

000 001 002 003 004 005 006 007 008 009 010 ON CORESET FOR LASSO REGRESSION PROBLEM WITH SENSITIVITY SAMPLING

005
006
007
008
009
010
Anonymous authors
Paper under double-blind review

ABSTRACT

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
In this paper, we study coresets construction for LASSO regression, where a coresets
is a small, weighted subset of the data that approximates the original problem with
provable guarantees. For unregularized regression problems, sensitivity sampling
is a successful and widely applied technique for constructing coresets. However,
extending these methods to LASSO typically requires coreset size to scale with
 $O(\mathcal{G}d)$, where d is the VC dimension and \mathcal{G} is the total sensitivity, following existing
generalization bounds. A key challenge in improving upon this general bound
lies in the difficulty of capturing the sparse and localized structure of the function
space induced by the ℓ_1 penalty in LASSO objective. To address this, we first
provide an empirical process-based method of sensitivity sampling for LASSO,
localizing the procedure by decomposing the functional space into independent
spaces, which leads to tighter estimation error. By carefully leveraging the geo-
metric properties of these localized spaces, we establish tight empirical process
bounds on the required coreset size. These techniques enable us to achieve a core-
set of size $\tilde{O}(\epsilon^{-2}d \cdot ((\log d)^3 \cdot \min\{1, \log d/\lambda^2\} + \log(1/\delta)))$, which ensures a
 $(1 \pm \epsilon)$ -approximation for any $\epsilon, \delta \in (0, 1)$ and $\lambda > 0$. Furthermore, we give a
lower bound showing that any algorithm achieving a $(1 + \epsilon)$ -approximation must
select at least $\Omega(\frac{d \log d}{\epsilon^2})$ rows in the regime where $\lambda = O(d^{-1/2})$. Empirical
experiments show that our proposed algorithm is at least 4 times faster than the
existing LASSO solver and more than 9 times faster on half of the datasets, while
ensuring high solution quality and sparsity.

031 032 033 1 INTRODUCTION

034
035
036
037
038
039
040
041
042
043
In machine learning and regression analysis, sparse models have been extensively studied over the
past decades. These models typically address issues such as sparse regression (Natarajan, 1995),
variable selection (Zou & Hastie, 2005), and multicollinearity (Altelbany, 2021), aiming to improve
model interpretability and computational efficiency by reducing the number of features. One of the
most widely used methods for solving sparse models is the Least Absolute Shrinkage and Selec-
tion Operator (LASSO), which is first introduced in (Tibshirani, 1997). The core idea of LASSO
regression is to apply an ℓ_1 -norm penalty, ensuring sparsity by shrinking some coefficients to zero.
Therefore, in practice, LASSO is widely applied in sparse models due to its effectiveness in enabling
both variable selection and regularization with improved interpretability and prevented overfitting
issues. The formal definition of the LASSO regression is given as follows.

044
045
046
047
LASSO Regression Problem. Given an $n \times d$ matrix A , an n -dimension vector b , and a regularization
parameter $\lambda > 0$, the goal of LASSO problem is to find a d -dimension vector x that minimizes
 $\|Ax - b\|_2^2 + \lambda\|x\|_1$, where $\|Ax - b\|_2^2$ is the residual sum of squares, and the $\|x\|_1$ denotes the sum
of the absolute values of the entries in x .

048
049
050
051
052
053
Although LASSO regression has been extensively studied over the past decade, the efficiency of
LASSO algorithms in handling large-scale data still heavily depends on the number of rows n of
the input matrix A . Specifically, the running time of existing algorithms, such as coordinate descent
(Friedman et al., 2010), ISTA (Daubechies et al., 2004), and FISTA (Beck & Teboulle, 2009), is
typically $O(nT \cdot \text{poly}(d))$, where T denotes the number of iterations. However, for datasets with a
large number of samples n , LASSO may suffer from scalability issues. Therefore, developing row
subsampling methods for LASSO regression is crucial for improving solving efficiency.

054 Among the vast literature on large-scale regression tasks, coresets techniques have played major roles
 055 in data subsampling. These algorithms aim to construct a weighted subset of the rows from both
 056 A and b , forming a compact representation that effectively approximates the original regression
 057 problem with strong theoretical guarantees. Along this line of research, several coresets construc-
 058 tion algorithms have been proposed for the ℓ_p linear regression (Clarkson, 2005; Drineas et al.,
 059 2006; Dasgupta et al., 2009; Cohen & Peng, 2015; Woodruff & Yasuda, 2024; 2023; Munteanu
 060 & Omlor, 2024). In regularized regression tasks, Avron et al. (2017) constructed a coresset of size
 061 $O(\frac{sd_\lambda(A) + \log(1/\epsilon)}{\epsilon} \log \frac{sd_\lambda(A)}{\epsilon})$ for ridge regression, where $sd_\lambda(A) \leq d$ denotes the statistical dimen-
 062 sion of the matrix A . Moreover, the works in (Kacham & Woodruff, 2020) introduced determinis-
 063 tic algorithms for coresets construction and explored a streaming model for this problem. Curtin
 064 et al. (2019) provided a logistic regression coresset with size $O(d\sqrt{n})$. Chhaya et al. (2020) pro-
 065 posed a coresset based on sensitivity sampling for the norm based regularized regression problem
 066 $\|Ax - b\|_p^p + \lambda\|x\|_p^p$ with $p \geq 2$. In a related recent work, Chhaya et al. (2020) studied a mod-
 067 ified LASSO problem by constructing a coresset for the objective $\|Ax - b\|_2^2 + \lambda\|x\|_1^2$. However,
 068 the regularization term $\lambda\|x\|_1^2 = \lambda(\sum_i |x_i|)^2$, due to its quadratic nature, introduces cross terms
 069 among the x_i values. This may lead to solutions with substantially more nonzero coefficients than
 070 standard LASSO, thereby preventing it from promoting sparsity in the same way as the ℓ_1 norm
 071 and weakening its sparsity-inducing effect. To the best of our knowledge, there are currently no
 072 relevant theoretical results on coresets construction for standard LASSO, which motivates our work
 073 on developing such a coresset.

074 **Coreset for LASSO.** Let $A \in \mathbb{R}^{n \times d}$ be a matrix and $b \in \mathbb{R}^n$. Define $S \in \mathbb{R}^{n \times n}$ as a diagonal
 075 matrix, where each row $i \in [n]$ of both A and b is independently sampled with probability p_i . Let
 076 m denote the number of sampled rows. If row i is selected, set $S_{i,i} = 1/\sqrt{mp_i}$, and set $S_{i,i} = 0$
 077 otherwise. We say that S defines an (ϵ, δ) -coreset for the LASSO problem if, with probability at
 078 least $1 - \delta$, for all $x \in \mathbb{R}^d$ and $\lambda > 0$, the following holds

$$079 \|S(Ax - b)\|_2^2 + \lambda\|x\|_1 \in (1 \pm \epsilon) (\|Ax - b\|_2^2 + \lambda\|x\|_1),$$

080 where $\epsilon \in (0, 1)$. The coresset size is defined as the number of non-zeros entries on the diagonal of
 081 S , i.e., the number of sampled rows m .

082 Sensitivity sampling (Feldman & Langberg, 2011; Chhaya et al., 2020; Woodruff & Yasuda, 2023)
 083 has been extensively studied in regression without regularization, where rows are sampled in propor-
 084 tion to their importance in regression objective. A common challenge in directly applying sensitivity
 085 sampling to LASSO lies in bounding the generalization error under ℓ_1 -regularized objective using
 086 standard empirical process tools. In the general framework of sensitivity sampling, Braverman et al.
 087 (2016) showed that, given sensitivity scores $\{\varrho_i\}_{i=1}^n$, a $(1 \pm \epsilon)$ -approximate coresset typically re-
 088 quires size $\tilde{O}(\frac{\mathcal{G}d}{\epsilon^2})^1$, where \mathcal{G} is the sum of the sensitivity scores and d denotes the VC dimension
 089 of the given problem. This bound arises from applying a union bound to worst-case ϵ -net meth-
 090 ods and variance analysis. Consequently, directly applying traditional analysis to LASSO leads to
 091 large coresset sizes, which can limit scalability in high-dimensional settings. To address this, em-
 092 pirical process techniques and chaining methods have been proposed to reduce the $\mathcal{G}d$ bound (Cohen
 093 et al., 2015; Woodruff & Yasuda, 2023; Munteanu & Omlor, 2024; Bansal et al., 2024). However,
 094 integrating empirical process theory with LASSO regression requires addressing the sparse and lo-
 095 calized structure of the parameter space induced by the ℓ_1 -penalty. In particular, the functional
 096 space $\Omega = \{x \in \mathbb{R}^d \mid h(x) + p(x) \leq R\}$, defined for a fixed radius $R > 0$, is determined by
 097 the residual term $h(x) = \|Ax - b\|_2^2$ and the penalty term $p(x) = \lambda\|x\|_1$ in the objective function.
 098 The interaction between the residual and penalty terms results in a highly complex geometry for
 099 Ω , complicating the standard empirical process analysis. Additionally, the non-smooth boundary
 100 introduced by the ℓ_1 -penalty lead to large error bounds when applying the Bernstein inequality and
 101 ϵ -net analysis in (Chhaya et al., 2020). Therefore, developing a sensitivity sampling method that
 102 constructs a coresset smaller than $\tilde{O}(\mathcal{G}d)$ remains a key challenge for LASSO solvers.

1.1 OUR CONTRIBUTION

104 In this paper, we aim to improve upon existing standard bounds for LASSO coressets, which often
 105 lead to large sizes due to the application of union-bound-based ϵ -net methods. The main diffi-
 106 culty arises from the intricate structure of the function space introduced by both the residual error

107 ¹We write $\tilde{O}(f(n))$ to denote $O(f(n) \cdot \text{poly log } f(n))$.

108 and the ℓ_1 regularization term. This complexity makes it difficult to directly apply standard empirical process techniques for sensitivity sampling. To address this issue, we propose a localized empirical process method that reformulates the sensitivity scores and sampling error in a more tractable way. Specifically, we define a weighted Gaussian-based empirical process for the cores-
109 set loss and decompose the overall function space into two independent components: the residual
110 space and the ℓ_1 penalty space. Each of these components has lower complexity than the original
111 space Ω , allowing for tighter bounds on Gaussian diameter and metric entropy within each com-
112 ponent. By carefully applying symmetrization techniques and leveraging the geometric properties
113 of these localized spaces, we derive upper bounds on the localized Gaussian diameter and met-
114 ric entropy. These bounds allow us to control the sampling error and construct a coresset of size
115 $\tilde{O}(\epsilon^{-2}d \cdot ((\log d)^3 \cdot \min\{1, \log d/\lambda^2\} + \log(1/\delta)))$, achieving a $(1 \pm \epsilon)$ -approximation for any
116 $\epsilon, \delta \in (0, 1)$ and $\lambda > 0$.
117

118 To complement our upper bound analysis, we establish a matching lower bound on the coresset size
119 for LASSO regression via an information-theoretic method. By reducing the problem to a classical
120 sparse recovery setting, we show that any estimator achieving $(1+\epsilon)$ -approximation from the coresset
121 must access a minimum number of rows to achieve sparse recovery task. In particular, in the regime
122 where $\lambda = O(\frac{1}{\sqrt{d}})$, corresponding to the case where the number of nonzero entries can be large,
123 we prove that the number of required rows is at least $\Omega(\frac{d}{\epsilon^2} \log(d))$. Our coresset size matches the
124 lower bound up to polylogarithmic factors in the dimension d . Empirical experiments show that our
125 proposed algorithm is at least 4 times faster than the direct LASSO solver and more than 9 times
126 faster on half of the datasets, while preserving high solution quality. Notably, on a dataset with 8
127 million samples, our method completes in only 15 minutes.
128

129

131 1.2 OTHER RELATED WORK

132

133 LASSO regression has been widely studied to perform various sparse models, such as variable se-
134 lection (Tibshirani, 1997; Hans, 2010) and compressed sensing (Angelosante et al., 2009), which
135 was first introduced in (Tibshirani, 1996). Many optimization algorithms have been developed for
136 LASSO, including the fast iterative shrinkage-thresholding algorithm (Beck & Teboulle, 2009), co-
137 ordinate descent algorithm (Friedman et al., 2010), smooth ℓ_1 algorithm (Schmidt et al., 2007), and
138 path following algorithm (Tibshirani & Taylor, 2011). LASSO regression uses ℓ_1 -regularization to
139 relax the sparsity penalty (typically denoted by $\|x\|_0$), which is NP-hard (Natarajan, 1995). How-
140 ever, tuning the regularization parameter often leads to high computational costs. To address this,
141 several methods have been proposed. Friedman et al. (2010) provided a “glmnet” package using
142 coordinate descent method for LASSO solving. Obozinski & Bach (2012) proposed a stochastic
143 variant that improves convergence via random selection. Wang et al. (2025) accelerated hyperpa-
144 rameter tuning using Markov resampling. To the best of our knowledge, there currently exists no
145 coresset construction method for the LASSO task.

146

147 Sensitivity sampling is a well-studied technique for coresset construction in both theory and practice.
148 It was first introduced by (Agarwal et al., 2004), and has since been widely applied to various
149 problems, including clustering (Feldman & Langberg, 2011; Braverman et al., 2022; Bansal et al.,
150 2024), linear regression (Drineas et al., 2006; Woodruff & Yasuda, 2024; 2023; Munteanu & Omlor,
151 2024), and matrix approximation (Dasgupta et al., 2009; Cohen et al., 2015). For the ordinary least
152 squares regression, (Drineas et al., 2006) proposed a coresset algorithm based on the well-known
153 statistical leverage score sampling. Dasgupta et al. (2009) extended this line of work to ℓ_p linear
154 regression using well-conditioned basis method. More recently, a tight framework for constructing
155 coressets for unregularized regression was developed by (Woodruff & Yasuda, 2023; 2024; Munteanu
156 & Omlor, 2024), leveraging chaining techniques from empirical process theory.

157

158 Sensitivity sampling techniques have been extensively studied for regularized regression prob-
159 lems. For logistic regression, sensitivity-based sampling has been successfully applied in a se-
160 ries of works Munteanu et al. (2018); Curtin et al. (2019); Mai et al. (2021); Munteanu & Omlor
161 (2024). In particular, Munteanu & Omlor (2024) recently provided a strong coresset of size
 $\tilde{O}(\mu d/\epsilon^2)$ based on the Lewis weight sampling Parulekar et al. (2021), where μ captures the com-
162 plexity of the input data distribution. For ridge regression, Avron et al. (2017) pioneered the use
163 of coreset techniques by showing that a weak coresset of size $\tilde{O}(sd_\lambda(A)/\epsilon^2)$ suffices to achieve a
164 $(1 + \epsilon)$ -approximation. Kacham & Woodruff (2020) developed the optimal deterministic coresset

162 constructions for multi-response ridge regression. Their method selects $O(sd_\lambda(A)/\epsilon)$ rows and
 163 achieves a $(1 + \epsilon)$ -approximation, with matching lower bounds that establish the tightness of the
 164 dependence on $sd_\lambda(A)$. In the regime where $n \gg d$, the statistical dimension $d_\lambda(A)$ satisfies
 165 $sd_\lambda(A) \leq \text{rank}(A) \leq d$, and increase in regularization parameter λ can lead to lead to smaller
 166 coresets sizes for ridge regression.

167 In the broader context of norm-regularized regression, Chhaya et al. (2020) considered the coresets
 168 construction for ℓ_p regularized regression problems of the form $\|Ax - b\|_p^p + \lambda\|x\|_p^p$, where $p \geq 1$.
 169 They provided a strong coreset of $\tilde{O}(\frac{d^{p+1}}{\epsilon^2 \cdot (1+\lambda/\|A'\|_{(p)}^p)})$ based on the sensitivity sampling techniques.
 170

171 Moreover, they first showed that when $r \neq s$, no strong coreset can be smaller than the optimal core-
 172 set size for the unregularized term $\|Ax - b\|_p^r$. The result applies in particular to the LASSO, where
 173 $p = r = 2$ and $q = s = 1$. To address the LASSO objective, Chhaya et al. (2020) proposed a mod-
 174 ified formulation in which the regularization term $\|x\|_1$ is replaced with $\|x\|_1^2$, enabling the use of
 175 ridge regression coresets Avron et al. (2017) to construct a coreset of size $\tilde{O}(sd_\lambda(A)/\epsilon^2)$.
 176 However, this modification introduces cross terms among the components of x , which may weaken
 177 the sparsity-inducing effect of the standard ℓ_1 regularization. In this paper, the proposed coresets
 178 for standard LASSO objective has size $\tilde{O}(\epsilon^{-2}d \cdot ((\log d)^3 \cdot \min\{1, \log d/\lambda^2\} + \log(1/\delta)))$, which
 179 preserves the $\tilde{O}(d/\epsilon^2)$ bound when λ approaches to 0 or ∞ . In addition, sketching-based methods
 180 using randomized projections have also been applied to the LASSO problem in recent Mai et al.
 181 (2023). Designing sensitivity sampling methods for constructing coresets for LASSO remains an
 182 interesting open problem.

2 PRELIMINARIES

186 Given a positive integer n , let $[n] = \{1, 2, \dots, n\}$. For a d -dimensional vector $x \in \mathbb{R}^d$, the ℓ_p -
 187 norm of x is $\|x\|_p = (\sum_{i=1}^d x_i^p)^{1/p}$. For an $n \times d$ matrix A , the induced p -norm is $\|A\|_{(p)}$, which
 188 is defined as $\|A\|_{(p)} = \sup_{x \neq 0, x \in \mathbb{R}^d} \frac{\|Ax\|_p}{\|x\|_p}$. The ℓ_2 -norm (or spectral norm) $\|A\|_{(2)}$ corresponds
 189 to the maximum singular value of A . For a matrix $A \in \mathbb{R}^{n \times d}$, the ℓ_p norm of A is $\|A\|_p =$
 190 $(\sum_{i=1}^n \sum_{j=1}^d A_{ij}^p)^{1/p}$, and the Frobenius norm of A is $\|A\|_F = (\sum_{i=1}^n \sum_{j=1}^d A_{ij}^2)^{1/2}$. Let A_i :
 191 be the i -th row of A , and let A_{ij} be the entry in the i -th row and j -th column of A . Let A^\top be
 192 the transport matrix of the matrix A . The Singular Value Decomposition (SVD) of matrix A is
 193 $A = U\Sigma V^\top$, where $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{d \times d}$ are orthogonal matrices, and $\Sigma \in \mathbb{R}^{n \times d}$ is a
 194 diagonal matrix containing the singular values $\sigma_1, \dots, \sigma_r$, where $r \leq \min\{n, d\}$. For a vector
 195 $x \in \mathbb{R}^n$ and weight vector $w \in \mathbb{R}_{\geq 0}^n$, the weighted ℓ_p -norm is $\|x\|_{w,p} = (\sum_{i=1}^n w_i |x_i|^p)^{1/p}$, and
 196 the weighted ℓ_∞ norm is $\|x\|_{w,\infty} = \max_{i \in [n]} |x_i|$. An ϵ -net for a set K in a metric space (X, d)
 197 is a subset $T \subseteq K$ such that for every point $x \in K$, there exists $y \in T$ with $d(x, y) \leq \epsilon$. Given a
 198 parameter $\lambda > 0$, we define the statistical dimension of a matrix A as
 199

$$sd_\lambda(A) = \sum_{i=1}^r \frac{1}{1 + \lambda/\sigma_i^2},$$

200 where r denotes the rank of A . For any vector $x \in \mathbb{R}^d$, let $\text{supp}(x) = \{i \in [d] \mid x_i \neq 0\}$ denote its
 201 support, and write $|\text{supp}(x)|$ for the number of nonzero coordinates.
 202

203 **ℓ_2 Leverage Scores.** The ℓ_2 -norm leverage score of the i -th row of matrix A is $\tau_{i,2}(A) =$
 204 $\sup_{x \in \mathbb{R}^d} \frac{\|A_{i,:}^\top x\|_2^2}{\|Ax\|_2^2}$. Alternatively, the leverage scores can be expressed as $\tau_{i,2}(A) = \|e_i^\top U\|_2^2$, where
 205 $U \in \mathbb{R}^{n \times d}$ is an orthonormal basis for the column space of A (Cohen et al., 2015). Therefore, the
 206 sum of the ℓ_2 leverage scores is satisfies $\sum_{i=1}^d \tau_{i,2}(A) = d$.
 207

3 SENSITIVITY SAMPLING FOR LASSO REGRESSION

211 In this section, we propose a sensitivity sampling algorithm for LASSO regression, called LASSO-
 212 Sens. The main goal is to derive a better upper bound on the coreset size using empirical process
 213 methods applied to the LASSO objective. The primary technical challenge lies in handling the in-

216 Algorithm 1 LASSO-Sens

217 **Input:** a matrix $A \in \mathbb{R}^{n \times d}$, a vector $b \in \mathbb{R}^n$, a regularized parameter λ , the over-sampling parameter
218 α , the coresset size T , a set of approximate sensitivity scores $\{\varrho_i\}_{i=1}^n$, and a parameter $\epsilon > 0$
219 **Output:** a set of indices Q , and a weight vector $w \in \mathbb{R}_{\geq 0}^n$

220 1: Initialize an empty set Q , and let w be an n -dimensional zero vector.
221 2: Initialize the total sensitivity $\mathcal{G} = 0$.
222 3: **for** $i \leftarrow 1, 2, \dots, n$ **do**
223 4: Compute the sampling probability for the i -row $p_i = \min\{1, \alpha(\varrho_i + \frac{1}{n})\}$.
224 5: Update $\mathcal{G} = \mathcal{G} + \varrho_i$.
225 6: **end for**
226 7: **for** $t \leftarrow 1, 2, \dots, T$ **do**
227 8: Sample a row index $i \in [n]$ with probability p_i , and set the weight $w_i = 1/\sqrt{p_i}$.
228 9: $Q \leftarrow Q \cup \{i\}$.
229 10: **end for**
230 11: **return** Q and w .

