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ABSTRACT

In this paper, we study coreset construction for LASSO regression, where a coreset
is a small, weighted subset of the data that approximates the original problem with
provable guarantees. For unregularized regression problems, sensitivity sampling
is a successful and widely applied technique for constructing coresets. However,
extending these methods to LASSO typically requires coreset size to scale with
O(Gd), where d is the VC dimension and G is the total sensitivity, following exist-
ing generalization bounds. A key challenge in improving upon this general bound
lies in the difficulty of capturing the sparse and localized structure of the function
space induced by the ¢; penalty in LASSO objective. To address this, we first
provide an empirical process-based method of sensitivity sampling for LASSO,
localizing the procedure by decomposing the functional space into independent
spaces, which leads to tighter estimation error. By carefully leveraging the geo-
metric properties of these localized spaces, we establish tight empirical process
bounds on the required coreset size. These techniques enable us to achieve a core-
set of size O(e2d - ((logd)® - min{1,log d/\?} + log(1/8))), which ensures a
(1 + ¢)-approximation for any €, € (0,1) and A > 0. Furthermore, we give a
lower bound showing that any algorithm achieving a (1 + €)-approximation must
select at least Q(%) rows in the regime where A = O(d~'/?). Empirical
experiments show that our proposed algorithm is at least 4 times faster than the
existing LASSO solver and more than 9 times faster on half of the datasets, while
ensuring high solution quality and sparsity.

1 INTRODUCTION

In machine learning and regression analysis, sparse models have been extensively studied over the
past decades. These models typically address issues such as sparse regression (Natarajan, [1995),
variable selection (Zou & Hastiel 2005), and multicollinearity (Altelbany,|2021)), aiming to improve
model interpretability and computational efficiency by reducing the number of features. One of the
most widely used methods for solving sparse models is the Least Absolute Shrinkage and Selec-
tion Operator (LASSO), which is first introduced in (Tibshirani, [1997). The core idea of LASSO
regression is to apply an ¢;-norm penalty, ensuring sparsity by shrinking some coefficients to zero.
Therefore, in practice, LASSO is widely applied in sparse models due to its effectiveness in enabling
both variable selection and regularization with improved interpretability and prevented overfitting
issues. The formal definition of the LASSO regression is given as follows.

LASSO Regression Problem. Given an n x d matrix A, an n-dimension vector b, and a regulariza-
tion parameter A > 0, the goal of LASSO problem is to find a d-dimension vector = that minimizes
|| Az — b||2 + ||2||1, where || Az — b||2 is the residual sum of squares, and the ||z||; denotes the sum
of the absolute values of the entries in z.

Although LASSO regression has been extensively studied over the past decade, the efficiency of
LASSO algorithms in handling large-scale data still heavily depends on the number of rows n of
the input matrix A. Specifically, the running time of existing algorithms, such as coordinate descent
(Friedman et al., [2010), ISTA (Daubechies et al., 2004), and FISTA (Beck & Teboulle, 2009), is
typically O(nT - poly(d)), where T" denotes the number of iterations. However, for datasets with a
large number of samples n, LASSO may suffer from scalability issues. Therefore, developing row
subsampling methods for LASSO regression is crucial for improving solving efficiency.
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Among the vast literature on large-scale regression tasks, coreset techniques have played major roles
in data subsampling. These algorithms aim to construct a weighted subset of the rows from both
A and b, forming a compact representation that effectively approximates the original regression
problem with strong theoretical guarantees. Along this line of research, several coreset construc-
tion algorithms have been proposed for the £, linear regression (Clarkson) 2005} Drineas et al.,
2006; |Dasgupta et al.l 2009; |Cohen & Pengl 2015; [Woodruff & Yasuda, [2024; 2023; [Munteanu
& Omlor; 2024). In regularized regression tasks, |Avron et al.[|(2017) constructed a coreset of size
O34 (A)tlog(l/ 9 log Sdke(A)) for ridge regression, where sd(A) < d denotes the statistical dimen-
sion of the matrix A. Moreover, the works in (Kacham & Woodruff, [2020) introduced determinis-
tic algorithms for coreset construction and explored a streaming model for this problem. |Curtin
et al[(2019) provided a logistic regression coreset with size O(d+/n). (Chhaya et al.|(2020) pro-
posed a coreset based on sensitivity sampling for the norm based regularized regression problem
[Az — b[|b + Al|z[|h with p > 2. In a related recent work, |Chhaya et al.| (2020) studied a mod-

ified LASSO problem by constructing a coreset for the objective || Az — b||5 + A||x||?. However,
the regularization term A||z||? = A(D_, |#;])?, due to its quadratic nature, introduces cross terms
among the x; values. This may lead to solutions with substantially more nonzero coefficients than
standard LASSO, thereby preventing it from promoting sparsity in the same way as the ¢; norm
and weakening its sparsity-inducing effect. To the best of our knowledge, there are currently no
relevant theoretical results on coreset construction for standard LASSO, which motivates our work
on developing such a coreset.

Coreset for LASSO. Let A € R™*? be a matrix and b € R". Define S € R"*" as a diagonal
matrix, where each row ¢ € [n] of both A and b is independently sampled with probability p;. Let
m denote the number of sampled rows. If row i is selected, set S;; = 1/ \/mp;, and set Sii=0
otherwise. We say that S' defines an (e, d)-coreset for the LASSO problem if, with probability at
least 1 — §, forall z € R? and A > 0, the following holds

1S(Az — b)|12 + Allz]l, € (1+¢) ([[Az — b3 + Allz[l1)

where € € (0, 1). The coreset size is defined as the number of non-zeros entries on the diagonal of
S, i.e., the number of sampled rows m.

Sensitivity sampling (Feldman & Langberg, 2011; (Chhaya et al.| |2020; (Woodruff & Yasudal 2023)
has been extensively studied in regression without regularization, where rows are sampled in propor-
tion to their importance in regression objective. A common challenge in directly applying sensitivity
sampling to LASSO lies in bounding the generalization error under ¢;-regularized objective using
standard empirical process tools. In the general framework of sensitivity sampling, [Braverman et al.
(2016) showed that, given sensitivity scores {o;}"_;, a (1 £ €)-approximate coreset typically re-

quires size O (%) ﬂ where G is the sum of the sensitivity scores and d denotes the VC dimension
of the given problem. This bound arises from applying a union bound to worst-case e-net meth-
ods and variance analysis. Consequently, directly applying traditional analysis to LASSO leads to
large coreset sizes, which can limit scalability in high-dimensional settings. To address this, empir-
ical process techniques and chaining methods have been proposed to reduce the Gd bound (Cohen
et al., 2015 Woodruff & Yasuda) 2023} [Munteanu & Omlor, 2024} [Bansal et al., 2024). However,
integrating empirical process theory with LASSO regression requires addressing the sparse and lo-
calized structure of the parameter space induced by the /;-penalty. In particular, the functional
space Q@ = {x € R? | h(z) + p(x) < R}, defined for a fixed radius R > 0, is determined by
the residual term h(x) = ||Ax — b||3 and the penalty term p(x) = A||z||; in the objective function.
The interaction between the residual and penalty terms results in a highly complex geometry for
Q, complicating the standard empirical process analysis. Additionally, the non-smooth boundary
introduced by the ¢1-penalty lead to large error bounds when applying the Bernstein inequality and
e-net analysis in (Chhaya et al., 2020). Therefore, developing a sensitivity sampling method that
constructs a coreset smaller than O(Gd) remains a key challenge for LASSO solvers.

1.1 OUR CONTRIBUTION

In this paper, we aim to improve upon existing standard bounds for LASSO coresets, which often
lead to large sizes due to the application of union-bound-based e-net methods. The main diffi-
culty arises from the intricate structure of the function space introduced by both the residual error

"'We write O(f(n)) to denote O(f(n) - poly log f(n)).
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and the ¢; regularization term. This complexity makes it difficult to directly apply standard em-
pirical process techniques for sensitivity sampling. To address this issue, we propose a localized
empirical process method that reformulates the sensitivity scores and sampling error in a more
tractable way. Specifically, we define a weighted Gaussian-based empirical process for the core-
set loss and decompose the overall function space into two independent components: the residual
space and the ¢, penalty space. Each of these components has lower complexity than the original
space 2, allowing for tighter bounds on Gaussian diameter and metric entropy within each com-
ponent. By carefully applying symmetrization techniques and leveraging the geometric properties
of these localized spaces, we derive upper bounds on the localized Gaussian diameter and met-
ric entropy. These bounds allow us to control the sampling error and construct a coreset of size
O(e~2d - ((logd)? - min{1,logd/A\?} + log(1/4))), achieving a (1 & ¢)-approximation for any
€,0 € (0,1)and A > 0.

To complement our upper bound analysis, we establish a matching lower bound on the coreset size
for LASSO regression via an information-theoretic method. By reducing the problem to a classical
sparse recovery setting, we show that any estimator achieving (1+e¢)-approximation from the coreset
must access a minimum number of rows to achieve sparse recovery task. In particular, in the regime
where \ = O(ﬁ), corresponding to the case where the number of nonzero entries can be large,

we prove that the number of required rows is at least (% log(d)). Our coreset size matches the
lower bound up to polylogarithmic factors in the dimension d. Empirical experiments show that our
proposed algorithm is at least 4 times faster than the direct LASSO solver and more than 9 times
faster on half of the datasets, while preserving high solution quality. Notably, on a dataset with 8
million samples, our method completes in only 15 minutes.

1.2 OTHER RELATED WORK

LASSO regression has been widely studied to perform various sparse models, such as variable se-
lection (Tibshirani, |1997; [Hans| 2010) and compressed sensing (Angelosante et al., [2009), which
was first introduced in (Tibshirani, |1996). Many optimization algorithms have been developed for
LASSO, including the fast iterative shrinkage-thresholding algorithm (Beck & Teboulle, 2009), co-
ordinate descent algorithm (Friedman et al., 2010), smooth ¢; algorithm (Schmudt et al., 2007), and
path following algorithm (Tibshirani & Taylor, 2011). LASSO regression uses ¢;-regularization to
relax the sparsity penalty (typically denoted by ||x||o), which is NP-hard (Natarajan, |1995). How-
ever, tuning the regularization parameter often leads to high computational costs. To address this,
several methods have been proposed. [Friedman et al.| (2010) provided a “glmnet” package using
coordinate descent method for LASSO solving. |Obozinski & Bach| (2012) proposed a stochastic
variant that improves convergence via random selection. Wang et al.| (2025) accelerated hyperpa-
rameter tuning using Markov resampling. To the best of our knowledge, there currently exists no
coreset construction method for the LASSO task.

Sensitivity sampling is a well-studied technique for coreset construction in both theory and practice.
It was first introduced by (Agarwal et al., 2004), and has since been widely applied to various
problems, including clustering (Feldman & Langberg, [2011}; Braverman et al., 2022; |Bansal et al.,
2024), linear regression (Drineas et al., 2006, Woodruff & Yasudal [2024;[2023; Munteanu & Omlor,
2024]), and matrix approximation (Dasgupta et al.,|2009; Cohen et al., 2015). For the ordinary least
squares regression, (Drineas et al., [2006) proposed a coreset algorithm based on the well-known
statistical leverage score sampling. Dasgupta et al.[(2009) extended this line of work to £,, linear
regression using well-conditioned basis method. More recently, a tight framework for constructing
coresets for unregularized regression was developed by (Woodruff & Yasuda,2023}2024} Munteanu
& Omlor, 2024)), leveraging chaining techniques from empirical process theory.

Sensitivity sampling techniques have been extensively studied for regularized regression prob-
lems. For logistic regression, sensitivity-based sampling has been successfully applied in a se-
ries of works Munteanu et al.| (2018)); |Curtin et al.| (2019); [Ma1 et al.| (2021)); Munteanu & Om-
lor| (2024). In particular, [Munteanu & Omlor| (2024) recently provided a strong coreset of size
O(ud/ €2) based on the Lewis weight sampling |Parulekar et al.| (2021), where ;. captures the com-
plexity of the input data distribution. For ridge regression, |Avron et al.| (2017) pioneered the use
of coreset techniques by showing that a weak coreset of size O(sdy(A)/€?) suffices to achieve a
(1 + €)-approximation. |[Kacham & Woodruff] (2020) developed the optimal deterministic coreset
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constructions for multi-response ridge regression. Their method selects O(sdy(A)/€) rows and
achieves a (1 + €)-approximation, with matching lower bounds that establish the tightness of the
dependence on sdy(A). In the regime where n > d, the statistical dimension dy(A) satisfies
sdx(A) < rank(A4) < d, and increase in regularization parameter A can lead to lead to smaller
coreset sizes for ridge regression.

In the broader context of norm-regularized regression, (Chhaya et al.| (2020) considered the coreset
construction for £, regularized regression problems of the form || Az — b[|) + A[|z[|, where p > 1.
qrt+t
- (1+M/[IANT,)
Moreover, they first showed that when r # s, no strong coreset can be smaller than the optimal core-
set size for the unregularized term || Az — b[|7. The result applies in particular to the LASSO, where
p=r=2and g = s = 1. To address the LASSO objective, (Chhaya et al.|(2020) proposed a mod-
ified formulation in which the regularization term ||z||; is replaced with ||z||%, enabling the use of
ridge regression coreset techniques|Avron et al.|(2017) to construct a coreset of size O(sdy(A)/€?).
However, this modification introduces cross terms among the components of x, which may weaken
the sparsity-inducing effect of the standard ¢, regularization. In this paper, the proposed coreset
for standard LASSO objective has size O(e~2d - ((log d)® - min{1,log d/)?} + log(1/5))), which
preserves the O(d/e?) bound when ) approaches to 0 or co. In addition, sketching-based methods
using randomized projections have also been applied to the LASSO problem in recent [Mai et al.
(2023). Designing sensitivity sampling methods for constructing coresets for LASSO remains an

interesting open problem.

