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ABSTRACT

In this paper, we study coreset construction for LASSO regression, where a coreset
is a small, weighted subset of the data that approximates the original problem with
provable guarantees. For unregularized regression problems, sensitivity sampling
is a successful and widely applied technique for constructing coresets. However,
extending these methods to LASSO typically requires coreset size to scale with
O(Gd), where d is the VC dimension and G is the total sensitivity, following exist-
ing generalization bounds. A key challenge in improving upon this general bound
lies in the difficulty of capturing the sparse and localized structure of the function
space induced by the ℓ1 penalty in LASSO objective. To address this, we first
provide an empirical process-based method of sensitivity sampling for LASSO,
localizing the procedure by decomposing the functional space into independent
spaces, which leads to tighter estimation error. By carefully leveraging the geo-
metric properties of these localized spaces, we establish tight empirical process
bounds on the required coreset size. These techniques enable us to achieve a core-
set of size Õ(ϵ−2d · ((log d)3 · min{1, log d/λ2} + log(1/δ))), which ensures a
(1 ± ϵ)-approximation for any ϵ, δ ∈ (0, 1) and λ > 0. Furthermore, we give a
lower bound showing that any algorithm achieving a (1 + ϵ)-approximation must
select at least Ω(d log d

ϵ2 ) rows in the regime where λ = O(d−1/2). Empirical
experiments show that our proposed algorithm is at least 4 times faster than the
existing LASSO solver and more than 9 times faster on half of the datasets, while
ensuring high solution quality and sparsity.

1 INTRODUCTION

In machine learning and regression analysis, sparse models have been extensively studied over the
past decades. These models typically address issues such as sparse regression (Natarajan, 1995),
variable selection (Zou & Hastie, 2005), and multicollinearity (Altelbany, 2021), aiming to improve
model interpretability and computational efficiency by reducing the number of features. One of the
most widely used methods for solving sparse models is the Least Absolute Shrinkage and Selec-
tion Operator (LASSO), which is first introduced in (Tibshirani, 1997). The core idea of LASSO
regression is to apply an ℓ1-norm penalty, ensuring sparsity by shrinking some coefficients to zero.
Therefore, in practice, LASSO is widely applied in sparse models due to its effectiveness in enabling
both variable selection and regularization with improved interpretability and prevented overfitting
issues. The formal definition of the LASSO regression is given as follows.

LASSO Regression Problem. Given an n× d matrix A, an n-dimension vector b, and a regulariza-
tion parameter λ > 0, the goal of LASSO problem is to find a d-dimension vector x that minimizes
∥Ax− b∥22 +λ∥x∥1, where ∥Ax− b∥22 is the residual sum of squares, and the ∥x∥1 denotes the sum
of the absolute values of the entries in x.

Although LASSO regression has been extensively studied over the past decade, the efficiency of
LASSO algorithms in handling large-scale data still heavily depends on the number of rows n of
the input matrix A. Specifically, the running time of existing algorithms, such as coordinate descent
(Friedman et al., 2010), ISTA (Daubechies et al., 2004), and FISTA (Beck & Teboulle, 2009), is
typically O(nT · poly(d)), where T denotes the number of iterations. However, for datasets with a
large number of samples n, LASSO may suffer from scalability issues. Therefore, developing row
subsampling methods for LASSO regression is crucial for improving solving efficiency.
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Among the vast literature on large-scale regression tasks, coreset techniques have played major roles
in data subsampling. These algorithms aim to construct a weighted subset of the rows from both
A and b, forming a compact representation that effectively approximates the original regression
problem with strong theoretical guarantees. Along this line of research, several coreset construc-
tion algorithms have been proposed for the ℓp linear regression (Clarkson, 2005; Drineas et al.,
2006; Dasgupta et al., 2009; Cohen & Peng, 2015; Woodruff & Yasuda, 2024; 2023; Munteanu
& Omlor, 2024). In regularized regression tasks, Avron et al. (2017) constructed a coreset of size
O( sdλ(A)+log(1/ϵ)

ϵ log sdλ(A)
ϵ ) for ridge regression, where sdλ(A) ≤ d denotes the statistical dimen-

sion of the matrix A. Moreover, the works in (Kacham & Woodruff, 2020) introduced determinis-
tic algorithms for coreset construction and explored a streaming model for this problem. Curtin
et al. (2019) provided a logistic regression coreset with size O(d

√
n). Chhaya et al. (2020) pro-

posed a coreset based on sensitivity sampling for the norm based regularized regression problem
∥Ax − b∥pp + λ∥x∥pp with p ≥ 2. In a related recent work, Chhaya et al. (2020) studied a mod-
ified LASSO problem by constructing a coreset for the objective ∥Ax − b∥22 + λ∥x∥21. However,
the regularization term λ∥x∥21 = λ(

∑
i |xi|)2, due to its quadratic nature, introduces cross terms

among the xi values. This may lead to solutions with substantially more nonzero coefficients than
standard LASSO, thereby preventing it from promoting sparsity in the same way as the ℓ1 norm
and weakening its sparsity-inducing effect. To the best of our knowledge, there are currently no
relevant theoretical results on coreset construction for standard LASSO, which motivates our work
on developing such a coreset.

Coreset for LASSO. Let A ∈ Rn×d be a matrix and b ∈ Rn. Define S ∈ Rn×n as a diagonal
matrix, where each row i ∈ [n] of both A and b is independently sampled with probability pi. Let
m denote the number of sampled rows. If row i is selected, set Si,i = 1/

√
mpi, and set Si,i = 0

otherwise. We say that S defines an (ϵ, δ)-coreset for the LASSO problem if, with probability at
least 1− δ, for all x ∈ Rd and λ > 0, the following holds

∥S(Ax− b)∥22 + λ∥x∥1 ∈ (1± ϵ)
(
∥Ax− b∥22 + λ∥x∥1

)
,

where ϵ ∈ (0, 1). The coreset size is defined as the number of non-zeros entries on the diagonal of
S, i.e., the number of sampled rows m.

Sensitivity sampling (Feldman & Langberg, 2011; Chhaya et al., 2020; Woodruff & Yasuda, 2023)
has been extensively studied in regression without regularization, where rows are sampled in propor-
tion to their importance in regression objective. A common challenge in directly applying sensitivity
sampling to LASSO lies in bounding the generalization error under ℓ1-regularized objective using
standard empirical process tools. In the general framework of sensitivity sampling, Braverman et al.
(2016) showed that, given sensitivity scores {ϱi}ni=1, a (1 ± ϵ)-approximate coreset typically re-
quires size Õ

(Gd
ϵ2

)
1, where G is the sum of the sensitivity scores and d denotes the VC dimension

of the given problem. This bound arises from applying a union bound to worst-case ϵ-net meth-
ods and variance analysis. Consequently, directly applying traditional analysis to LASSO leads to
large coreset sizes, which can limit scalability in high-dimensional settings. To address this, empir-
ical process techniques and chaining methods have been proposed to reduce the Gd bound (Cohen
et al., 2015; Woodruff & Yasuda, 2023; Munteanu & Omlor, 2024; Bansal et al., 2024). However,
integrating empirical process theory with LASSO regression requires addressing the sparse and lo-
calized structure of the parameter space induced by the ℓ1-penalty. In particular, the functional
space Ω = {x ∈ Rd | h(x) + p(x) ≤ R}, defined for a fixed radius R > 0, is determined by
the residual term h(x) = ∥Ax − b∥22 and the penalty term p(x) = λ∥x∥1 in the objective function.
The interaction between the residual and penalty terms results in a highly complex geometry for
Ω, complicating the standard empirical process analysis. Additionally, the non-smooth boundary
introduced by the ℓ1-penalty lead to large error bounds when applying the Bernstein inequality and
ϵ-net analysis in (Chhaya et al., 2020). Therefore, developing a sensitivity sampling method that
constructs a coreset smaller than Õ(Gd) remains a key challenge for LASSO solvers.