231
232
233 teraction between the residual loss and the ℓ_1 penalty, as standard empirical process techniques typ-
234 ically rely on analyzing the ratio between them, which is difficult to handle and may lead to weaker
235 coresset size bounds. To address this issue, we provide a localization method for coresset within the
236 empirical process framework, which decouples the problem into two components over localized re-
237 gions. This allows us to analyze the empirical process in a localized space involving only a single
238 term. Over these localized sets we develop a weighted Gaussian empirical-process framework and
239 derive upper bounds on the Gaussian diameter, covering numbers, and metric entropy. These in-
240 gredients yield a coresset of size $\tilde{O}(\frac{d}{\epsilon^2} \cdot ((\log d)^3 \min\{1, \frac{\log d}{\lambda^2}\} + \log(1/\delta)))$, which nearly matches
241 the lower bound in the regime $\lambda = O(1/\sqrt{d})$. The detailed algorithm for constructing the LASSO
242 coresset is given in Algorithm 1.

243 In sensitivity sampling, the sensitivity score of the i -th row for LASSO objective is defined as

244

$$245 \varrho_i = \sup_{x \in \mathbb{R}^d} \frac{\|(Ax - b)_i\|_2^2 + \lambda \frac{\|x\|_1}{n}}{\|Ax - b\|_2^2 + \lambda \|x\|_1}, \quad (1)$$

246

247 where $\lambda > 0$. The definition of ϱ_i is to capture the worst-case contribution to the LASSO objective,
248 with the regularization term $\lambda \|x\|_1$ ensuring that each row contributes equally to sampling. Bounding
249 the score ϱ_i by the ℓ_2 leverage score τ_i with an additive $1/n$ in this paper is straightforward; see
250 formal details Section A.1 in Appendix.

251 The LASSO-Sens algorithm mainly consists of a sampling procedure for coresset construction. We
252 initialize an empty set of indices Q and a zero vector w . Then, we calculate the sampling probability
253 $p_i = \min\{1, \alpha(\varrho_i + \frac{1}{n})\}$ and update the total sensitivity \mathcal{G} by adding ϱ_i , where α represents the over-
254 sampling parameter. Next, the algorithm then randomly selects a row index $i \in [n]$ with probability
255 p_i , assigns the weight of the i -th row to $1/\sqrt{p_i}$, and updates the set of indices to $Q = Q \cup \{i\}$. By
256 repeating this sampling process T times, Algorithm 1 returns the final set of row indices Q and the
257 corresponding weight vector w .

258 Before providing the theoretical guarantees for the coresset, we first present an equivalent transfor-
259 mation of the LASSO objective and its sensitivity scores. Let $A' = [A \quad -b] \in \mathbb{R}^{n \times (d+1)}$ be the
260 matrix obtained by concatenating A and b , and $x' = [x \ 1]$ be the vector obtained by concatenating x
261 with 1. Using A' and x' , the original objective function $\min_x \|Ax - b\|_2^2 + \lambda \|x\|_1$ is rewritten as

262

$$263 \min_{x' \in \mathbb{R}^{d+1}, x'_{d+1}=1} \|A'x'\|_2^2 + \lambda \|x'\|_1.$$

264

265 Thus, we reformulate the sensitivity score ϱ_i as

266

$$267 \varrho_i = \sup_{x' \in \mathbb{R}^{d+1}, x'_{d+1}=1} \frac{\|(A'x')_i\|_2^2 + \frac{\lambda}{n} \|x'\|_1}{\|A'x'\|_2^2 + \lambda \|x'\|_1} > 0.$$

268

270 3.1 SAMPLING ERROR ANALYSIS
271

272 In this subsection, we develop a localized empirical process framework to analyze the sampling
273 error introduced by sensitivity sampling in the LASSO objective. To achieve this, we decompose the
274 function space into the residual and penalty components, and localize our study to their intersection.
275 This separation enables us to independently bound the Gaussian complexity and metric entropy of
276 each component using a combination of weighted chaining techniques. By constructing multi-scale
277 ϵ -nets and applying concentration inequalities for Gaussian processes, we establish an upper bound
278 on the coresnet size that controls the sampling error.

279 We now analyze the sampling error introduced by sensitivity sampling. Let $\{p_i\}_{i=1}^n$ denote the
280 sampling probabilities associated with each row of the augmented matrix A' . Define the sampling
281 and rescaling matrix $S \in \mathbb{R}^{n \times n}$ as

$$282 \quad S = w^\top \Psi, \text{ where } \Psi = \text{diag}(\psi_1, \dots, \psi_n), \psi_i = \begin{cases} 1, & \text{with probability } p_i \\ 0, & \text{otherwise} \end{cases}, \quad (2)$$

285 and w is a vector of rescaling weights. The matrix Ψ is diagonal with m nonzero entries in expectation.
286 Let $\mathcal{T} = \{x \mid x \in \mathbb{R}^{d+1}, x_{d+1} \neq 0\}$, and let $\Omega = \{x \mid x \in \mathcal{T}, \|A'x\|_2^2 + \lambda\|x\|_1 = 1\}$ be the
287 unit ball of the LASSO objective. Then, we define the sampling error \mathcal{E} over the domain Ω as

$$289 \quad \mathcal{E} = \sup_{x' \in \Omega} \left| \|SA'x'\|_2^2 + \lambda\|x'\|_1 - (\|A'x'\|_2^2 + \lambda\|x'\|_1) \right| \\ 290 \\ 291 = \sup_{x' \in \Omega} \left| \|SA'x'\|_2^2 - \|A'x'\|_2^2 \right|. \\ 292$$

293 Our goal is to bound \mathcal{E} by ϵ , leading to the inequality
294

$$295 \quad \|SA'x'\|_2^2 + \lambda\|x'\|_1 \leq (1 \pm \epsilon) (\|A'x'\|_2^2 + \lambda\|x'\|_1)$$

297 for every $x' \in \Omega$. To bound \mathcal{E} using the chaining method (Cohen & Peng, 2015; Koltchinskii, 2001;
298 Hu et al., 2022), we analyze the moments of \mathcal{E} with the symmetrization technique, which allows us
299 to construct a Gaussian reduction as follows. (A detailed proof of Lemma 1 is given in Appendix
300 Lemma 3.)

301 **Lemma 1.** *Let $A' \in \mathbb{R}^{n \times (d+1)}$, let S be a random sampling matrix, and let Q denote the set of the
302 sampled rows from A' . For $\lambda > 0$ and integer $l \geq 2$, the following inequality holds*

$$303 \quad \mathbb{E}_S |\mathcal{E}|^l \leq (2\pi)^{l/2} \mathbb{E}_S \mathbb{E}_{g \sim \mathcal{N}(0, I_n)} \sup_{x \in \Omega} \left| \sum_{i \in Q} g_i w_i |(A_i x)|^2 \right|^l,$$

307 where $g \sim \mathcal{N}(0, I_n)$ represents a Gaussian vector with independent entries.
308

309 We bound the sampling error \mathcal{E} by analyzing the associated Gaussian process, as described in
310 Lemma 1. To handle higher-order moments on \mathcal{E} , we apply a moment bound from Woodruff &
311 Yasuda (2023), which uses Dudley's tail inequality for Gaussian processes. Consequently, we ob-
312 tain the following inequality on the sampling error

$$313 \quad \mathbb{E}_S [|\mathcal{E}|^l] \leq (C\mathcal{M}_\mathcal{E})^l (\mathcal{M}_\mathcal{E}/\mathcal{D}) + O(\sqrt{l}\mathcal{D})^l, \quad (3)$$

315 where C is an absolute constant, $\mathcal{M}_\mathcal{E}$ denotes the metric entropy of the Gaussian process, and \mathcal{D} is
316 the Gaussian diameter. (The detailed definitions of $\mathcal{M}_\mathcal{E}$ and \mathcal{D} are provided in the following.)
317

318 By appropriately choosing the parameter l and bounding both the metric entropy $\mathcal{M}_\mathcal{E}$ and the Gaus-
319 sian diameter \mathcal{D} of the Gaussian process, we can ensure that $\mathbb{E}_S [|\mathcal{E}|^l] \leq \epsilon$, which leads to a suffi-
320 ciently small coresnet size m . We now decompose the unit ball $\mathcal{L} = \{x \mid x \in \mathcal{T}, \|A'x\|_2^2 + \lambda\|x\|_1 \leq$
321 $1\}$, which arises from the residual term $\|A'x\|_2$ and the ℓ_1 penalty. (The proof of Lemma 2 is
322 provided in Appendix Lemma 4.)

323 **Lemma 2.** *Let $A' \in \mathbb{R}^{n \times (d+1)}$ be a matrix and $\lambda > 0$. Define the sets $\Omega = \{x \mid x \in \mathcal{T}, \|A'x\|_2^2 + \lambda\|x\|_1 \leq 1\}$ and $\mathcal{L} = \{x \mid x \in \mathcal{T}, \|A'x\|_2^2 \leq 1 \text{ and } \|x\|_1 \leq \frac{1}{\lambda}\}$. Then, it holds that $\Omega \subseteq \mathcal{L}$.*

324 Define $B_2(A') = \{x \mid x \in \mathcal{T}, \|A'x\|_2^2 \leq 1\}$ as the unit ball in the residual space, and $B_1(\frac{1}{\lambda}) = \{x \mid$
 325 $x \in \mathcal{T}, \|x\|_1 \leq \frac{1}{\lambda}\}$ as the unit ball in the ℓ_1 -penalty space. By Lemma 2, we have
 326

$$327 \quad \mathcal{L} \subseteq \mathcal{L}_{A'} = B_2(A') \cap B_1\left(\frac{1}{\lambda}\right).$$

329 This allows us to proceed with bounding both the Gaussian diameter \mathcal{D} and the metric entropy $\mathcal{M}_{\mathcal{E}}$
 330 for the convex sets $B_2(A')$ and $B_1(\frac{1}{\lambda})$, respectively. Let $M = \Psi A'$, where $\Psi \in \mathbb{R}^{n \times n}$ is a diagonal
 331 sampling matrix. In this formulation, each nonzero row of M corresponds to a selected row of A' .

332 We start by bounding the Gaussian diameter \mathcal{D} by relaxing the pseudo-metric d_X using the maximum
 333 ℓ_2 leverage score and λ . Define the convex set $\mathcal{L}_M = \{y = Mx \mid x \in \mathcal{L}_{A'}\}$. Let
 334 $\tau = \sup_{x' \in \mathcal{L}_M} \|Mx'\|_{2,\infty}^2$ be the maximum of ℓ_2 leverage score. Next, we prove that the diameter
 335 $\mathcal{D}(\mathcal{L}_M)$ with d_X is bounded as the following inequality. (Detailed proof of Lemma 3 is given
 336 in Appendix Lemma 5.)

337 **Lemma 3.** *Let $M \in \mathbb{R}^{m \times (d+1)}$, and let w be the weight vector. Define the pseudo-metric*

$$339 \quad d_X(y, y') = \left(\mathbb{E}_{g \sim \mathcal{N}(0, I_n)} \left| \sum_{i=1}^m g_i w_i |y_i|^2 - \sum_{i=1}^m g_i w_i |y'_i|^2 \right|^2 \right)^{1/2}$$

342 for any $y, y' \in \mathcal{L}_M$. Then, the diameter $\mathcal{D}(\mathcal{L}_M)$ with respect to d_X is bounded by

$$343 \quad \mathcal{D}(\mathcal{L}_M) \leq O(\tau \cdot \sqrt{\log(d(\lambda^2 \wedge 1))} \wedge (\lambda \sqrt{d})).$$

345 To obtain a precise bound for the Gaussian process over \mathcal{L}_M , we apply the chaining method to
 346 construct a sequence of t -nets at varying scales $t > 0$, which capture the convex structure of \mathcal{E} on
 347 \mathcal{L}_M . Utilizing this chaining method, we can derive a bound on $\mathbb{E}_{\mathcal{S}}|\mathcal{E}|^l$ via the covering numbers
 348 of the sequence of t -nets. Thus, we aim to bound the minimal number of weighted unit ℓ_p (or
 349 ℓ_{∞}) balls required to cover the convex set \mathcal{L}_M for $p \in [1, \infty)$. We define the weighted unit ball
 350 of the residual space $B_{w,2}(M)$ as $B_{w,2}(M) = \{y = Mx \mid x \in \mathcal{T}, \|Mx\|_{w,2}^2 \leq 1\}$, and define
 351 $\mathcal{L}_{w,M} = B_{w,2}(M) \cap B_1(1/\lambda)$. Let $G = 1 + \mathcal{E} = 1 + \sup_{x' \in \mathcal{L}_M} \|\|SA'x'\|_2^2 - \|A'x'\|_2^2\|$.

352 To bound the metric entropy entropy of the convex set $B_{w,2}(M)$, we first define the weighted unit
 353 $\ell_{w,p}$ -ball as $B_{w,p}(M) = \{x \mid x \in \mathcal{T}, \|Mx\|_{w,p}^2 \leq 1\}$. Let \mathcal{T}_p denote the t -net of $B_{w,2}(M)$ with
 354 respect to the weighted ℓ_p -norm, i.e., a finite subset of $B_{w,2}(M)$ such that every point in $B_{w,2}(M)$ is
 355 within distance t (measured in $\|\cdot\|_{w,p}$) from some point in \mathcal{T}_p . We define $N(B_{w,2}(M), \|\cdot\|_{w,p}, t)$ as
 356 the minimal cardinality of such a set \mathcal{T}_p , and the metric entropy of $B_{w,2}(M)$ w.s.t the weighted ℓ_p -
 357 norm is then defined as $\log N(B_{w,2}(M), \|\cdot\|_{w,p}, t)$. (Detailed definitions are provided in Appendix,
 358 Definitions 11 and 12.)

359 **Lemma 4** (Munteanu & Omlor, 2024), slightly modified. *Let $2 \leq p < \infty$, and let $M \in \mathbb{R}^{m \times (d+1)}$
 360 be an orthonormal matrix with a weight vector $w \in \mathbb{R}_{\geq 0}^m$. Then, the following inequalities hold*
 361 $\log N(B_{w,2}(M), \|\cdot\|_{w,p}, t) \leq O(1) \frac{m^{2/p} \cdot \tau}{t^2}$ and $\log N(B_{w,2}(M), \|\cdot\|_{w,\infty}, t) \leq O(1) \frac{\log m \cdot \tau}{t^2}$.

363 For bounding the metric entropy of the convex set $B_1(\frac{1}{\lambda})$, we aim to bound the number of unit
 364 B_{∞} -balls needed to cover the B_1 -ball. Specifically, the covering process can be decomposed into
 365 two steps: first, cover the B_2 -ball using B_{∞} -balls, and second, cover the B_1 -ball using B_2 -balls.
 366 The B_1 ball has a unique geometric structure, with a large portion of its volume concentrated near
 367 its center, as pointed out in (Vershynin, 2018). This concentration implies that fewer small-radius
 368 balls are required to cover B_1 , compared to naive volume-based estimates. While a straightforward
 369 volumetric argument yields a worst-case covering number of $O((1 + \frac{1}{\epsilon})^d)$, this bound can be quite
 370 loose. To obtain a tighter estimate, we leverage the Sudakov Minoration inequality (Vershynin,
 371 2018), which provides an upper bound on the covering number $N(B_1, B_{\infty}, t)$ with respect to the
 372 ℓ_{∞} norm and covering radius t . (Detailed proof of Lemma 5 is given in Appendix Lemma 13.)

373 **Lemma 5.** *Let $p \geq 1$ be a parameter, and let $B_p = \{x \in \mathbb{R}^d : \|x\|_p \leq 1\}$ be the unit ball for the ℓ_p
 374 norm. Then, $\log N(B_1, B_{\infty}, t) \leq O(\frac{\log d}{t})$.*

375 To bound the metric entropy of these t -nets, we need to calculate the following integral

$$377 \quad \mathcal{M}_{\mathcal{E}} \leq \int_0^{\infty} \sqrt{\log N(\mathcal{L}_{w,M}, d_X, t)} dt.$$

For diameters $t > \mathcal{D}(\mathcal{L}_{w,M})$, the covering number satisfies $\log N(\mathcal{L}_{w,M}, d_X, t) = 0$, which implies that any single vector $y \in \mathcal{L}_{w,M}$ serves as a t -net. Therefore, we only need to focus on the case where the diameter t lies within the interval $[0, \mathcal{D}(\mathcal{L}_{w,M})]$. We derive the following inequality, whose proof is provided in Appendix Lemma 19.

Lemma 6. *Let $M \in \mathbb{R}^{m \times (d+1)}$ be a matrix and λ be a positive parameter. Then, the metric entropy $\mathcal{M}_{\mathcal{E}}$ of $\mathcal{L}_{w,M}$ satisfies*

$$\int_0^\infty \sqrt{\log N(\mathcal{L}_{w,M}, d_X, t)} dt \leq O(G \cdot \sqrt{\tau \cdot \log m} \log d \cdot \min\{1, \frac{\sqrt{\log d}}{\lambda}\}),$$

where τ is the maximum weighted ℓ_2 -leverage score of M .

We now present the main result, which provides a bound on the coreset size required to guarantee that $\mathbb{E}|\mathcal{E}|^l \leq \epsilon$. (The proof is provided in Appendix, Theorem 22.)

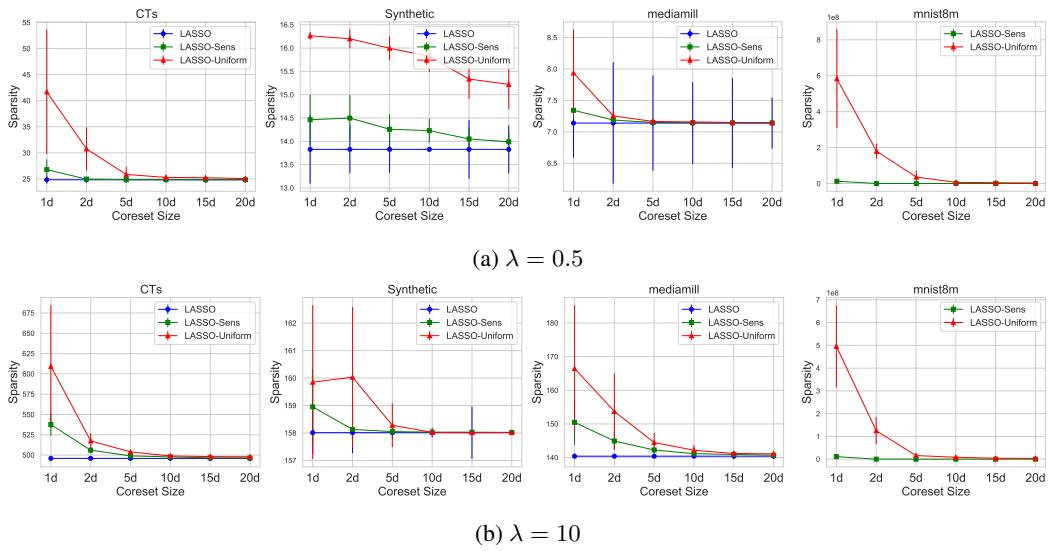


Figure 1: LASSO regression loss comparison across varying coresset sizes for $\lambda = \{0.5, 10\}$.

Table 1: Comparison results of loss, runtime, and sparsity on CTs dataset ($n = 53,500$, $d = 386$) for varying coresset sizes at $\lambda = 0.5$.