They provided a strong coreset of O( ) based on the sensitivity sampling techniques.

2 PRELIMINARIES

Given a positive integer n, let [n] = {1,2,...,n}. For a d-dimensional vector € R, the £,-
norm of z is ||z, = (Z?Zl z¥)1/?. For an n x d matrix A, the induced p-norm is || Al|(,,), which
is defined as || Al|(p) = sup, . zerd % The £>-norm (or spectral norm) || Al|(2) corresponds

to the maximum singular value of A. For a matrix A € R"*%, the ¢, norm of A is || A, =
>, Z?:l AP)1/, and the Frobenius norm of A is [|Allr = (37, ijl AZ)V2 Let A;,
be the i-th row of A, and let A;; be the entry in the i-th row and j-th column of A. Let AT be
the transport matrix of the matrix A. The Singular Value Decomposition (SVD) of matrix A is
A =UXVT, where U € R"™ and V € R are orthogonal matrices, and > € R™*4 jg a
diagonal matrix containing the singular values o1, ...,0,, where r < min{n,d}. For a vector
z € R™ and weight vector w € RZ, the weighted £,-norm is ||z||,, = (>, wi\zi|p)1/p, and
the weighted £, norm is ||| cc = Max;epy |z;|. An e-net for a set K in a metric space (X, d)
is a subset T' C K such that for every point z € K, there exists y € T with d(z,y) < . Given a
parameter A > 0, we define the statistical dimension of a matrix A as

r

1
A =2 1T

i=1

where 7 denotes the rank of A. For any vector z € RY, let supp(z) = {i € [d] | ; # 0} denote its
support, and write |supp(x)| for the number of nonzero coordinates.

¢5 Leverage Scores. The (y-norm leverage score of the i-th row of matrix A is 7, 2(A) =
IAS =3

: — T2
SUP Rt 452 - Alternatively, the leverage scores can be expressed as 7; 2(A) = ||e; U||35, where

U € R™*4 ig an orthonormal basis for the column space of A (Cohen et al.,[2015). Therefore, the
sum of the {5 leverage scores is satisfies Zle Ti2(A) =d.

3  SENSITIVITY SAMPLING FOR LASSO REGRESSION

In this section, we propose a sensitivity sampling algorithm for LASSO regression, called LASSO-
Sens. The main goal is to derive a better upper bound on the coreset size using empirical process
methods applied to the LASSO objective. The primary technical challenge lies in handling the in-
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Algorithm 1 LASSO-Sens

Input: a matrix A € R"*¢, avector b € R", aregularized parameter ), the over-sampling parameter
a, the coreset size T, a set of approximate sensitivity scores {; }7_;, and a parameter ¢ > 0
Output: a set of indices @, and a weight vector w € R%,

1: Initialize an empty set (), and let w be an n-dimensional zero vector.

2: Initialize the total sensitivity G = 0.

3: fori < 1,2,...,ndo

4 Compute the sampling probability for the i-row p; = min{1, a(0; + 2)}.
5. Update G =G + ;.

6: end for
7
8
9
0
1

fort+ 1,2,...,T do

: Sample a row index i € [n] with probability p;, and set the weight w; = 1/,/p;.
Q<+ QuUit.

. end for

: return @ and w.

teraction between the residual loss and the /1 penalty, as standard empirical process techniques typ-
ically rely on analyzing the ratio between them, which is difficult to handle and may lead to weaker
coreset size bounds. To address this issue, we provide a localization method for coreset within the
empirical process framework, which decouples the problem into two components over localized re-
gions. This allows us to analyze the empirical process in a localized space involving only a single
term. Over these localized sets we develop a weighted Gaussian empirical-process framework and
derive upper bounds on the Gaussian diameter, covering numbers, and metric entropy. These in-
gredients yield a coreset of size O(e% - ((log d)® min{1, la%d} +log(1/6))), which nearly matches
the lower bound in the regime A = O(1/+/d). The detailed algorithm for constructing the LASSO
coreset is given in Algorithm|I]

In sensitivity sampling, the sensitivity score of the i-th row for LASSO objective is defined as

(A — b)ill3 + AL
Qi = sup )
vers Az =] + Mals

(D

where A > 0. The definition of p; is to capture the worst-case contribution to the LASSO objective,
with the regularization term A||x||; ensuring that each row contributes equally to sampling. Bound-
ing the score g; by the /5 leverage score 7; with an additive 1/n in this paper is straightforward; see
formal details Section[A.T]in Appendix.

The LASSO-Sens algorithm mainly consists of a sampling procedure for coreset construction. We
initialize an empty set of indices () and a zero vector w. Then, we calculate the sampling probability
pi = min{1, a(o;+ =)} and update the total sensitivity G by adding o;, where o represents the over-
sampling parameter. Next, the algorithm then randomly selects a row index i € [n] with probability
s, assigns the weight of the i-th row to 1/,/p;, and updates the set of indices to @ = Q U {i}. By
repeating this sampling process 7" times, Algorithm[I]returns the final set of row indices @ and the
corresponding weight vector w.

Before providing the theoretical guarantees for the coreset, we first present an equivalent transfor-
mation of the LASSO objective and its sensitivity scores. Let A’ = [A — b] € R™*(4+1) be the
matrix obtained by concatenating A and b, and ' = [z 1] be the vector obtained by concatenating x
with 1. Using A’ and 2/, the original objective function min,, || Az — b||3 + A||«||; is rewritten as

min |A"2"[13 + All’[|1-
x/G]RdJrl,x’cHl:l

Thus, we reformulate the sensitivity score p; as

I(A"2")i3 + 2 12|l

> 0.
—1 A3+ Al

0i =

/' eRd+1 79”214_1
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3.1 SAMPLING ERROR ANALYSIS

In this subsection, we develop a localized empirical process framework to analyze the sampling
error introduced by sensitivity sampling in the LASSO objective. To achieve this, we decompose the
function space into the residual and penalty components, and localize our study to their intersection.
This separation enables us to independently bound the Gaussian complexity and metric entropy of
each component using a combination of weighted chaining techniques. By constructing multi-scale
e-nets and applying concentration inequalities for Gaussian processes, we establish an upper bound
on the coreset size that controls the sampling error.

We now analyze the sampling error introduced by sensitivity sampling. Let {p;} ; denote the
sampling probabilities associated with each row of the augmented matrix A’. Define the sampling
and rescaling matrix S € R™*" as

1, with probability p;
0, otherwise

S =w'V, where ¥ = diag(¢1,. .., 0n), 1h; = { , ()

and w is a vector of rescaling weights. The matrix W is diagonal with m nonzero entries in expecta-
tion. Let 7 = {x |z € R 24,1 # 0}, and let Q@ = {x | v € T, ||A'z||% + \|z||; = 1} be the
unit ball of the LASSO objective. Then, we define the sampling error £ over the domain 2 as

€= sup [ISA |13 + Al [lx = (1A [[3 + Al [|1)]
z'€

= sup |[[SAZ'||3 — [|A"2[I3] -
z'eQ

Our goal is to bound £ by ¢, leading to the inequality
[SA'Z'[|3 + All’[ls < (L £ ) (JA2"[13 + All2’[|1)

for every =’ € ). To bound £ using the chaining method (Cohen & Peng) 2015} Koltchinskii, 2001}
Hu et al}[2022), we analyze the moments of £ with the symmetrization technique, which allows us
to construct a Gaussian reduction as follows. (A detailed proof of Lemma[I]is given in Appendix
Lemma 3.)

Lemma 1. Let A’ € R"*HY) ler S be a random sampling matrix, and let Q) denote the set of the
sampled rows from A’. For A > 0 and integer | > 2, the following inequality holds

l

Es |l < (2m)*EsBynion sup | giwi |(Aia) |
z i€Q

where g ~ N(0, I,,) represents a Gaussian vector with independent entries.

We bound the sampling error £ by analyzing the associated Gaussian process, as described in
Lemma [I} To handle higher-order moments on £, we apply a moment bound from Woodruff &
Yasuda| (2023), which uses Dudley’s tail inequality for Gaussian processes. Consequently, we ob-
tain the following inequality on the sampling error

Es[|€]'] < (CMeg) (Mg/D) + O(VID)', 3)

where C'is an absolute constant, M ¢ denotes the metric entropy of the Gaussian process, and D is
the Gaussian diameter. (The detailed definitions of M ¢ and D are provided in the following.)

By appropriately choosing the parameter [ and bounding both the metric entropy M ¢ and the Gaus-
sian diameter D of the Gaussian process, we can ensure that E5[|€|'] < e, which leads to a suffi-
ciently small coreset size m. We now decompose the unitball £ = {z | x € T, ||A’ 2|3 + \|z|[1 <
1}, which arises from the residual term ||A’x||> and the ¢; penalty. (The proof of Lemma [2] is
provided in Appendix Lemma 4.)

Lemma 2. Let A’ € R™*(4+Y) pe g matrix and \ > 0. Define the sets Q = {x | x € T, ||A'x|3 +
Mzlly <1} and L={z |z € T,||A'z||3 < 1and |z|\ < ;}. Then, it holds that Q2 C L.
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Define By(A’') = {z | « € T, ||A’z||3 < 1} as the unit ball in the residual space, and B;(}) = {z |
x € T,|z[1 < 5} as the unit ball in the ¢;-penalty space. By Lemma we have

1
A )
This allows us to proceed with bounding both the Gaussian diameter D and the metric entropy Mg
for the convex sets By (A’) and B, (%), respectively. Let M = WA’, where ¥ € R™*" is a diagonal
sampling matrix. In this formulation, each nonzero row of M corresponds to a selected row of A’.

E g EA/ = BQ(A/) ﬂBl(

We start by bounding the Gaussian diameter D by relaxing the pseudo-metric dx using the max-
imum /5 leverage score and A. Define the convex set Ly = {y = Mz | v € La}. Let
T = SUpucr,, IMa'||3 ., be the maximum of /, leverage score. Next, we prove that the diam-
eter D(L)s) with dx is bounded as the following inequality. (Detailed proof of Lemma [3|is given
in Appendix Lemma 5.)

Lemma 3. Let M € R™*@HN) and let w be the weight vector. Define the pseudo-metric
1/2

m m 2
dx(y,9') = | Bgmnvo,1) | D giwilyil® = Y giwily}?
=1 =1

Sforany y,y’ € L. Then, the diameter D(L pr) with respect to dx is bounded by
D(Lyr) < O(1- /log (d(A2 A 1)) A (AWA)).

To obtain a precise bound for the Gaussian process over Lj;, we apply the chaining method to
construct a sequence of ¢-nets at varying scales ¢t > 0, which capture the convex structure of £ on
L. Utilizing this chaining method, we can derive a bound on Eg|€|' via the covering numbers
of the sequence of ¢-nets. Thus, we aim to bound the minimal number of weighted unit £, (or
{+,) balls required to cover the convex set £y for p € [1,00). We define the weighted unit ball
of the residual space By, 2(M) as By 2(M) = {y = Mz | x € T,|Mz|?2 , < 1}, and define

w,2 —

Loy = Bua(M)NBi(1/A). Let G =1+ & =14 sup,epr,, H|SA’$’||§ — HA/I‘/H%‘

To bound the metric entropy entropy of the convex set B, o(M), we first define the weighted unit
by p-ball as By, ,(M) = {z | z € T,|[Mz|2,, < 1}. Let T, denote the t-net of By, 2(M) with
respect to the weighted ¢,,-norm, i.e., a finite subset of B,, 2 (M) such that every point in B,, (M) is
within distance ¢ (measured in || - ||,,,») from some point in 7,,. We define N (By, 2(M), || - ||w.p, t) as
the minimal cardinality of such a set 7, and the metric entropy of B, o(M) w.s.t the weighted £,,-
norm is then defined as log N (B 2(M), || - ||w,p, t). (Detailed definitions are provided in Appendix,
Definitions 11 and 12.)

Lemma 4 ((Munteanu & Omlor, 2024), slightly modified). Let2 < p < oo, and let M € R™* (d+1)
be an orthonormal matrix with a weight vector w € R’Z”O. Then, the following inequalities hold

m?/Pp.r ogm-T
log N(Bw’2(M)7 || : ||w,p>t) <0(1) - Zp and log N(Bw,2(M)7 Il - ”w,omt) < O(l)lgti?'

t

For bounding the metric entropy of the convex set B (%), we aim to bound the number of unit
B-balls needed to cover the B;-ball. Specifically, the covering process can be decomposed into
two steps: first, cover the Bsy-ball using B.-balls, and second, cover the Bj-ball using Bs-balls.
The B; ball has a unique geometric structure, with a large portion of its volume concentrated near
its center, as pointed out in (Vershyninl [2018). This concentration implies that fewer small-radius
balls are required to cover By, compared to naive volume-based estimates. While a straightforward
volumetric argument yields a worst-case covering number of O((1 4 1)%), this bound can be quite
loose. To obtain a tighter estimate, we leverage the Sudakov Minoration inequality (Vershynin,
2018), which provides an upper bound on the covering number N (Bj, B, t) with respect to the
{ norm and covering radius t. (Detailed proof of Lemma[3]is given in Appendix Lemma 13.)

Lemma 5. Let p > 1 be a parameter, and let B, = {x € R? : ||z, < 1} be the unit ball for the ¢,

norm. Then, log N (B1, Boo, t) < O(lof ).