1.1 OUR CONTRIBUTION

In this paper, we aim to improve upon existing standard bounds for LASSO coresets, which often
lead to large sizes due to the application of union-bound–based ϵ-net methods. The main diffi-
culty arises from the intricate structure of the function space introduced by both the residual error

1We write Õ(f(n)) to denote O(f(n) · poly log f(n)).
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and the ℓ1 regularization term. This complexity makes it difficult to directly apply standard em-
pirical process techniques for sensitivity sampling. To address this issue, we propose a localized
empirical process method that reformulates the sensitivity scores and sampling error in a more
tractable way. Specifically, we define a weighted Gaussian-based empirical process for the core-
set loss and decompose the overall function space into two independent components: the residual
space and the ℓ1 penalty space. Each of these components has lower complexity than the original
space Ω, allowing for tighter bounds on Gaussian diameter and metric entropy within each com-
ponent. By carefully applying symmetrization techniques and leveraging the geometric properties
of these localized spaces, we derive upper bounds on the localized Gaussian diameter and met-
ric entropy. These bounds allow us to control the sampling error and construct a coreset of size
Õ(ϵ−2d · ((log d)3 · min{1, log d/λ2} + log(1/δ))), achieving a (1 ± ϵ)-approximation for any
ϵ, δ ∈ (0, 1) and λ > 0.

To complement our upper bound analysis, we establish a matching lower bound on the coreset size
for LASSO regression via an information-theoretic method. By reducing the problem to a classical
sparse recovery setting, we show that any estimator achieving (1+ϵ)-approximation from the coreset
must access a minimum number of rows to achieve sparse recovery task. In particular, in the regime
where λ = O( 1√

d
), corresponding to the case where the number of nonzero entries can be large,

we prove that the number of required rows is at least Ω( d
ϵ2 log(d)). Our coreset size matches the

lower bound up to polylogarithmic factors in the dimension d. Empirical experiments show that our
proposed algorithm is at least 4 times faster than the direct LASSO solver and more than 9 times
faster on half of the datasets, while preserving high solution quality. Notably, on a dataset with 8
million samples, our method completes in only 15 minutes.

1.2 OTHER RELATED WORK

LASSO regression has been widely studied to perform various sparse models, such as variable se-
lection (Tibshirani, 1997; Hans, 2010) and compressed sensing (Angelosante et al., 2009), which
was first introduced in (Tibshirani, 1996). Many optimization algorithms have been developed for
LASSO, including the fast iterative shrinkage-thresholding algorithm (Beck & Teboulle, 2009), co-
ordinate descent algorithm (Friedman et al., 2010), smooth ℓ1 algorithm (Schmidt et al., 2007), and
path following algorithm (Tibshirani & Taylor, 2011). LASSO regression uses ℓ1-regularization to
relax the sparsity penalty (typically denoted by ∥x∥0), which is NP-hard (Natarajan, 1995). How-
ever, tuning the regularization parameter often leads to high computational costs. To address this,
several methods have been proposed. Friedman et al. (2010) provided a “glmnet” package using
coordinate descent method for LASSO solving. Obozinski & Bach (2012) proposed a stochastic
variant that improves convergence via random selection. Wang et al. (2025) accelerated hyperpa-
rameter tuning using Markov resampling. To the best of our knowledge, there currently exists no
coreset construction method for the LASSO task.

Sensitivity sampling is a well-studied technique for coreset construction in both theory and practice.
It was first introduced by (Agarwal et al., 2004), and has since been widely applied to various
problems, including clustering (Feldman & Langberg, 2011; Braverman et al., 2022; Bansal et al.,
2024), linear regression (Drineas et al., 2006; Woodruff & Yasuda, 2024; 2023; Munteanu & Omlor,
2024), and matrix approximation (Dasgupta et al., 2009; Cohen et al., 2015). For the ordinary least
squares regression, (Drineas et al., 2006) proposed a coreset algorithm based on the well-known
statistical leverage score sampling. Dasgupta et al. (2009) extended this line of work to ℓp linear
regression using well-conditioned basis method. More recently, a tight framework for constructing
coresets for unregularized regression was developed by (Woodruff & Yasuda, 2023; 2024; Munteanu
& Omlor, 2024), leveraging chaining techniques from empirical process theory.

Sensitivity sampling techniques have been extensively studied for regularized regression prob-
lems. For logistic regression, sensitivity-based sampling has been successfully applied in a se-
ries of works Munteanu et al. (2018); Curtin et al. (2019); Mai et al. (2021); Munteanu & Om-
lor (2024). In particular, Munteanu & Omlor (2024) recently provided a strong coreset of size
Õ(µd/ϵ2) based on the Lewis weight sampling Parulekar et al. (2021), where µ captures the com-
plexity of the input data distribution. For ridge regression, Avron et al. (2017) pioneered the use
of coreset techniques by showing that a weak coreset of size Õ(sdλ(A)/ϵ

2) suffices to achieve a
(1 + ϵ)-approximation. Kacham & Woodruff (2020) developed the optimal deterministic coreset

3
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constructions for multi-response ridge regression. Their method selects O(sdλ(A)/ϵ) rows and
achieves a (1 + ϵ)-approximation, with matching lower bounds that establish the tightness of the
dependence on sdλ(A). In the regime where n ≫ d, the statistical dimension dλ(A) satisfies
sdλ(A) ≤ rank(A) ≤ d, and increase in regularization parameter λ can lead to lead to smaller
coreset sizes for ridge regression.

In the broader context of norm-regularized regression, Chhaya et al. (2020) considered the coreset
construction for ℓp regularized regression problems of the form ∥Ax− b∥pp + λ∥x∥pp, where p ≥ 1.

They provided a strong coreset of Õ( dp+1

ϵ2·(1+λ/∥A′∥p
(p)

)
) based on the sensitivity sampling techniques.

Moreover, they first showed that when r ̸= s, no strong coreset can be smaller than the optimal core-
set size for the unregularized term ∥Ax− b∥rp. The result applies in particular to the LASSO, where
p = r = 2 and q = s = 1. To address the LASSO objective, Chhaya et al. (2020) proposed a mod-
ified formulation in which the regularization term ∥x∥1 is replaced with ∥x∥21, enabling the use of
ridge regression coreset techniques Avron et al. (2017) to construct a coreset of size Õ(sdλ(A)/ϵ

2).
However, this modification introduces cross terms among the components of x, which may weaken
the sparsity-inducing effect of the standard ℓ1 regularization. In this paper, the proposed coreset
for standard LASSO objective has size Õ(ϵ−2d · ((log d)3 ·min{1, log d/λ2} + log(1/δ))), which
preserves the Õ(d/ϵ2) bound when λ approaches to 0 or∞. In addition, sketching-based methods
using randomized projections have also been applied to the LASSO problem in recent Mai et al.
(2023). Designing sensitivity sampling methods for constructing coresets for LASSO remains an
interesting open problem.

2 PRELIMINARIES

Given a positive integer n, let [n] = {1, 2, . . . , n}. For a d-dimensional vector x ∈ Rd, the ℓp-
norm of x is ∥x∥p = (

∑d
i=1 x

p
i )

1/p. For an n × d matrix A, the induced p-norm is ∥A∥(p), which
is defined as ∥A∥(p) = supx ̸=0,x∈Rd

∥Ax∥p

∥x∥p
. The ℓ2-norm (or spectral norm) ∥A∥(2) corresponds

to the maximum singular value of A. For a matrix A ∈ Rn×d, the ℓp norm of A is ∥A∥p =

(
∑n

i=1

∑d
j=1A

p
ij)

1/p, and the Frobenius norm of A is ∥A∥F = (
∑n

i=1

∑d
j=1A

2
ij)

1/2. Let Ai:

be the i-th row of A, and let Aij be the entry in the i-th row and j-th column of A. Let A⊤ be
the transport matrix of the matrix A. The Singular Value Decomposition (SVD) of matrix A is
A = UΣV ⊤, where U ∈ Rn×n and V ∈ Rd×d are orthogonal matrices, and Σ ∈ Rn×d is a
diagonal matrix containing the singular values σ1, . . . , σr, where r ≤ min{n, d}. For a vector
x ∈ Rn and weight vector w ∈ Rn

≥0, the weighted ℓp-norm is ∥x∥w,p = (
∑n

i=1 wi|xi|p)
1/p, and

the weighted ℓ∞ norm is ∥x∥w,∞ = maxi∈[n] |xi|. An ϵ-net for a set K in a metric space (X, d)
is a subset T ⊆ K such that for every point x ∈ K, there exists y ∈ T with d(x, y) ≤ ϵ. Given a
parameter λ > 0, we define the statistical dimension of a matrix A as

sdλ(A) =

r∑
i=1

1

1 + λ/σ2
i

,

where r denotes the rank of A. For any vector x ∈ Rd, let supp(x) = {i ∈ [d] | xi ̸= 0} denote its
support, and write |supp(x)| for the number of nonzero coordinates.