Metrics	Algorithms	Coreset Sizes					
		1d	2d	5d	10d	15d	20d
Loss	LASSO				24.83 ± 0.51		
	LASSO-Sens	26.77 ± 1.95	24.96 ± 0.26	24.84 ± 0.01	24.83 ± 0.01	24.83 ± 0.01	24.83 ± 0.01
	LASSO-Uniform	41.69 ± 11.93	30.75 ± 4.11	25.85 ± 1.48	25.28 ± 0.32	25.21 ± 0.26	25.06 ± 0.27
Time (s)	LASSO				691.72		
	LASSO-Sens	5.80	8.12	10.28	16.67	23.10	37.37
	LASSO-Uniform	6.84	8.23	9.85	18.86	26.73	42.03
Sparsity	LASSO				315		
	LASSO-Sens	379	348	330	313	312	317
	LASSO-Uniform	379	359	336	319	320	317

Theorem 7. *Let $A' \in \mathbb{R}^{n \times (d+1)}$ be an input matrix, S be a random sampling matrix, and let $\varepsilon, \delta \in (0, 1)$ and $\lambda > 0$ be a parameter. If $\alpha = \tilde{O}\left(\frac{1}{\varepsilon^2} \cdot \left(\log(d \log(1/\delta))(\ln d)^2 \cdot \min\left\{1, \frac{\log d}{\lambda^2}\right\} + \ln(1/\delta)\right)\right)$ and for all $i \in [n]$ it holds that*

$$p_i \geq \min\{1, \alpha(\tau_{i,2}(A') + \frac{1}{n})\},$$

432 where $\tau_{i,2}(A')$ denotes the ℓ_2 leverage score of the i -th row of A' . Then, with failure probability at
 433 most δ , it holds that, $\forall x \in \mathbb{R}^{d+1}, x_{d+1} = 1$,

$$435 \|SA'\hat{x}\|_2^2 + \lambda\|\hat{x}\|_1 \leq (1 \pm \epsilon)(\|A'x\|_2^2 + \lambda\|x\|_1),$$

436 and the coresnet size is at most $m = \tilde{O}\left(\frac{d(\log d)^3}{\epsilon^2} \cdot \min\{1, \frac{\log d}{\lambda^2}\} + \frac{d}{\epsilon^2} \log \frac{1}{\delta}\right)$.

439 To establish a lower bound on the coresnet size m , we utilize a reduction from the support recovery
 440 for sparse recovery problem. We consider the task of recovering the support of a sparse vector x^* ,
 441 and apply information-theoretic techniques for LASSO regression problem. Our analysis shows
 442 that, under certain conditions, any algorithm achieving a $(1 + \epsilon)$ -approximation from the coresnet
 443 requires at least $\Omega(\frac{d}{\epsilon^2} \log d)$ rows. Since Mai et al. (2023) pointed out the lack of scale-invariance
 444 in the LASSO objective, we normalize the inputs by assuming $\|A\|_2 \leq 1$ and $\|b\|_2 \leq 1$. Detailed
 445 proofs are provided in Appendix B.4.

446 **Lemma 8.** Let $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^n$, and $\lambda \in (0, 1)$. Assume that $\|A\|_2 \leq 1$ and $\|b\|_2 \leq 1$. Let S be
 447 a diagonal sampling matrix with m non-zero entries. Suppose there exists an estimator that returns
 448 $\tilde{x} = \arg \min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2 + \lambda\|x\|_1$ satisfies

$$449 \|A\tilde{x} - b\|_2^2 + \lambda\|\tilde{x}\|_1 \leq (1 + \epsilon) \cdot \min_{x \in \mathbb{R}^d} (\|Ax - b\|_2^2 + \lambda\|x\|_1).$$

451 Then, the coresnet size m must satisfy

$$452 m = \begin{cases} \Omega\left(\frac{\log d}{\lambda^2 \cdot \epsilon^2}\right), & \text{if } \lambda = \Omega\left(\frac{1}{\sqrt{d}}\right) \\ \Omega\left(\frac{d}{\epsilon^2} \log d\right), & \text{if } \lambda = O\left(\frac{1}{\sqrt{d}}\right) \end{cases}.$$

456 4 EXPERIMENTS

458 In this section, we compare three algorithms for solving the LASSO regression problem: direct
 459 optimization using the full dataset, and solving LASSO on subsamples selected via sensitivity sam-
 460 pling and uniform sampling, respectively. All experiments are conducted on a machine with 72 Intel
 461 Xeon Gold 6230 CPUs and 340 GB of memory, and all implementations are executed in MATLAB
 462 2017A.

463 **Datasets.** We evaluate the three algorithms on 4 datasets: Synthetic ($n = 10,000, d = 200$), medi-
 464 amill ($n = 30,993, d = 120$), CTs ($n = 53,500, d = 386$), mnist8m ($n = 8,000,000, d = 784$).
 465 The synthetic dataset is generated by constructing a matrix $A \in \mathbb{R}^{10000 \times 200}$, where a small
 466 number of rows have high leverage scores. This construction follows the method described in
 467 (Chhaya et al., 2020). The resulting matrix is designed to exhibit a non-uniform leverage score
 468 distribution while maintaining a well-conditioned structure. For all datasets, the response vec-
 469 tor is defined as $b = Ax + 10^{-5} \cdot \frac{\|b\|_2}{\|e\|_2} \cdot e$, where $x \in \{0, 1\}^d$ is a randomly generated sparse
 470 vector, and e is a noise vector. All datasets used in our experiments are publicly available
 471 at: <https://archive.ics.uci.edu/datasets> and <https://www.csie.ntu.edu.tw/~cjlin/libsvm/>.

473 **Algorithms.** In our experimental evaluation, we compare the following three algorithms:

- 475 • LASSO. The standard LASSO regression is solved using the FISTA method as described
 476 in (Beck & Teboulle, 2009).
- 477 • LASSO-Sens. Our proposed approach (see Algorithm 1), which first constructs a coresnet
 478 via sensitivity-based sampling and solves the LASSO problem on the coresnet using FISTA.
- 479 • LASSO-Uniform. A baseline that first uniformly samples rows from the input data and
 480 then applies FISTA to solve the LASSO problem on the sampled data.

482 **Methodology.** We evaluate algorithm performance using the loss function $f(x) = \|Ax - b\|_2^2 +$
 483 $\lambda\|x\|_1$, where a lower value of loss indicates a better solution. To evaluate the sparsity of the solu-
 484 tion, we follow the method in (Chhaya et al., 2020) by setting any entry of x with an absolute value
 485 less than 10^{-6} to 0, and we count the remaining nonzero entries. Our experiments test three meth-
 486 ods: LASSO, LASSO-Sens, and LASSO-Uniform on four datasets. To ensure a fair comparison, we

486 test each algorithm 10 times and report the average loss, runtime, and sparsity. To compare the per-
 487 formance of different sampling strategies, we run LASSO-Sens and LASSO-Uniform across a range
 488 of coresets sizes and regularization parameters, with the values $\lambda \in \{0.5, 1, 5, 10\}$. Specifically, the
 489 coresets size is selected from $\{1, 2, 5, 10, 15, 20\} \times d$ for each dataset.

490 **Results for the LASSO Regression.** As shown in Figures 1 and 2 (see Appendix), the LASSO-
 491 Sens algorithm achieves loss values that closely match those of the exact LASSO solver as the
 492 coresets size increases, particularly for $\lambda = 0.5$ and $\lambda = 10$. The comparison of performance
 493 metrics across four datasets under varying values of λ and coresets sizes are reported in Table 1 and
 494 Appendix Tables 2-5, including average loss, standard deviation, runtime, and solution sparsity. On
 495 the Synthetic, Mediamill, and CTs datasets, LASSO-Sens is at least 4 times faster than LASSO,
 496 and up to 18 times faster on CTs. On mnist8m dataset, LASSO-Sens obtains a feasible solution
 497 within 15 minutes, whereas the standard LASSO solver fails to return a solution even after 48 hours.
 498 Furthermore, the LASSO-Sens algorithm consistently outperforms the LASSO-Uniform in terms of
 499 both accuracy and sparsity on mnist8m dataset. At a coresets size of $10d$, the sparsity of the solutions
 500 produced by LASSO-Sens closely matches that of the exact LASSO solver across all datasets. These
 501 experimental results show the sensitivity sampling in accelerating the LASSO regression process
 502 while preserving high-quality and the sparsity of solutions. All of these findings, together with our
 503 Theorem 8, confirm the effectiveness of sensitivity sampling for LASSO regression.

5 CONCLUSION

504 In this paper, we propose the first coresets construction method for LASSO regression via sensi-
 505 tivity sampling algorithm. Directly applying existing coresets techniques for regularized regression
 506 to LASSO yields a coresets size bound of $\tilde{O}(Gd/\epsilon^2)$. To achieve a smaller coresets, we propose
 507 an empirical process analysis that addresses the complex functional space arising from the inter-
 508 action between the residual error and ℓ_1 -penalty in LASSO, thereby achieving a coresets of size
 509 $\tilde{O}(\epsilon^{-2}d \cdot ((\log d)^3 \cdot \min\{1, \log d/\lambda^2\} + \log(1/\delta)))$. An interesting future direction is to study how
 510 our method can be extended to the elastic net and other regression problems involving more complex
 511 regularization.

ETHICS STATEMENT

512 This work does not involve any human subjects, sensitive data, or other ethical concerns as outlined
 513 in the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

514 This paper is committed to ensuring the reproducibility of our work. To ensure the completeness of
 515 the comparison, we have provided detailed descriptions of our proposed method and its components
 516 in Section 4 of the main paper. To enable accurate replication, we clearly specify all hyperparam-
 517 eters, training procedures, and evaluation protocols in the same section. Additional implementation
 518 results, including figures and tables, are provided in the Appendix.

REFERENCES

519 Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Approximating extent measures of
 520 points. *Journal of the ACM*, 51(4):606–635, 2004.

521 Shady Altelbany. Evaluation of ridge, elastic net and lasso regression methods in precedence of mul-
 522 ticolinearity problem: a simulation study. *Journal of Applied Economics and Business Studies*, 5
 523 (1):131–142, 2021.

524 Daniele Angelosante, Georgios B Giannakis, and Emanuele Grossi. Compressed sensing of time-
 525 varying signals. In *Proceedings of the 16th International Conference on Digital Signal Process-
 526 ing*, pp. 1–8, 2009.

540 Haim Avron, Kenneth L Clarkson, and David P Woodruff. Sharper bounds for regularized data
 541 fitting. In *Proceedings of the 17th Annual Conference on Approximation, Randomization, and*
 542 *Combinatorial Optimization: Algorithms and Techniques.*, pp. 27:1–27:22, 2017.

543

544 Nikhil Bansal, Vincent Cohen-Addad, Milind Prabhu, David Saulpic, and Chris Schwiegelshohn.
 545 Sensitivity sampling for k -means: Worst case and stability optimal coresset bounds. In *Proceeding*
 546 *of the 65th IEEE Annual Symposium on Foundations of Computer Science*, pp. 1707–1723, 2024.

547

548 Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
 549 problems. *SIAM Journal on Imaging Sciences*, 2(1):183–202, 2009.

549

550 Pierre C Bellec. Localized gaussian width of m -convex hulls with applications to lasso and convex
 551 aggregation. *Bernoulli: official journal of the Bernoulli Society for Mathematical Statistics and*
 552 *Probability*, 25(4A):3016–3040, 2019.

553

554 Lindenstrauss J Bourgain J and Milman V. Approximation of zonoids by zonotopes. *Acta Math*,
 554 162:73–141, 1989.

555

556 Vladimir Braverman, Dan Feldman, Harry Lang, Adiel Statman, and Samson Zhou. New frame-
 557 works for offline and streaming coreset constructions. *arXiv preprint arXiv:1612.00889*, 2016.

558

559 Vladimir Braverman, Vincent Cohen-Addad, H-C Shaofeng Jiang, Robert Krauthgamer, Chris
 560 Schwiegelshohn, Mads Bech Toftrup, and Xuan Wu. The power of uniform sampling for coresets.
 561 In *Proceedings of the 63rd IEEE Annual Symposium on Foundations of Computer Science*, pp.
 562 462–473, 2022.

562

563 Bernd Carl. Inequalities of bernstein-jackson-type and the degree of compactness of operators in
 564 banach spaces. In *Annales de l'institut Fourier*, volume 35, pp. 79–118, 1985.

565

566 Rachit Chhaya, Anirban Dasgupta, and Supratim Shit. On coresets for regularized regression. In
 567 *Proceedings of the 37th International Conference on Machine Learning*, pp. 1866–1876, 2020.

568

569 Kenneth L Clarkson. Subgradient and sampling algorithms for ℓ_1 regression. In *Proceedings of the*
 569 *16th Annual ACM-SIAM Symposium on Discrete Algorithms*, pp. 257–266, 2005.

570

571 Michael B Cohen and Richard Peng. ℓ_p row sampling by lewis weights. In *Proceedings of the 47th*
 571 *Annual ACM Symposium on Theory of Computing*, pp. 183–192, 2015.

572

573 Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and Aaron
 574 Sidford. Uniform sampling for matrix approximation. In *Proceedings of the 6th Innovations in*
 575 *Theoretical Computer Science Conference*, pp. 181–190, 2015.

576

577 Ryan R Curtin, Sungjin Im, Ben Moseley, Kirk Pruhs, and Alireza Samadian. On coresets for
 577 regularized loss minimization. *arXiv preprint arXiv:1905.10845*, 2019.

578

579 Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W Mahoney. Sampling
 579 algorithms and coresets for ℓ_p regression. *SIAM Journal on Computing*, 38(5):2060–2078, 2009.

580

581 Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algorithm
 582 for linear inverse problems with a sparsity constraint. *Communications on Pure and Applied*
 583 *Mathematics*, 57(11):1413–1457, 2004.

584

585 Petros Drineas, Michael W Mahoney, and Shan Muthukrishnan. Sampling algorithms for ℓ_2 regres-
 586 sion and applications. In *Proceedings of the 70th Annual ACM-SIAM Symposium on Discrete*
 586 *algorithm*, pp. 1127–1136, 2006.

587

588 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering data.
 589 In *Proceedings of the 43rd annual ACM symposium on Theory of computing*, pp. 569–578, 2011.

590

591 Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized linear
 591 models via coordinate descent. *Journal of Statistical Software*, 33(1):1–22, 2010.

592

593 Chris Hans. Model uncertainty and variable selection in bayesian lasso regression. *Statistics and*
 593 *Computing*, 20(2):221–229, 2010.

594 Lunjia Hu, Charlotte Peale, and Omer Reingold. Metric entropy duality and the sample complexity
 595 of outcome indistinguishability. In *Proceedings of the 32nd International Conference on Algo-*
 596 *rithmic Learning Theory*, pp. 515–552, 2022.

597 Lingxiao Huang, Zhize Li, Jialin Sun, and Haoyu Zhao. Coresets for vertical federated learning:
 598 Regularized linear regression and k -means clustering. *Proceedings of the 36th Annual Conference*
 599 *on Neural Information Processing Systems*, 35:29566–29581, 2022.

600 Praneeth Kacham and David Woodruff. Optimal deterministic coresets for ridge regression. In
 601 *Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics*, pp.
 602 4141–4150, 2020.

603 Vladimir Koltchinskii. Rademacher penalties and structural risk minimization. *IEEE Transactions*
 604 *on Information Theory*, 47(5):1902–1914, 2001.

605 Michel Ledoux and Michel Talagrand. *Probability in Banach Spaces: isoperimetry and processes*,
 606 volume 23. Springer Science & Business Media, 1991.

607 Michael W Mahoney et al. Randomized algorithms for matrices and data. *Foundations and Trends®*
 608 *in Machine Learning*, 3(2):123–224, 2011.

609 Tung Mai, Cameron Musco, and Anup Rao. Coresets for classification—simplified and strengthened.
 610 pp. 11643–11654, 2021.

611 Tung Mai, Alexander Munteanu, Cameron Musco, Anup Rao, Chris Schwiegelshohn, and David
 612 Woodruff. Optimal sketching bounds for sparse linear regression. In *Proceedings of the 26th*
 613 *International Conference on Artificial Intelligence and Statistics*, pp. 11288–11316, 2023.

614 Alexander Munteanu and Simon Omlor. Optimal bounds for ℓ_p sensitivity sampling via ℓ_2 augmen-
 615 tation. In *Proceedings of the 45th International Conference on Machine Learning*, pp. 36769–
 616 36796, 2024.

617 Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler, and David Woodruff. On coresets
 618 for logistic regression. *Proceedings of the 32nd Annual Conference on Neural Information Pro-*
 619 *cessing Systems*, 31, 2018.

620 Balas Kausik Natarajan. Sparse approximate solutions to linear systems. *SIAM Journal on Comput-*
 621 *ing*, 24(2):227–234, 1995.

622 Guillaume Obozinski and Francis Bach. Convex relaxation for combinatorial penalties. *arXiv*
 623 *preprint arXiv:1205.1240*, 2012.

624 Aditya Parulekar, Advait Parulekar, and Eric Price. L1 regression with lewis weights subsampling.
 625 In *Proceedings of the 24th International Workshop on Approximation Algorithms for Combinato-*
 626 *rial Optimization Problems and the 25th International Workshop on Randomization and Compu-*
 627 *tation*, pp. 49:1–49:21, 2021.

628 Mert Pilanci and Martin J Wainwright. Randomized sketches of convex programs with sharp guar-
 629 *antees. IEEE Transactions on Information Theory*, 61(9):5096–5115, 2015.

630 Mark Schmidt, Glenn Fung, and Rómer Rosales. Fast optimization methods for ℓ_1 regularization:
 631 A comparative study and two new approaches. In *Proceedings of the 11th European Conference*
 632 *on Machine Learning*, pp. 286–297, 2007.

633 Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical*
 634 *Society Series B: Statistical Methodology*, 58(1):267–288, 1996.

635 Robert Tibshirani. The lasso method for variable selection in the cox model. *Statistics in Medicine*,
 636 16(4):385–395, 1997.

637 Ryan J Tibshirani and Jonathan Taylor. The solution path of the generalized lasso. *The Annals of*
 638 *Statistics*, 39(3):1335, 2011.

639 Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*,
 640 volume 47. Cambridge University Press, 2018.

648 Martin J Wainwright. Information-theoretic limits on sparsity recovery in the high-dimensional and
649 noisy setting. *IEEE transactions on Information theory*, 55(12):5728–5741, 2009.
650

651 Wei Wang, Martin J Wainwright, and Kannan Ramchandran. Information-theoretic limits on sparse
652 signal recovery: Dense versus sparse measurement matrices. *IEEE Transactions on Information
653 Theory*, 56(6):2967–2979, 2010.

654 Yuhang Wang, Bin Zou, Jie Xu, Chen Xu, and Yuan Yan Tang. Alr-ht: A fast and efficient lasso
655 regression without hyperparameter tuning. *Neural Networks*, 181:106885, 2025.
656

657 David P Woodruff. Sketching as a tool for numerical linear algebra. *Foundations and Trends® in
658 Theoretical Computer Science*, 10(1–2):1–157, 2014.

659 David P Woodruff and Taisuke Yasuda. Coresets for multiple ℓ_p regression. In *Proceedings of the
660 41st International Conference on Machine Learning*, pp. 53202–53233, 2024.
661

662 P David Woodruff and Taisuke Yasuda. Sharper bounds for ℓ_p sensitivity sampling. In *Proceedings
663 of the 40th International Conference on Machine Learning*, pp. 37238–37272, 2023.

664 Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. *Journal of the
665 Royal Statistical Society Series B: Statistical Methodology*, 67(2):301–320, 2005.
666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A APPENDIX**

703 **A.1 MISSING PROOF OF SENSITIVITY SCORES**

706 In this subsection, we provide an upper bound on the sensitivity score ρ_i using the ℓ_2 leverage score
 707 and a fixed term $1/n$. While this result is not fundamentally new (see, e.g., (Mahoney et al., 2011;
 708 Woodruff, 2014; Chhaya et al., 2020)), we slightly extend the well-conditioned basis method to the
 709 LASSO objective.

710 **Definition 1.** (ℓ_2 Well-Conditioned Basis.) Given a matrix $A \in \mathbb{R}^{n \times d}$, we define a $(\sqrt{d}, 1, 2)$ well-
 711 conditioned basis for A such that $\|U\|_2 \leq \sqrt{d}$, and $\forall x \in \mathbb{R}^d$, $\|x\|_2 \leq \|Ux\|_2$, where $U \in \mathbb{R}^{n \times d}$ is
 712 the orthogonal matrix obtained from SVD of A .