To bound the metric entropy of these ¢-nets, we need to calculate the following integral

Mgg/ \/1ogN(,cw,M,dX,t) dt.
0
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For diameters ¢ > D(L,, ar), the covering number satisfies log N (L, ar, dx,t) = 0, which implies
that any single vector y € L,, as serves as a t-net. Therefore, we only need to focus on the case
where the diameter ¢ lies within the interval [0, D(L, a)]. We derive the following inequality,
whose proof provided in Appendix Lemma 19.

Lemma 6. Let M € R™*(4HD) be q matrix and X be a positive parameter. Then, the metric entropy
Mg of Ly, mr satisfies

N 1
/ \/1ogN(/:w,M,dX,t) dt < O(G - /7 logmlogd - min{1, @})7
0

where T is the maximum weighted {s-leverage score of M.

We now present the main result, which provides a bound on the coreset size required to guarantee
that E|€|' < e. (The proof is provided in Appendix, Theorem 22.)
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Figure 1: LASSO regression loss comparison across varying coreset sizes for A = {0.5, 10}.

Table 1: Comparison results of loss, runtime, and sparsity on CTs dataset (n = 53,500, d = 386)
for varying coreset sizes at A = 0.5.

Metrics Algorithms Coreset Sizes
1d 2d 5d 10d 15d 20d
LASSO 24.83+0.51
Loss LASSO-Sens  26.77+1.95 24.96+0.26 24.8440.01 24.83+0.01 24.83+0.01 24.83+0.01
LASSO-Uniform 41.69£11.93 30.75+4.11 25.85+1.48 25.28+0.32 25.21+0.26 25.061+0.27
. LASSO 691.72
Time (s) LASSO-Sens 5.80 8.12 10.28 16.67 23.10 37.37
LASSO-Uniform 6.84 8.23 9.85 18.86 26.73 42.03
. LASSO 315
Sparsity  LASSO-Sens 379 348 330 313 312 317
LASSO-Uniform 379 359 336 319 320 317

Theorem 7. Ler A" € R0+ be an input matrix, S be a random sam-
pling matrix, and let ¢,6 € (0,1) and N > 0 be a parameter. If « =

O(g% . (log(dlog(l/é))(lnd)2 -min{l, ljgzd}—kln(l/(S))) and for all © € [n] it holds
that

1
pi > min{1, a(r;2(A") + ﬁ>}’
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where 7; 2(A") denotes the U5 leverage score of the i-th row of A'. Then, with failure probability at
most 0, it holds that, Vx € R4t1 ,Tar1 = 1,

ISAE]3 + Allz ]l < (1% e)([|A (3 + Alll1),

~ 3
and the coreset size is at most m = O (d(l‘%d) - min{1, lo/\gzd} + 4 log 5)

To establish a lower bound on the coreset size m, we utilize a reduction from the support recovery
for sparse recovery problem. We consider the task of recovering the support of a sparse vector x*,
and apply information-theoretic techniques for LASSO regression problem. Our analysis shows
that, under certain conditions, any algorithm achieving a (1 + €)-approximation from the coreset
requlres at least (5 4 Jog d) rows. Since Mai et al(2023) pomted out the lack of scale-invariance
in the LASSO objectlve we normalize the inputs by assuming || A||z < 1 and ||b||2 < 1. Detailed
proofs are provided in Appendix [B.4]

Lemma 8. Let A ¢ R"*% b c R", and X € (0,1). Assume that | Al|z < 1 and ||b||z < 1. Let S be
a diagonal sampling matrix with m non-zero entries. Suppose there exists an estimator that returns
T = argmingcga ||SAz — Sb||3 + \||z||1 satisfies

IAZ — b3 + Al|Z[l1 < (1+¢) - min (|| Az — blI3 + Alll).

Then, the coreset size m must satisfy

C[0GEL), A =9F)
T 0L logd), ifA=0(L)"

é\Hé\

4 EXPERIMENTS

In this section, we compare three algorithms for solving the LASSO regression problem: direct
optimization using the full dataset, and solving LASSO on subsamples selected via sensitivity sam-
pling and uniform sampling, respectively. All experiments are conducted on a machine with 72 Intel
Xeon Gold 6230 CPUs and 340 GB of memory, and all implementations are executed in MATLAB
2017A.

Datasets. We evaluate the three algorithms on 4 datasets: Synthetic (n = 10,000, d = 200), medi-
amill (n = 30,993,d = 120), CTs (n = 53,500,d = 386), mnist8m (n = 8,000,000,d = 784).
The synthetic dataset is generated by constructing a matrix A € R!0000x200 " where a small
number of rows have high leverage scores. This construction follows the method described in
(Chhaya et al., 2020). The resulting matrix is designed to exhibit a non-uniform leverage score
distribution while maintaining a well-conditioned structure. For all datasets, the response vec-

tor is defined as b = Az + 1075 - Hg”i - e, where # € {0,1}% is a randomly generated sparse

vector, and e is a noise vector. All datasets used in our experiments are publicly available
at: https://archive.ics.uci.edu/datasetslandhttps://www.csie.ntu.edu.
tw/~cjlin/libsvmtools/datasets/.

Algorithms. In our experimental evaluation, we compare the following three algorithms:

* LASSO. The standard LASSO regression is solved using the FISTA method as described
in (Beck & Teboulle), [2009).

* LASSO-Sens. Our proposed approach (see Algorithm 1), which first constructs a coreset
via sensitivity-based sampling and solves the LASSO problem on the coreset using FISTA.

* LASSO-Uniform. A baseline that first uniformly samples rows from the input data and
then applies FISTA to solve the LASSO problem on the sampled data.

Methodology. We evaluate algorithm performance using the loss function f(z) = ||Az — b||3 +

Al|x||1, where a lower value of loss indicates a better solution. To evaluate the sparsity of the solu-
tion, we follow the method in (Chhaya et al.l 2020) by setting any entry of = with an absolute value
less than 10~ to 0, and we count the remaining nonzero entries. Our experiments test three meth-
ods: LASSO, LASSO-Sens, and LASSO-Uniform on four datasets. To ensure a fair comparison, we


https://archive.ics.uci.edu/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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test each algorithm 10 times and report the average loss, runtime, and sparsity. To compare the per-
formance of different sampling strategies, we run LASSO-Sens and LASSO-Uniform across a range
of coreset sizes and regularization parameters, with the values A € {0.5,1,5, 10}. Specifically, the
coreset size is selected from {1, 2,5, 10, 15,20} X d for each dataset.

Results for the LASSO Regression. As shown in Figures [I| and [2] (see Appendix), the LASSO-
Sens algorithm achieves loss values that closely match those of the exact LASSO solver as the
coreset size increases, particularly for A = 0.5 and A = 10. The comparison of performance
metrics across four datasets under varying values of A and coreset sizes are reported in Table [1|and
Appendix Tables [2}f5] including average loss, standard deviation, runtime, and solution sparsity. On
the Synthetic, Mediamill, and CTs datasets, LASSO-Sens is at least 4 times faster than LASSO,
and up to 18 times faster on CTs. On mnist8m dataset, LASSO-Sens obtains a feasible solution
within 15 minutes, whereas the standard LASSO solver fails to return a solution even after 48 hours.
Furthermore, the LASSO-Sens algorithm consistently outperforms the LASSO-Uniform in terms of
both accuracy and sparsity on mnist8m dataset. At a coreset size of 10d, the sparsity of the solutions
produced by LASSO-Sens closely matches that of the exact LASSO solver across all datasets. These
experimental results show the sensitivity sampling in accelerating the LASSO regression process
while preserving high-quality and the sparsity of solutions. All of these findings, together with our
Theorem 8, confirm the effectiveness of sensitivity sampling for LASSO regression.

5 CONCLUSION

In this paper, we propose the first coreset construction method for LASSO regression via sensi-
tivity sampling algorithm. Directly applying existing coreset techniques for regularized regression
to LASSO yields a coreset size bound of O(Gd/€?). To achieve a smaller coreset, we propose
an empirical process analysis that addresses the complex functional space arising from the inter-
action between the residual error and ¢;-penalty in LASSO, thereby achieving a coreset of size
O(e~2d - ((logd)® - min{1,log d/A?} + log(1/4))). An interesting future direction is to study how
our method can be extended to the elastic net and other regression problems involving more complex
regularization.
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in the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

This paper is committed to ensuring the reproducibility of our work. To ensure the completeness of
the comparison, we have provided detailed descriptions of our proposed method and its components
in Section 4 of the main paper. To enable accurate replication, we clearly specify all hyperparame-
ters, training procedures, and evaluation protocols in the same section. Additional implementation
results, including figures and tables, are provided in the Appendix.

REFERENCES

Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Approximating extent measures of
points. Journal of the ACM, 51(4):606-635, 2004.

Shady Altelbany. Evaluation of ridge, elastic net and lasso regression methods in precedence of mul-
ticollinearity problem: a simulation study. Journal of Applied Economics and Business Studies, 5
(1):131-142, 2021.

Daniele Angelosante, Georgios B Giannakis, and Emanuele Grossi. Compressed sensing of time-
varying signals. In Proceedings of the 16th International Conference on Digital Signal Process-
ing, pp. 1-8, 2009.

10



Under review as a conference paper at ICLR 2026

Haim Avron, Kenneth L Clarkson, and David P Woodruff. Sharper bounds for regularized data
fitting. In Proceedings of the 17th Annual Conference on Approximation, Randomization, and
Combinatorial Optimization: Algorithms and Techniques., pp. 27:1-27:22, 2017.

Nikhil Bansal, Vincent Cohen-Addad, Milind Prabhu, David Saulpic, and Chris Schwiegelshohn.
Sensitivity sampling for k-means: Worst case and stability optimal coreset bounds. In Proceeding
of the 65th IEEE Annual Symposium on Foundations of Computer Science, pp. 1707-1723, 2024.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.

Pierre C Bellec. Localized gaussian width of m-convex hulls with applications to lasso and convex
aggregation. Bernoulli: official journal of the Bernoulli Society for Mathematical Statistics and
Probability, 25(4A):3016-3040, 2019.

Lindenstrauss J Bourgain J and Milman V. Approximation of zonoids by zonotopes. Acta Math,
162:73-141, 1989.

Vladimir Braverman, Dan Feldman, Harry Lang, Adiel Statman, and Samson Zhou. New frame-
works for offline and streaming coreset constructions. arXiv preprint arXiv:1612.00889, 2016.

Vladimir Braverman, Vincent Cohen-Addad, H-C Shaofeng Jiang, Robert Krauthgamer, Chris
Schwiegelshohn, Mads Bech Toftrup, and Xuan Wu. The power of uniform sampling for coresets.
In Proceedings of the 63rd IEEE Annual Symposium on Foundations of Computer Science, pp.
462473, 2022.

Bernd Carl. Inequalities of bernstein-jackson-type and the degree of compactness of operators in
banach spaces. In Annales de ’institut Fourier, volume 35, pp. 79-118, 1985.

Rachit Chhaya, Anirban Dasgupta, and Supratim Shit. On coresets for regularized regression. In
Proceedings of the 37th International Conference on Machine Learning, pp. 1866—1876, 2020.

Kenneth L Clarkson. Subgradient and sampling algorithms for ¢; regression. In Proceedings of the
16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 257-266, 2005.

Michael B Cohen and Richard Peng. ¢, row sampling by lewis weights. In Proceedings of the 47th
Annual ACM Symposium on Theory of Computing, pp. 183-192, 2015.

Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and Aaron
Sidford. Uniform sampling for matrix approximation. In Proceedings of the 6th Innovations in
Theoretical Computer Science Conference, pp. 181-190, 2015.

Ryan R Curtin, Sungjin Im, Ben Moseley, Kirk Pruhs, and Alireza Samadian. On coresets for
regularized loss minimization. arXiv preprint arXiv:1905.10845, 2019.

Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W Mahoney. Sampling
algorithms and coresets for ¢, regression. SIAM Journal on Computing, 38(5):2060-2078, 2009.

Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Communications on Pure and Applied
Mathematics, 57(11):1413-1457, 2004.

Petros Drineas, Michael W Mahoney, and Shan Muthukrishnan. Sampling algorithms for /5 regres-
sion and applications. In Proceedings of the 70th Annual ACM-SIAM Symposium on Discrete
algorithm, pp. 1127-1136, 2006.

Dan Feldman and Michael Langberg. A unified framework for approximating and clustering data.
In Proceedings of the 43rd annual ACM symposium on Theory of computing, pp. 569-578, 2011.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2010.

Chris Hans. Model uncertainty and variable selection in bayesian lasso regression. Statistics and
Computing, 20(2):221-229, 2010.

11



Under review as a conference paper at ICLR 2026

Lunjia Hu, Charlotte Peale, and Omer Reingold. Metric entropy duality and the sample complexity
of outcome indistinguishability. In Proceedings of the 32nd International Conference on Algo-
rithmic Learning Theory, pp. 515-552, 2022.

Lingxiao Huang, Zhize Li, Jialin Sun, and Haoyu Zhao. Coresets for vertical federated learning:
Regularized linear regression and k-means clustering. Proceedings of the 36th Annual Conference
on Neural Information Processing Systems, 35:29566-29581, 2022.

Praneeth Kacham and David Woodruff. Optimal deterministic coresets for ridge regression. In
Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics, pp.
4141-4150, 2020.

Vladimir Koltchinskii. Rademacher penalties and structural risk minimization. /[EEE Transactions
on Information Theory, 47(5):1902-1914, 2001.

Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and processes,
volume 23. Springer Science & Business Media, 1991.