ℓ2 Leverage Scores. The ℓ2-norm leverage score of the i-th row of matrix A is τi,2(A) =

supx∈Rd
∥A⊤

i:x∥
2
2

∥Ax∥2
2

. Alternatively, the leverage scores can be expressed as τi,2(A) = ∥e⊤i U∥22, where

U ∈ Rn×d is an orthonormal basis for the column space of A (Cohen et al., 2015). Therefore, the
sum of the ℓ2 leverage scores is satisfies

∑d
i=1 τi,2(A) = d.

3 SENSITIVITY SAMPLING FOR LASSO REGRESSION

In this section, we propose a sensitivity sampling algorithm for LASSO regression, called LASSO-
Sens. The main goal is to derive a better upper bound on the coreset size using empirical process
methods applied to the LASSO objective. The primary technical challenge lies in handling the in-
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Algorithm 1 LASSO-Sens
Input: a matrixA ∈ Rn×d, a vector b ∈ Rn, a regularized parameter λ, the over-sampling parameter
α, the coreset size T , a set of approximate sensitivity scores {ϱi}ni=1, and a parameter ϵ > 0
Output: a set of indices Q, and a weight vector w ∈ Rn

≥0

1: Initialize an empty set Q, and let w be an n-dimensional zero vector.
2: Initialize the total sensitivity G = 0.
3: for i← 1, 2, . . . , n do
4: Compute the sampling probability for the i-row pi = min{1, α(ϱi + 1

n )}.
5: Update G = G + ϱi.
6: end for
7: for t← 1, 2, . . . , T do
8: Sample a row index i ∈ [n] with probability pi, and set the weight wi = 1/

√
pi.

9: Q← Q ∪ {i}.
10: end for
11: return Q and w.

teraction between the residual loss and the ℓ1 penalty, as standard empirical process techniques typ-
ically rely on analyzing the ratio between them, which is difficult to handle and may lead to weaker
coreset size bounds. To address this issue, we provide a localization method for coreset within the
empirical process framework, which decouples the problem into two components over localized re-
gions. This allows us to analyze the empirical process in a localized space involving only a single
term. Over these localized sets we develop a weighted Gaussian empirical-process framework and
derive upper bounds on the Gaussian diameter, covering numbers, and metric entropy. These in-
gredients yield a coreset of size Õ( d

ϵ2 · ((log d)
3 min{1, log d

λ2 }+ log(1/δ))), which nearly matches
the lower bound in the regime λ = O(1/

√
d). The detailed algorithm for constructing the LASSO

coreset is given in Algorithm 1.

In sensitivity sampling, the sensitivity score of the i-th row for LASSO objective is defined as

ϱi = sup
x∈Rd

∥(Ax− b)i∥22 + λ∥x∥1

n

∥Ax− b∥22 + λ∥x∥1
, (1)

where λ > 0. The definition of ϱi is to capture the worst-case contribution to the LASSO objective,
with the regularization term λ∥x∥1 ensuring that each row contributes equally to sampling. Bound-
ing the score ϱi by the ℓ2 leverage score τi with an additive 1/n in this paper is straightforward; see
formal details Section A.1 in Appendix.

The LASSO-Sens algorithm mainly consists of a sampling procedure for coreset construction. We
initialize an empty set of indicesQ and a zero vector w. Then, we calculate the sampling probability
pi = min{1, α(ϱi+ 1

n )} and update the total sensitivity G by adding ϱi, where α represents the over-
sampling parameter. Next, the algorithm then randomly selects a row index i ∈ [n] with probability
pi, assigns the weight of the i-th row to 1/

√
pi, and updates the set of indices to Q = Q ∪ {i}. By

repeating this sampling process T times, Algorithm 1 returns the final set of row indices Q and the
corresponding weight vector w.

Before providing the theoretical guarantees for the coreset, we first present an equivalent transfor-
mation of the LASSO objective and its sensitivity scores. Let A′ = [A − b] ∈ Rn×(d+1) be the
matrix obtained by concatenating A and b, and x′ = [x 1] be the vector obtained by concatenating x
with 1. Using A′ and x′, the original objective function minx ∥Ax− b∥22 + λ∥x∥1 is rewritten as

min
x′∈Rd+1,x′

d+1=1
∥A′x′∥22 + λ∥x′∥1.

Thus, we reformulate the sensitivity score ϱi as

ϱi = sup
x′∈Rd+1,x′

d+1=1

∥(A′x′)i∥22 + λ
n∥x

′∥1
∥A′x′∥22 + λ∥x′∥1

> 0.

5
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3.1 SAMPLING ERROR ANALYSIS

In this subsection, we develop a localized empirical process framework to analyze the sampling
error introduced by sensitivity sampling in the LASSO objective. To achieve this, we decompose the
function space into the residual and penalty components, and localize our study to their intersection.
This separation enables us to independently bound the Gaussian complexity and metric entropy of
each component using a combination of weighted chaining techniques. By constructing multi-scale
ϵ-nets and applying concentration inequalities for Gaussian processes, we establish an upper bound
on the coreset size that controls the sampling error.

We now analyze the sampling error introduced by sensitivity sampling. Let {pi}ni=1 denote the
sampling probabilities associated with each row of the augmented matrix A′. Define the sampling
and rescaling matrix S ∈ Rn×n as

S = w⊤Ψ, where Ψ = diag(ψ1, . . . , ψn), ψi =

{
1, with probability pi
0, otherwise

, (2)

and w is a vector of rescaling weights. The matrix Ψ is diagonal with m nonzero entries in expecta-
tion. Let T = {x | x ∈ Rd+1, xd+1 ̸= 0}, and let Ω = {x | x ∈ T , ∥A′x∥22 + λ∥x∥1 = 1} be the
unit ball of the LASSO objective. Then, we define the sampling error E over the domain Ω as

E = sup
x′∈Ω

∣∣∥SA′x′∥22 + λ∥x′∥1 − (∥A′x′∥22 + λ∥x′∥1)
∣∣

= sup
x′∈Ω

∣∣∥SA′x′∥22 − ∥A′x′∥22
∣∣ .

Our goal is to bound E by ϵ, leading to the inequality

∥SA′x′∥22 + λ∥x′∥1 ≤ (1± ϵ)
(
∥A′x′∥22 + λ∥x′∥1

)
for every x′ ∈ Ω. To bound E using the chaining method (Cohen & Peng, 2015; Koltchinskii, 2001;
Hu et al., 2022), we analyze the moments of E with the symmetrization technique, which allows us
to construct a Gaussian reduction as follows. (A detailed proof of Lemma 1 is given in Appendix
Lemma 3.)

Lemma 1. Let A′ ∈ Rn×(d+1), let S be a random sampling matrix, and let Q denote the set of the
sampled rows from A′. For λ > 0 and integer l ≥ 2, the following inequality holds

ES |E|l ≤ (2π)l/2ESEg∼N (0,In) sup
x∈Ω

∣∣∣∣∣∣
∑
i∈Q

giwi |(Ai:x)|2
∣∣∣∣∣∣
l

,

where g ∼ N (0, In) represents a Gaussian vector with independent entries.