713 **Lemma 2.** Let $A' \in \mathbb{R}^{n \times (d+1)}$, and let $\lambda > 0$ be a regularized parameter. Then, the estimated
 714 sensitivity score $\hat{\varrho}_i$ satisfies $\hat{\varrho}_i = 2\tau_{i,2}(A') + \frac{1}{n} \geq \varrho_i$, where $\tau_{i,2}(A')$ denotes the ℓ_2 leverage
 715 score of the i -th row of A' . All sensitivity scores $\hat{\varrho}_i$ can be computed in time $O(\text{nnz}(A') \log n +$
 716 $d^3 \log(n/d) \log d)$, where $\text{nnz}(A')$ denotes the number of non-zero entries in A' . Moreover, the
 717 total sensitivity is bounded as $\mathcal{G} \leq 2d + 3$.

719 *Proof.* Let $A' = UV$, where $U \in \mathbb{R}^{n \times (d+1)}$ is a $(\sqrt{d+1}, 1, 2)$ -well-conditioned basis for A' .
 720 Denote the i -th row of A' as $A'_i = u_i^\top V$, where u_i^\top is the i -th row of U . For any $x' \in \mathbb{R}^{d+1}$, define
 721 $z = Vx'$, so that $A'x' = Uz$. Let $T = \{x' \in \mathbb{R}^{d+1} : x'_{d+1} = 1\}$. Then, we obtain

$$723 \varrho_i = \sup_{x' \in T} \frac{|A'_i x'|^2 + \frac{\lambda}{n} \|x'\|_1}{\|A' x'\|_2^2 + \lambda \|x'\|_1} = \sup_z \frac{|u_i^\top z|^2 + \frac{\lambda}{n} \|V^{-1}z\|_1}{\|Uz\|_2^2 + \lambda \|V^{-1}z\|_1} \leq \sup_z \frac{|u_i^\top z|^2}{\|Uz\|_2^2} + \frac{1}{n} \leq \tau_{i,2}(A') + \frac{1}{n}.$$

725 Thus, the total sensitivity satisfies $\mathcal{G} = \sum_{i=1}^n \varrho_i \leq \sum_{i=1}^n (\tau_{i,2}(A') + \frac{1}{n}) \leq d + 2$, where
 726 $\tau_{i,2}(A') = \|u_i\|_2^2$ denotes the ℓ_2 leverage score of the i -th row. Furthermore, by extending Lemma 8
 727 of (Cohen et al., 2015), the approximate leverage score $\hat{\tau}_{i,2}(A') \leq 2\tau_{i,2}(A')$ can be computed in time
 728 $O(\text{nnz}(A') \log n + d^3 \log d \log(n/d))$. Substituting this into the bound yields $\varrho_i \leq 2\tau_{i,2}(A') + \frac{1}{n}$
 729 and $\mathcal{G} \leq 2d + 3$. \square

731 **B OMITTED PROOFS OF SAMPLING ERROR ANALYSIS**

734 In this section, we reduce the empirical process associated with the sampling error \mathcal{E} to a Gaussian
 735 process using the symmetrization technique. The sampling error \mathcal{E} is defined on the set
 736 $\Omega = \{x \in \mathcal{T} \mid \|A'x\|_2^2 + \lambda\|x\|_1 = 1\}$, where $\mathcal{T} = \{x \in \mathbb{R}^{d+1} \mid x_{d+1} = 1\}$. To analyze the functional
 737 complexity, we consider the larger set $\mathcal{T}' = \{x \in \mathbb{R}^{d+1} \mid x_{d+1} \neq 0\}$, since any $x \in \mathcal{T}$ can
 738 be obtained by scaling an element of \mathcal{T}' . Specifically, for each $x \in \mathcal{T}$, there exists a scalar c and
 739 an $x' \in \mathcal{T}'$ such that $x = c \cdot x'$. This inclusion implies that $\mathcal{T} \subseteq \mathcal{T}'$. Consequently, we define
 740 the extended domain $\Omega' = \{x \in \mathcal{T}' \mid \|A'x\|_2^2 + \lambda\|x\|_1 = 1\}$ and focus our subsequent analysis on
 741 this set using tools from Gaussian process theory, particularly those developed for unregularized
 742 regression in Woodruff & Yasuda (2023).

743 **Lemma 3.** Let $A' \in \mathbb{R}^{n \times (d+1)}$, let S be a random sampling matrix, and let Q denote the set of the
 744 sampled rows from A' . For $\lambda > 0$ and integer $l \geq 2$, the following inequality holds

$$745 \mathbb{E}_S |\mathcal{E}|^l \leq (2\pi)^{l/2} \mathbb{E}_S \mathbb{E}_{g \sim \mathcal{N}(0, I_n)} \sup_{x \in \Omega} \left| \sum_{i \in Q} g_i w_i |(A_i, x)|^2 \right|^l,$$

749 where $g \sim \mathcal{N}(0, I_n)$ represents a Gaussian vector with independent entries.

751 *Proof.* We consider the simple convex function $|a + b|^l$ for $a, b \in \mathbb{R}$, where $l > 1$ is a positive
 752 number. Given a random sampling matrix S , the linearity of expectation implies

$$753 \mathbb{E} [\|SA'x\|_2^2 + \lambda\|x\|_1] = \|A'x\|_2^2 + \lambda\|x\|_1$$

754 for any vector $x \in \mathbb{R}^{d+1}$. Next, without loss of generality, we assume that $\|A'x\|_2^2 + \lambda\|x\|_1 = 1$;
 755 otherwise, we can rescale x by a constant to satisfy this condition.

756 We now analyze the following quantity

$$758 \quad \mathcal{E} = \mathbb{E}_S \sup_{\|A'x\|_2^2 + \lambda\|x\|_1 = 1, x \in \mathcal{T}'} |\|SA'x\|_2^2 + \lambda\|x\|_1 - 1|^l$$

759 Let S' be an independently copy of S . Applying Jensen inequality, we have

$$\begin{aligned} 760 \quad & \mathbb{E}_S \sup_{\|A'x\|_2^2 + \lambda\|x\|_1 = 1, x \in \mathcal{T}'} |\|SA'x\|_2^2 + \lambda\|x\|_1 - (\|A'x\|_2^2 + \lambda\|x\|_1)|^l \\ 761 \quad &= \mathbb{E}_S \sup_{\|A'x\|_2^2 + \lambda\|x\|_1 = 1, x \in \mathcal{T}'} |\|SA'x\|_2^2 - \|A'x\|_2^2 + 0|^l \\ 762 \quad &= \mathbb{E}_S \sup_{\|A'x\|_2^2 + \lambda\|x\|_1 = 1, x \in \mathcal{T}'} |\|SA'x\|_2^2 - \|A'x\|_2^2 + \mathbb{E}_{S'}(\|A'x\|_2^2 - \|S'A'x\|_2^2)|^l \\ 763 \quad &\leq \mathbb{E}_{S,S'} \sup_{\|A'x\|_2^2 + \lambda\|x\|_1 = 1, x \in \mathcal{T}'} |\|\|SA'x\|_2^2 - \mathbb{E}_{S'}\|S'A'x\|_2^2\|^l| \\ 764 \quad &\leq \mathbb{E}_{S,S'} \sup_{\|A'x\|_2^2 + \lambda\|x\|_1 = 1, x \in \mathcal{T}'} |\|\|SA'x\|_2^2 - \|S'A'x\|_2^2\|^l|. \end{aligned}$$

772 Using a standard symmetrization argument (Vershynin, 2018), we obtain

$$\begin{aligned} 773 \quad & \mathbb{E}_{S,S'} \sup_{\|A'x\|_2^2 + \lambda\|x\|_1 = 1, x \in \mathcal{T}'} |\|SA'x\|_2^2 - \|S'A'x\|_2^2|^l \\ 774 \quad &\leq 2^l \mathbb{E}_{S,\epsilon} \sup_{\|A'x\|_2^2 + \lambda\|x\|_1 = 1, x \in \mathcal{T}'} \left| \sum_{i \in Q} \epsilon_i w_i |(A'_{i:})x|^2 \right| \\ 775 \quad &\leq 2^l (\pi/2)^{l/2} \mathbb{E}_{S,g} \sup_{\|A'x\|_2^2 + \lambda\|x\|_1 = 1, x \in \mathcal{T}'} \left| \sum_{i \in Q} g_i w_i |(A'_{i:})x|^2 \right|^l, \end{aligned}$$

783 where $\epsilon \sim \{\pm 1\}^n$ are independent Rademacher variables in the first inequality, and the second in-
784 equality follows from the Rademacher–Gaussian comparison theorem (Ledoux & Talagrand, 1991)
785 with $g \sim \mathcal{N}(0, I_n)$ a standard Gaussian vector in \mathbb{R}^n . \square

786 We now provide a detailed analysis of the localization of the empirical process over the residual
787 space $B_2(A') = \{x \mid x \in \mathcal{T}', \|A'x\|_2 \leq 1\}$ and the ℓ_1 -penalty space $B_1(1/\lambda) = \{x \mid x \in$
788 $\mathcal{T}', \|x\|_1 \leq 1\}$. In the following lemma, we show that the set Ω' is contained in the intersection of
789 these two sets.

790 **Lemma 4.** Let $A' \in \mathbb{R}^{n \times (d+1)}$ be a matrix and $\lambda > 0$. Define the sets $\Omega = \{x \mid x \in \mathcal{T}, \|A'x\|_2^2 +$
791 $\lambda\|x\|_1 \leq 1\}$ and $\mathcal{L} = \{x \mid x \in \mathcal{T}, \|A'x\|_2^2 \leq 1 \text{ and } \|x\|_1 \leq \frac{1}{\lambda}\}$. Then, it holds that $\Omega \subseteq \mathcal{L}$.

793 *Proof.* Let the vector $x \in \Omega$. By the definition of the set Ω , we have

$$794 \quad \|A'x\|_2^2 + \lambda\|x\|_1 = 1.$$

795 Since $\|A'x\|_2^2$ is non-negative, we can derive

$$796 \quad \|A'x\|_2^2 = 1 - \lambda\|x\|_1.$$

797 By the equation $\|A'x\|_2^2 = 1 - \lambda\|x\|_1$, it follows that

$$798 \quad 1 - \lambda\|x\|_1 \geq 0 \Rightarrow \lambda\|x\|_1 \leq 1 \Rightarrow \|x\|_1 \leq \frac{1}{\lambda}.$$

800 Next, from the equation $\|A'x\|_2^2 + \lambda\|x\|_1 \leq 1$, we can express $\|A'x\|_2^2$ as follows

$$801 \quad \|A'x\|_2^2 = 1 - \lambda\|x\|_1.$$

802 Since we have already shown that $\|x\|_1 \leq \frac{1}{\lambda}$, we have

$$803 \quad \|A'x\|_2^2 = 1 - \lambda\|x\|_1 \leq 0.$$

804 Therefore, we obtain

$$805 \quad \|A'x\|_2^2 \leq 1 \rightarrow \|A'x\|_2 \leq 1.$$

806 In summary, for any $x \in \Omega$, the conditions $\|A'x\|_2 \leq 1$ and $\|x\|_1 \leq \frac{1}{\lambda}$ are satisfied. Therefore, we
807 conclude that $\Omega \subseteq \mathcal{L}$. \square

810 B.1 BOUNDING THE GAUSSIAN DIAMETER
811812 We start by bounding the Gaussian diameter \mathcal{D} with respect to the pseudo-metric d_X .813 **Lemma 5.** Let $M \in \mathbb{R}^{m \times (d+1)}$, and let w be the weight vector. Define the pseudo-metric
814

815
$$d_X(y, y') = \left(\mathbb{E}_{g \sim \mathcal{N}(0, I_n)} \left| \sum_{i=1}^m g_i w_i |y_i|^2 - \sum_{i=1}^m g_i w_i |y'_i|^2 \right|^2 \right)^{1/2}$$

816
817

818 for any $y, y' \in \mathcal{L}_M$. Then, the diameter $\mathcal{D}(\mathcal{L}_M)$ with respect to d_X is bounded by
819

820
$$\mathcal{D}(\mathcal{L}_M) \leq O(\sqrt{\tau} \cdot \sqrt{\log(d(\lambda^2 \wedge 1))} \wedge (\lambda \sqrt{d})).$$

821

822 *Proof.* We aim to bound the Gaussian diameter $\mathcal{D}(\mathcal{L}_M)$ under the pseudo-metric d_X . A standard
823 result (see e.g., (Vershynin, 2018, Proposition 7.5.4)) implies that for any convex set T ,

824
$$D_T \leq \sqrt{2\pi} \mathcal{W}(T),$$

825

826 where $w(T) := \mathbb{E}_{g \sim \mathcal{N}(0, I)} [\sup_{t \in T} \langle g, t \rangle]$ is the Gaussian width of T . Therefore, it suffices to bound
827 $\mathcal{W}(\mathcal{L}_M)$.828 We observe that \mathcal{L}_M is the image of a convex set under a linear mapping. Specifically, we define the
829 set

830
$$\hat{\mathcal{L}} = \{x \in \mathbb{R}^{d+1} \mid \|x\|_1 \leq \frac{1}{\lambda}, \|Mx\|_2 \leq 1\},$$

831

832 where $M \in \mathbb{R}^{m \times d}$. Then, $\mathcal{L}_M = w^\top M \hat{\mathcal{L}}$.833 According to the definition of Gaussian width, we have
834

835
$$\begin{aligned} \mathcal{W}(\mathcal{L}_M) &= \mathbb{E}_{g \sim \mathcal{N}(0, I_m)} \left[\sup_{x \in \hat{\mathcal{L}}} \langle g, w^\top Mx \rangle \right] \\ 836 &= \mathbb{E}_{g \sim \mathcal{N}(0, I_m)} \left[\sup_{x \in \hat{\mathcal{L}}} \langle w M^\top g, x \rangle \right] \\ 837 &\leq \|w^\top M\|_2 \cdot \mathbb{E}_{g \sim \mathcal{N}(0, I_{d+1})} \left[\sup_{x \in \hat{\mathcal{L}}} \langle g, x \rangle \right] \\ 838 &= \|M\|_{w,2} \cdot \mathcal{W}(\hat{\mathcal{L}}). \end{aligned}$$

839
840
841
842
843
844

845 Now we bound $\mathcal{W}(\hat{\mathcal{L}})$. Let $B_2(M) = \{x \mid x \in \mathbb{R}^{d+1}, \|Mx\|_2 \leq 1\}$. Then, it follows that
846

847
$$\mathcal{W}(\hat{\mathcal{L}}) = \mathcal{W}(B_2(M) \cap \frac{1}{\lambda} B_1) \leq \|M\| \cdot \mathcal{W}(B_2 \cap \frac{1}{\lambda} B_1) = \|M\| \cdot \mathcal{W}(\lambda \cdot B_2 \cap B_1),$$

848

849 where B_1, B_2 are the unit balls in ℓ_1 and ℓ_2 norms, respectively.850 Applying the localized Gaussian width bound (see e.g., (Bellec, 2019, Proposition 1)), we obtain
851

852
$$w(B_1 \cap \lambda \cdot B_2) \leq C \cdot \left(\sqrt{\log(2d \cdot (\lambda^2 \wedge 1))} \wedge \lambda \cdot \sqrt{d} \right),$$

853

854 for some universal constant C .855 Therefore, we obtain
856

857
$$\mathcal{W}(\mathcal{L}_M) \leq \|M\|_{w,2} \mathcal{W}(\hat{\mathcal{L}}) \leq C \|M\|_{w,2}^2 \cdot \left(\sqrt{\log(2d \cdot (\lambda^2 \wedge 1))} \wedge \lambda \cdot \sqrt{d} \right).$$

858

859 Recall that the maximum weighted ℓ_2 leverage score is defined as $\tau := \|M\|_{w,2,\infty}^2$. Finally, applying
860 $\mathcal{D}(\mathcal{L}_M) \leq \sqrt{2\pi} \cdot \mathcal{W}(\mathcal{L}_M)$, we conclude that
861

862
$$\mathcal{D}(\mathcal{L}_M) \leq O(\tau \sqrt{\log(d(\lambda^2 \wedge 1))} \wedge (\lambda \sqrt{d})).$$

863

□

864 B.2 BOUNDING THE METRIC ENTROPY
865866 In this subsection, we establish an upper bound for the metric entropy $\mathcal{M}_{\mathcal{E}}$ of the space $\mathcal{L}_{w,M}$. To
867 estimate this entropy, we first provide detailed definitions of covering numbers and metric entropy.
868869 **Definition 6.** Let d_X be a pesudo-metric on \mathbb{R}^d . Given a vector $x \in \mathbb{R}^d$ and $t \geq 0$, we define the
870 d_X -ball of radius t centered at x as $B_X(x, t) = \{x' \in \mathbb{R}^d : d_X(x, x') \leq t\}$.
871872 **Definition 7.** Let $K, T \subseteq \mathbb{R}^d$ be two convex bodies. The covering number $N(K, T)$ represents the
873 minimum number of copies of T required to cover K
874

875
$$N(K, T) = \min\{k \in \mathbb{N} : \exists \{x_i\}_{i=1}^k, K \subseteq \bigcup_{i=1}^k (x_i + T)\}.$$

876

877 Let d_X be a pseudo-metric and $t > 0$ a scalar. The covering number of a set K with respect to d_X
878 and radius t is denoted by $N(K, d_X, t) = N(K, B_X(0, t))$, where $B_X(0, t)$ is the d_X -ball of radius
879 t centered at the origin. The metric entropy is given by $\mathcal{M}_{\mathcal{E}} = \log N(K, d_X, t)$.
880881 We now apply the standard tool, Dual Sudakov Minoration (Bourgain J & V., 1989), to bound
882 the covering numbers in both the residual space and the ℓ_1 -penalty space. The following theorem
883 provides an upper bound on the covering numbers of the Euclidean unit ball within a metric space
884 by using ℓ_p -norm balls with radius $t > 0$.
885886 **Definition 8.** The Levy mean of ℓ_p is defined as
887

888
$$M_p = \frac{\mathbb{E}_{g \in \mathcal{N}(0, I_d)} \|g\|_p}{\mathbb{E}_{g \in \mathcal{N}(0, I_d)} \|g\|_2}.$$

889

890 **Theorem 9.** (Dual Sudakov Minoration) Let $\|\cdot\|_p$ be a norm, and let $B_2 \subseteq \mathbb{R}^d$ denote the Euclidean
891 unit ball, defined as $B_2 = \{x \in \mathbb{R}^d : \|x\|_2 \leq 1\}$. Then,
892

893
$$\log N(B_2, \|\cdot\|_p, t) \leq O(d) \frac{M_p^2}{t^2}.$$

894

895 **Lemma 10.** (Woodruff & Yasuda (2023), slightly modified) Let $q \geq 2$, let $M \in \mathbb{R}^{m \times (d+1)}$ be a
896 matrix, and let $w \in \mathbb{R}^m$ be a wight vector. Then, for a standard Gaussian vector $g \sim \mathcal{N}(0, I_{d+1})$, it
897 holds that
898

899
$$\mathbb{E}_{g \sim \mathcal{N}(0, I_{d+1})} [\|Mg\|_{w,q}] \leq m^{1/q} \cdot \sqrt{q\tau},$$

900 and
901

902
$$\mathbb{E}_{g \sim \mathcal{N}(0, I_{d+1})} [\|g\|_2] \leq \sqrt{d+1}.$$

903

904 We now focus on the ℓ_1 -penalty space for the Gaussian process. To bound the metric entropy of
905 the set $B_1(1/\lambda)$ using the unweighted ℓ_∞ -ball, we decompose the process into two steps: covering
906 the Euclidean unit ball with B_∞ , and covering B_1 using the Euclidean unit ball. We define the
907 unweighted ℓ_p (including ℓ_∞) unit ball as $B_p = \{x \mid x \in \mathbb{R}^{d+1}, \|x\|_p \leq 1\}$. The following lemma
908 provides a bound for the first step.
909910 **Lemma 11.** (Woodruff & Yasuda, 2023) Let $p \geq 2$ and let B_p be the unit ball for the ℓ_p norm. Then,
911

912
$$\log N(B_2, B_\infty, t) \leq O(1) \frac{\log d}{(t/2)^2}.$$

913

914 Since the B_1 ball has a non-smooth geometric structure, a substantial portion of its volume is
915 concentrated near its center. This concentration implies that fewer smaller balls are needed to effectively
916 cover the unit ball. A directly application of the ϵ -net argument typically yields a general bound of
917 $O((1 + \frac{1}{t})^{d+1})$ in the worst-case. To obtain the better bound by utilizing this concentration, we use
918 the Sudakov Minoration inequality (Vershynin, 2018), specifically for the non-smooth B_1 ball, as
919 follows.
920921 **Theorem 12.** Let \mathcal{K} be a convex body in \mathbb{R}^d , and let $N(\mathcal{K}, B_2, t)$ denote the covering number of
922 balls of radius t required to cover \mathcal{K} . Then, for any $t > 0$,
923