Michael W Mahoney et al. Randomized algorithms for matrices and data. Foundations and Trends®
in Machine Learning, 3(2):123-224, 2011.

Tung Mai, Cameron Musco, and Anup Rao. Coresets for classification—simplified and strengthened.
pp. 11643-11654, 2021.

Tung Mai, Alexander Munteanu, Cameron Musco, Anup Rao, Chris Schwiegelshohn, and David
Woodruff. Optimal sketching bounds for sparse linear regression. In Proceedings of the 26th
International Conference on Artificial Intelligence and Statistics, pp. 11288-11316, 2023.

Alexander Munteanu and Simon Omlor. Optimal bounds for £,, sensitivity sampling via { augmen-
tation. In Proceedings of the 45th International Conference on Machine Learning, pp. 36769—
36796, 2024.

Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler, and David Woodruff. On coresets
for logistic regression. Proceedings of the 32nd Annual Conference on Neural Information Pro-
cessing Systems, 31, 2018.

Balas Kausik Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Comput-
ing, 24(2):227-234, 1995.

Guillaume Obozinski and Francis Bach. Convex relaxation for combinatorial penalties. arXiv
preprint arXiv:1205.1240, 2012.

Aditya Parulekar, Advait Parulekar, and Eric Price. L1 regression with lewis weights subsampling.
In Proceedings of the 24th International Workshop on Approximation Algorithms for Combinato-
rial Optimization Problems and the 25th International Workshop on Randomization and Compu-
tation, pp. 49:1-49:21, 2021.

Mert Pilanci and Martin J] Wainwright. Randomized sketches of convex programs with sharp guar-
antees. IEEE Transactions on Information Theory, 61(9):5096-5115, 2015.

Mark Schmidt, Glenn Fung, and Rémer Rosales. Fast optimization methods for ¢; regularization:
A comparative study and two new approaches. In Proceedings of the 11th European Conference
on Machine Learning, pp. 286-297, 2007.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267-288, 1996.

Robert Tibshirani. The lasso method for variable selection in the cox model. Statistics in Medicine,
16(4):385-395, 1997.

Ryan J Tibshirani and Jonathan Taylor. The solution path of the generalized lasso. The Annals of
Statistics, 39(3):1335, 2011.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge University Press, 2018.

12



Under review as a conference paper at ICLR 2026

Martin J] Wainwright. Information-theoretic limits on sparsity recovery in the high-dimensional and
noisy setting. IEEE transactions on Information theory, 55(12):5728-5741, 2009.

Wei Wang, Martin J] Wainwright, and Kannan Ramchandran. Information-theoretic limits on sparse
signal recovery: Dense versus sparse measurement matrices. /[EEE Transactions on Information
Theory, 56(6):2967-2979, 2010.

Yuhang Wang, Bin Zou, Jie Xu, Chen Xu, and Yuan Yan Tang. Alr-ht: A fast and efficient lasso
regression without hyperparameter tuning. Neural Networks, 181:106885, 2025.

David P Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends® in
Theoretical Computer Science, 10(1-2):1-157, 2014.

David P Woodruff and Taisuke Yasuda. Coresets for multiple ¢, regression. In Proceedings of the
41st International Conference on Machine Learning, pp. 53202-53233, 2024.

P David Woodruff and Taisuke Yasuda. Sharper bounds for ¢, sensitivity sampling. In Proceedings
of the 40th International Conference on Machine Learning, pp. 37238-37272, 2023.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 67(2):301-320, 2005.

13



Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 MISSING PROOF OF SENSITIVITY SCORES

In this subsection, we provide an upper bound on the sensitivity score p; using the ¢5 leverage score
and a fixed term 1/n. While this result is not fundamentally new (see, e.g., (Mahoney et al., 2011;
Woodruff] |2014; |Chhaya et al.| |2020)), we slightly extend the well-conditioned basis method to the
LASSO objective.

Definition 1. (/5 Well-Conditioned Basis.) Given a matrix A € R"*4, we define a (\/E7 1,2) well-

conditioned basis for A such that [|U||s < v/d, and Yz € R?, ||z||2 < ||Uz||2, where U € R"*% is
the orthogonal matrix obtained from SVD of A.

Lemma 2. Let A’ € R"*(@+1) and let A\ > 0 be a regularized parameter. Then, the estimated
sensitivity score ; satisfies 9; = 27, 2(4’) + % > 0;, where 7; 2(A’) denotes the ¢y leverage
score of the i-th row of A’. All sensitivity scores 9; can be computed in time O(nnz(A’) logn +
d3log (n/d)log d), where nnz(A’) denotes the number of non-zero entries in A’. Moreover, the

total sensitivity is bounded as G < 2d + 3.

Proof. Let A’ = UV, where U € R™*(4+1) is a (/d + 1, 1, 2)-well-conditioned basis for A’.
Denote the i-th row of A’ as A, = u, V, where u, is the i-th row of U. For any 2’ € R4*1, define
z=Va/,sothat Az’ = Uz. Let T = {a' € R™" : 2/, | = 1}. Then, we obtain

A2+ A PP AV P 1 e
0; = sup = sup < sup + — < 7oA+ —.
A VP T AN TS PV o e T/ R S

Thus, the total sensitivity satisfies G = >0 0, < Y1, (12(A)+ 1) < d+ 2, where
7;.2(A’) = ||u;]|3 denotes the ¢5 leverage score of the i-th row. Furthermore, by extending Lemma 8
of (Cohen et al.,[2015), the approximate leverage score 7; 2(A’) < 27; 2(A’) can be computed in time
O(nnz(A")logn + d*log dlog(n/d)). Substituting this into the bound yields g; < 27;2(A’) + 1
and G < 2d + 3.

B OMITTED PROOFS OF SAMPLING ERROR ANALYSIS

In this section, we reduce the empirical process associated with the sampling error £ to a Gaus-
sian process using the symmetrization technique. The sampling error £ is defined on the set
Q={zeT||A}+Az|, =1}, where T = {2 € R¥*! | 441 = 1}. To analyze the func-
tional complexity, we consider the larger set 7/ = {x € R*"! | 2441 # 0}, since any # € T can
be obtained by scaling an element of 7’. Specifically, for each = € T, there exists a scalar ¢ and
an &’ € T’ such that x = ¢ - /. This inclusion implies that 7 C 7’. Consequently, we define
the extended domain €’ = {x € T' | ||A’[|3 + A|z[1 = 1} and focus our subsequent analysis on
this set using tools from Gaussian process theory, particularly those developed for unregularized
regression in Woodruff & Yasudal (2023)).

Lemma 3. Let A/ € R"*(@+1D) et S be a random sampling matrix, and let ) denote the set of the
sampled rows from A’. For A > 0 and integer [ > 2, the following inequality holds

l

Es|€]' < (2m)/*EsEgnno.1,) sup > giwi |(Av)?|
TS ieQ

where g ~ N (0, I,,) represents a Gaussian vector with independent entries.

Proof. We consider the simple convex function |a + b|' for a,b € R, where [ > 1 is a positive
number. Given a random sampling matrix S, the linearity of expectation implies

E [|SA 2]l + Alzll] = | A"2]3 + Allz]

for any vector z € R¥*1. Next, without loss of generality, we assume that || A'z|]3 + A||z|; = 1;
otherwise, we can rescale x by a constant to satisfy this condition.
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We now analyze the following quantity
1
£ =Es sup [SA2]|3 + Al — 1
Az (|3+A]z]l1=1,2€T"
Let S’ be an independently copy of S. Applying Jensen inequality, we have
Es sup IISA |3 + Ml — (|43 + Az
A’z (|3+ Azl =1,2€T"
1
=Es sup [[SA"z]|3 — [ A"[|3 + 0]
A’z (|3+A]z]1=1,2€T"
=Es sup 1SA |3 — [|A"z]3 + Es ([|A"z]13 — |1S"Az|3)]"
A’z (|5+A]z]l1=1,2€T"

l
<Ess sup [1SA 2|3 — Es/||S"A'e|3]
larel3+Aleli=1,0€T"

!
< Eg,s sup [ISA |5 — |S"A'=)3] .
Az |3+ |z]1=1,2€T"

Using a standard symmetrization argument (Vershynin, 2018)), we obtain

Es,s sup ’||SA'$||§ - ||S'A’x||§|l
Az |5+ |z]|1=1,2€T"

< 2'Eg, sup > ewil (A7)al?
A zlI34+A]zll=1,2€T" |;c0

2!(r/2)"*Es,g sup > gowil (A7)l
| Arali3+Allell =126 |/

where € ~ {£1}" are independent Rademacher variables in the first inequality, and the second in-
equality follows from the Rademacher—Gaussian comparison theorem (Ledoux & Talagrand, |1991)
with g ~ N (0, I,,) a standard Gaussian vector in R™. O

We now provide a detailed analysis of the localization of the empirical process over the residual
space Bo(A') = {z | x € T',||A’z|]2 < 1} and the ¢;- -penalty space Bi(1/A) = {z | z €
T, ||lzllx < 1}. In the following lemma, we show that the set ' is contained in the intersection of
these two sets.

Lemma 4. Let A’ € R"*(4*1) be a matrix and A > 0. Define the sets Q = {z | z € T, ||A’z|3 +
Mzl <1}and £ ={z |z € T,||A'z||3 < 1and ||z||; < +}. Then, it holds that Q C L.

Proof. Let the vector z € ). By the definition of the set €2, we have
A )3 + Ml = 1.

Since || A’z||3 is non-negative, we can derive
A"z =1 = Allz]]s.

By the equation ||A’z||3 = 1 — A||z|1, it follows that

1
T=Alali 20 = Azl <1 = i<,

Next, from the equation || A’z||3 + A||z||1 < 1, we can express || A’x|3 as follows
||A’w||§ = 1= Az
Since we have already shown that ||z||; < &, we have
[A"2]3 =1 = Allz[ls < 0.
Therefore, we obtain
|| <1 [ Aalls < 1.

In summary, for any x € €, the conditions ||A’z||; < 1 and ||z|; < } are satisfied. Therefore, we
conclude that Q C L. O
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B.1 BOUNDING THE GAUSSIAN DIAMETER

We start by bounding the Gaussian diameter D with respect to the pseudo-metric dx .
Lemma 5. Let M e R™*(4+1) and let w be the weight vector. Define the pseudo-metric

1/2

m m 2
dx(y,y') = Egnr(0,1,) Zgiwi|yi\2 - Zgiwi\y§|2
i=1 i=1

for any y, 3’ € L. Then, the diameter D(L ) with respect to dx is bounded by
D(Lar) < O(T - /log (A(X2 A 1)) A (AVd)).

Proof. We aim to bound the Gaussian diameter D (L) under the pseudo-metric dx. A standard
result (see e.g., (Vershynin, [2018, Proposition 7.5.4)) implies that for any convex set 7',

Dy < V20W(T),

where w(T') := Egzr(0,1) [SUpe7(g, )] is the Gaussian width of T'. Therefore, it suffices to bound
W(Lr).

We observe that £ is the image of a convex set under a linear mapping. Specifically, we define the
set

4 1
£={weR™ | a < 5, |Mal; < 1},
where M € R™*? Then, L)y = w' ML.

According to the definition of Gaussian width, we have

W(Lr) = Egon(o,1,) lsumg, wTMx>]
rel

= ]EQNN(OJM) [SHR<MMT97 x>‘|
xel

< e T Ml By [SW’”)]
zeL
= [|M w2 - W(L).
Now we bound W(£). Let Bo(M) = {2 | z € R4 ||[Mz||y < 1}. Then, it follows that
R 1 1
W(L) =W(By(M) N < B1) < [[M[|-W(B2 0 < B1) = [[M[| - W(A- By N By),

A A
where B1, Bs are the unit balls in /; and ¢5 norms, respectively.

Applying the localized Gaussian width bound (see e.g., (Bellec, 2019, Proposition 1)), we obtain
w(BiNA-By) < C- (\/log(Qd-(/\Q/\l)) A A-\/&),

for some universal constant C.

Therefore, we obtain

W(Ln) < [ Mlwz2W(E) < CIIMIZ, 5 - (Viog d- (W AT) A X- V).

2

Recall that the maximum weighted /5 leverage score is defined as 7 := || M|3, 5 -

D(Lar) < V21 - W(Lar), we conclude that
D(Lyr) < O(m1/log (d(A2 A 1)) A (AWd)).

Finally, applying
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B.2 BOUNDING THE METRIC ENTROPY

In this subsection, we establish an upper bound for the metric entropy Mg of the space L., ar. To
estimate this entropy, we first provide detailed definitions of covering numbers and metric entropy.

Definition 6. Let dx be a pesudo-metric on R%. Given a vector z € R% and ¢t > 0, we define the
dx-ball of radius t centered at x as Bx (v,t) = {2’ € R? : dx(z,2") < t}.

Definition 7. Let &, 7' C R be two convex bodies. The covering number N (K, T') represents the
minimum number of copies of 1" required to cover K

k
N(K,T) =min{k € N: 3{a;}}_, K C | J(z; + 1)}
i=1
Let dx be a pseudo-metric and ¢ > 0 a scalar. The covering number of a set K with respect to dx
and radius ¢ is denoted by N (K, dx,t) = N(K, Bx(0,t)), where Bx (0, t) is the dx-ball of radius
t centered at the origin. The metric entropy is given by Mg = log N (K, dx,t).

We now apply the standard tool, Dual Sudakov Minoration (Bourgain J & V. [1989), to bound
the covering numbers in both the residual space and the ¢;-penalty space. The following theorem
provides an upper bound on the covering numbers of the Euclidean unit ball within a metric space
by using ¢,-norm balls with radius ¢ > 0.

