIONAL RESULTS

(a) AE (b) β-VAE (c) FactorVAE (d) E-AE

Figure 8: t-SNE projection of the 10 dimensional latent space representation of the toy training (blue
circle) together with the real (orange cross) images. Autoencoder (AE), β Variational Autoencoder
(β-VAE), FactorVAE and Extractor Autoencoder (E-AE). When trained on toy images, our extractor
approach performs still best although the synthetic-real distributions are not as overlapped as if
trained on realistic images.

Table 8: We report the L1, SSIM and LIPIPS (Zhang et al., 2018) norm between the reconstructions
of the real images (unknown) and the corresponding synthetic training images (realistic or toy). We
report the mean of the norms across the entire reduced dataset: for SSIM larger ↑ and for the others
smaller ↓ is better. E-AE performs best. Some models used SSIM, others BCE during training.

Trained on Model Variant L1 ↓ SSIM ↑ LPIPS ↓
Toy AE BCE 768 0.559 0.412
Toy AE SSIM 932 0.558 0.347
Toy E-AE (ours) BCE 291 0.896 0.095
Toy E-AE (ours) SSIM 177 0.899 0.103
Toy VAE BCE 659 0.497 0.338
Toy β-VAE BCE, β = 4 710 0.527 0.311
Toy β-VAE BCE, β = 8 406 0.709 0.258
Toy FactorVAE BCE, γ = 10 521 0.660 0.262
Toy FactorVAE BCE, γ = 30 447 0.710 0.344
Toy FactorVAE BCE, γ = 50 430 0.712 0.221

Realistic AE BCE 373 0.841 0.211
Realistic AE SSIM 568 0.832 0.195
Realistic E-AE (ours) BCE 220 0.917 0.071
Realistic E-AE (ours) SSIM 251 0.921 0.081
Realistic VAE BCE 482 0.740 0.197
Realistic β-VAE BCE, β = 4 372 0.810 0.176
Realistic β-VAE BCE, β = 8 384 0.794 0.189
Realistic FactorVAE BCE, γ = 10 218 0.880 0.151
Realistic FactorVAE BCE, γ = 30 244 0.862 0.161
Realistic FactorVAE BCE, γ = 50 391 0.779 0.164
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(a) Reconstruction of training data when being trained on realistic data.
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(b) Reconstruction of training data when being trained on toy data.

Figure 9: Reconstruction of realistic and toy training data for different autoencoders: Autoencoder
(AE), β Variational Autoencoder (β-VAE), FactorVAE (F-VAE) and Extractor Autoencoder (E-AE).

Table 9: For each experiment, the best performance (in percentage) on real vehicle interior images
(TICaM) across all epochs is taken and then the mean and maximum of those values across all
10 runs is reported. For the same backbone model extractor, our approach outperforms the vanilla
classification models significantly. The model weights achieving the maximum performance per run
are also evaluated on SVIRO where they perform better as well.

Dataset TICaM SVIRO

Dataset size 13356 11959

Model Variant Mean Max Mean Max

VGG-11 Scratch 58.5± 4.0 64.6 65.6± 5.4 72.7
Resnet-50 Scratch 53.3± 3.5 60.4 56.4± 2.6 59.3
Densenet-121 Scratch 56.3± 5.5 62.1 68.8± 2.4 74.9

VGG-11 Pre-trained 75.5± 1.5 78.0 78.7± 2.9 84.0
Resnet-50 Pre-trained 78.1± 1.7 80.4 83.5± 2.7 88.1
Densenet-121 Pre-trained 72.2± 4.2 77.4 85.0± 2.3 88.0

VGG-11 E-TAE 76.7± 2.3 81.5 78.6± 2.6 82.3
Resnet-50 E-TAE 83.8± 1.3 86.0 85.8± 2.4 89.1
Densenet-121 E-TAE 78.5± 2.4 81.8 86.7± 1.3 88.2

VGG-11 I-E-TAE 79.7± 2.1 82.2 80.9± 4.0 85.6
Resnet-50 I-E-TAE 83.5± 1.3 85.6 89.2± 1.0 90.3
Densenet-121 I-E-TAE 77.2± 1.7 79.3 90.4± 1.3 92.1

VGG-11 II-E-TAE 81.0± 0.6 82.0 79.1± 3.9 84.8
Resnet-50 II-E-TAE 83.7± 0.5 84.5 93.0± 0.8 94.1
Densenet-121 II-E-TAE 79.3± 1.3 81.5 89.9± 1.8 92.3
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Figure 10: Reconstruction results of unseen real data (a) from the TICaM dataset: (b) E-AE Trained
on Tesla SVIRO, (c) E-AE Trained on Kodiaq SVIRO-Illumination , (d) I-E-AE Trained on Kodiaq
SVIRO-Illumination , (e) E-AE, (f) I-E-AE, (g) II-E-AE, (h) E-TAE, (i) I-E-TAE, (j) II-E-TAE and
(k) Nearest neighbour of (j). Examples (e)-(k) are all trained on our new dataset. A red (wrong) or
green (correct) box highlights whether the semantics are preserved by the reconstruction.

Table 10: Different model architecture variations trained on MNIST. Then different classifiers were
trained on the latent space representation of the training data and evaluated on real images of digits.
Models were trained for 20 epochs using a latent dimension of 64 and MSE reconstruction loss. See
Fig. 12 for the corresponding reconstruction results and input images.

Model KNN RForest SVM

AE 15.7 12.5 11.6
TAE 11.1 11.6 8.4

II-AE 27.8 20.2 23.6
II-TAE 21.8 17.9 23.9

E-AE 27.3 23.1 26.5
E-TAE 26.1 19.1 23.3

II-E-AE 65. 61.9 65.6
II-E-TAE 64.1 63.7 63.7
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(a) Resnet-50
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(b) VGG-11
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Figure 11: Comparison of the training performance distribution for each epoch over 250 epochs.
II-E-TAE is compared against training the corresponding extractor from scratch or fine-tuning the
layers after the features which are used by the extractor in our autoencoder approach.
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Figure 12: Reconstruction of real input images of digits by models trained on MNIST. Similar to
the vehicle interior, the II-PIRL loss provides the best class preserving reconstructions. The latter is
supported by the quantiative results in Table 10.
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