924
$$\sqrt{\log N(\mathcal{K}, B_2, t)} \leq C \cdot \frac{\mathcal{W}(\mathcal{K})}{t},$$

925

918 where C is an absolute constant, and $\mathcal{W}(\mathcal{K}) = \mathbb{E}[\sup_{x \in \mathcal{K}} \langle g, x \rangle]$ represents the Gaussian width with
 919 respect to a standard Gaussian vector $g \sim \mathcal{N}(0, I_d)$.
 920

921 **Lemma 13.** Let $p \geq 1$ be a parameter, and let $B_p = \{x \mid x \in \mathbb{R}^d, \|x\|_p \leq 1\}$ be the unit ball for the
 922 ℓ_p norm. Then,
 923

$$\log N(B_1, B_\infty, t) \leq O\left(\frac{\log d}{t}\right).$$

925 *Proof.* To bound the covering numbers of B_1 by B_∞ , we first cover B_1 by B_2 , and then use Lemma
 926 11 to cover B_2 by B_∞ .
 927

928 Define the Gaussian width of B_1 as $\mathcal{W}(B_1) = \mathbb{E}(\sup_{t \in B_1} g't)$, where $g \in \mathbb{R}^{d+1}$ is a standard
 929 Gaussian vector. By applying the Hölder inequality, $g't \leq |g't| \leq \|g\|_\infty \cdot \|t\|_1$. Thus, we can bound
 930 the Gaussian width by
 931

$$\begin{aligned} \mathcal{W}(B_1) &= \mathbb{E}\left(\sup_{t \in B_1} g't\right) \leq \mathbb{E}\left(\sup_{t \in B_1} \|g\|_\infty \cdot \|t\|_1\right) \\ &= \mathbb{E}\left(\max_j |g_j|\right). \end{aligned}$$

937 To bound $\mathbb{E}(\max_j |g_j|)$, note that $\max_j |g_j| = \max(\max_j g_j, \max_j -g_j)$. For the vector g and a
 938 positive parameter $u \geq 0$, we can derive an upper bound for $\mathbb{E}(\max_j |g_j|)$ as follows
 939

$$\begin{aligned} \exp(u\mathbb{E}(\max_i g_i)) &\leq \mathbb{E} \exp(u \cdot \max_i g_i) \\ &= \mathbb{E}(\max_i \exp(ug_i)) \\ &\leq \sum_{i=1}^{d+1} \mathbb{E}(\exp(ug_i)) \\ &\leq (d+1) \cdot \exp(u^2/2). \end{aligned}$$

947 where the first inequality follows from the Jensen inequality and utilizes the moment generating
 948 function of a Gaussian distribution.
 949

950 Thus, we get

$$\mathbb{E}(\max_i V_i) \leq \frac{\log(d+1)}{u} + \frac{u\sigma^2}{2}.$$

954 Minimizing w.r.t u by choosing $u = \sqrt{2 \log(d+1)}$, we obtain
 955

$$\mathbb{E}(\max_i V_i) \leq \sigma \sqrt{2 \log(d+1)}.$$

958 Since the fact that $\max_j |g_j| = \max(\max_j g_j, \max_j -g_j)$, we have
 959

$$\mathbb{E}\left(\max_j |g_j|\right) \leq \sqrt{2 \log 2(d+1)} \leq \sqrt{4 \log(d+1)}.$$

963 Consequently, we have that the Gaussian average of the ℓ_1 -ball is $\mathcal{W}(B_1) \leq \sqrt{2 \log(d+1)}$. By
 964 Theorem 12, we can bound the covering number
 965

$$N(B_1, B_2, t) \leq \exp\left(\frac{C^2 \cdot 4 \log d}{t^2}\right) = d^{4C^2/t^2},$$

968 where C is a constant.
 969

970 Thus, the metric entropy of covering B_1 by tB_2 ball is at most
 971

$$\log N(B_1, B_2, t) \leq \log\left(d^{4C^2/t^2}\right) \leq O\left(\frac{\log d}{t^2}\right).$$

972 Using the above inequality and Lemma 11, we obtain
 973

$$\begin{aligned} 974 \log N(B_1, B_\infty, t) &\leq \log N(B_1, B_2, \gamma) + \log N(\lambda B_2, B_\infty, t) \\ 975 &\leq \log N(B_1, B_2, \gamma) + \log N(B_2, B_\infty, t/\gamma) \\ 976 &\leq O(1) \frac{\log d}{\gamma^2} + O(1) \frac{(\log d)}{(t/\gamma)^2} \\ 978 \end{aligned}$$

979 for any $\gamma \in [1, t]$. Choosing γ , we obtain
 980

$$981 \log N(B_1, B_\infty, t) \leq O\left(\frac{\log d}{t}\right). \\ 982$$

□

983
 984
 985 **Lemma 14.** (Munteanu & Omlor, 2024) Let $M \in \mathbb{R}^{m \times d}$ and let $w \in \mathbb{R}_{\geq 0}^m$ be a non-negative weight
 986 vector corresponding to the rows of M . Then, for any $1 \leq r \leq q$ and any $t \geq 0$,
 987

$$988 N(B_{1,r}(M), B_{1,q}(M), t) \geq N(B_{w,r}(M), B_{w,q}(M), t). \\ 989$$

990 We give two upper bounds for the covering numbers in the ℓ_1 -penalty space based on the radius t .
 991 For larger radii ($t > t_0$), the covering number scales with $(1/t)^2$, indicating a quadratic increase as
 992 t decreases. Conversely, for smaller radii ($t \leq t_0$), the covering number grows logarithmically with
 993 $1/t$.
 994

995 **Lemma 15.** Let $M \in \mathbb{R}^{m \times (d+1)}$ be an orthogonal matrix, and let $\lambda > 0$. Define the set
 996 $B_\infty(M) = \{x \mid x \in \mathcal{T}', \|Mx\|_\infty \leq 1\}$ as the unit ball in the ℓ_∞ -norm mapped by M . Let
 997 $H = \max_{1 \leq i \leq m} \|e_i^T M\|_\infty$, where $e_i \in \mathbb{R}^m$ is the i -th standard basis vector. Let $t_0 = O(H \sqrt{\frac{\log d}{m}})$.
 998 Then, the following bounds on the metric entropy hold for all $t > 0$

$$999 \log N(B_1(1/\lambda), B_\infty(M), t) \leq O(H) \frac{\log d \cdot \log m}{\lambda^2 t^2}, \\ 1000$$

1001 and

$$1002 \log N(B_1(1/\lambda), B_\infty(M), t) \leq O(m \log(1 + \frac{t_0}{t\lambda}) + \log m). \\ 1003$$

1004
 1005 *Proof.* Given $\delta > 0$, we define the scaled convex set $\delta B_1(1)$ as $\delta B_1(1) = \{\delta x \mid x \in \mathcal{T}', \|x\|_1 \leq 1\}$.
 1006 For any $y \in \delta B_1(1)$, there exists $x \in \mathbb{R}^{d+1}$ such that $\|x\|_1 \leq 1$ and $y = \delta x$. Then, $\|y\|_1 = \|\delta x\|_1 =$
 1007 $\delta \|x\|_1$. Conversely, suppose $y \in \mathbb{R}^{d+1}$ satisfies $\|y\|_1 \leq \delta$. Define $x = \frac{y}{\delta}$ (for $\delta > 0$), then
 1008 $\|x\|_1 = \left\| \frac{y}{\delta} \right\|_1 = \frac{1}{\delta} \|y\|_1 \leq 1$, so $x \in B_1(1)$ and $y = \delta x \in \delta B_1(1)$.
 1009

1010 Hence, we conclude $\delta B_1(1) = \{y \mid y \in \mathbb{R}^{d+1}, \|y\|_1 \leq \delta\}$, and $\frac{1}{\delta} B_1(1) = B_1\left(\frac{1}{\delta}\right)$.
 1011

1012 Now, we aim to prove that $\log N\left(\frac{1}{\lambda} B_1, B_\infty, t\right) = \log N(B_1, B_\infty, \lambda t)$. Define $K = \{x \mid x \in$
 1013 $\mathbb{R}^{d+1}, \|x\|_1 \leq \frac{1}{\lambda}\}$. For any $x \in K$, we have $\|x\|_1 \leq \frac{1}{\lambda}$, and hence $\|x\|_\infty \leq \frac{1}{\lambda}$.
 1014

1015 Covering $x \in 1/\lambda B_1$ with t -balls in the ℓ_∞ -norm is equivalent to covering B_1 with λt -balls due to
 1016 scaling. Therefore, we obtain

$$1017 \log N\left(\frac{1}{\lambda} B_1, B_\infty, t\right) = \log N(B_1, B_\infty, \lambda t). \quad (4) \\ 1018$$

1019 Next, we define the set $H_m = \{x \mid x \in \mathbb{R}^{d+1}, \max_{1 \leq i \leq m} |\langle x, M_{i:} \rangle| \leq 1\}$ and let $\|\cdot\|_{H_m}$ be the
 1020 associated quasi-norm on \mathbb{R}^{d+1} . Define the linear operator $F : \ell_1^m \rightarrow \mathbb{R}^{d+1}$ by $Fe_i = M_{i:}$. Then,
 1021 the covering number of using H_m to cover B_1 satisfies
 1022

$$1023 N(B_1, H_m, t) = N(F^* B_1, B_\infty^m, t), \\ 1024$$

1025 where $B_\infty^m = \{x \mid x \in \mathbb{R}^m, \|x\|_\infty \leq 1\}$. By the Bernstein-Jackson-type inequality
 (Carl, 1985), for the embedding $\ell_1^m \rightarrow \ell_\infty^d$, the metric entropy satisfies $\log N(B_1, H_m, t) \leq$

1026 $O(H)(\frac{\log(1+m/l) \cdot \log(1+d/l)}{l})^{1/2}$, where $l = \arg \inf\{\epsilon > 0, N(B_1, H_m, \epsilon) \leq 2^l\}$. Let $t_0 =$
 1027 $O(H\sqrt{\frac{\log d}{m}})$. Then, for $t > t_0$, we have
 1028

$$1029 \log N(B_1, H_m, t) \leq O\left(\frac{H \cdot \log d \cdot \log m}{t^2}\right).$$

1030

1032 By applying Lemma 5, for $t < t_0$, we obtain
 1033

$$1034 \log N(B_1, H_m, t) \leq \log N(B_1, H_m, t_0) + \log N(t_0 H_m, H_m, t) \\ 1035 \leq O\left(\frac{H^2}{t_0^2} \log d \cdot \log m\right) + m \log\left(1 + \frac{t_0}{t}\right) \\ 1036 \leq O\left(m \log\left(1 + \frac{t_0}{t}\right) + \log m\right).$$

1037

1040 Finally, using equation 4, for the case that $t > t_0$, we have
 1041

$$1042 \log N(B_1(\frac{1}{\lambda}), B_\infty(M), t) = \log N(\frac{1}{\lambda} B_1, B_\infty(M), t) \\ 1043 = \log N(\frac{1}{\lambda} B_1, B_\infty(M), t) \\ 1044 = \log N(B_1, B_\infty(M), \lambda t) \\ 1045 \leq \log N(B_1, H_m, \lambda t) \\ 1046 \leq O(H) \frac{\log d \cdot \log m}{\lambda^2 t^2}.$$

1047

1048 For the case $t < t_0$, we similarly obtain $\log N(B_1(\frac{1}{\lambda}), B_\infty(M), t) \leq O(m \log(1 + \frac{t_0}{t\lambda}) + \log m)$. \square
 1049

1050 In the following lemma, we present two different upper bounds on the metric entropy of the intersection
 1051 between the residual space $B_{w,2}(M)$ and the ℓ_1 -penalty space $B_1(1/\lambda)$. Specifically, we
 1052 employ the weighted ℓ_∞ unit ball to cover both the weighted ball $B_{w,2}(M)$ and the unweighted ball
 1053 B_1 with the same radius. We then provide bounds for two cases: when the radius t is larger than
 1054 t_0 , and when t is smaller than t_0 . Let $\tau = \sup_{x' \in \mathcal{L}_{w,M}} \|Mx'\|_{w,2,\infty}^2$ be the maximum of ℓ_2 leverage
 1055 score, and define $G = 1 + \mathcal{E} = 1 + \sup_{x' \in \mathcal{L}} \|\|SA'x'\|_2^2 - \|A'x'\|_2^2\|$.
 1056

1057 **Lemma 16.** Let $\lambda > 0$, and let $\mathcal{L}_{w,M} = B_{w,2}(M) \cap B_1(1/\lambda)$. For any $t \in (0, 1]$, the metric entropy
 1058 of $\mathcal{L}_{w,M}$ with respect to the metric d_X satisfies the following bounds: for $t < t_0$,
 1059

$$1060 \log N(\mathcal{L}_{w,M}, d_X, t) \leq \min\{O(d \log \frac{Gm}{t}), O(m \log(1 + \frac{Gt_0}{t\lambda}) + \log m)\},$$

1061

1062 and for $t > t_0$,

$$1063 \log N(\mathcal{L}_{w,M}, d_X, t) \leq O\left(\frac{\tau G^2 \log m}{t^2} \cdot \min\{1, \frac{\log d}{\lambda^2}\}\right),$$

1064

1065 where $t_0 = \tau \sqrt{\frac{\log d}{m}}$.
 1066

1067 *Proof.* For all $y, y' \in B_{w,2}(M)$, we have $d_X(y, y') \leq 2\|y - y'\|_{w,\infty}$. Next, we define the matrix
 1068 $M_w \in \mathbb{R}^{m \times (d+1)}$ such that each rows of M_w is obtained by multiplying the corresponding entry
 1069 of the weight vector w by the respective row of the matrix M , i.e., $(M_w)_i = \sqrt{w_i} \cdot M_i$. Since
 1070 $w_i = 1/p_i$ represents the weight of the i -th row and p_i is the sampling probability, we have $w_i \geq 1$
 1071 for all i . Then, the convex body $B_{w,2}(M)$ is contained within $B_2(M_w, G)$, since
 1072

$$1073 B_{w,2}(M) = \left\{ y \in \text{range}(M) : \sum_{i=1}^m w_i y_i^2 \leq 1 \right\} \\ 1074 \subseteq \left\{ y \in \text{range}(M) : \sum_{i=1}^m w_i^{1/2} y_i^2 \leq 1 \right\} = B_2(M_w).$$

1075

1080 Thus, for any $t > 0$, we have
 1081

$$\begin{aligned} 1082 \log N(B_{w,2}(M, G), d_X, t/G) &\leq \log N(B_2(M_w), 2\|\cdot\|_{w,\infty}, t/G) \\ 1083 &= \log N(B_2(M_w), B_\infty(M_w), t/2G). \end{aligned}$$

1084 By Lemma 4 and Lemma 14, the following inequality holds
 1085

$$1086 \log N(B_{w,2}(M), d_X, t) \leq O(d \log \frac{Gm}{t}). \\ 1087$$

1088 Furthermore, by a slight adaptation to Lemma 4, we also have $\log N(B_{w,2}(M), d_X, t) \leq$
 1089 $O(\log m \frac{G^2\tau}{t^2})$.
 1090

1091 Let $H = \max_{1 \leq i \leq m} \|e_i^T M\|_\infty$ be the maximum row-wise ℓ_∞ -norm of matrix M . By the
 1092 inequality $\|x\|_\infty \leq \|x\|_2$ for any vector x , it follows that $H = \max_{1 \leq i \leq m} \|e_i^T M\|_\infty \leq$
 1093 $\max_{1 \leq i \leq m} \|e_i^T M\|_2 \leq \tau$. Consequently, applying Lemma 15, we obtain the following bounds on
 1094 the metric entropy $\log N(B_1(1/\lambda), B_\infty(M_w), t/2)) \leq O(\tau \frac{\log d \cdot \log m}{\lambda^2 t^2})$ for $t > t_0$, and the inequality
 1095 $\log N(B_1(1/\lambda), B_\infty(M_w), t/2)) \leq O(m \log(1 + \frac{t_0}{t\lambda}) + \log m)$ for $t < t_0$, where $t_0 = O(\tau \sqrt{\frac{\log d}{m}})$.
 1096

1097 Next, we consider the metric entropy on the $\mathcal{L}_{w,M}$
 1098

$$\begin{aligned} 1099 \log N(\mathcal{L}_{w,M}, d_X, t) &\leq \log N(\mathcal{L}_{w,M}, 2\|\cdot\|_{w,\infty}, \frac{t}{G}) \\ 1100 &= \log N(B_{w,2}(M) \cap B_1(1/\lambda), 2\|\cdot\|_{w,\infty}, \frac{t}{G}) \\ 1101 &\leq \min\{N(B_{w,2}(M), 2\|\cdot\|_{w,\infty}, \frac{t}{2G}), N(B_1(1/\lambda), 2\|\cdot\|_{w,\infty}, \frac{t}{2G})\}. \\ 1102 \\ 1103 \end{aligned}$$

1104 Combining the above inequalities, we conclude
 1105

$$1106 \log N(\mathcal{L}_{w,M}, d_X, t) \leq \min\{O(d \log \frac{Gm}{t}), O(m \log(1 + \frac{Gt_0}{t\lambda}) + \log m)\},$$

1107 for $t < t_0$, and
 1108

$$1109 \log N(\mathcal{L}_{w,M}, d_X, t) \leq O(\tau G^2) \min\{O(\frac{\log m}{t^2}), \frac{\log d \cdot \log m}{\lambda^2 t^2}\},$$

1110 for $t > t_0$. □
 1111

1112 B.3 COMPUTING THE ENTROPY INTEGRAL

1113 In this subsection, we bound the integral metric entropy of these t -nets using the following Dudley
 1114 inequality (Vershynin, 2018) for Gaussian processes.