We bound the sampling error E by analyzing the associated Gaussian process, as described in
Lemma 1. To handle higher-order moments on E , we apply a moment bound from Woodruff &
Yasuda (2023), which uses Dudley’s tail inequality for Gaussian processes. Consequently, we ob-
tain the following inequality on the sampling error

ES [|E|l] ≤ (CME)
l(ME/D) +O(

√
lD)l, (3)

where C is an absolute constant,ME denotes the metric entropy of the Gaussian process, and D is
the Gaussian diameter. (The detailed definitions ofME and D are provided in the following.)

By appropriately choosing the parameter l and bounding both the metric entropyME and the Gaus-
sian diameter D of the Gaussian process, we can ensure that ES [|E|l] ≤ ϵ, which leads to a suffi-
ciently small coreset size m. We now decompose the unit ball L = {x | x ∈ T , ∥A′x∥22 + λ∥x∥1 ≤
1}, which arises from the residual term ∥A′x∥2 and the ℓ1 penalty. (The proof of Lemma 2 is
provided in Appendix Lemma 4.)

Lemma 2. Let A′ ∈ Rn×(d+1) be a matrix and λ > 0. Define the sets Ω = {x | x ∈ T , ∥A′x∥22 +
λ∥x∥1 ≤ 1} and L = {x | x ∈ T , ∥A′x∥22 ≤ 1 and ∥x∥1 ≤ 1

λ}. Then, it holds that Ω ⊆ L.

6
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Define B2(A
′) = {x | x ∈ T , ∥A′x∥22 ≤ 1} as the unit ball in the residual space, and B1(

1
λ ) = {x |

x ∈ T , ∥x∥1 ≤ 1
λ} as the unit ball in the ℓ1-penalty space. By Lemma 2, we have

L ⊆ LA′ = B2(A
′) ∩B1(

1

λ
).

This allows us to proceed with bounding both the Gaussian diameter D and the metric entropyME
for the convex setsB2(A

′) andB1

(
1
λ

)
, respectively. LetM = ΨA′, where Ψ ∈ Rn×n is a diagonal

sampling matrix. In this formulation, each nonzero row of M corresponds to a selected row of A′.

We start by bounding the Gaussian diameter D by relaxing the pseudo-metric dX using the max-
imum ℓ2 leverage score and λ. Define the convex set LM = {y = Mx | x ∈ LA′}. Let
τ = supx′∈LM

∥Mx′∥22,∞ be the maximum of ℓ2 leverage score. Next, we prove that the diam-
eter D(LM ) with dX is bounded as the following inequality. (Detailed proof of Lemma 3 is given
in Appendix Lemma 5.)
Lemma 3. Let M ∈ Rm×(d+1), and let w be the weight vector. Define the pseudo-metric

dX(y, y′) =

Eg∼N (0,In)

∣∣∣∣∣
m∑
i=1

giwi|yi|2 −
m∑
i=1

giwi|y′i|2
∣∣∣∣∣
2
1/2

for any y, y′ ∈ LM . Then, the diameter D(LM ) with respect to dX is bounded by

D(LM ) ≤ O(τ ·
√

log (d(λ2 ∧ 1)) ∧ (λ
√
d)).

To obtain a precise bound for the Gaussian process over LM , we apply the chaining method to
construct a sequence of t-nets at varying scales t > 0, which capture the convex structure of E on
LM . Utilizing this chaining method, we can derive a bound on ES |E|l via the covering numbers
of the sequence of t-nets. Thus, we aim to bound the minimal number of weighted unit ℓp (or
ℓ∞) balls required to cover the convex set LM for p ∈ [1,∞). We define the weighted unit ball
of the residual space Bw,2(M) as Bw,2(M) = {y = Mx | x ∈ T , ∥Mx∥2w,2 ≤ 1}, and define
Lw,M = Bw,2(M) ∩B1(1/λ). Let G = 1 + E = 1 + supx′∈LM

∣∣∥SA′x′∥22 − ∥A′x′∥22
∣∣.

To bound the metric entropy entropy of the convex set Bw,2(M), we first define the weighted unit
ℓw,p-ball as Bw,p(M) = {x | x ∈ T , ∥Mx∥2w,p ≤ 1}. Let Tp denote the t-net of Bw,2(M) with
respect to the weighted ℓp-norm, i.e., a finite subset ofBw,2(M) such that every point inBw,2(M) is
within distance t (measured in ∥·∥w,p) from some point in Tp. We defineN(Bw,2(M), ∥·∥w,p, t) as
the minimal cardinality of such a set Tp, and the metric entropy of Bw,2(M) w.s.t the weighted ℓp-
norm is then defined as logN(Bw,2(M), ∥ · ∥w,p, t). (Detailed definitions are provided in Appendix,
Definitions 11 and 12.)
Lemma 4 ((Munteanu & Omlor, 2024), slightly modified). Let 2 ≤ p <∞, and letM ∈ Rm×(d+1)

be an orthonormal matrix with a weight vector w ∈ Rm
≥0. Then, the following inequalities hold

logN(Bw,2(M), ∥ · ∥w,p, t) ≤ O(1)m
2/pp·τ
t2 and logN(Bw,2(M), ∥ · ∥w,∞, t) ≤ O(1) logm·τ

t2 .

For bounding the metric entropy of the convex set B1

(
1
λ

)
, we aim to bound the number of unit

B∞-balls needed to cover the B1-ball. Specifically, the covering process can be decomposed into
two steps: first, cover the B2-ball using B∞-balls, and second, cover the B1-ball using B2-balls.
The B1 ball has a unique geometric structure, with a large portion of its volume concentrated near
its center, as pointed out in (Vershynin, 2018). This concentration implies that fewer small-radius
balls are required to cover B1, compared to naive volume-based estimates. While a straightforward
volumetric argument yields a worst-case covering number of O((1 + 1

ϵ )
d), this bound can be quite

loose. To obtain a tighter estimate, we leverage the Sudakov Minoration inequality (Vershynin,
2018), which provides an upper bound on the covering number N(B1, B∞, t) with respect to the
ℓ∞ norm and covering radius t. (Detailed proof of Lemma 5 is given in Appendix Lemma 13.)
Lemma 5. Let p ≥ 1 be a parameter, and let Bp = {x ∈ Rd : ∥x∥p ≤ 1} be the unit ball for the ℓp
norm. Then, logN(B1, B∞, t) ≤ O( log d

t ).

To bound the metric entropy of these t-nets, we need to calculate the following integral

ME ≤
∫ ∞

0

√
logN(Lw,M , dX , t) dt.

7
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For diameters t > D(Lw,M ), the covering number satisfies logN(Lw,M , dX , t) = 0, which implies
that any single vector y ∈ Lw,M serves as a t-net. Therefore, we only need to focus on the case
where the diameter t lies within the interval [0,D(Lw,M )]. We derive the following inequality,
whose proof provided in Appendix Lemma 19.

Lemma 6. Let M ∈ Rm×(d+1) be a matrix and λ be a positive parameter. Then, the metric entropy
ME of Lw,M satisfies∫ ∞

0

√
logN(Lw,M , dX , t) dt ≤ O(G ·

√
τ · logm log d ·min{1,

√
log d

λ
}),

where τ is the maximum weighted ℓ2-leverage score of M .

We now present the main result, which provides a bound on the coreset size required to guarantee
that E|E|l ≤ ϵ. (The proof is provided in Appendix, Theorem 22.)
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Figure 1: LASSO regression loss comparison across varying coreset sizes for λ = {0.5, 10}.

Table 1: Comparison results of loss, runtime, and sparsity on CTs dataset (n = 53,500, d = 386)
for varying coreset sizes at λ = 0.5.