Definition 8. The Levy mean of 7, is defined as

Egeno,ral19]lp

M, = .
P Egenorn gl

Theorem 9. (Dual Sudakov Minoration) Let ||-||,, be a norm, and let By C R denote the Euclidean
unit ball, defined as By = {z € R? : ||z|| < 1}. Then,

M2
log N (B, | -l 1) < O(d) -

Lemma 10. (Woodruff & Yasudal (2023), slightly modified) Let ¢ > 2, let M € R™*(d+1) pe g
matrix, and let w € R™ be a wight vector. Then, for a standard Gaussian vector g ~ N (0, 1441), it

holds that
Egn(0.1a,) UIMGllw,q] <m'/?- /g,
and
EgNN(07[d+1) [lgll2] < \/m

We now focus on the /;-penalty space for the Gaussian process. To bound the metric entropy of
the set B1(1/\) using the unweighted ¢,-ball, we decompose the process into two steps: covering
the Euclidean unit ball with B, and covering By using the Euclidean unit ball. We define the
unweighted /,, (including £,.) unit ball as B, = {x | x € R4 ||z||, < 1}. The following lemma
provides a bound for the first step.

Lemma 11. (Woodruff & Yasuda, [2023)) Let p > 2 and let B,, be the unit ball for the £,, norm. Then,
logd
(t/2)?

Since the Bj ball has a non-smooth geometric structure, a substantial portion of its volume is con-
centrated near its center. This concentration implies that fewer smaller balls are needed to effectively
cover the unit ball. A directly application of the e-net argument typically yields a general bound of
o((1+ %)d“) in the worst-case. To obtain the better bound by utilizing this concentration, we use
the Sudakov Minoration inequality (Vershynin, 2018), specifically for the non-smooth B; ball, as
follows.

log N(B2, Bso, t) < O(1)

Theorem 12. Let K be a convex body in R%, and let N(/C, Bo,t) denote the covering number of
balls of radius ¢ required to cover K. Then, for any ¢ > 0,
W(K)

1OgN(IC7BQ7t) < C- 77

17
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where C' is an absolute constant, and W(K) = E [sup,¢x (g, z)] represents the Gaussian width with
respect to a standard Gaussian vector g ~ N (0, I).

Lemma 13. Let p > 1 be a parameter, and let B, = {z | z € R%, ||z||,, < 1} be the unit ball for the
¢, norm. Then,
logd

log N(B1, B, t) < O( .

).

Proof. To bound the covering numbers of B by B, we first cover B; by Bs, and then use Lemma
11 to cover B by Bo.

Define the Guassian width of By as W(B;) = E(sup,cp, ¢'t), where ¢ € R is a standard
Gaussian vector. By applying the Holder inequality, ¢'t < | g}t| < |lglloo - It|l1- Thus, we can bound
the Gaussian width by

W(B)) = E (sup g’t) <E (sup 19l - ||t1)
te B,

teB,
=FE (max|gj|) .
J

To bound E(max; |g;]), note that max; |g;| = max (max; g;, max; —g;). For the vector g and a
positive parameter > 0, we can derive an upper bound for E(max; |g,|) as follows

exp(uE(max ¢;)) < Eexp(u - max g;)
= E(max exp(ug;))
7

d+1

< Z E(exp(ug;))

< (;Jr 1) - exp(u?/2).

where the first inequality follows from the Jensen inequality and utilizes the moment generating
function of a Gaussian distribution.

Thus, we get

1 1 2
E(maxV;) < 080+ D %
2 u

Minimizing w.r.t u by choosing u = 4/2log(d + 1), we obtain
E(maxV;) < o+/2log(d + 1).

Since the fact that max; |g;| = max (max; g;, max; —g;), we have

E <max|gj|> < v/2log2(d +1) < /4log(d + 1).
j

Consequently, we have that the Gaussian average of the ¢;-ball is W(B;) < /2log(d + 1). By
Theorem 12, we can bound the covering number

N(By, Ba,t) < eXP(%) = i/,

where C is a constant.

Thus, the metric entropy of covering B; by ¢t By ball is at most

log d
12

log N(By, Ba, 1) < log (d*°*/"") < 0(25%).

18
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Using the above inequality and Lemma 11, we obtain
log N(B1, Bso,t) <log N(Bi, Bs,v) + log N(ABg, Bso, t)
S IOgN(Bla B27 fy) + IOg N(B27 Boo7 t/’Y)
logd (log d)
7’ (t/7)?

<0(1)2% 1+ 0(1)

for any ~y € [1,¢]. Choosing -y, we obtain

logd
t

logN(BlaBoovt)gO( )

O

Lemma 14. (Munteanu & Omlor,2024) Let M € R™*4 and let w € RY, be a non-negative weight
vector corresponding to the rows of M. Then, forany 1 < r < ¢ and any ¢ > 0,

N(By,(M),B1,4(M),t) > N(By,r(M),By,q(M),1).

We give two upper bounds for the covering numbers in the ¢1-penalty space based on the radius ¢.
For larger radii (t > t¢), the covering number scales with (1/¢)2, indicating a quadratic increase as
t decreases. Conversely, for smaller radii (t < tp), the covering number grows logarithmically with
1/t.

Lemma 15. Let M € R™*(d+1) pe an orthogonal matrix, and let A > 0. Define the set
Bo(M) = {x | z € T, ||Mz|looc < 1} as the unit ball in the {,.-norm mapped by M. Let
H = maxj<;<m |lel M||~, where e; € R™ is the i-th standard basis vector. Let tg = O(H %).
Then, the following bounds on the metric entropy hold for all ¢ > 0

logd - logm
log N (B1(1/A), Boo(M),t) < O(H)%’

and

log N(B1(1/)), Boo (M), t) < O(mlog(1 + :—?\) + logm).

Proof. Given § > 0, we define the scaled convex set 6By (1) as 6B (1) = {dz |z € T, ||z|1 < 1}.
For any y € §B; (1), there exists * € R4+ such that ||z||; < 1and y = dz. Then, ||y|j1 = ||z =
8||z||1. Conversely, suppose y € R?™! satisfies |ly[; < 6. Define z = ¥ (for 6 > 0), then

|21 = H%Hl = %HyHl <1,s0z € Bi(l)and y = dz € §B;1(1).
Hence, we conclude 6B (1) = {y | y € R4, |ly|ly <6}, and $B:(1) = By (3).
Now, we aim to prove that log N (5 By, Boo,t) = log N (B1, Boo, At). Define K = {z | z €

R+ ||z]ly < §}. Forany € K, we have ||z[; < +, and hence ||z« < +.

Covering « € 1/\B; with ¢-balls in the ¢,-norm is equivalent to covering By with A¢-balls due to
scaling. Therefore, we obtain

1
log N ()\Bl,Boo,t> =log N (B1, Bso, At). 4

Next, we define the set H,,, = {z | € R¥ maxj<;<,, |(x, M;.)|| < 1} and let || - || g, be the
associated quasi-norm on R4*1. Define the linear operator F' : (" — RA+1 by Fe; = M;.. Then,
the covering number of using H,, to cover Bj satisfies

N(By,Hy,,t) :N(F*Bl,BOTZ,t),
where BT = {z | = € R™ ||z]lo < 1}. By the Bernstein-Jackson-type inequality
(Carl, |1985), for the embedding /" — égo, the metric entropy satisfies log N(By, Hpp,t) <
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O(H)(log(Hm/l)l'log(Hd/l))1/2, where | = arginf{e > 0, N(By, Hpy,¢) < 2'}. Letty =
O(H\/%). Then, for t > ¢y, we have

H -logd-logm

log N(B1, Hp, t) < O( e

).

By applying Lemma3] for t < t,, we obtain

log N(B1, Hy,, t) <log N(B1, Hp,, to) + log N(toHy, Hpn,y t)
H? t
< O(t—2 logd - logm) + mlog(1l + ?0)
0

< O(mlog(1+ %0) + logm).

Finally, using equation 4] for the case that ¢t > ¢y, we have
1

IOgN(Bl(/\

), Boo (M), t) = log N(%Bl, B (M),t)

1
= logN(XBl,BOO(M),t)
= log N(Blv Boo(M)v )‘t)
S IOg N(Blv Hma )‘t)
logd - logm
A%t2
For the case ¢ < to, we similarly obtain log N (B1(5 ), Boo (M), t) < O(mlog(1+ % )+logm). O

< O(H)

In the following lemma, we present two different upper bounds on the metric entropy of the inter-
section between the residual space B, o(M) and the ¢;-penalty space By (1/A). Specifically, we
employ the weighted /., unit ball to cover both the weighted ball B,, 2(M) and the unweighted ball
B; with the same radius. We then provide bounds for two cases: when the radius ¢ is larger than
to, and when ¢ is smaller than to. Let 7 = supicz, | Mz]|?, 5 ., be the maximum of /5 leverage

score, and define G = 14+ & = 1+ sup, |[|SA'2/[|3 — [|A'2|3].

Lemma 16. Let A > 0, and let £, ps = By 2(M)NB1(1/A). Forany t € (0, 1], the metric entropy
of L, p with respect to the metric dx satisfies the following bounds: for ¢ < to,

t
log N(Ly, m»dx,t) < min{O(dlog GTm), O(mlog(1 + %}\0) + logm)},

and for t > tg,

where to = 74/ 284,
m

Proof. Forall y,y' € By 2(M), we have dx (y,y") < 2|y — ¢/ |lw,0o- Next, we define the matrix
M, € R™*(@+1) guch that each rows of M, is obtained by multiplying the corresponding entry
of the weight vector w by the respective row of the matrix M, i.e., (M,); = Vwi - M;. Since
w; = 1/p; represents the weight of the i-th row and p; is the sampling probability, we have w; > 1
for all i. Then, the convex body B,, 2 (M, ) is contained within B2(M,,, G), since

7G?logm . log d
T-mln{l, 2 b,

1OgN(£w,M7 dX7t) S O(

By2(M) = {y € range(M) : szyf < 1}
i=1

NE

C {y € range(M) : w}myi2 < 1} = By(M,,).

1

.
Il
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Thus, for any ¢ > 0, we have
log N(Buw,2(M,G),dx,t/G) <log N(Bz(Muy), 2| - [lw,c0. t/G)
=log N (By(My), Boo (M), t/2G) .
By Lemma 4 and Lemma 14, the following inequality holds
G
log N(Bu.2(M), dx 1) < O(dlog =),

Furthermore by a slight adaptation to Lemma 4, we also have log N(B,2(M),dx,t) <

O( T).
Let H = maxj<i<m |lef M|l be the maximum row-wise {o-norm of matrix M. By the
inequality ||z||.c < |lz|2 for any vector z, it follows that H = maxi<;<m |/} M|s

maxi<;<m ||e] M|z < 7. Consequently, applying Lemma 15, we obtain the following bounds on
the metric entropy log N (B1(1/)\), Boo (M), t/2)) < O(T %) fort > ty, and the inequality
log N (B1(1/A), Bao (M,1). £/2)) < O(mlog(1+ 1) +logm) for t < to, where to = O(ry/1%4),
Next, we consider the metric entropy on the Ly, as

t

el
—1og N(Bu2(M) N Bi(1/3),2] -

IOgN(ACw’M,dx,t) SlOgN(ACw’]w,2|| .

t
Yel
N(Bi(1/2), 2]} - [lw,00;

t

) t
<min{N(By2(M), 2 - lw.00r 54 ﬁ)}

5G)"
Combining the above inequalities, we conclude

log N (Lo a5 dx,t) < min{O(dlog GT) O(mlog(1 + %) +logm)},

fort < tg, and

logm logd - logm
)’ A2t2 }’

fort > t. O]

log N (L a1, dx,t) < O(TG*) min{O(

B.3 COMPUTING THE ENTROPY INTEGRAL

In this subsection, we bound the integral metric entropy of these ¢-nets using the following Dudley
inequality (Vershynin, 2018)) for Gaussian processes.

Theorem 17. (Dudley inequality,(Vershynin, 2018)) Let (X (¢)).er be a standard Gaussian process
defined on a measurable space with a pseudo-metric dx . Then, it holds that

E {supXt} < C’/ Vieg N(T,dx,t) dt,
0

teT

where T is a convex set, C' is an absolute constant, and X, is the standard Gaussian vector att € T'.

Lemma 18. (Woodruff & Yasudal 2023)) Let 0 < § < 1 and C' be a positive constant. Then,

e 5)

Lemma 19. Let M € R™*(¢+1) be orthonormal and ) be a positive parameter. Then, the metric
entropy of L., as satisfies

/ ¢logN(£w7M,dX,t) dt < O(G+/7-logmlogd - min{1, 1Ogd}),
0

A

where 7 is the maximum weighted /5-leverage score of M.
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Proof. Note that it suffices to integrate the entropy integral from O to the diameter D =

diam(L,, pr), because for ¢ > D, the entropy is zero. Let tg = 74/ lo;‘fL 4 and let ' be a radii
with ¢’ € [to, D). For small radii ¢ < ¢/, we use the first bound of Lemma 16 as follows

log N(Ly a5 dx,t) < min{O(dlog Gt ),0(mlog(1 + %) +logm)}.