1115 **Theorem 17.** (Dudley inequality, (Vershynin, 2018)) Let $(X(t))_{t \in T}$ be a standard Gaussian process
 1116 defined on a measurable space with a pseudo-metric d_X . Then, it holds that
 1117

$$1118 \mathbb{E} \left[\sup_{t \in T} X_t \right] \leq C \int_0^\infty \sqrt{\log N(T, d_X, t)} dt,$$

1119 where T is a convex set, C is an absolute constant, and X_t is the standard Gaussian vector at $t \in T$.
 1120

1121 **Lemma 18.** (Woodruff & Yasuda, 2023) Let $0 < \delta \leq 1$ and C be a positive constant. Then,
 1122

$$1123 \int_0^\delta \sqrt{\log \frac{C}{t}} dt \leq \delta \left(\sqrt{\log \frac{C}{\delta}} + \frac{C\sqrt{\pi}}{2} \right).$$

1124 **Lemma 19.** Let $M \in \mathbb{R}^{m \times (d+1)}$ be orthonormal and λ be a positive parameter. Then, the metric
 1125 entropy of $\mathcal{L}_{w,M}$ satisfies
 1126

$$1127 \int_0^\infty \sqrt{\log N(\mathcal{L}_{w,M}, d_X, t)} dt \leq O(G \sqrt{\tau \cdot \log m} \log d \cdot \min\{1, \frac{\sqrt{\log d}}{\lambda}\}),$$

1128 where τ is the maximum weighted ℓ_2 -leverage score of M .
 1129

1134 *Proof.* Note that it suffices to integrate the entropy integral from 0 to the diameter $\mathcal{D} =$
 1135 $\text{diam}(\mathcal{L}_{w,M})$, because for $t > \mathcal{D}$, the entropy is zero. Let $t_0 = \tau\sqrt{\frac{\log d}{m}}$, and let t' be a radii
 1136 with $t' \in [t_0, \mathcal{D}]$. For small radii $t < t'$, we use the first bound of Lemma 16 as follows
 1137

$$1138 \log N(\mathcal{L}_{w,M}, d_X, t) \leq \min\{O(d \log \frac{Gm}{t}), O(m \log(1 + \frac{Gt_0}{t\lambda}) + \log m)\}.$$

1140 By Lemma 18, the entropy integral is bounded by
 1141

$$\begin{aligned} 1142 \int_0^{t'} \sqrt{\log N(\mathcal{L}_{w,M}, d_X, t)} dt &\leq \min\{\int_0^{t'} \sqrt{O(d \log \frac{Gm}{t})} dt, \int_0^{t'} \sqrt{O(m \log(1 + \frac{Gt_0}{t\lambda}) + \log m)} dt\} \\ 1143 &= \min\{O(\sqrt{d}) \int_0^{t'} \sqrt{\log \frac{Gm}{t}} dt, O(\sqrt{m}) \int_0^{t'} \sqrt{\log(1 + \frac{Gt_0}{t\lambda}) + \log m} dt\} \\ 1144 &\leq \min\{O(t' \cdot \sqrt{d \log \frac{Gm}{t'}}), O(\frac{Gt_0}{\lambda} \sqrt{m \log m} \cdot t')\} \\ 1145 &\leq O(t') \min\{\sqrt{d \log \frac{Gm}{t'}}, \frac{Gt_0}{\lambda} \sqrt{m \log m}\} \\ 1146 &\leq O(t') \min\{\sqrt{d \log \frac{Gm}{t'}}, \frac{G\tau \log d}{\lambda} \sqrt{m \log m}\} \\ 1147 &\leq O(t') \min\{\sqrt{d \log \frac{Gm}{t'}}, \frac{G\tau \log d}{\lambda}\}. \end{aligned}$$

1148 On the other hand, for large radii $t > t'$, we use the second bound of Lemma 16 (in Appendix),
 1149 which gives

$$1150 \log N(\mathcal{L}_{w,M}, d_X, t) \leq O(\frac{\tau G^2 \log m}{t^2} \cdot \min\{1, \frac{\log d}{\lambda^2}\}).$$

1151 Combining these inequalities, we obtain
 1152

$$\begin{aligned} 1153 \int_{t'}^{\mathcal{D}} \sqrt{\log N(\mathcal{L}_{w,M}, d_X, t)} dt &\leq O(1) \sqrt{\tau G^2 \log m} \cdot \min\{1, \frac{\sqrt{\log d}}{\lambda}\} \int_{t'}^{\mathcal{D}} \frac{1}{t} dt \\ 1154 &= O(1) \sqrt{\tau G^2 \log m} \cdot \min\{1, \frac{\sqrt{\log d}}{\lambda}\} \log\left(\frac{G}{t'}\right). \end{aligned}$$

1155 Applying Lemma 3 and choosing the radius $t' = G\sqrt{\tau/d}$, we get
 1156

$$\begin{aligned} 1157 \int_0^{\infty} \sqrt{\log N(\mathcal{L}_{w,M}, d_X, t)} dt &\leq \int_0^{t'} \sqrt{\log N(\mathcal{L}_{w,M}, d_X, t)} dt \\ 1158 &\quad + \int_{t'}^{\mathcal{D}} \sqrt{\log N(\mathcal{L}_{w,M}, d_X, t)} dt \\ 1159 &\leq O(G) \min\{\sqrt{\log m \log d}, \frac{G\sqrt{\tau}}{\lambda}\} \\ 1160 &\quad + O(1) \sqrt{\tau G^2 \log m} \cdot \min\{1, \frac{\sqrt{\log d}}{\lambda}\} \log d \\ 1161 &\leq O(G\sqrt{\tau \cdot \log m} \log d \cdot \min\{1, \frac{\sqrt{\log d}}{\lambda}\}). \end{aligned}$$

1162 \square

1163 **Lemma 20.** (Woodruff & Yasuda, 2023) Let $A' \in \mathbb{R}^{n \times (d+1)}$ and $\lambda > 0$. Let $\Lambda =$
 1164 $\sup_{\|A'x\|_2^2 + \lambda \|x\|_1 \leq 1, x \in \mathbb{R}^{d+1}} |\sum_{i=1}^n g_i |[A'x](i)|^2|$. Given a convex set L , let $\mathcal{M}_{\mathcal{E}}$ be the metric en-
 1165 tropy of L , and let \mathcal{D} be the Guassian width indexed by L . Then,
 1166

$$1167 \mathbb{E}_{g \sim \mathcal{N}(0, I_n)} [|\Lambda|^l] \leq (2\mathcal{M}_{\mathcal{E}})^l (\mathcal{M}_{\mathcal{E}}/\mathcal{D}) + O(\sqrt{l}\mathcal{D})^l.$$

1188 **Lemma 21.** Let $A' \in \mathbb{R}^{n \times (d+1)}$. Let S be a sampling matrix such that, with probability at least $3/4$,

$$1189 \quad \|SA'x\|_2^2 = (1 \pm 1/2)\|A'x\|_2^2$$

1190 simultaneously for every $x \in \mathbb{R}^{d+1}$. Then, with probability at least $1/2$,

$$1191 \quad \Pr\{\mathcal{G}(SA') \leq 8\mathcal{G}(A')\} \geq \frac{1}{2}.$$

1192 *Proof.* We have

$$\begin{aligned} 1193 \quad \mathcal{G}(SA') &= \sum_{i=1}^n \sup_{SA'x \neq 0} \frac{|(SA')_i x|^2 + \frac{\lambda}{n} \|x\|_1}{\|SA'x\|_2^2 + \lambda \|x\|_1} \\ 1194 \quad &\leq \sum_{i=1}^n \sup_{SA'x \neq 0} \frac{S_{ii}^2 (|A'_i x|^2 + \frac{\lambda}{n} \|x\|_1)}{\|SA'x\|_2^2 + \lambda \|x\|_1} \\ 1195 \quad &= \sum_{i=1}^n \sup_{SA'x \neq 0} \frac{S_{ii}^2 (|A'_i x|^2 + \frac{\lambda}{n} \|x\|_1)}{\|A'x\|_2^2 + \lambda \|x\|_1} \frac{\|A'x\|_2^2 + \lambda \|x\|_1}{\|SA'x\|_2^2 + \lambda \|x\|_1} \\ 1196 \quad &= \sum_{i=1}^n \sup_{SA'x \neq 0} S_{ii}^2 \varrho_i(A') \sup_{SA'x \neq 0} \frac{\|A'x\|_2^2 + \lambda \|x\|_1}{\|SA'x\|_2^2 + \lambda \|x\|_1}. \end{aligned}$$

1197 We are guaranteed that

$$1198 \quad \Pr\{\sup_{SA'x \neq 0} \frac{\|A'x\|_2^2 + \lambda \|x\|_1}{\|SA'x\|_2^2 + \lambda \|x\|_1} \leq 2\} \geq \frac{3}{4}.$$

1199 On the other hand, we have that

$$1200 \quad \mathbb{E} \sum_{i=1}^n S_{ii}^2 \varrho_i(A') = \sum_{i=1}^n \mathbb{E}[S_{ii}^2] \varrho_i(A') = \mathcal{G}(A').$$

1201 By Markov's inequality,

$$1202 \quad \Pr\{\sum_{i=1}^n S_{ii}^2 \varrho_i(A') \leq 4\mathcal{G}(A')\} \geq \frac{3}{4}.$$

1203 Combining the above inequalities, we conclude

$$1204 \quad \Pr\{\mathcal{G}(SA') \leq 8\mathcal{G}(A')\} \geq \frac{1}{2}.$$

1205 \square

1206 In the following theorem, we present the main result provides a bound on the l -th moment of the
1207 sampling error $\mathbb{E}|\mathcal{E}|^l$.

1208 **Theorem 22.** Let $A' \in \mathbb{R}^{n \times (d+1)}$ be an input matrix, S be a random sampling matrix, and let $\varepsilon, \delta \in$
1209 $(0, 1)$ and $\lambda > 0$ parameters. If $\alpha = \tilde{O}\left(\frac{1}{\varepsilon^2} \cdot \left(\log(d \log(\delta^{-1}))(\ln d)^2 \cdot \min\left\{1, \frac{\log d}{\lambda^2}\right\} + \ln \delta^{-1}\right)\right)$
1210 and for all $i \in [n]$ it holds that

$$1211 \quad p_i \geq \min\{1, \alpha(\tau_{i,2}(A') + \frac{1}{n})\},$$

1212 where $\tau_{i,2}(A')$ denotes the ℓ_2 leverage score of the i -th row of A' . Then, with failure probability at
1213 most δ , it holds that, $\forall x \in \mathbb{R}^{d+1}, x_{d+1} = 1$,

$$1214 \quad \|SA'\hat{x}\|_2^2 + \lambda \|\hat{x}\|_1 \leq (1 \pm \epsilon)(\|A'x\|_2^2 + \lambda \|x\|_1),$$

1215 and the coresnet size is at most

$$1216 \quad m = \tilde{O}\left(\frac{d(\log d)^3}{\varepsilon^2} \cdot \min\{1, \frac{\log d}{\lambda^2}\} + \frac{d}{\varepsilon^2} \log \frac{1}{\delta}\right).$$

1242 *Proof.* By the construction of the sampling matrix S , for any $i \in [n]$, the sampling probability satisfies $0 \leq p_i \leq 1$, and the corresponding sampling weight is $S_{ii} = 1/p_i \geq 1$. This implies that $\mathbb{E}(\|SAx\| + \lambda\|x\|_1) = \|A'x\| + \lambda\|x\|_1$ for $\lambda > 0$ and any vector x . We set
1243 $\alpha = O(\frac{\sqrt{l}}{\epsilon} \cdot \min\{\log(d(\lambda^3 \wedge 1)), \lambda^2 d\})$, where $\sqrt{l} = O\left(\frac{(\log d/\delta)^2 \cdot \min\{1, \frac{\log d}{\lambda^2}\} + \epsilon \cdot \log(1/\delta)}{\epsilon \cdot \min\{\log(d(\lambda^2 \wedge 1)), \lambda^2 d\}}\right)$ denotes the maximum number of finite moments of the sampling error \mathcal{E} . To bound the coresnet size
1244 m , let X_i be the indicator random variable that represents whether the i -th row is included in S . Applying Lemma 1 in Appendix, we get
1245

$$1250 \quad \mathbb{E}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n p_i = \alpha \left(1 + \sum_{i=1}^n (2\tau_i + \frac{1}{n})\right) = \alpha(2 + 2d) \leq 4\alpha d.$$

1253

1254 Similarly, we can derive the lower bound of m as follows

$$1255 \quad \mathbb{E}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n p_i \geq \alpha \left(\sum_{i=1}^n 2\tau_i\right) = 2\alpha d.$$

1258

1259 By applying the Chernoff inequality, we have

$$1260 \quad m = \sum_{i=1}^n X_i \leq 2 \cdot \mathbb{E}\left(\sum_{i=1}^n X_i\right) \leq 8\alpha d$$

1264

with failure probability at most $2 \exp(-\mathbb{E}(\sum_{i=1}^n X_i)/3) \leq 2 \exp(-\frac{2\alpha d}{3}) \leq \delta$.

1265 Applying Lemma 1, the analysis of the empirical process associated with the sampling error can be
1266 reduced to a Gaussian process. Specifically, we obtain

$$1267 \quad \mathbb{E}_S \sup_{\|A'x\|_2^2 + \lambda\|x\|_1 = 1, x \in \mathcal{T}'} \left| \|SA'x\|_2^2 - \|A'x\|_2^2 \right|^l$$

$$1268 \quad \leq (2\pi)^{l/2} \mathbb{E}_{S,g} \sup_{\|A'x\|_2^2 + \lambda\|x\|_1 = 1, x \in \mathcal{T}'} \left| \sum_{i \in Q} g_i w_i |A'_i x|^2 \right|^l,$$

1272

1273 where $l > 1$ is an integer, w_i denotes the weight for sampling the i -row, Q the indices of non-zero
1274 diagonal entries in S , and $g \sim \mathcal{N}(0, I_m)$ is a standard Gaussian vector.

1275

1276 Next, we define $\Lambda = \sup_{\|A'x\|_2^2 + \lambda\|x\|_1 = 1, x \in \mathcal{T}'} (\sum_{i \in S} g_i w_i |A'_i x|^2)$ for the random sampling matrix
1277 S . To further bound the quantity Λ , we utilize Lemma 20 to relate Λ to the metric entropy $\mathcal{M}_{\mathcal{E}}$ and
1278 the diameter \mathcal{D} of geometric body resulted by the Gaussian process. This gives us the following
1279 bound

$$1279 \quad \mathbb{E}_{g \sim \mathcal{N}(0, I_m)} [|\Lambda|^l] \leq (2\mathcal{M}_{\mathcal{E}})^l (\mathcal{M}_{\mathcal{E}}/\mathcal{D}) + O(\sqrt{l}\mathcal{D})^l$$

1280

1281 for a fixed l .

1282

1283 Let $M = SA'$ denote an m -row submatrix of A' , and let w represent the weight vector corresponding to each row of M . Next, we bound the maximum weight leverage score $\tau = \sup_{\|Mx\|_w, 2=1, i \in [m]} w_i |M_i x|^2$.

1284

1285 We set the number of samples m at least $\tilde{O}(d + \log(1/\delta))$ using ℓ_2 leverage scores sampling method
1286 (Cohen et al., 2015), which achieves $\|S' A' x\| \leq (1 \pm \frac{1}{2}) \|A' x\|_2^2$ for fixed sampling matrix S' with
1287 probability at least $1 - \delta$. By applying above inequality and the definition of sampling probability,
1288 we have $\tau \leq 8/\alpha$.

1289

1290 According to Lemma 6, by choosing the constants for α sufficiently large, we obtain a bound on the
1291 metric entropy

$$1292 \quad O(G\tau^{1/2}(\log m)^{1/2} \log d \cdot \min\{1, \frac{\sqrt{\log d}}{\lambda}\})$$

$$1293 \quad \leq O(G\alpha^{-1/2}(\log m)^{1/2} \log d \cdot \min\{1, \frac{\sqrt{\log d}}{\lambda}\})$$

$$1294 \quad \leq G\epsilon/8 := \mathcal{M}_{\mathcal{E}}.$$

1295

1296 By Lemma 3, we derive a bound on the diameter $O(\tau \cdot \sqrt{\log(d(\lambda^2 \wedge 1))} \wedge (\lambda\sqrt{d})) \leq O((1/\alpha) \cdot$
 1297 $\sqrt{\log(d(\lambda^2 \wedge 1))} \wedge (\lambda\sqrt{d})) \leq \frac{\epsilon}{2\sqrt{t}} := \mathcal{D}$.
 1298

1299 By combining the bounds on the metric entropy $\mathcal{M}_{\mathcal{E}}$ and the diameter \mathcal{D} , we ensure the sampling
 1300 error $\mathbb{E}_{g \sim \mathcal{N}(0, I_m)}[|\Lambda|^l] \leq \epsilon^l \delta$. Since the sampling error $\mathcal{E} = \sup_{x' \in \mathcal{L}_M} |\|SA'x'\|_2^2 - \|A'x'\|_2^2|$, we
 1301 have $\mathcal{E}^l \leq 3^l \epsilon^l \delta$, which yields $\mathbb{E}|\mathcal{E}|^l \leq (3\epsilon)^l \delta$. By using Markov inequality, we have $\mathcal{E} \leq 3\epsilon$ with
 1302 probability at least $1 - \delta$. \square

1303

1304 B.4 OMITTED PROOFS OF LOWER BOUND FOR CORESET SIZE

1305

1306 In this section, we provide the lower bound of the coresnet size for LASSO regression, using a
 1307 standard information-theoretic approach (Wang et al., 2010; Wainwright, 2009; Parulekar et al.,
 1308 2021; Mai et al., 2023) based on Fano’s inequality and KL divergence computations. Here, we start
 1309 by constructing the hard instance for the k -sparse supports.

1310 Let $\mathcal{C} \subset \{0, 1\}^d$ be a set of k -sparse binary vectors (i.e., each vector has exactly k non-zeros entries),
 1311 such that $|\mathcal{C}| = N \geq (d/k)^k$ and for any two distinct vectors $c^{(i)}, c^{(j)} \in \mathcal{C}$ satisfy $|\text{supp}(c^{(i)}) \cap$
 1312 $\text{supp}(c^{(j)})| \leq Ck$ for some constant $C \in (0, 1)$. Such a codebook can be constructed using standard
 1313 techniques from coding theory. For each codeword $c^{(i)} \in \mathcal{C}$, we define

1314

$$1315 v^{(i)} = \left[1, \frac{\epsilon}{\sqrt{k}} c^{(i)} \right] \in \mathbb{R}^{d+1}.$$

1316

1317 Let $G \in \mathbb{R}^{m \times d}$ be a matrix with i.i.d standard Gaussian entries. Define the data matrix $Z^i =$
 1318 $G(I + v^{(i)}v^{(i)\top})^{1/2}$. Then, each row $z_j^i \sim \mathcal{N}(0, I + v^{(i)}v^{(i)\top})$, and the data distribution is
 1319

1320

$$1321 \mathbb{P}_i = \mathcal{N}(0, I + v^{(i)}v^{(i)\top}).$$

1322

1323 We show that exact support recovery is impossible with fewer measurements than those suggested
 1324 by the information-theoretic lower bound, given the input distribution.

1325

1326 **Lemma 23.** Let $\epsilon \in (0, 1)$, and let $v \in \mathbb{R}^{d+1}$ be the vector with $v = (1, \frac{1}{\sqrt{k}}c)$, where c is a codeword
 1327 uniformly chosen from \mathcal{C} . Let P_i be the multivariate Gaussian distribution with covariance $I + vv^\top$.
 1328 Then, for any estimator attempting to recover a k -sparse vector c , with at least $1/2$ probability, the
 1329 number of samples m must satisfy

1330

$$1331 m \geq \Omega\left(\frac{k \log(d/k)}{\epsilon^2}\right).$$

1331

1332

1333 *Proof.* Let $\mathbb{P}_i, \dots, \mathbb{P}_N$ be the distributions constructed above. By the Fano’s inequality, we have

1334

$$1335 \Pr[\text{error}] \geq 1 - \frac{\frac{1}{N^2} \sum_{i \neq j} D_{\text{KL}}(\mathbb{P}_i \parallel \mathbb{P}_j) + \log 2}{\log(N-1)},$$

1336

1337

1338 where $D_{\text{KL}}(\mathbb{P}_i \parallel \mathbb{P}_j)$ denotes the Kullback-Leibler divergence between distributions \mathbb{P}_i and \mathbb{P}_j .

1339

1340 To ensure the error probability is less than $1/2$, it suffices to ensure

1341

$$1342 \frac{1}{N^2} \sum_{i \neq j} D_{\text{KL}}(\mathbb{P}_i \parallel \mathbb{P}_j) \leq \frac{1}{4} \log N.$$

1343

1344 According the definition of \mathbb{P}_i , the KL divergence between two such distributions is

1345

$$1346 D_{\text{KL}}(\mathbb{P}_i \parallel \mathbb{P}_j) = m \cdot D_{\text{KL}}(\mathcal{N}(0, \Sigma_i) \parallel \mathcal{N}(0, \Sigma_j)),$$

1347

1348

1349 where $\Sigma_i = I + v^{(i)}v^{(i)\top}$. Using the formula for KL divergence between zero-mean Gaussian
 1350 distribution, we have

1351

$$1352 D_{\text{KL}}(\mathcal{N}(0, \Sigma_i) \parallel \mathcal{N}(0, \Sigma_j)) = \frac{1}{2} (\text{tr}(\Sigma_j^{-1} \Sigma_i) - d + \log \frac{\det \Sigma_j}{\det \Sigma_i})$$

1350 Since Σ_i is a rank-1 perturbation, by the Sherman-Morrison Formula, we apply $\det(\Sigma_i) = 1 +$
 1351 $\|v^{(i)}\|_2^2$ and $\Sigma_i^{-1} = I - \frac{v^{(i)}v^{(i)\top}}{1 + \|v^{(i)}\|_2^2}$. Thus, we obtain
 1352

$$1353 D_{\text{KL}}(\mathbb{P}_i \parallel \mathbb{P}_j) = \frac{n}{2}(\|v^{(i)}\|_2^2 - \frac{\|v^{(j)}\|_2^2 + (v^{(j)\top}v^{(i)})^2}{1 + \|v^{(i)}\|_2^2} + \log \frac{1 + \|v^{(j)}\|_2^2}{1 + \|v^{(i)}\|_2^2})$$

1354 For any $i \in [N]$, it holds that $\|v^{(i)}\|_2^2 = 1 + \epsilon^2$. Similarly, for any $i \neq j$, the inner product satisfies
 1355

$$1356 (v^{(j)\top}v^{(i)})^2 = \left(1 + \frac{\epsilon^2}{k} \langle c^{(i)}, c^{(j)} \rangle\right)^2 \leq (1 + C\epsilon^2)^2.$$

1357 Plugging into the expression for KL divergence, we get
 1358

$$1359 D_{\text{KL}}(\mathbb{P}_i \parallel \mathbb{P}_j) \leq O(\epsilon^2 m).$$

1360 Let $\log N = \Theta(k \log(d/k))$. Applying the Fano's inequality, it holds that
 1361

$$1362 \Pr[\text{error}] \geq 1 - \frac{mC\epsilon^2 + \log 2}{\log N}.$$

1363 To ensure $\Pr[\text{error}] \leq 1/2$, we have
 1364

$$1365 C\epsilon^2 \cdot m \geq \frac{1}{2} \log N = \Omega(k \log(d/k)) \rightarrow m \geq \Omega\left(\frac{k \log(d/k)}{\epsilon^2}\right).$$

□

1366 Our proof method, while differing in approach from previous work (Wainwright, 2009; Mai et al.,
 1367 2023) that focuses on sketching algorithms, is based on similar ideas. In particular, by analyzing
 1368 the coresnet algorithm on a constructed hard instance, we establish a lower bound on the sample size
 1369 required by any algorithm to achieve a $(1 + \epsilon)$ -approximation on the constructed hard instance.