Metrics Algorithms Coreset Sizes
1d 2d 5d 10d 15d 20d

Loss
LASSO 24.83±0.51

LASSO-Sens 26.77±1.95 24.96±0.26 24.84±0.01 24.83±0.01 24.83±0.01 24.83±0.01
LASSO-Uniform 41.69±11.93 30.75±4.11 25.85±1.48 25.28±0.32 25.21±0.26 25.06±0.27

Time (s)
LASSO 691.72

LASSO-Sens 5.80 8.12 10.28 16.67 23.10 37.37
LASSO-Uniform 6.84 8.23 9.85 18.86 26.73 42.03

Sparsity
LASSO 315

LASSO-Sens 379 348 330 313 312 317
LASSO-Uniform 379 359 336 319 320 317

Theorem 7. Let A′ ∈ Rn×(d+1) be an input matrix, S be a random sam-
pling matrix, and let ε, δ ∈ (0, 1) and λ > 0 be a parameter. If α =

Õ
(

1
ϵ2 ·
(
log (d log(1/δ))(ln d)2 ·min

{
1, log d

λ2

}
+ ln (1/δ)

))
and for all i ∈ [n] it holds

that
pi ≥ min{1, α(τi,2(A′) +

1

n
)},
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where τi,2(A′) denotes the ℓ2 leverage score of the i-th row of A′. Then, with failure probability at
most δ, it holds that, ∀x ∈ Rd+1, xd+1 = 1,

∥SA′x̂∥22 + λ∥x̂∥1 ≤ (1± ϵ)(∥A′x∥22 + λ∥x∥1),

and the coreset size is at most m = Õ
(

d(log d)3

ϵ2 ·min{1, log d
λ2 }+ d

ϵ2 log
1
δ

)
.

To establish a lower bound on the coreset size m, we utilize a reduction from the support recovery
for sparse recovery problem. We consider the task of recovering the support of a sparse vector x∗,
and apply information-theoretic techniques for LASSO regression problem. Our analysis shows
that, under certain conditions, any algorithm achieving a (1 + ϵ)-approximation from the coreset
requires at least Ω( d

ϵ2 log d) rows. Since Mai et al. (2023) pointed out the lack of scale-invariance
in the LASSO objective, we normalize the inputs by assuming ∥A∥2 ≤ 1 and ∥b∥2 ≤ 1. Detailed
proofs are provided in Appendix B.4.
Lemma 8. Let A ∈ Rn×d, b ∈ Rn, and λ ∈ (0, 1). Assume that ∥A∥2 ≤ 1 and ∥b∥2 ≤ 1. Let S be
a diagonal sampling matrix with m non-zero entries. Suppose there exists an estimator that returns
x̃ = argminx∈Rd ∥SAx− Sb∥22 + λ∥x∥1 satisfies

∥Ax̃− b∥22 + λ∥x̃∥1 ≤ (1 + ϵ) · min
x∈Rd

(∥Ax− b∥22 + λ∥x∥1).

Then, the coreset size m must satisfy

m =

{
Ω( log d

λ2·ϵ2 ), if λ = Ω( 1√
d
)

Ω( d
ϵ2 log d), if λ = O( 1√

d
)
.

4 EXPERIMENTS

In this section, we compare three algorithms for solving the LASSO regression problem: direct
optimization using the full dataset, and solving LASSO on subsamples selected via sensitivity sam-
pling and uniform sampling, respectively. All experiments are conducted on a machine with 72 Intel
Xeon Gold 6230 CPUs and 340 GB of memory, and all implementations are executed in MATLAB
2017A.

Datasets. We evaluate the three algorithms on 4 datasets: Synthetic (n = 10, 000, d = 200), medi-
amill (n = 30, 993, d = 120), CTs (n = 53, 500, d = 386), mnist8m (n = 8, 000, 000, d = 784).
The synthetic dataset is generated by constructing a matrix A ∈ R10000×200, where a small
number of rows have high leverage scores. This construction follows the method described in
(Chhaya et al., 2020). The resulting matrix is designed to exhibit a non-uniform leverage score
distribution while maintaining a well-conditioned structure. For all datasets, the response vec-
tor is defined as b = Ax + 10−5 · ∥b∥2

∥e∥2
· e, where x ∈ {0, 1}d is a randomly generated sparse

vector, and e is a noise vector. All datasets used in our experiments are publicly available
at: https://archive.ics.uci.edu/datasets and https://www.csie.ntu.edu.
tw/˜cjlin/libsvmtools/datasets/.

Algorithms. In our experimental evaluation, we compare the following three algorithms:

• LASSO. The standard LASSO regression is solved using the FISTA method as described
in (Beck & Teboulle, 2009).

• LASSO-Sens. Our proposed approach (see Algorithm 1), which first constructs a coreset
via sensitivity-based sampling and solves the LASSO problem on the coreset using FISTA.

• LASSO-Uniform. A baseline that first uniformly samples rows from the input data and
then applies FISTA to solve the LASSO problem on the sampled data.

Methodology. We evaluate algorithm performance using the loss function f(x) = ∥Ax − b∥22 +
λ∥x∥1, where a lower value of loss indicates a better solution. To evaluate the sparsity of the solu-
tion, we follow the method in (Chhaya et al., 2020) by setting any entry of x with an absolute value
less than 10−6 to 0, and we count the remaining nonzero entries. Our experiments test three meth-
ods: LASSO, LASSO-Sens, and LASSO-Uniform on four datasets. To ensure a fair comparison, we

9

https://archive.ics.uci.edu/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

test each algorithm 10 times and report the average loss, runtime, and sparsity. To compare the per-
formance of different sampling strategies, we run LASSO-Sens and LASSO-Uniform across a range
of coreset sizes and regularization parameters, with the values λ ∈ {0.5, 1, 5, 10}. Specifically, the
coreset size is selected from {1, 2, 5, 10, 15, 20} × d for each dataset.

Results for the LASSO Regression. As shown in Figures 1 and 2 (see Appendix), the LASSO-
Sens algorithm achieves loss values that closely match those of the exact LASSO solver as the
coreset size increases, particularly for λ = 0.5 and λ = 10. The comparison of performance
metrics across four datasets under varying values of λ and coreset sizes are reported in Table 1 and
Appendix Tables 2-5, including average loss, standard deviation, runtime, and solution sparsity. On
the Synthetic, Mediamill, and CTs datasets, LASSO-Sens is at least 4 times faster than LASSO,
and up to 18 times faster on CTs. On mnist8m dataset, LASSO-Sens obtains a feasible solution
within 15 minutes, whereas the standard LASSO solver fails to return a solution even after 48 hours.
Furthermore, the LASSO-Sens algorithm consistently outperforms the LASSO-Uniform in terms of
both accuracy and sparsity on mnist8m dataset. At a coreset size of 10d, the sparsity of the solutions
produced by LASSO-Sens closely matches that of the exact LASSO solver across all datasets. These
experimental results show the sensitivity sampling in accelerating the LASSO regression process
while preserving high-quality and the sparsity of solutions. All of these findings, together with our
Theorem 8, confirm the effectiveness of sensitivity sampling for LASSO regression.

5 CONCLUSION

In this paper, we propose the first coreset construction method for LASSO regression via sensi-
tivity sampling algorithm. Directly applying existing coreset techniques for regularized regression
to LASSO yields a coreset size bound of Õ(Gd/ϵ2). To achieve a smaller coreset, we propose
an empirical process analysis that addresses the complex functional space arising from the inter-
action between the residual error and ℓ1-penalty in LASSO, thereby achieving a coreset of size
Õ(ϵ−2d · ((log d)3 ·min{1, log d/λ2}+ log(1/δ))). An interesting future direction is to study how
our method can be extended to the elastic net and other regression problems involving more complex
regularization.
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in the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

This paper is committed to ensuring the reproducibility of our work. To ensure the completeness of
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A APPENDIX

A.1 MISSING PROOF OF SENSITIVITY SCORES

In this subsection, we provide an upper bound on the sensitivity score ρi using the ℓ2 leverage score
and a fixed term 1/n. While this result is not fundamentally new (see, e.g., (Mahoney et al., 2011;
Woodruff, 2014; Chhaya et al., 2020)), we slightly extend the well-conditioned basis method to the
LASSO objective.

Definition 1. (ℓ2 Well-Conditioned Basis.) Given a matrix A ∈ Rn×d, we define a (
√
d, 1, 2) well-

conditioned basis for A such that ∥U∥2 ≤
√
d, and ∀x ∈ Rd, ∥x∥2 ≤ ∥Ux∥2, where U ∈ Rn×d is

the orthogonal matrix obtained from SVD of A.