By Lemma 18, the entropy integral is bounded by

t t t
/ \/logN(ﬁw’M,dX,t) dt gmin{/ \/O(dlogGTm)dt,/ \/O(mlog(l—l—cjio)—&-logm) dt}
0 0 0
. + Gm +
_ mm{()(ﬁ)/ tog " dt,O(\/»m)/ log(1+ &) gy
0 0

< min{O(¢' - dlogG ), O(Gj0

t
< O(t') min{4/dlog G—/m, %\/mlogm}

< O(t') min{y/dlog Gm GTIOgd\/ logm}

mlogm -t')}

t’
< O(t') min{y/dlog C;';n’ GT;Ogd}

On the other hand, for large radii ¢ > t/, we use the second bound of Lemma 16 (in Appendix),
which gives

7G%logm
——

log d

1OgN(‘CU),]\/[a dX7t) S O( m. { bl })

Combining these inequalities, we obtain

b VI P
/ VOB N (Luar.dx, £) dt < O(1)/7G7 log m - min{(L, igd}/ Lar
t/ t/
VI
= 0O(1)y/7G?logm - min{1, Ogd} log <G> .

A t/

Applying Lemmaand choosing the radius ¢’ = G+/7/d, we get

[e'e] t’
/ \/1og N(Loar,dx, t) dt g/ \/1og N(Lop.ar, dx, t) dt
0 0

D
+/ V108 N (Lo a1, dix 1) dt
t/
G)min{\/logmlogd,%ﬁ}
+ O(1)y/7G?log m - min{1, 1igd}logd
O(G+/7 -logmlogd - min{1, log H.

O

Lemma 20. (Woodruff & Yasuda, 2023) Let A’ € R™ @+ and X > 0. Let A =
SUP|| 47|24 |2l <1,0€RA+1 [>"i 9il[A’2](i)|?|. Given a convex set L, let Mg be the metric en-
tropy of L, and let D be the Guassian width indexed by L. Then,

Al < 2Meg) (Me/D) + O(VID)".

Egnr(0,1.)]
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Lemma 21. Let A’ € R"*(4+1)_ Let S be a sampling matrix such that, with probability at least 3/4,
ISA'z|3 = (1 £1/2)]|A"z|3
simultaneously for every z € R4*!. Then, with probability at least 1/2,

Pr{G(SA) < 8G(A')} > %

Proof. We have

u (SA") 2|2 + 2
G(SA su

(54) = ZSA/E;O IISA’x||2+M\xII1

n
< sup
Z SA’rséo IISA’xII% + A\lell

A
—Z qup S+ Blels) 1A + Al
Cshvizo (A3 Alal [SAE+ Aol

| A"z]|3 + M|l
= sup SZo;(A’) sup
ZSA 1240 )SA’$7é0 [SA |3 + Al
We are guaranteed that
Azl]2 + ) 3
NP P O PO VTR
sarao |SA |3+ Az 4

On the other hand, we have that

Z 2o A) = SB[ ]ai(4) = G(4).

By Markov’s inequality,
Pr{Z SZoi(A') <4G(A)} >

=1

»Mw

Combining the above inequalities, we conclude

N

Pr{G(SA') < 8G(A)} >
O
In the following theorem, we present the main result provides a bound on the [-th moment of the
sampling error E|&|!.
Theorem 22. Let A’ € R™*(4+1) be an input matrix, S be a random sampling matrix, and let &, 6 €
(0,1) and A > 0 parameters. If & = O (6% . (log (dlog(671))(Ind)? - min {1, lci\gzd} +1n (5‘1))
and for all 7 € [n] it holds that

1
pi > min{l, a(r;2(4") + =)},
n

where 7; 2(A’) denotes the {5 leverage score of the i-th row of A’. Then, with failure probability at
most d, it holds that, Vo € R4 25, =1,
ISA'Z]3 + Ml < (1 £ e)([A"z]3 + Alz]),

and the coreset size is at most

~ (d(logd)® . log d d 1
m=0 (62 -mln{l,v}—i—e—zlogg .
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Proof. By the construction of the sampling matrix S, for any ¢ € [n], the sampling probabil-
ity satisfies 0 < p; < 1, and the corresponding sampling weight is S;; = 1/p; > 1. This
implies that E(||SAx| + A|z[1) = [|4'z] + Aljz|ly for A > 0 and any vector . We set

2.min logd €
o = O(X . min{log (d(\3 A 1 ,\2d}), where VI = O (log 4/0) {1, 7 }+elog1/0) de-
P g

e-min{log(d(A2A1)),A2d}
notes the maximum number of finite moments of the sampling error £. To bound the coreset size
m, let X; be the indicator random variable that represents whether the i-th row is included in S.
Applying Lemma 1 in Appendix, we get

E <in> :ipi:a <1+i(27i+711)> = (2+2d) < 4ad.

Similarly, we can derive the lower bound of m as follows
i=1 i=1 i=1

By applying the Chernoff inequality, we have

m:zn:Xi <2-E (i:X’) < 8ad
=1 i=1

with failure probability at most 2exp (—~E(>_1" ; X;)/3) < 2 exp(f%) <§é.

Applying Lemmal([T] the analysis of the empirical process associated with the sampling error can be
reduced to a Gaussian process. Specifically, we obtain

Es SUP|| A’z ||24+-A||z||1=1,2€T" H|SA/33||§ - ||A/$||§|l
l

1/2 1,12
< (2m)/*Egq SUD|| Az |24 Al =L,z T" Zgiwi|Aix| ;
1€Q
where [ > 1 is an integer, w; denotes the weight for sampling the i-row, () the indices of non-zero
diagonal entries in S, and g ~ N(0, I,,,) is a standard Gaussian vector.

Next, we define A = SUP| 4r4 2472, =1,0€7" (Y;es giwi| Alz|?) for the random sampling matrix
S. To further bound the quantity A, we utilize Lemma 20 to relate A to the metric entropy Mg and
the diameter D of geometric body resulted by the Gaussian process. This gives us the following
bound

Egnr(0,1,) [IAl'] < (2Me)! (Mg /D) + O(VID)'
for a fixed [.

Let M = SA’ denote an m-row submatrix of A’, and let w represent the weight vector cor-
responding to each row of M. Next, we bound the maximum weight leverage score 7 =

< . X 2
SUP|| M|y,2=1,i€[m] Wi | M;x|*.

We set the number of samples m at least O(d +1og(1/d)) using ¢5 leverage scores sampling method
(Cohen et al.| 2015), which achieves || S’ A’z|| < (1 =+ 3)||A’x|3 for fixed sampling matrix S with
probability at least 1 — §. By applying above inequality and the definition of sampling probability,
we have 7 < 8/a.

According to Lemmal6] by choosing the constants for « sufficiently large, we obtain a bound on the
metric entropy

V1
O(G7'/?(logm)*/?log d - min{1, ())\gd})

V1
< O(Ga=?(logm)*/?1og d - min{1, ())\gd})

< GG/S = Meg.
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By Lemma we derive a bound on the diameter O(7 - \/log (d(A2 A 1)) A (A\Wd)) < O((1/a) -

log (A(X\2 A1) A (W) < 57 = D.

By combining the bounds on the metric entropy M¢ and the diameter D, we ensure the sampling
error Eg (0,1, [|A"] < €'6. Since the sampling error & = sup,.c,, |[|SA'2’||3 — | A’2'|3], we
have &' < 3lels, which yields E|€|' < (3£)!6. By using Markov inequality, we have £ < 3¢ with
probability at least 1 — . O

B.4 OMITTED PROOFS OF LOWER BOUND FOR CORESET SIZE

In this section, we provide the lower bound of the coreset size for LASSO regression, using a
standard information-theoretic approach (Wang et al.l [2010; Wainwright, 2009; |Parulekar et al.,
2021;|Mai et al.,|2023)) based on Fano’s inequality and KL divergence computations. Here, we start
by constructing the hard instance for the k-sparse supports.

LetC C {0, 1}? be a set of k-sparse binary vectors (i.e., each vector has exactly k non-zeros entries),
such that |C| = N > (d/k)* and for any two distinct vectors ¢, cU) € C satisty |supp(c(?) N
supp(c9))| < Ck for some constant C' € (0, 1). Such a codebook can be constructed using standard
techniques from coding theory. For each codeword ¢() € C, we define

@ _ [y € <z‘>} d+1
v\ =11, c € R
B

Let G € 4]R”?Xd be a matrix with i.i.d standard Gaussian entries. Define the data matrix Z P =
G(I +vDvT)/2 Then, each row 2% ~ N'(0, + v@v®T), and the data distribution is

P; = N(0,1 4 v@p®T),

We show that exact support recovery is impossible with fewer measurements than those suggested
by the information-theoretic lower bound, given the input distribution.

Lemma 23. Let e € (0, 1), and let v € R?*! be the vector with v = (1, ﬁc), where c is a codeword

uniformly chosen from C. Let P; be the multivariate Gaussian distribution with covariance I +vv .
Then, for any estimator attempting to recover a k-sparse vector ¢, with at least 1/2 probability, the
number of samples m must satisfy

klog(d/k)
> U———)
€
Proof. LetP;, ..., Py be the distributions constructed above. By the Fano’s inequality, we have
~z 2iz; Dxu(Pil[Py) +log 2
P S g it
rlerror| > og(N — 1) )

where Dxr,(P;||P;) denotes the Kullback-Leibler divergence between distributions P; and PP;.
To ensure the error probability is less than 1/2, it suffices to ensure
1 1
] > Dkw(Pi]|B)) < 1 log .
i#]
According the definition of P;, the KL divergence between two such distributions is
Dy (P3[|P;) = m - Dk (N (0, £)[IN(0, X5)),

where ©; = I 4+ vWy@T, Using the formula for KL divergence between zero-mean Gaussian
distribution, we have

det X j
det 21

Dict (N (0, ZIIN(0, 55)) = & (br(S50) — d + Tog ored)
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Since ¥; is a rank-1 perturbation, by the Sherman-Morrison Formula, we apply det(¥;) = 1 +

; - @ y(OT .
[0 and X7 =T — HHZ)}W Thus, we obtain
R ML) N B U |

L+ [o®]3 L+ [o®]3

For any i € [N], it holds that [[v()||3 = 1 + €2. Similarity, for any i # j, the inner product satisfies
2

2
(D T2 = <1+ €k<c(z‘)’c(j)>) < (14 ).

n i
Dk (Pi||P;) = §(|Iv( 3 -

Plugging into the expression for KL divergence, we get
Dk (Pi||P;) < O(e?m).

Let log N = O(klog(d/k)). Applying the Fano’s inequality, it holds that
2 +log2
Prlerror] > 1 — mCe” +log2 .
log N
To ensure Prlerror] < 1/2, we have

klog(d/k)

1
Ce*-m > ilogN:Q(klog(d/k))%mEQ( 5 ).

€

O

Our proof method, while differing in approach from previous work (Wainwright, 2009; Mati et al.,
2023)) that focuses on sketching algorithms, is based on similar ideas. In particular, by analyzing
the coreset algorithm on a constructed hard instance, we establish a lower bound on the sample size
required by any algorithm to achieve a (1 + ¢)-approximation on the constructed hard instance.

Lemma 24. Let A € R"*4, b € R", and X € (0, 1). Assume that || Al|z < 1and [[b]|2 < 1. Let S be
a diagonal sampling matrix with m non-zero entries. Suppose there exists an estimator that returns
T = argmingcpa ||SAz — Sb||3 + \||z||1 satisfies

IAZ — b3 + Al|Z[ls < (1+¢) - min (|| Az — blI3 + Alll).

Then, the coreset size m must satisfy

C[oGEL),  itA=9(F)

= {Q(g logd), if \=0(L)"

Proof. We prove this result using a similar approach to that in Theorem 13 (Mai et al.| [2023). We
will take [b A] ~ ﬁG (I 4+ vv")Y/2 where v is a codeword in set C. Let S be a sampling matrix

that selects m rows of A and b. Since only the row indices selected by .S affect the coreset, and the
weights can be absorbed into the analysis via rescaling, we may, without loss of generality, assume
that all non-zero diagonal entries of S are equal to 1. Under this assumption, the compressed matrix
SG(I +vv")'/2 has the same distribution as G(I + vv™)'/2,

By the concentration properties of Gaussian matrices (see Exercise 4.7.3 in (Vershynin| [2018)), with
high probability, the LASSO objective satisfies
[Az = bl13 + Allll & 1+ [l2]|3 + (1 — ec”2)® + |zl =: L(z),
where v = (1 ¢). Since L(z) is a 1-strongly convex function, we get
L(#) > L") + [|& — =™[[3.
for any &, where z* is the minimizer of L(x).

Fix e = 1/2, we set A = ﬁ Here, it holds that z* = ¢/5 and L(z*) ~ 2. Suppose there exist a

estimator algorithm satisfies L(Z) < (1 + ¢1)L(z*) for a sufficiently small ¢;. Then we have
(1+e)L(z") = L") + & — 2" 2,

which means the gap ||# — 2*[|3 < 2 ¢;.

Choosing a small enough constant ¢;, we can recover supp(v). By Lemma 23 (in Appendix), if

1z = o(d), the required lower bound of (57 logd) on the coreset size; if 3z = O(d), the

required size is at least (% log d). O
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C COMPLEMENTARY EXPERIMENTS

C.1 EXPERIMENTS ON SKETCHING ALGORITHM AND LASSO-SENS

In this section, we present experimental results comparing the performance of our proposed LASSO-
Sens algorithm with a sketching-based algorithm for solving LASSO regression. We also acknowl-
edge recent advances in sketching for LASSO, such as the work by (2023)), which utilizes
random projections to accelerate the optimization process.

To ensure a fair comparison, we follow the same experimental setup used in Section ] conducting
experiments on four datasets with identical coreset sizes and regularization parameters. We evaluate
algorithm performance in terms of loss, runtime, and sparsity. For the sketching-based algorithm,
we set the number of sketching rows equal to the coreset size and run each experiment 10 times,
reporting the average results.