1370 **Lemma 24.** Let $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^n$, and $\lambda \in (0, 1)$. Assume that $\|A\|_2 \leq 1$ and $\|b\|_2 \leq 1$. Let S be
 1371 a diagonal sampling matrix with m non-zero entries. Suppose there exists an estimator that returns
 1372 $\tilde{x} = \arg \min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2^2 + \lambda \|x\|_1$ satisfies
 1373

$$1374 \|A\tilde{x} - b\|_2^2 + \lambda \|\tilde{x}\|_1 \leq (1 + \epsilon) \cdot \min_{x \in \mathbb{R}^d} (\|Ax - b\|_2^2 + \lambda \|x\|_1).$$

1375 Then, the coresnet size m must satisfy
 1376

$$1377 m = \begin{cases} \Omega\left(\frac{\log d}{\lambda^2 \cdot \epsilon^2}\right), & \text{if } \lambda = \Omega\left(\frac{1}{\sqrt{d}}\right) \\ \Omega\left(\frac{d}{\epsilon^2} \log d\right), & \text{if } \lambda = O\left(\frac{1}{\sqrt{d}}\right). \end{cases}$$

1378 *Proof.* We prove this result using a similar approach to that in Theorem 13 (Mai et al., 2023). We
 1379 will take $[b \ A] \sim \frac{1}{\sqrt{n}} G(I + vv^\top)^{1/2}$, where v is a codeword in set \mathcal{C} . Let S be a sampling matrix
 1380 that selects m rows of A and b . Since only the row indices selected by S affect the coresnet, and the
 1381 weights can be absorbed into the analysis via rescaling, we may, without loss of generality, assume
 1382 that all non-zero diagonal entries of S are equal to 1. Under this assumption, the compressed matrix
 1383 $SG(I + vv^\top)^{1/2}$ has the same distribution as $G(I + vv^\top)^{1/2}$.
 1384

1385 By the concentration properties of Gaussian matrices (see Exercise 4.7.3 in (Vershynin, 2018)), with
 1386 high probability, the LASSO objective satisfies
 1387

$$1388 \|Ax - b\|_2^2 + \lambda \|x\|_1 \approx 1 + \|x\|_2^2 + (1 - \epsilon c^T x)^2 + \lambda \|x\|_1 =: L(x),$$

1389 where $v = (1 \ c)$. Since $L(x)$ is a 1-strongly convex function, we get
 1390

$$1391 L(\hat{x}) \geq L(x^*) + \|\hat{x} - x^*\|_2^2.$$

1392 for any \hat{x} , where x^* is the minimizer of $L(x)$.
 1393

1394 Fix $\epsilon = 1/2$, we set $\lambda = \frac{1}{2\sqrt{k}}$. Here, it holds that $x^* = c/5$ and $L(x^*) \approx 2$. Suppose there exist a
 1395 estimator algorithm satisfies $L(\hat{x}) \leq (1 + c_1)L(x^*)$ for a sufficiently small c_1 . Then we have
 1396

$$1397 (1 + c_1)L(x^*) \geq L(x^*) + \|\hat{x} - x^*\|_2^2,$$

1398 which means the gap $\|\hat{x} - x^*\|_2^2 \leq 2 \cdot c_1$.
 1399

1400 Choosing a small enough constant c_1 , we can recover $\text{supp}(v)$. By Lemma 23 (in Appendix), if
 1401 $\frac{1}{4\lambda^2} = o(d)$, the required lower bound of $\Omega(\frac{1}{\lambda^2 \epsilon^2} \log d)$ on the coresnet size; if $\frac{1}{4\lambda^2} = \Theta(d)$, the
 1402 required size is at least $\Omega(\frac{d}{\epsilon^2} \log d)$.
 1403 □

1404
1405 **C COMPLEMENTARY EXPERIMENTS**1406 **C.1 EXPERIMENTS ON SKETCHING ALGORITHM AND LASSO-SENS**1407
1408 In this section, we present experimental results comparing the performance of our proposed LASSO-
1409 Sens algorithm with a sketching-based algorithm for solving LASSO regression. We also acknowl-
1410 edge recent advances in sketching for LASSO, such as the work by Mai et al. (2023), which utilizes
1411 random projections to accelerate the optimization process.1412 To ensure a fair comparison, we follow the same experimental setup used in Section 4, conducting
1413 experiments on four datasets with identical coresets sizes and regularization parameters. We evaluate
1414 algorithm performance in terms of loss, runtime, and sparsity. For the sketching-based algorithm,
1415 we set the number of sketching rows equal to the coresets size and run each experiment 10 times,
1416 reporting the average results.1417 As shown in Tables 6, 7, 8, and 9, the proposed LASSO-Sens algorithm consistently achieves lower
1418 loss values than the sketching method on both small- and large-scale datasets. On the large-scale
1419 mnist8m dataset, LASSO-Sens is up to 10 times faster than the sketching algorithm when the coresets
1420 size is set to $m = \{15, 20\} \times d$. Moreover, on the Synthetic and mnist8m datasets, the sparsity of the
1421 LASSO-Sens solution is highly lower than that of the sketching algorithm. Overall, the experimental
1422 results show that the proposed algorithm achieves lower regression loss and sparsity, particularly on
1423 large-scale dataset.1424
1425 **C.2 EXPERIMENTS ON SENSITIVITY SAMPLING FOR STANDARD AND MODIFIED LASSO**
1426 **OBJECTIVES**1427 In this section, we compare the performance of the sensitivity sampling algorithm on both the stan-
1428 dard LASSO objective and the modified LASSO objective proposed in Chhaya et al. (2020), which
1429 takes the form $\|Ax - b\|_2^2 + \lambda\|x\|_1^2$. In Section 4, we used the FISTA algorithm to solve the standard
1430 LASSO problem, as it leverages the proximal operator of the ℓ_1 norm. However, this solver is not
1431 applicable to the modified LASSO formulation, which involves a squared ℓ_1 regularization term and
1432 lacks an efficient proximal operator. As a result, directly comparing the two objectives under our
1433 original framework would be unfair.1434 To ensure a fair comparison, we follow the methodology of Chhaya et al. (2020), which utilizes the
1435 global optimization toolbox from MATLAB. Specifically, we use the `patternsearch` solver to
1436 address both standard and modified LASSO problems. In our experiments, the solver parameters are
1437 set as follows: `MaxFunctionEvaluations` = 1,000,000, and `MaxIterations` = 25,000.
1438 To quantify the approximation quality of the coresets solution, we utilize the LASSO objective func-
1439 tion as the evaluation metric. The experiments are conducted on a machine equipped with an Intel(R)
1440 Core(TM) i7-9700 CPU and 16 GB of RAM, and the implementation is executed MATLAB R2021.1441 We first use Algorithm 1 to construct the coresets, and then apply the `patternsearch` solver to
1442 solve both objective functions on the coresets samples. The experiments are conducted on synthetic
1443 datasets using the same coresets sizes and regularization parameters λ as in Section 4. Each exper-
1444 iment is repeated 10 times, and we report the average results. As shown in Table 10, the sensitiv-
1445 ity sampling algorithm for standard LASSO achieve lower sparsity compare to modified objective.
1446 Meanwhile, the computational time required by the two objectives is comparable.1447
1448 **D USE OF LARGE LANGUAGE MODELS (LLMs)**
14491450 No large language models were used in the ideation or writing of this paper.
1451
1452
1453
1454
1455
1456
1457

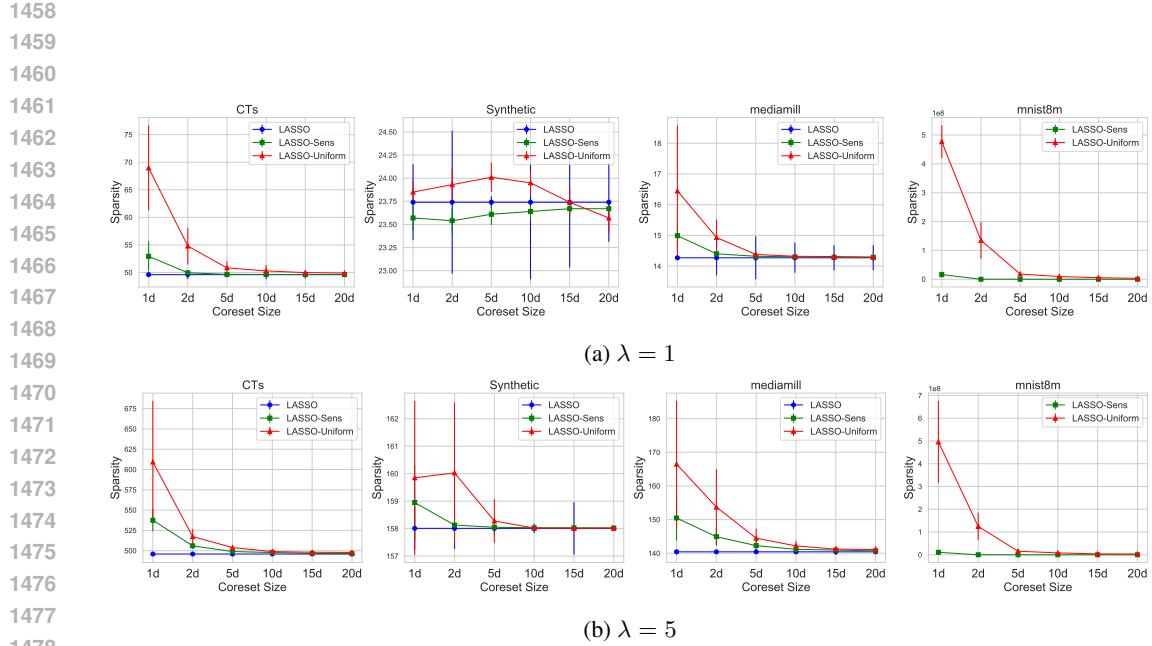
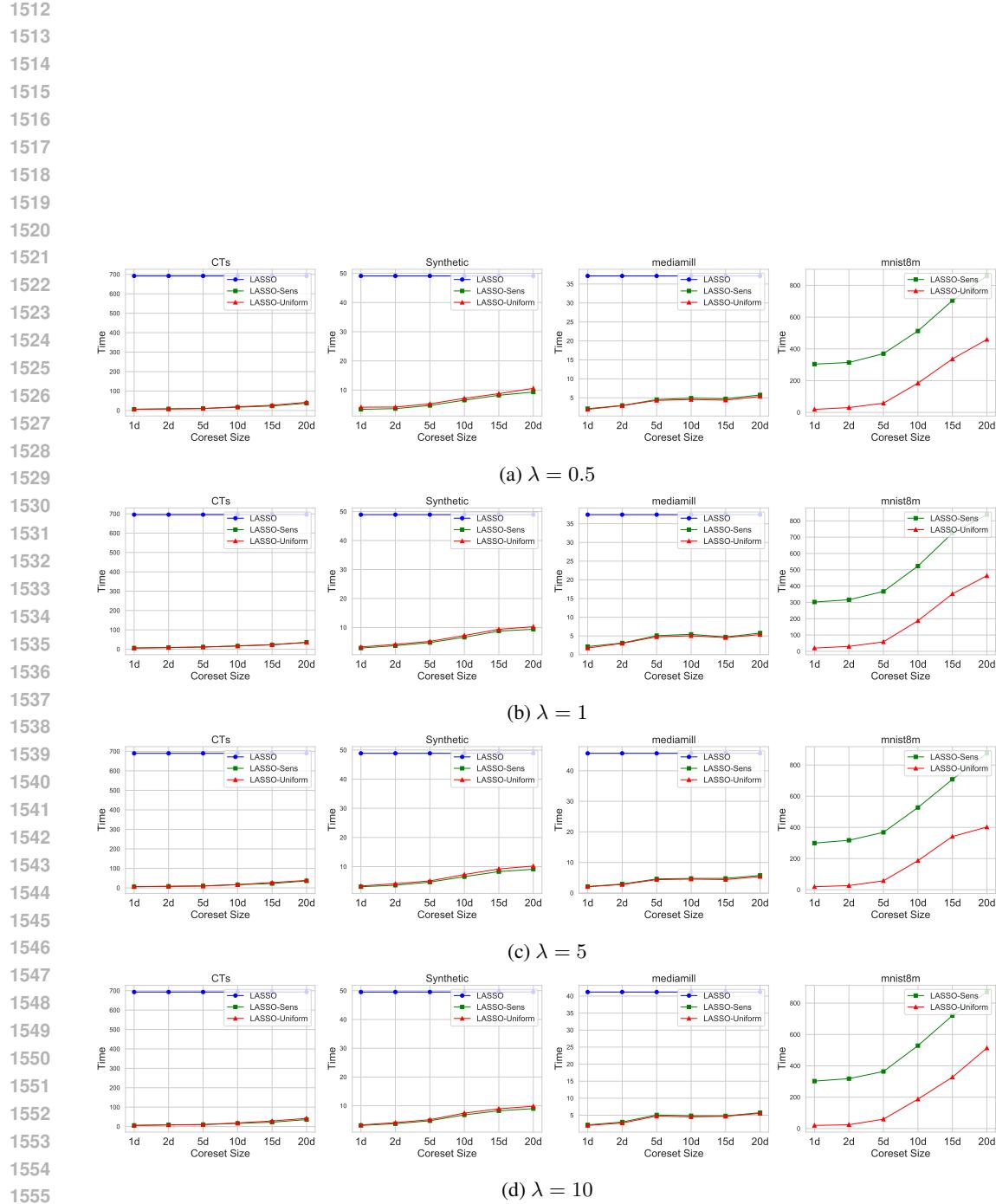


Figure 2: Comparison results of LASSO regression loss across varying coresset sizes

Table 2: Comparison results of loss, runtime, and sparsity on CTs dataset ($n = 53,500$, $d = 386$) for varying coresset sizes at $\lambda = \{1, 5, 10\}$.

Lambda	Metrics	Algorithms	Coreset Sizes					
			1d	2d	5d	10d	15d	20d
$\lambda = 1$	Loss	LASSO				49.61±0.06		
		LASSO-Sens	52.94±2.73	49.95±0.31	49.66±0.02	49.64±0.01	49.63±0.01	49.63±0.01
	Time (s)	LASSO	68.98±7.72	54.80±3.34	50.84±1.21	50.29±1.09	49.98±0.29	49.90±0.29
		LASSO-Uniform						
	Sparsity	LASSO			695.79			
		LASSO-Sens	325	243	226	221	226	227
$\lambda = 5$	Loss	LASSO				247.94±0.68		
		LASSO-Sens	267.49±10.93	251.30±2.29	248.69±0.49	248.34±0.29	248.19±0.19	248.04±0.19
	Time (s)	LASSO	307.27±38.10	258.08±4.63	251.28±2.26	249.22±1.15	248.68±0.71	248.83±0.54
		LASSO-Uniform						
	Sparsity	LASSO			689.77			
		LASSO-Sens	185	167	158	160	162	160
$\lambda = 10$	Loss	LASSO				495.91±0.77		
		LASSO-Sens	537.53±13.62	506.01±3.84	498.99±1.92	497.75±1.46	496.58±0.88	496.45±0.64
	Time (s)	LASSO	609.27±75.35	517.43±9.40	503.88±3.16	498.92±2.36	498.10±1.78	497.87±1.77
		LASSO-Uniform						
	Sparsity	LASSO			693.29			
		LASSO-Sens	172	160	154	159	155	153

1510
1511

Figure 3: Comparison results of running time across varying coreset sizes for different λ values

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578

1579 Table 3: Comparison results of loss, runtime, and sparsity on Synthetic dataset ($n = 10,000, d = 200$) for varying coresset sizes at $\lambda = \{0.5, 1, 5, 10\}$.

Lambda	Metrics	Algorithm	Coreset Sizes					
			1d	2d	5d	10d	15d	20d
$\lambda = 0.5$	Loss	LASSO				13.82 ± 0.78		
		LASSO-Sens	14.46 ± 0.54	14.50 ± 0.49	14.26 ± 0.32	14.23 ± 0.26	14.05 ± 0.25	13.99 ± 0.23
		LASSO-Uniform	16.26 ± 0.08	16.20 ± 0.20	16.00 ± 0.25	15.82 ± 0.34	15.34 ± 0.42	15.22 ± 0.53
	Time (s)	LASSO				49.11		
		LASSO-Sens	3.40	3.65	4.73	6.54	8.22	9.32
		LASSO-Uniform	4.14	4.19	5.29	7.17	8.77	10.59
$\lambda = 1$	Loss	LASSO				41		
		LASSO-Sens	41	34	35	36	38	39
		LASSO-Uniform	28	28	28	30	29	31
	Time (s)	LASSO			23.74 ± 0.60			
		LASSO-Sens	23.57 ± 0.13	23.54 ± 0.14	23.61 ± 0.11	23.64 ± 0.10	23.67 ± 0.07	23.67 ± 0.06
		LASSO-Uniform	23.85 ± 0.12	23.93 ± 0.18	24.01 ± 0.16	23.95 ± 0.13	23.74 ± 0.15	23.57 ± 0.16
$\lambda = 5$	Loss	LASSO				48.94		
		LASSO-Sens	2.91	3.72	4.79	6.62	8.76	9.38
		LASSO-Uniform	3.28	4.17	5.20	7.25	9.36	10.27
	Time (s)	LASSO				28		
		LASSO-Sens	32	29	29	28	28	28
		LASSO-Uniform	28	28	28	30	30	32
$\lambda = 10$	Loss	LASSO				83.42 ± 0.34		
		LASSO-Sens	83.63 ± 0.23	83.46 ± 0.03	83.43 ± 0.01	83.42 ± 0.00	83.42 ± 0.00	83.42 ± 0.00
		LASSO-Uniform	84.71 ± 1.56	85.25 ± 1.87	84.35 ± 0.95	83.55 ± 0.48	83.56 ± 0.22	83.42 ± 0.01
	Time (s)	LASSO				48.86		
		LASSO-Sens	3.10	3.60	4.69	6.55	8.28	9.10
		LASSO-Uniform	3.35	4.14	5.09	7.28	9.19	10.19
$\lambda = 10$	Loss	LASSO				28		
		LASSO-Sens	32	28	28	28	28	28
		LASSO-Uniform	28	28	28	28	28	28
	Time (s)	LASSO				158.01 ± 0.72		
		LASSO-Sens	158.95 ± 1.37	158.13 ± 0.06	158.05 ± 0.03	158.03 ± 0.01	158.03 ± 0.01	158.02 ± 0.01
		LASSO-Uniform	159.85 ± 2.80	160.03 ± 2.55	158.28 ± 0.80	158.02 ± 0.01	158.01 ± 0.01	158.02 ± 0.01
$\lambda = 10$	Time (s)	LASSO				49.54		
		LASSO-Sens	3.17	3.76	4.79	6.83	8.26	9.01
		LASSO-Uniform	3.32	4.15	5.16	7.45	8.94	9.83
	Sparsity	LASSO				28		
		LASSO-Sens	28	27	27	28	28	28
		LASSO-Uniform	27	28	28	28	28	28

1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632

1633 Table 4: Comparison results of loss, runtime, and sparsity on mediamill dataset ($n = 30,993, d = 120$) for varying coresset sizes at $\lambda = \{0.5, 1, 5, 10\}$.