Lemma 2. Let A′ ∈ Rn×(d+1), and let λ > 0 be a regularized parameter. Then, the estimated
sensitivity score ϱ̂i satisfies ϱ̂i = 2τi,2(A

′) + 1
n ≥ ϱi, where τi,2(A′) denotes the ℓ2 leverage

score of the i-th row of A′. All sensitivity scores ϱ̂i can be computed in time O(nnz(A′) log n +
d3 log (n/d) log d), where nnz(A′) denotes the number of non-zero entries in A′. Moreover, the
total sensitivity is bounded as G ≤ 2d+ 3.

Proof. Let A′ = UV , where U ∈ Rn×(d+1) is a (
√
d+ 1, 1, 2)-well-conditioned basis for A′.

Denote the i-th row of A′ as A′
i = u⊤i V , where u⊤i is the i-th row of U . For any x′ ∈ Rd+1, define

z = V x′, so that A′x′ = Uz. Let T = {x′ ∈ Rd+1 : x′d+1 = 1}. Then, we obtain

ϱi = sup
x′∈T

|A′
ix

′|2 + λ
n∥x

′∥1
∥A′x′∥22 + λ∥x′∥1

= sup
z

|uTi z|2 + λ
n∥V

−1z∥1
∥Uz∥22 + λ∥V −1z∥1

≤ sup
z

|uTi z|2

∥Uz∥22
+

1

n
≤ τi,2(A′) +

1

n
.

Thus, the total sensitivity satisfies G =
∑n

i=1 ϱi ≤
∑n

i=1

(
τi,2(A

′) + 1
n

)
≤ d + 2, where

τi,2(A
′) = ∥ui∥22 denotes the ℓ2 leverage score of the i-th row. Furthermore, by extending Lemma 8

of (Cohen et al., 2015), the approximate leverage score τ̂i,2(A′) ≤ 2τi,2(A
′) can be computed in time

O(nnz(A′) log n + d3 log d log(n/d)). Substituting this into the bound yields ϱi ≤ 2τi,2(A
′) + 1

n
and G ≤ 2d+ 3.

B OMITTED PROOFS OF SAMPLING ERROR ANALYSIS

In this section, we reduce the empirical process associated with the sampling error E to a Gaus-
sian process using the symmetrization technique. The sampling error E is defined on the set
Ω =

{
x ∈ T

∣∣ ∥A′x∥22 + λ∥x∥1 = 1
}

, where T =
{
x ∈ Rd+1

∣∣ xd+1 = 1
}

. To analyze the func-
tional complexity, we consider the larger set T ′ =

{
x ∈ Rd+1

∣∣ xd+1 ̸= 0
}

, since any x ∈ T can
be obtained by scaling an element of T ′. Specifically, for each x ∈ T , there exists a scalar c and
an x′ ∈ T ′ such that x = c · x′. This inclusion implies that T ⊆ T ′. Consequently, we define
the extended domain Ω′ =

{
x ∈ T ′

∣∣ ∥A′x∥22 + λ∥x∥1 = 1
}

and focus our subsequent analysis on
this set using tools from Gaussian process theory, particularly those developed for unregularized
regression in Woodruff & Yasuda (2023).

Lemma 3. Let A′ ∈ Rn×(d+1), let S be a random sampling matrix, and let Q denote the set of the
sampled rows from A′. For λ > 0 and integer l ≥ 2, the following inequality holds

ES |E|l ≤ (2π)l/2ESEg∼N (0,In) sup
x∈Ω

∣∣∣∣∣∣
∑
i∈Q

giwi |(Ai:x)|2
∣∣∣∣∣∣
l

,

where g ∼ N (0, In) represents a Gaussian vector with independent entries.

Proof. We consider the simple convex function |a + b|l for a, b ∈ R, where l > 1 is a positive
number. Given a random sampling matrix S, the linearity of expectation implies

E
[
∥SA′x∥22 + λ∥x∥1

]
= ∥A′x∥22 + λ∥x∥1

for any vector x ∈ Rd+1. Next, without loss of generality, we assume that ∥A′x∥22 + λ∥x∥1 = 1;
otherwise, we can rescale x by a constant to satisfy this condition.
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We now analyze the following quantity

E = ES sup
∥A′x∥2

2+λ∥x∥1=1,x∈T ′

∣∣∥SA′x∥22 + λ∥x∥1 − 1
∣∣l

Let S′ be an independently copy of S. Applying Jensen inequality, we have
ES sup

∥A′x∥2
2+λ∥x∥1=1,x∈T ′

|∥SA′x∥22 + λ∥x∥1 − (∥A′x∥22 + λ∥x∥1)|l

= ES sup
∥A′x∥2

2+λ∥x∥1=1,x∈T ′

∣∣∥SA′x∥22 − ∥A′x∥22 + 0
∣∣l

= ES sup
∥A′x∥2

2+λ∥x∥1=1,x∈T ′
|∥SA′x∥22 − ∥A′x∥22 + ES′(∥A′x∥22 − ∥S′A′x∥22)|l

≤ ES,S′ sup
∥A′x∥2

2+λ∥x∥1=1,x∈T ′

∣∣|∥SA′x∥22 − ES′∥S′A′x∥22
∣∣l

≤ ES,S′ sup
∥A′x∥2

2+λ∥x∥1=1,x∈T ′

∣∣|∥SA′x∥22 − ∥S′A′x∥22
∣∣l .

Using a standard symmetrization argument (Vershynin, 2018), we obtain

ES,S′ sup
∥A′x∥2

2+λ∥x∥1=1,x∈T ′

∣∣∥SA′x∥22 − ∥S′A′x∥22
∣∣l

≤ 2lES,ϵ sup
∥A′x∥2

2+λ∥x∥1=1,x∈T ′

∣∣∣∣∣∣
∑
i∈Q

ϵiwi|(A′
i:)x|2

∣∣∣∣∣∣
≤ 2l(π/2)l/2ES,g sup

∥A′x∥2
2+λ∥x∥1=1,x∈T ′

∣∣∣∣∣∣
∑
i∈Q

giwi|(A′
i:)x|2

∣∣∣∣∣∣
l

,

where ϵ ∼ {±1}n are independent Rademacher variables in the first inequality, and the second in-
equality follows from the Rademacher–Gaussian comparison theorem (Ledoux & Talagrand, 1991)
with g ∼ N (0, In) a standard Gaussian vector in Rn.

We now provide a detailed analysis of the localization of the empirical process over the residual
space B2(A

′) = {x | x ∈ T ′, ∥A′x∥2 ≤ 1} and the ℓ1-penalty space B1(1/λ) = {x | x ∈
T ′, ∥x∥1 ≤ 1}. In the following lemma, we show that the set Ω′ is contained in the intersection of
these two sets.

Lemma 4. Let A′ ∈ Rn×(d+1) be a matrix and λ > 0. Define the sets Ω = {x | x ∈ T , ∥A′x∥22 +
λ∥x∥1 ≤ 1} and L = {x | x ∈ T , ∥A′x∥22 ≤ 1 and ∥x∥1 ≤ 1

λ}. Then, it holds that Ω ⊆ L.

Proof. Let the vector x ∈ Ω. By the definition of the set Ω, we have
∥A′x∥22 + λ∥x∥1 = 1.

Since ∥A′x∥22 is non-negative, we can derive
∥A′x∥22 = 1− λ∥x∥1.

By the equation ∥A′x∥22 = 1− λ∥x∥1, it follows that

1− λ∥x∥1 ≥ 0 ⇒ λ∥x∥1 ≤ 1 ⇒ ∥x∥1 ≤
1

λ
.

Next, from the equation ∥A′x∥22 + λ∥x∥1 ≤ 1, we can express ∥A′x∥22 as follows
∥A′x∥22 = 1− λ∥x∥1.

Since we have already shown that ∥x∥1 ≤ 1
λ , we have

∥A′x∥22 = 1− λ∥x∥1 ≤ 0.

Therefore, we obtain
∥A′x∥22 ≤ 1→ ∥A′x∥2 ≤ 1.