As shown in Tables [f][7] 8] and 0] the proposed LASSO-Sens algorithm consistently achieves lower
loss values than the sketching method on both small- and large-scale datasets. On the large-scale
mnist8m dataset, LASSO-Sens is up to 10 times faster than the sketching algorithm when the coreset
size is set tom = {15,20} x d. Moreover, on the Synthetic and mnist8m datasets, the sparsity of the
LASSO-Sens solution is highly lower than that of the sketching algorithm. Overall, the experimental
results show that the proposed algorithm achieves lower regression loss and sparsity, particularly on
large-scale dataset.

C.2 EXPERIMENTS ON SENSITIVITY SAMPLING FOR STANDARD AND MODIFIED LASSO
OBJECTIVES

In this section, we compare the performance of the sensitivity sampling algorithm on both the stan-
dard LASSO objective and the modified LASSO objective proposed in[Chhaya et al.| (2020), which
takes the form || Az — b[|3 + \||z||3. In SectionEL we used the FISTA algorithm to solve the standard
LASSO problem, as it leverages the proximal operator of the /; norm. However, this solver is not
applicable to the modified LASSO formulation, which involves a squared ¢; regularization term and
lacks an efficient proximal operator. As a result, directly comparing the two objectives under our
original framework would be unfair.

To ensure a fair comparison, we follow the methodology of |(Chhaya et al.|(2020), which utilizes the
global optimization toolbox from MATLAB. Specifically, we use the patternsearch solver to
address both standard and modified LASSO problems. In our experiments, the solver parameters are
set as follows: MaxFunctionEvaluations = 1,000,000, and MaxIterations = 25, 000.
To quantify the approximation quality of the coreset solution, we utilize the LASSO objective func-
tion as the evaluation metric. The experiments are conducted on a machine equipped with an Intel(R)
Core(TM) 17-9700 CPU and 16 GB of RAM, and the implementation is executed MATLAB R2021.

We first use Algorithm [I] to construct the coreset, and then apply the patternsearch solver to
solve both objective functions on the coreset samples. The experiments are conducted on synthetic
datasets using the same coreset sizes and regularization parameters A as in Section |4} Each exper-
iment is repeated 10 times, and we report the average results. As shown in Tableﬂ the sensitiv-
ity sampling algorithm for standard LASSO achieve lower sparsity compare to modified objective.
Meanwhile, the computational time required by the two objectives is comparable.

D USE OF LARGE LANGUAGE MODELS (LLMS)

No large language models were used in the ideation or writing of this paper.
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Figure 2: Comparison results of LASSO regression loss across varying coreset sizes

Table 2: Comparison results of loss, runtime, and sparsity on CTs dataset (n = 53,500, d = 386)

for varying coreset sizes at A = {1, 5, 10}.

Coreset Sizes

Lambda Metrics Algorithms
1d 2d 5d 10d 15d 20d
LASSO 49.61+0.06
Loss LASSO-Sens  52.944273 49.95+031 49.66+0.02 49.64+0.01 49.63+0.01 49.6340.01
LASSO-Uniform 68981772 54.8043.34 50.84%121 5029+1.00 49981029 49.90+0.29
A=1 - LASSO 695.79
Time () LASSO-Sens 6.08 8.76 11.59 16.40 2258 35.79
LASSO-Uniform 6.41 829 1124 17.07 2373 3408
A LASSO 229
Sparsity  LASSO-Sens 325 243 226 221 226 227
LASSO-Uniform 320 251 223 219 221 211
LASSO 247.94+0.68
Loss LASSO-Sens  267.49410.93 251.3042.29 248.69-+0.49 248344029 248.19+0.19 248.0440.19
LASSO-Uniform 307.27+38.10 258.08£4.63 251.2842.26 249.22+1.15 248.68+0.71 248.83+0.54
A=5 ~ LASSO 689.77
Time (s)  LASSO-Sens 6.02 8.22 10.24 16.38 22.40 35.91
LASSO-Uniform 6.45 767 9.45 1698 2748 3840
_ LASSO 166
Sparsity  LASSO-Sens 185 167 158 160 162 160
LASSO-Uniform 192 179 163 155 158 161
LASSO 495.91+0.77
Loss LASSO-Sens  537.53+13.62 506.014+3.84 498.99-41.92 497.75+1.46 496.58-:0.88 496.4540.64
LASSO-Uniform 609.27+75.35 517.4349.40 503.88+3.16 498.92+2.36 498.10+1.78 497.87+1.77
A=10 . LASSO 693.29
Time () LASSO-Sens 5.95 9.18 1038 16.71 2241 35.96
LASSO-Uniform 592 831 1023 1853 2886 211
, LASSO 162
Sparsity  LASSO-Sens 172 160 154 159 155 153
LASSO-Uniform 181 165 157 158 156 155
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Figure 3: Comparison results of running time across varying coreset sizes for different A values
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Table 3: Comparison results of loss, runtime, and sparsity on Synthetic dataset (n = 10,000,d =
200) for varying coreset sizes at A = {0.5, 1,5, 10}.

Coreset Sizes

Lambda Metrics Algorithm
1d 2d 5d 10d 15d 20d
LASSO 13.82+0.78
Loss LASSO-Sens 14464054 14504049 14264032 14234026 14054025 13.99+0.23
LASSO-Uniform 16.26+0.08 16204020 16.00£025 15.824034 15344042 15.2240.53
A=05 LASSO 49.11
Time () LASSO-Sens 3.40 3.65 473 6.54 8.22 9.32
LASSO-Uniform  4.14 419 529 717 877 10.59
_ LASSO 41
Sparsity  LASSO-Sens 41 34 35 36 38 39
LASSO-Uniform 28 28 28 30 29 31
LASSO 23.74+0.60
Loss LASSO-Sens  23.57+0.13 23.540.14 23.61+0.11 23.64+0.10 23.67+0.07 23.67+0.06
LASSO-Uniform 23.85+0.12 23.9340.18 24011016 23.9540.13 23.74+0.15 23.5740.16
A=1 ) LASSO 48.94
Time ()  LASSO-Sens 291 372 479 6.62 8.76 9.38
LASSO-Uniform  3.28 117 520 725 936 10.27
, LASSO 28
Sparsity  LASSO-Sens 32 29 29 28 28 28
LASSO-Uniform 28 28 28 30 30 32
LASSO 83.42+0.34
Loss LASSO-Sens  83.6340.23 83.46+0.03 83.43+0.01 83.42+0.00 83.42+0.00 83.4240.00
LASSO-Uniform 84.71+1.56 85251187 84.35+095 83.5510.48 83.56+022 83.4240.01
A=5 ~ LASSO 4886
Time (5) LASSO-Sens 3.10 3.60 4.69 6.55 8.28 9.10
LASSO-Uniform  3.35 414 509 728 9.19 10.19
, LASSO 28
Sparsity  LASSO-Sens 32 28 28 28 28 28
LASSO-Uniform 28 28 28 28 28 28
LASSO 158.01+0.72
Loss LASSO-Sens  158.95+1.37 158.13+0.06 158.050.03 158.03+0.01 158.03+0.01 158.0240.01
LASSO-Uniform 159.85+2.80 160.03+£2.55 158.28+0.80 158.02£0.01 158.0110.01 158.02-£0.01
A=10 ~ LASSO 4954
Time () LASSO-Sens 3.17 3.76 479 6.83 8.26 9.01
LASSO-Uniform 332 415 516 7.45 8.04 9.83
, LASSO 28
Sparsity  LASSO-Sens 28 27 27 28 28 28
LASSO-Uniform 27 28 28 28 28 28
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Table 4: Comparison results of loss, runtime, and sparsity on mediamill dataset (n = 30,993,d =
120) for varying coreset sizes at A = {0.5, 1,5, 10}.

Coreset Sizes

Lambda Metrics Algorithms
1d 2d 5d 10d 15d 20d
LASSO 7.13+0.69
Loss LASSO-Sens  7.3440.13  7.19+0.02  7.154£0.00  7.1540.00 7.14+0.01  7.1440.00
LASSO-Uniform  7.04£0.60 7254007  7.1740.02 7.16+0.01  7.15£0.01  7.15+0.01
A=05 LASSO 37.12
Time () LASSO-Sens 213 297 453 491 474 5.76
LASSO-Uniform 1.96 204 432 455 438 536
_ LASSO 47
Sparsity  LASSO-Sens 44 44 44 45 45 46
LASSO-Uniform 39 4 4 45 45 44
LASSO 14.2740.53
Loss LASSO-Sens 14994039  14.40+0.08 14324003 14.3040.02 14.29+0.01 14.2940.01
LASSO-Uniform  16.4542.14  14.9310.59 1438+0.08 14324005 143140.03 14.2930.02
A=1 -~ LASSO 37.43
Time (s) LASSO-Sens 2.16 3.10 5.07 5.43 471 5.76
LASSO-Uniform 176 301 477 5.03 455 536
_ LASSO 49
Sparsity  LASSO-Sens 40 43 44 45 44 45
LASSO-Uniform 41 41 44 45 43 45
LASSO 70.97-£0.61
Loss LASSO-Sens  78.09+3.52  73.50+1.15 71.6840.50 71374035 71.26£0.20 71.07+0.15
LASSO-Uniform 87.79+12.04 7856£531 73241189 71.98+1.06 71.5140.61 71.55+0.58
A=5 ~ LASSO 4570
Time (s) LASSO-Sens 2.11 2.93 4.60 476 478 5.75
LASSO-Uniform 205 277 436 454 439 537
, LASSO 45
Sparsity  LASSO-Sens 32 39 39 39 41 40
LASSO-Uniform 31 35 38 39 38 39
LASSO 140.43+0.46
Loss LASSO-Sens  150.4946.70 144.9342.66 142.271.36 141.1740.63 140.95+0.52 140.7240.44
LASSO-Uniform 166.49+18.80 153.72:11.25 144495285 142.19+1.51 141.23£0.90 141.12+0.95
A=10 ~ LASSO 41.19
Time (s) LASSO-Sens 2.16 3.01 5.08 485 481 5.74
LASSO-Uniform 201 2770 476 452 469 5.56
, LASSO 40
Sparsity  LASSO-Sens 31 32 34 34 36 38
LASSO-Uniform 28 30 33 33 35 36
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Table 5:

Comparison results of loss, runtime, and sparsity on mnist8m datasets (n

8,000,000,d = 784) for varying coreset sizes at A = {0.5,1,5,10}. If an algorithm fails to
output a solution within 48 hours, the metrics are marked as 48 > h.

Coreset Sizes

Lambda Metrics Algorithms
1d 2d 5d 10d 15d 20d
LASSO 18> h
Loss LASSO-Sens  1.27E7 + LO2E7 3.30E4 + 7.71E3 1.64Ed + 4.03E2 1.45Ed + 3.06E2 1.43Ed + 1.80E2 1.37E4 = 1.16E2
LASSO-Uniform 5.83E8 + 2.73E8 1.79E8 £ 425E7 3.59E7 £ 3.63E7 6.53E6 + 2.90E6 4.46E6 + 2.85E6 3.00E6 + 1.09E6
A=05 LASSO
Time (s) LASSO-Sens 304.32 314.23 370.11 51273 703.91 859.22
LASSO-Uniform 19.39 30.61 58.05 18422 336.58 45911
) LASSO 8>h
Sparsity  LASSO-Sens 780 776 763 760
LASSO-Uniform 704 712 725 728 735 735
LASSO 18> h
Loss LASSO-Sens  1.61E7 + LO4E7 3.46Ed + 8.18E3 1.68Ed = 5.27E2 1.48Ed =+ 2.05E2 1.41Ed = 1.38E2 1.38Ed4 = 7.54E1
LASSO-Uniform 4.77E8 + 5.68E7 1.35ES £ 6.33E7 1.80E7 £ 3.20E6 9.35E6 + 4.36E6 5.37E6 + 2.21E6 3.04E6 + 1.13E6
A=1 - LASSO
Time (s) LASSO-Sens 302,37 31626 366.99 522.60 724.51 838.05
LASSO-Uniform 20.35 303 58.01 187.43 352115 463.57
] LASSO
Sparsity  LASSO-Sens 778 774 768 763 765 758
LASSO-Uniform 705 709 731 737 737 729
LASSO 18> h
Loss LASSO-Sens  1.39E7 + 4.50E6 2.87Ed + 4.21E3 1.72Ed + 4.57E2 1.49Ed + 2.52E2 1.45E4 =+ 1.88E2 1.42Ed = 1.49E2
LASSO-Uniform 5.98E8 & 7.60E7 1.23E8 + 3.26E7 2.15E7 + 7.61E6 9.22E6 + 2.22E6 3.99E6 + 1.09E6 3.05E6 + 9.08E5
.
A=5 ~ LASSO
Time (s) LASSO-Sens 299.24 31745 368.02 52751 708.16 875.08
LASSO-Uniform 19.32 26.66 57.07 186.32 341,58 401.96
] LASSO 48> h
Sparsity  LASSO-Sens 780 776 767 765 763
LASSO-Uniform 691 714 729 735 730 741
LASSO 18> h
Loss LASSO-Sens  1.10E7 + 8.22E6 9.47Ed + 1.27E5 1.73Ed + 106E2 1.55Ed = 1.54E2 1.49Ed = 3.28E1 1.47E4 = 8.80E1
LASSO-Uniform 4.96E8 £ 1.81ES 1.25E8 + 5.99E7 1.58E7 = 5.71E6 8.34E6 + 1.86E6 3.99E6 = 9.91E5 3.50E6 + 6.16E5
A=10 ~ LASSO 18>h
Time (s) LASSO-Sens 302.45 31828 363.87 528.66 720.44 870.80
LASSO-Uniform 19.95 242 59.64 187.25 32757 51341
] LASSO 18>h
Sparsity  LASSO-Sens 781 777 769 765 763
LASSO-Uniform 700 713 730 736 728 737