Lambda	Metrics	Algorithms	Coreset Sizes					
			1d	2d	5d	10d	15d	20d
$\lambda = 0.5$	Loss	LASSO			7.13±0.69			
		LASSO-Sens	7.34±0.13	7.19±0.02	7.15±0.00	7.15±0.00	7.14±0.01	7.14±0.00
		LASSO-Uniform	7.94±0.69	7.25±0.07	7.17±0.02	7.16±0.01	7.15±0.01	7.15±0.01
	Time (s)	LASSO			37.12			
		LASSO-Sens	2.13	2.97	4.53	4.91	4.74	5.76
		LASSO-Uniform	1.96	2.94	4.32	4.55	4.38	5.36
$\lambda = 1$	Loss	LASSO			47			
		LASSO-Sens	44	44	44	45	45	46
		LASSO-Uniform	39	42	42	45	45	44
	Time (s)	LASSO			14.27±0.53			
		LASSO-Sens	14.99±0.39	14.40±0.08	14.32±0.03	14.30±0.02	14.29±0.01	14.29±0.01
		LASSO-Uniform	16.45±2.14	14.93±0.59	14.38±0.08	14.32±0.05	14.31±0.03	14.29±0.02
$\lambda = 5$	Loss	LASSO			37.43			
		LASSO-Sens	2.16	3.10	5.07	5.43	4.71	5.76
		LASSO-Uniform	1.76	3.01	4.77	5.03	4.55	5.36
	Time (s)	LASSO			49			
		LASSO-Sens	40	43	44	45	44	45
		LASSO-Uniform	41	41	44	45	43	45
$\lambda = 10$	Loss	LASSO			70.97±0.61			
		LASSO-Sens	78.09±3.52	73.50±1.15	71.68±0.50	71.37±0.35	71.26±0.20	71.07±0.15
		LASSO-Uniform	87.79±12.04	78.56±5.31	73.24±1.89	71.98±1.06	71.51±0.61	71.55±0.58
	Time (s)	LASSO			45.70			
		LASSO-Sens	2.11	2.93	4.60	4.76	4.78	5.75
		LASSO-Uniform	2.05	2.77	4.36	4.54	4.39	5.37
$\lambda = 10$	Loss	LASSO			45			
		LASSO-Sens	32	39	39	39	41	40
		LASSO-Uniform	31	35	38	39	38	39
	Time (s)	LASSO			140.43±0.46			
		LASSO-Sens	150.49±6.70	144.93±2.66	142.27±1.36	141.17±0.63	140.95±0.52	140.72±0.44
		LASSO-Uniform	166.49±18.80	153.72±11.25	144.49±2.85	142.19±1.51	141.23±0.90	141.12±0.95
$\lambda = 10$	Time (s)	LASSO			41.19			
		LASSO-Sens	2.16	3.01	5.08	4.85	4.81	5.74
		LASSO-Uniform	2.01	2.70	4.76	4.52	4.69	5.56
	Sparsity	LASSO			40			
		LASSO-Sens	31	32	34	34	36	38
		LASSO-Uniform	28	30	33	33	35	36

1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674

1675

1676 Table 5: Comparison results of loss, runtime, and sparsity on mnist8m datasets ($n = 1677$ 8,000,000, $d = 784$) for varying coresnet sizes at $\lambda = \{0.5, 1, 5, 10\}$. If an algorithm fails to 1678 output a solution within 48 hours, the metrics are marked as $48 > h$.

Lambda	Metrics	Algorithms	Coreset Sizes					
			1d	2d	5d	10d	15d	20d
$\lambda = 0.5$	Loss	LASSO-Sens	1.27E7 \pm 1.02E7	3.30E4 \pm 7.71E3	1.64E4 \pm 4.03E2	1.45E4 \pm 3.06E2	1.43E4 \pm 1.80E2	1.37E4 \pm 1.16E2
		LASSO-Uniform	5.83E8 \pm 2.73E8	1.79E8 \pm 4.25E7	3.59E7 \pm 3.63E7	6.53E6 \pm 2.90E6	4.46E6 \pm 2.85E6	3.00E6 \pm 1.09E6
	Time (s)	LASSO-Sens	304.32	314.23	370.11	512.73	703.91	859.22
		LASSO-Uniform	19.39	30.61	58.05	184.22	336.58	459.11
$\lambda = 1$	Sparsity	LASSO-Sens	780	776	770	770	763	760
		LASSO-Uniform	704	712	725	728	735	735
	Loss	LASSO-Sens	1.61E7 \pm 1.04E7	3.46E4 \pm 8.18E3	1.68E4 \pm 5.27E2	1.48E4 \pm 2.05E2	1.41E4 \pm 1.38E2	1.38E4 \pm 7.54E1
		LASSO-Uniform	4.77E8 \pm 5.68E7	1.35E8 \pm 6.33E7	1.80E7 \pm 3.20E6	9.35E6 \pm 4.36E6	5.37E6 \pm 2.21E6	3.04E6 \pm 1.13E6
$\lambda = 5$	Time (s)	LASSO-Sens	302.37	316.26	366.99	522.60	724.51	838.05
		LASSO-Uniform	20.25	30.3	58.01	187.43	352.15	463.57
	Sparsity	LASSO-Sens	778	774	768	763	765	758
		LASSO-Uniform	705	709	731	737	737	729
$\lambda = 10$	Loss	LASSO-Sens	1.39E7 \pm 4.50E6	2.87E4 \pm 4.21E3	1.72E4 \pm 4.57E2	1.49E4 \pm 2.52E2	1.45E4 \pm 1.88E2	1.42E4 \pm 1.49E2
		LASSO-Uniform	5.98E8 \pm 7.60E7	1.23E8 \pm 3.26E7	2.15E7 \pm 7.61E6	9.22E6 \pm 2.22E6	3.99E6 \pm 1.09E6	3.05E6 \pm 9.08E5
	Time (s)	LASSO-Sens	299.24	317.45	368.02	527.51	708.16	875.08
		LASSO-Uniform	19.32	26.66	57.07	186.32	341.58	401.96
$\lambda = 5$	Sparsity	LASSO-Sens	780	776	770	767	765	763
		LASSO-Uniform	691	714	729	735	730	741
	Loss	LASSO-Sens	1.10E7 \pm 8.22E6	9.47E4 \pm 1.27E5	1.73E4 \pm 1.06E2	1.55E4 \pm 1.54E2	1.49E4 \pm 3.28E1	1.47E4 \pm 8.80E1
		LASSO-Uniform	4.96E8 \pm 1.81E8	1.25E8 \pm 5.99E7	1.58E7 \pm 5.71E6	8.34E6 \pm 1.86E6	3.99E6 \pm 9.91E5	3.50E6 \pm 6.16E5
$\lambda = 10$	Time (s)	LASSO-Sens	302.45	318.28	363.87	528.66	720.44	870.80
		LASSO-Uniform	19.95	24.2	59.64	187.25	327.57	513.41
	Sparsity	LASSO-Sens	781	777	769	769	765	763
		LASSO-Uniform	700	713	730	736	728	737

1702

1703

1704

1705 Table 6: Comparison of the sketching algorithm and LASSO-Sens on the CTs dataset ($n = 1706$ 53,500, $d = 386$).

Lambda	Metrics	Algorithms	Coreset Sizes					
			1d	2d	5d	10d	15d	20d
$\lambda = 0.5$	Loss	LASSO-Sens	24.11 \pm 0.30	23.99 ± 0.01	23.98 \pm 0.00	23.97 \pm 0.00	23.97 \pm 0.00	23.97 \pm 0.00
		Sketching	24.13 \pm 0.03	23.99 \pm 0.00	23.98 \pm 0.00	23.97 \pm 0.00	23.97 \pm 0.00	23.97 \pm 0.00
	Time (s)	LASSO-Sens	7.21	7.18	9.66	13.58	17.68	22.62
		Sketching	5.91	6.61	10.49	16.05	21.37	27.46
$\lambda = 1$	Sparsity	LASSO-Sens	383	359	322	317	314	316
		Sketching	382	360	327	319	313	309
	Loss	LASSO-Sens	48.10 \pm 0.75	47.97 \pm 0.02	47.93 \pm 0.00	47.93 \pm 0.00	47.93 \pm 0.00	47.92 \pm 0.00
		Sketching	48.17 \pm 0.06	47.98 \pm 0.01	47.94 \pm 0.00	47.93 \pm 0.04	47.93 \pm 0.02	47.93 \pm 0.03
$\lambda = 5$	Time (s)	LASSO-Sens	6.83	7.26	9.95	13.38	18.51	22.27
		Sketching	6.11	6.74	10.40	16.12	21.54	27.23
	Sparsity	LASSO-Sens	345	241	219	215	217	215
		Sketching	327	243	222	214	214	216
$\lambda = 5$	Loss	LASSO-Sens	242.48 \pm 1.45	240.20 \pm 0.62	239.77 \pm 0.11	239.65 \pm 0.06	239.61 \pm 0.05	239.61 \pm 0.04
		Sketching	243.89 \pm 1.67	240.39 \pm 0.14	239.86 \pm 0.05	239.68 \pm 0.05	239.65 \pm 0.05	239.64 \pm 0.02
	Time (s)	LASSO-Sens	7.13	7.28	9.90	13.85	18.00	21.96
		Sketching	6.12	6.79	10.20	16.36	21.52	26.74
$\lambda = 10$	Sparsity	LASSO-Sens	179	168	156	154	158	157
		Sketching	174	166	159	155	159	158
	Loss	LASSO-Sens	495.54 \pm 2.59	481.58 \pm 1.01	479.82 \pm 0.69	479.18 \pm 0.22	479.17 \pm 0.14	479.00 \pm 0.23
		Sketching	495.48 \pm 2.57	482.36 \pm 1.07	479.98 \pm 0.24	479.52 \pm 0.14	479.33 \pm 0.17	479.28 \pm 0.05
$\lambda = 10$	Time (s)	LASSO-Sens	7.21	7.29	9.77	13.34	18.26	21.74
		Sketching	6.09	7.05	10.41	16.14	21.51	26.85
	Sparsity	LASSO-Sens	169	153	157	153	155	153
1726		Sketching	170	159	149	149	156	153

1727

1728
 1729
 1730 Table 7: Comparison of the sketching algorithm and LASSO-Sens on the Synthetic dataset ($n =$
 1731 $10,000$, $d = 200$).
 1732

Lambda	Metrics	Algorithm	Coreset Sizes					
			1d	2d	5d	10d	15d	20d
$\lambda = 0.5$	Loss	LASSO-Sens	14.24\pm0.41	14.02\pm0.30	13.27\pm0.59	12.83\pm0.43	12.93\pm0.26	13.12\pm0.10
		Sketching	25.82 \pm 4.57	17.15 \pm 0.81	14.12 \pm 0.51	13.52 \pm 0.20	13.39 \pm 0.12	13.19 \pm 0.16
		LASSO-Sens	4.23	4.77	5.55	6.19	7.60	8.21
	Time (s)	Sketching	3.84	4.96	5.72	6.38	7.93	9.21
		LASSO-Sens	40	34	38	9	40	40
	Sparsity	Sketching	101	106	113	111	111	108
		LASSO-Sens	31.52 \pm 1.92	24.89 \pm 0.22	22.90 \pm 0.18	22.31 \pm 0.08	22.23 \pm 0.03	22.14 \pm 0.05
	$\lambda = 1$	LASSO-Sens	21.41\pm0.17	21.42\pm0.22	21.53\pm0.06	21.47\pm0.14	21.57\pm0.12	21.61\pm0.06
		Sketching	4.03	4.98	4.88	6.34	7.67	7.99
		LASSO-Sens	4.02	4.99	5.14	6.51	7.85	9.11
$\lambda = 5$	Loss	LASSO-Sens	66.78\pm0.08	66.77\pm0.01	66.76\pm0.00	66.76\pm0.00	66.76\pm0.00	66.76\pm0.00
		Sketching	72.24 \pm 1.33	69.02 \pm 0.43	67.58 \pm 0.19	67.09 \pm 0.05	67.00 \pm 0.06	66.88 \pm 0.02
		LASSO-Sens	3.90	5.40	4.81	6.39	7.64	8.04
	Time (s)	Sketching	3.82	5.29	5.18	6.64	7.84	9.20
		LASSO-Sens	29	25	24	24	24	24
	Sparsity	Sketching	80	78	70	58	55	49
		LASSO-Sens	127.49 \pm 0.81	124.60 \pm 0.35	123.48 \pm 0.16	123.02 \pm 0.04	122.96 \pm 0.02	122.92 \pm 0.03
	$\lambda = 10$	LASSO-Sens	4.13	5.30	4.83	6.48	7.63	8.07
		Sketching	3.95	5.20	5.11	6.65	7.71	9.16
		LASSO-Sens	30	25	24	24	24	24
	Sparsity	Sketching	65	59	47	37	33	27

1753
 1754
 1755
 1756
 1757 Table 8: Comparison of the sketching algorithm and LASSO-Sens on the mediamill dataset ($n =$
 1758 $30,993$, $d = 120$).
 1759

Lambda	Metrics	Algorithms	Coreset Sizes					
			1d	2d	5d	10d	15d	20d
$\lambda = 0.5$	Loss	LASSO-Sens	8.40\pm0.43	8.19\pm0.04	8.17\pm0.02	8.15\pm0.01	8.15\pm0.00	8.15\pm0.00
		Sketching	8.54 \pm 0.15	8.25 \pm 0.04	8.18 \pm 0.01	8.16 \pm 0.00	8.15\pm0.00	8.15\pm0.00
		LASSO-Sens	2.57	3.37	4.69	4.94	4.69	5.81
	Time (s)	Sketching	2.14	3.28	4.59	5.07	5.13	5.82
		LASSO-Sens	58	60	62	63	61	61
	Sparsity	Sketching	57	60	62	60	62	63
		LASSO-Sens	17.77 \pm 0.23	16.34\pm0.16	16.27\pm0.03	16.24\pm0.02	16.23\pm0.02	16.22\pm0.01
	$\lambda = 1$	LASSO-Sens	17.16 \pm 0.45	16.46 \pm 0.07	16.29 \pm 0.04	16.25 \pm 0.01	16.25 \pm 0.01	16.24 \pm 0.01
		Sketching	2.47	3.68	4.68	4.91	4.48	5.82
		LASSO-Sens	2.47	3.07	4.61	4.91	5.30	5.78
$\lambda = 5$	Loss	LASSO-Sens	57	58	59	61	57	60
		Sketching	54	59	62	59	61	60
		LASSO-Sens	83.62 \pm 4.37	81.00\pm0.93	80.30\pm0.18	79.95\pm0.18	80.07\pm0.08	80.01\pm0.09
	Time (s)	Sketching	87.07 \pm 1.31	82.66 \pm 0.93	80.57 \pm 0.37	80.24 \pm 0.11	80.26 \pm 0.17	80.20 \pm 0.11
		LASSO-Sens	2.46	3.45	4.71	4.93	4.49	5.82
	Sparsity	Sketching	2.26	3.30	4.64	5.02	5.20	5.90
		LASSO-Sens	44	51	51	51	51	51
$\lambda = 10$	Loss	LASSO-Sens	163.26\pm8.88	160.69\pm5.25	159.24\pm0.35	158.89\pm0.50	158.91\pm0.34	158.65\pm0.40
		Sketching	177.47 \pm 5.03	163.25 \pm 0.83	160.31 \pm 0.97	159.24 \pm 0.37	159.08 \pm 0.26	159.03 \pm 0.14
		LASSO-Sens	2.56	3.45	4.65	4.90	4.47	5.81
	Time (s)	Sketching	2.11	3.23	4.50	4.80	5.31	5.83
		LASSO-Sens	40	44	48	51	49	49
	Sparsity	Sketching	41	46	51	49	49	49

Table 9: Comparison of the sketching algorithm and LASSO-Sens on the mnist8m datasets ($n = 8,000,000, d = 784$).

Lambda	Metrics	Algorithms	Coreset Sizes					
			1d	2d	5d	10d	15d	20d
$\lambda = 0.5$	Loss	LASSO-Sens Sketching	1.27E7±1.02E7 4.27E7±5.20E5	3.30E4±7.71E3 4.62E4±3.90E4	1.64E4±4.03E2 1.67E4±1.58E3	1.45E4±3.06E2 1.48E4±1.05E2	1.43E4±1.80E2 1.43E4±1.55E3	1.37E4±1.16E2 1.41E4±6.27E2
	Time (s)	LASSO-Sens Sketching	304.32 533.75	314.23 1000.12	370.11 2484.28	512.73 5048.47	703.91 7635.30	859.22 10265.84
	Sparsity	LASSO-Sens Sketching	780 783	776 779	770 770	770 773	763 771	760 764
$\lambda = 1$	Loss	LASSO-Sens Sketching	1.61E7±1.04E7 3.67E7±1.43E6	3.46E4±8.18E3 2.18E4±4.26E3	1.68E4±5.27E2 1.73E4±9.62E2	1.48E4±2.05E2 1.48E4±1.29E3	1.41E4±1.38E2 1.43E4±2.82E3	1.38E4±7.54E1 1.40E4±9.60E2
	Time (s)	LASSO-Sens Sketching	302.37 499.51	316.26 990.37	366.99 2475.33	522.60 5055.59	724.51 7678.16	838.05 10277.15
	Sparsity	LASSO-Sens Sketching	778 783	774 776	768 775	763 776	765 767	758 764
$\lambda = 5$	Loss	LASSO-Sens Sketching	1.39E7±4.50E6 1.58E7±5.96E5	2.87E4±4.21E3 2.90E4±2.26E3	1.72E4±4.57E2 1.72E4±2.53E3	1.49E4±2.52E2 1.53E4±2.29E3	1.45E4±1.88E2 1.47E4±1.04E3	1.42E4±1.49E2 1.45E4±2.14E3
	Time (s)	LASSO-Sens Sketching	299.24 498.59	317.45 994.44	368.02 2477.81	527.51 5033.69	708.16 7690.62	875.08 10277.57
	Sparsity	LASSO-Sens Sketching	780 783	776 779	770 774	767 770	765 770	763 768
$\lambda = 10$	Loss	LASSO-Sens Sketching	1.10E7±8.22E6 1.55E7±2.22E5	9.47E4±1.27E5 2.85E4±3.36E3	1.73E4±1.06E2 1.79E4±1.17E3	1.55E4±1.54E2 1.58E4±6.86E2	1.49E4±3.28E1 1.53E4±1.16E3	1.47E4±8.80E1 1.48E4±1.92E3
	Time (s)	LASSO-Sens Sketching	302.45 502.08	318.28 994.11	363.87 2483.74	528.66 5034.16	720.44 7666.31	870.80 10231.89
	Sparsity	LASSO-Sens Sketching	781 782	777 777	769 774	769 762	765 763	763 767

Table 10: Comparison of sensitivity sampling applied to standard and modified LASSO objectives on Synthetic dataset ($n = 10,000, d = 200$).

Lambda	Metrics	Algorithms	Coreset Sizes					
			1d	2d	5d	10d	15d	20d
$\lambda = 0.5$	Relative error	LASSO	4.06E5±5.61E4 4.10E5±3.33E4	2.00E5±2.54E4 2.16E5±3.15E4	9.88E4±1.35E4 9.97E4±1.42E4	3.02E4±7.42E3 3.54E4±1.07E4	1.69E4±4.61E3 1.65E4±4.09E3	1.27E4±1.66E3 1.21E4±1.84E3
	Time (s)	modified LASSO	25.85 26.26	29.26 29.78	37.15 37.97	47.91 48.39	60.96 61.33	74.55 75.62
	Sparsity	LASSO modified LASSO			200 200			
$\lambda = 1$	Relative error	LASSO	3.28E5±3.09E4 3.39E5±4.80E4	1.94E5±3.14E4 1.73E5±1.56E4	7.39E4±2.67E4 7.52E4±3.10E4	2.15E4±3.53E3 2.13E4±1.81E3	1.32E4±1.06E3 1.46E4±3.53E3	1.12E4±3.67E3 1.14E4±2.54E3
	Time (s)	modified LASSO	25.85 26.06	29.05 29.21	36.98 37.38	47.96 48.56	60.90 62.13	74.55 76.29
	Sparsity	LASSO modified LASSO	200 200	200 200	199 199	197 198	197 198	197 198
$\lambda = 5$	Relative error	LASSO	2.94E5±2.24E4 3.14E5±2.38E4	1.60E5±1.30E4 1.65E5±3.15E4	4.22E4±5.26E3 5.49E4±1.46E4	1.47E4±2.28E3 1.77E4±3.61E3	6.26E3±2.62E3 9.66E3±2.09E3	4.30E3±1.17E3 7.23E3±6.02E2
	Time (s)	modified LASSO	25.74 26.15	29.03 29.29	37.20 37.48	47.78 48.66	60.88 61.06	74.50 76.17
	Sparsity	LASSO modified LASSO	200 200	200 200	197 199	197 198	196 197	192 197
$\lambda = 10$	Relative error	LASSO	2.55E5±3.39E4 2.71E5±4.12E4	1.43E5±6.77E3 1.61E5±1.90E4	4.24E4±2.89E3 4.70E4±8.35E3	1.33E4±2.36E3 1.62E4±1.74E3	6.82E3±9.08E2 1.13E4±2.03E3	5.23E3±8.21E2 7.58E3±2.88E3
	Time (s)	modified LASSO	25.70 25.80	29.19 29.24	37.15 37.49	48.07 48.50	61.15 61.27	75.83 78.09
	Sparsity	LASSO modified LASSO	197 200	192 197	191 186	185 188	176 182	173 177