In summary, for any x ∈ Ω, the conditions ∥A′x∥2 ≤ 1 and ∥x∥1 ≤ 1
λ are satisfied. Therefore, we

conclude that Ω ⊆ L.
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B.1 BOUNDING THE GAUSSIAN DIAMETER

We start by bounding the Gaussian diameter D with respect to the pseudo-metric dX .
Lemma 5. Let M ∈ Rm×(d+1), and let w be the weight vector. Define the pseudo-metric

dX(y, y′) =

Eg∼N (0,In)

∣∣∣∣∣
m∑
i=1

giwi|yi|2 −
m∑
i=1

giwi|y′i|2
∣∣∣∣∣
2
1/2

for any y, y′ ∈ LM . Then, the diameter D(LM ) with respect to dX is bounded by

D(LM ) ≤ O(
√
τ ·
√

log (d(λ2 ∧ 1)) ∧ (λ
√
d)).

Proof. We aim to bound the Gaussian diameter D(LM ) under the pseudo-metric dX . A standard
result (see e.g., (Vershynin, 2018, Proposition 7.5.4)) implies that for any convex set T ,

DT ≤
√
2πW(T ),

where w(T ) := Eg∼N (0,I) [supt∈T ⟨g, t⟩] is the Gaussian width of T . Therefore, it suffices to bound
W(LM ).

We observe that LM is the image of a convex set under a linear mapping. Specifically, we define the
set

L̂ = {x ∈ Rd+1 | ∥x∥1 ≤
1

λ
, ∥Mx∥2 ≤ 1},

where M ∈ Rm×d. Then, LM = w⊤ML.

According to the definition of Gaussian width, we have

W(LM ) = Eg∼N (0,Im)

[
sup
x∈L̂
⟨g, w⊤Mx⟩

]

= Eg∼N (0,Im)

[
sup
x∈L̂
⟨wM⊤g, x⟩

]

≤ ∥w⊤M∥2 · Eg∼N (0,Id+1)

[
sup
x∈L̂
⟨g, x⟩

]
= ∥M∥w,2 · W(L̂).

Now we boundW(L̂). Let B2(M) = {x | x ∈ Rd+1, ∥Mx∥2 ≤ 1}. Then, it follows that

W(L̂) =W(B2(M) ∩ 1

λ
B1) ≤ ∥M∥ · W(B2 ∩

1

λ
B1) = ∥M∥ · W(λ ·B2 ∩B1),

where B1, B2 are the unit balls in ℓ1 and ℓ2 norms, respectively.

Applying the localized Gaussian width bound (see e.g., (Bellec, 2019, Proposition 1)), we obtain

w (B1 ∩ λ ·B2) ≤ C ·
(√

log (2d · (λ2 ∧ 1)) ∧ λ ·
√
d
)
,

for some universal constant C.

Therefore, we obtain

W(LM ) ≤ ∥M∥w,2W(L̂) ≤ C∥M∥2w,2 ·
(√

log (2d · (λ2 ∧ 1)) ∧ λ ·
√
d
)
.

Recall that the maximum weighted ℓ2 leverage score is defined as τ := ∥M∥2w,2,∞. Finally, applying
D(LM ) ≤

√
2π · W(LM ), we conclude that

D(LM ) ≤ O(τ
√

log (d(λ2 ∧ 1)) ∧ (λ
√
d)).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.2 BOUNDING THE METRIC ENTROPY

In this subsection, we establish an upper bound for the metric entropyME of the space Lw,M . To
estimate this entropy, we first provide detailed definitions of covering numbers and metric entropy.

Definition 6. Let dX be a pesudo-metric on Rd. Given a vector x ∈ Rd and t ≥ 0, we define the
dX -ball of radius t centered at x as BX(x, t) = {x′ ∈ Rd : dX(x, x′) ≤ t}.
Definition 7. Let K,T ⊆ Rd be two convex bodies. The covering number N(K,T ) represents the
minimum number of copies of T required to cover K

N(K,T ) = min{k ∈ N : ∃{xi}ki=1,K ⊆
k⋃

i=1

(xi + T )}.

Let dX be a pseudo-metric and t > 0 a scalar. The covering number of a set K with respect to dX
and radius t is denoted by N(K, dX , t) = N(K,BX(0, t)), where BX(0, t) is the dX -ball of radius
t centered at the origin. The metric entropy is given byME = logN(K, dX , t).

We now apply the standard tool, Dual Sudakov Minoration (Bourgain J & V., 1989), to bound
the covering numbers in both the residual space and the ℓ1-penalty space. The following theorem
provides an upper bound on the covering numbers of the Euclidean unit ball within a metric space
by using ℓp-norm balls with radius t > 0.

Definition 8. The Levy mean of ℓp is defined as

Mp =
Eg∈N (0,Id)∥g∥p
Eg∈N (0,Id)∥g∥2

.

Theorem 9. (Dual Sudakov Minoration) Let ∥·∥p be a norm, and letB2 ⊆ Rd denote the Euclidean
unit ball, defined as B2 = {x ∈ Rd : ∥x∥2 ≤ 1}. Then,

logN(B2, ∥ · ∥p, t) ≤ O(d)
M2

p

t2
.

Lemma 10. (Woodruff & Yasuda (2023), slightly modified) Let q ≥ 2, let M ∈ Rm×(d+1) be a
matrix, and let w ∈ Rm be a wight vector. Then, for a standard Gaussian vector g ∼ N (0, Id+1), it
holds that

Eg∼N(0,Id+1) [∥Mg∥w,q] ≤ m1/q · √qτ ,
and

Eg∼N(0,Id+1) [∥g∥2] ≤
√
d+ 1.

We now focus on the ℓ1-penalty space for the Gaussian process. To bound the metric entropy of
the set B1(1/λ) using the unweighted ℓ∞-ball, we decompose the process into two steps: covering
the Euclidean unit ball with B∞, and covering B1 using the Euclidean unit ball. We define the
unweighted ℓp (including ℓ∞) unit ball as Bp = {x | x ∈ Rd+1, ∥x∥p ≤ 1}. The following lemma
provides a bound for the first step.

Lemma 11. (Woodruff & Yasuda, 2023) Let p ≥ 2 and letBp be the unit ball for the ℓp norm. Then,

logN(B2, B∞, t) ≤ O(1)
log d

(t/2)2
.

Since the B1 ball has a non-smooth geometric structure, a substantial portion of its volume is con-
centrated near its center. This concentration implies that fewer smaller balls are needed to effectively
cover the unit ball. A directly application of the ϵ-net argument typically yields a general bound of
O((1 + 1

t )
d+1) in the worst-case. To obtain the better bound by utilizing this concentration, we use

the Sudakov Minoration inequality (Vershynin, 2018), specifically for the non-smooth B1 ball, as
follows.

Theorem 12. Let K be a convex body in Rd, and let N(K, B2, t) denote the covering number of
balls of radius t required to cover K. Then, for any t > 0,√

logN(K, B2, t) ≤ C ·
W(K)
t

,
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where C is an absolute constant, andW(K) = E [supx∈K⟨g, x⟩] represents the Gaussian width with
respect to a standard Gaussian vector g ∼ N (0, Id).

Lemma 13. Let p ≥ 1 be a parameter, and let Bp = {x | x ∈ Rd, ∥x∥p ≤ 1} be the unit ball for the
ℓp norm. Then,

logN(B1, B∞, t) ≤ O(
log d

t
).

Proof. To bound the covering numbers of B1 by B∞, we first cover B1 by B2, and then use Lemma
11 to cover B2 by B∞.

Define the Guassian width of B1 as W(B1) = E(supt∈B1
g′t), where g ∈ Rd+1 is a standard

Gaussian vector. By applying the Hölder inequality, g′t ≤ |g′t| ≤ ∥g∥∞ · ∥t∥1. Thus, we can bound
the Gaussian width by

W(B1) = E
(
sup
t∈B1

g′t

)
≤ E

(
sup
t∈B1

∥g∥∞ · ∥t∥1
)

= E
(
max

j
|gj |
)
.