Table 6: Comparison of the sketching algorithm

53,500, d = 386).

and LASSO-Sens on

the CTs dataset (n

Coreset Sizes

Lambda Metrics  Algorithms
1d 2d 5d 10d 15d 20d
Loss  LASSO-Sens 24.11+0.30 23.99+0.01 23.98:£0.00 23.97+0.00 23.97-£0.00 23.97+0.00
. Sketching ~ 24.130.03  23.99+0.00 23.98+0.00 23.97+0.00 23.97+0.00 23.9740.00
A=05 Time (s) LAASSO-Sens 721 7.18 9.66 13.58 17.68 22.62
Sketching 5.91 6.61 10.49 16.05 21.37 27.46
Sparsity “ASSO-Sens 383 359 322 317 314 316
Parsity: “Sketching 382 360 327 319 313 309
Loss  LASSO-Sens 4810075 47.9710.02 47.93:£0.00 47.93+0.00 47.93:0.00 47.92::0.00
Sketching ~ 48.1740.06 47.984+0.01 47.94+0.00 47.93+0.04 47.93+0.02 47.9340.03
A=l Time (s) LASSO-Sens 6.83 7.26 9.95 13.38 18.51 2227
Sketching 6.11 6.74 10.40 16.12 21.54 2723
.. LASSO-Sens 345 241 219 215 217 215
Sparsity “Syetching 327 243 222 214 214 216
Loss  LASSO-Sens 24248145 240.20+0.62 239.77:0.11 239.65:0.06 239.61+0.05 239.61:0.04
S8 Sketching ~ 243.89+1.67 240.3940.14 239.86+0.05 239.68+0.05 239.65+0.05 239.64+0.02
A=5 Time (s) LASSO-Sens 7.13 7.28 9.90 13.85 18.00 21.96
Sketching 6.12 6.79 10.20 16.36 21.52 26.74
.. LASSO-Sens 179 168 156 154 158 157
Sparsity “Setching 174 166 159 155 159 158
Loss  LASSO-Sens 495.54:2.59 481.58:1.01 479.82::0.69 479.18:0.22 479.17+0.14 479.00+0.23
S8 Sketching ~ 495.48+2.57 482.36+1.07 479.98+0.24 479.52+0.14 479.3340.17 479.284+0.05
A=10 Time (s) LASSO-Sens 721 7.29 9.77 13.34 18.26 21.74
Sketching 6.09 7.05 10.41 16.14 21.51 26.85
. LASSO-Sens 169 153 157 153 155 153
Sparsity “Setching 170 159 149 149 156 153
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Table 7: Comparison of the sketching algorithm and LASSO-Sens on the Synthetic dataset (n =

10,000, d = 200).

Coreset Sizes

Lambda Metrics  Algorithm
1d 2d 5d 10d 15d 20d
Loss  LASSO-Sens 1424041 14.024030 1327+0.59 12.83:£0.43 12.93+0.26 13.1240.10
Sketching ~ 25.8244.57 17.15£0.81 14.1240.51 13.52+0.20 13.39+0.12 13.19%0.16
A=05 ime(s) LASSOSens 423 477 555 6.19 7.60 821
Sketching 3.84 4.96 572 6.38 7.93 921
ity LASSO-Sens 40 34 38 9 40 40
Sparsity Syetching 101 106 113 111 111 108
Loss  LASSO-Sens 21.41:+0.17 21424022 21.53+0.06 21.47+0.14 21.57+0.12 21.6140.06
Sketching ~ 31.5241.92 24.894022 22.90+0.18 22.3140.08 222340.03 22.14+0.05
A=l Time (s) -ASSO-Sens 4.03 4.98 4.88 6.34 7.67 7.99
Sketching 4.02 4.99 5.14 6.51 7.85 9.11
ity LASSO-Sens 35 29 28 27 26 26
Sparsity Setching 9 95 94 92 90 90
Loss  LASSO-Sens 66.78+0.08 66.77-£0.01 66.76:0.00 66.76:-0.00 66.76::0.00  66.76-:0.00
) Sketching ~ 72.24%1.33 69.0240.43 67.58+0.19 67.09£0.05 67.00£0.06 66.88+0.02
A=95 Time (s) LASSO-Sens 3.90 5.40 4.81 6.39 7.64 8.04
Sketching 3.82 5.29 5.18 6.64 7.84 9.20
irv LASSO-Sens 29 25 24 24 24 24
Sparsity “Setching 80 78 70 58 55 49
Loss  LASSO-Sens 122.99:0.28 122.870.09 122.81-0.02 122.82::0.01 122.82::0.01 122.83+-0.01
Sketching  127.4940.81 124.600.35 123.48+0.16 123.02£0.04 122.96+0.02 122.92+0.03
A0 ime(s) LASSOSens 413 530 483 6.48 7.63 807
Sketching 3.95 5.20 5.11 6.65 771 9.16
ir LASSO-Sens 30 25 24 24 24 24
Sparsity “Syetching 65 59 47 37 33 27

Table 8: Comparison of the
30,993, d = 120).

sketching algorithm and LASSO-Sens on the mediamill dataset (n

Coreset Sizes

Lambda Metrics  Algorithms
1d 2d 5d 10d 15d 20d
Loss  LASSO-Sens 840-0.43  8.19:+0.04 8174002 8.15:£0.01  8.15:0.00  8.15+0.00
S8 Sketching ~ 8.54+0.15  825+0.04 8.18+0.01  8.16+0.00  8.15+0.00  8.15+0.00
A=05 Time (s) LASSO-Sens 2.57 3.37 4.69 4.94 4.69 5.81
$) " Sketching 2.14 3.28 459 5.07 5.13 5.82
.. LASSO-Sens 58 60 62 63 61 61
Sparsity “Sietching 57 60 62 60 62 63
Loss  LASSO-Sens 16.77+0.23 16.34:£0.16 16.27+0.03 16.24+0.02 16.23::0.02 16.22:0.01
¢ Sketching ~ 17.16£0.45 16.464+0.07 1629+0.04 16.25+0.01 16.25+0.01 16.2440.01
A=1 Time (s) LASSO-Sens 247 3.68 4.68 491 4.48 5.82
$) " Sketching 2.13 3.07 4.61 491 5.30 5.78
.. LASSO-Sens 57 58 59 61 57 60
Sparsity “Sietching 54 59 62 59 61 60
Loss  LASSO-Sens 83.62:4.37 81.00:£0.93 80.30+0.18 79.95:0.18 80.07-:0.08 80.01-:0.09
¢ Sketching ~ 87.07+1.31 82.66+0.93 80.57+0.37 80.2440.11 80.26+0.17 80.2040.11
A=5 Time (s) LASSO-Sens 2.46 3.45 4.71 493 4.49 5.82
$) " Sketching 2.26 3.30 4.64 5.02 5.20 5.90
... LASSO-Sens 44 51 51 51 51 51
Sparsity “Sietching 46 49 49 53 51 52
Loss  LASSO-Sens 163.26:+8.88 160.69+5.25 159.24-:0.35 158.89:£0.50 158.91+0.34 158.654-0.40
: Sketching  177.47+5.03 163.25+0.83 160.31£0.97 159.24+0.37 159.08£0.26 159.03+0.14
A=10 Time (s) LASSO-Sens 2.56 3.45 4.65 4.90 4.47 5.81
$) " Sketching 2.11 3.23 4.50 4.80 5.31 5.83
.. LASSO-Sens 40 44 48 51 49 49
Sparsity “Sietching 41 46 51 49 49 49
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Table 9: Comparison of the sketching algorithm and LASSO-Sens on the mnist8m datasets (n =
8,000,000, d = 784).

Coreset Sizes

Lambda Metrics ~ Algorithms
1d 2d 5d 10d 15d 20d
Loss  LASSO-Sens 1.27E7+1.02E7 3.30E4:7.71E3 1.64E4:4.03E2 1.45E4:£3.06E2 143E4:1.80E2 1.37E4--1.16E2
e Sketching ~ 4.27E7+5.20E5 4.62E4-£3.90E4 1.67E4£1.58E3 1.48E4+1.05E2 1.43E4+1.55E3 1.41E4+6.27E2
A=05 Time (s) LASSO-Sens 304.32 314.23 370.11 51273 703.91 859.22
Sketching 53375 1000.12 2484.28 5048.47 7635.30 10265.84
Sparsity LASSO-Sens 780 776 770 770 763 760
PArSty: ™ Sketching 783 779 770 773 771 764
Loss  LASSO-Sens L61E7:1.04E7 346E4+8.18E3 1.68E4:5.27E2 1.48E4:2.05E2 1.41E4+1.38E2 1.38E4-7.54E1
58 Sketching ~ 3.67E7+1.43E6 2.18E4+4.26E3 1.73E4:£9.62E2 1.48E4+1209E3 1.43E4+2.82E3 1.40E4+9.60E2
A=l Time (s) ASSO-Sens 302.37 316.26 366.99 522.60 724.51 838.05
Sketching 49951 990.37 247533 5055.59 7678.16 10277.15
Sparsity LASSO-Sens 778 774 768 763 765 758
PArsiy ™ Sketching 783 776 775 776 767 764
Loss  LASSO-Sens 1.39E7+4.50E6 2.87E4:+4.21E3 1.72E4:4.57E2 149E4:£2.52E2 145E4:1.88E2 1.42E4--1.49E2
B} S8 Sketching  1.58E7£5.96E5 2.90E44226E3 1.72E4+2.53E3 1.53E442.29E3 147E4+1.04E3 1.45E4-£2.14E3
A=5 Time (s) LASSO-Sens 299.24 317.45 368.02 527.51 708.16 875.08
Sketching 498.59 994.44 2477.81 5033.69 7690.62 10277.57
Sparsity LASSO-Sens 780 776 770 767 765 763
PArsIly  Sketching 783 779 774 770 770 768
Loss  LASSO-Sens L10E7+822E6 9.47E4+127E5S 1.73E4+1.06E2 1.55E4-1.54E2 1.49E4+3.28E1 1.47E4-8.80E1
58 Sketching  1.55E7£2.22E5 2.85E4+3.36E3 1.79E4+1.17E3 1.58E4+6.86E2 1.53E4+1.16E3 1.48E4-+1.92E3
A=10 Time (s) ASSO-Sens 302.45 318.28 363.87 528.66 720.44 870.80
Sketching 502.08 994.11 2483.74 5034.16 7666.31 10231.89
Sparsity ASSO-Sens 781 777 769 769 765 763
PArsity ™~ Sketching 782 777 774 762 763 767

Table 10: Comparison of sensitivity sampling applied to standard and modified LASSO objectives
on Synthetic dataset (n = 10,000, d = 200).

Lambda Metrics Algorithms Coreset Sizes
1d 2 5d 10d 15 20d
Relative ooy LASSO __ 4.06E5+5.61E4 2.00ES-2.54E4 9.88EA-1.35E4 3.02E4-t7.42E3 169E4-+461E3 1.27E4+1.66E3
modified LASSO 4.10E5+£3.33E4 2.16E5+3.15E4 9.97EA+142E4 3.54EA+1.07E4 1.65EAL4.09E3 121E4<1.84E3
A=0% e ® LASSO 2585 2926 3715 4791 60.96 7455
~ modified LASSO 2626 2978 3797 4839 6133 75:62
A LASSO 200
Sparsity modified LASSO 200
Relative eror __LASSO___ 328EST3.09E4 1.04ES+3.14E4 7.39EA-2.67E4 2.15EA3.53E3 132E41.06E3 LI12E4-3.67E3
modified LASSO 3.39E5-£4.80E4 1.73E5+1.56E4 7.52EA+3.10E4 2.13EA+181E3 1 46E4L3.53E3 1.14E4+2.54E3
A ® LASSO 25.85 29.05 36.98 47.96 60.90 7455
modified LASSO 26.06 2021 3738 4856 62.13 7629
Soarsit LASSO 200 200 199 197 197 197
parsity modified LASSO 200 200 199 198 198 198
Relative omor __LASSO___ 2.94E51224E4 1.60ES-1.30E4 4.22E4+5.26E3 147E4+2.28E3 6.26E3-+2.62E3 430E3:+L17E3
) modified LASSO 3.14E5+£2.38E4 1.65E543.15E4 549EA+146E4 1.77EA+3.61E3 9.66E3L2.09E3 7.23E3-+6.02E2
Ass ® LASSO 2574 29.03 37.20 47.78 60.88 7450
modified LASSO 26.15 2929 3748 4866 61.06 7617
Soarsit LASSO 200 200 197 197 196 192
parsity modified LASSO 200 200 199 198 197 197
Relative oo LASSO __ 2.55E5+339E4 143E5+6.77E3 242E4-+2.89E3 1.33E4-t2.36E3 6.82E3:+0.08E2 5.23E318.21E2
modified LASSO 2.71ES5+4.12E4 1.61E5+1.90E4 4.70EA+8.35E3 1.62EA+1.74E3 1.13EA£2.03E3 7.58E3-+2.88E3
A=W me® LASSO 2570 2919 3715 48.07 6115 75.83
~ modified LASSO 25.80 2924 37.49 48.50 6127 78,00
. LASSO 197 192 191 185 176 173
Sparsity modified LASSO 200 197 186 188 182 177
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