To bound E(maxj |gj |), note that maxj |gj | = max (maxj gj ,maxj −gj). For the vector g and a
positive parameter u ≥ 0, we can derive an upper bound for E(maxj |gj |) as follows

exp(uE(max
i
gi)) ≤ E exp(u ·max

i
gi)

= E(max
i

exp(ugi))

≤
d+1∑
i=1

E(exp(ugi))

≤ (d+ 1) · exp(u2/2).

where the first inequality follows from the Jensen inequality and utilizes the moment generating
function of a Gaussian distribution.

Thus, we get

E(max
i
Vi) ≤

log(d+ 1)

u
+
uσ2

2
.

Minimizing w.r.t u by choosing u =
√
2 log(d+ 1), we obtain

E(max
i
Vi) ≤ σ

√
2 log(d+ 1).

Since the fact that maxj |gj | = max (maxj gj ,maxj −gj), we have

E
(
max

j
|gj |
)
≤
√
2 log 2(d+ 1) ≤

√
4 log(d+ 1).

Consequently, we have that the Gaussian average of the ℓ1-ball is W(B1) ≤
√
2 log(d+ 1). By

Theorem 12, we can bound the covering number

N(B1, B2, t) ≤ exp(
C2 · 4 log d

t2
) = d4C

2/t2 ,

where C is a constant.

Thus, the metric entropy of covering B1 by tB2 ball is at most

logN(B1, B2, t) ≤ log
(
d4C

2/t2
)
≤ O(

log d

t2
).
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Using the above inequality and Lemma 11, we obtain

logN(B1, B∞, t) ≤ logN(B1, B2, γ) + logN(λB2, B∞, t)

≤ logN(B1, B2, γ) + logN(B2, B∞, t/γ)

≤ O(1)
log d

γ2
+O(1)

(log d)

(t/γ)2

for any γ ∈ [1, t]. Choosing γ, we obtain

logN(B1, B∞, t) ≤ O(
log d

t
).

Lemma 14. (Munteanu & Omlor, 2024) Let M ∈ Rm×d and let w ∈ Rm
≥0 be a non-negative weight

vector corresponding to the rows of M . Then, for any 1 ≤ r ≤ q and any t ≥ 0,

N(B1,r(M), B1,q(M), t) ≥ N(Bw,r(M), Bw,q(M), t).

We give two upper bounds for the covering numbers in the ℓ1-penalty space based on the radius t.
For larger radii (t > t0), the covering number scales with (1/t)2, indicating a quadratic increase as
t decreases. Conversely, for smaller radii (t ≤ t0), the covering number grows logarithmically with
1/t.

Lemma 15. Let M ∈ Rm×(d+1) be an orthogonal matrix, and let λ > 0. Define the set
B∞(M) = {x | x ∈ T ′, ∥Mx∥∞ ≤ 1} as the unit ball in the ℓ∞-norm mapped by M . Let

H = max1≤i≤m ∥eTi M∥∞, where ei ∈ Rm is the i-th standard basis vector. Let t0 = O(H
√

log d
m ).

Then, the following bounds on the metric entropy hold for all t > 0

logN(B1(1/λ), B∞(M), t) ≤ O(H)
log d · logm

λ2t2
,

and

logN(B1(1/λ), B∞(M), t) ≤ O(m log(1 +
t0
tλ

) + logm).

Proof. Given δ > 0, we define the scaled convex set δB1(1) as δB1(1) = {δx | x ∈ T ′, ∥x∥1 ≤ 1}.
For any y ∈ δB1(1), there exists x ∈ Rd+1 such that ∥x∥1 ≤ 1 and y = δx. Then, ∥y∥1 = ∥δx∥1 =
δ∥x∥1. Conversely, suppose y ∈ Rd+1 satisfies ∥y∥1 ≤ δ. Define x = y

δ (for δ > 0), then
∥x∥1 =

∥∥y
δ

∥∥
1
= 1

δ ∥y∥1 ≤ 1, so x ∈ B1(1) and y = δx ∈ δB1(1).

Hence, we conclude δB1(1) = {y | y ∈ Rd+1, ∥y∥1 ≤ δ}, and 1
δB1(1) = B1

(
1
δ

)
.

Now, we aim to prove that logN
(
1
λB1, B∞, t

)
= logN (B1, B∞, λt). Define K = {x | x ∈

Rd+1, ∥x∥1 ≤ 1
λ}. For any x ∈ K, we have ∥x∥1 ≤ 1

λ , and hence ∥x∥∞ ≤ 1
λ .

Covering x ∈ 1/λB1 with t-balls in the ℓ∞-norm is equivalent to covering B1 with λt-balls due to
scaling. Therefore, we obtain

logN

(
1

λ
B1, B∞, t

)
= logN (B1, B∞, λt) . (4)

Next, we define the set Hm = {x | x ∈ Rd+1,max1≤i≤m |⟨x,Mi:⟩∥ ≤ 1} and let ∥ · ∥Hm
be the

associated quasi-norm on Rd+1. Define the linear operator F : ℓm1 → Rd+1 by Fei = Mi:. Then,
the covering number of using Hn to cover B1 satisfies

N(B1, Hm, t) = N(F ∗B1, B
m
∞, t),

where Bm
∞ = {x | x ∈ Rm, ∥x∥∞ ≤ 1}. By the Bernstein-Jackson-type inequality

(Carl, 1985), for the embedding ℓm1 → ℓd∞, the metric entropy satisfies logN(B1, Hm, t) ≤
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O(H)( log(1+m/l)·log(1+d/l)
l )1/2, where l = arg inf{ϵ > 0, N(B1, Hm, ϵ) ≤ 2l}. Let t0 =

O(H
√

log d
m ). Then, for t > t0, we have

logN(B1, Hm, t) ≤ O(
H · log d · logm

t2
).

By applying Lemma 5, for t < t0, we obtain

logN(B1, Hm, t) ≤ logN(B1, Hm, t0) + logN(t0Hm, Hm, t)

≤ O(
H2

t20
log d · logm) +m log(1 +

t0
t
)

≤ O(m log(1 +
t0
t
) + logm).

Finally, using equation 4, for the case that t > t0, we have

logN(B1(
1

λ
), B∞(M), t) = logN(

1

λ
B1, B∞(M), t)

= logN(
1

λ
B1, B∞(M), t)

= logN(B1, B∞(M), λt)

≤ logN(B1, Hm, λt)

≤ O(H)
log d · logm

λ2t2
.

For the case t < t0, we similarly obtain logN(B1(
1
λ ), B∞(M), t) ≤ O(m log(1+ t0

tλ )+logm).

In the following lemma, we present two different upper bounds on the metric entropy of the inter-
section between the residual space Bw,2(M) and the ℓ1-penalty space B1(1/λ). Specifically, we
employ the weighted ℓ∞ unit ball to cover both the weighted ball Bw,2(M) and the unweighted ball
B1 with the same radius. We then provide bounds for two cases: when the radius t is larger than
t0, and when t is smaller than t0. Let τ = supx′∈Lw,M

∥Mx∥2w,2,∞ be the maximum of ℓ2 leverage
score, and define G = 1 + E = 1 + supx′∈L

∣∣∥SA′x′∥22 − ∥A′x′∥22
∣∣.

Lemma 16. Let λ > 0, and let Lw,M = Bw,2(M)∩B1(1/λ). For any t ∈ (0, 1], the metric entropy
of Lw,M with respect to the metric dX satisfies the following bounds: for t < t0,

logN(Lw,M , dX , t) ≤ min{O(d log
Gm

t
), O(m log(1 +

Gt0
tλ

) + logm)},

and for t > t0,

logN(Lw,M , dX , t) ≤ O(
τG2 logm

t2
·min{1, log d

λ2
}),

where t0 = τ
√

log d
m .

Proof. For all y, y′ ∈ Bw,2(M), we have dX(y, y′) ≤ 2∥y − y′∥w,∞. Next, we define the matrix
Mw ∈ Rm×(d+1) such that each rows of Mw is obtained by multiplying the corresponding entry
of the weight vector w by the respective row of the matrix M , i.e., (Mw)i =

√
wi · Mi. Since

wi = 1/pi represents the weight of the i-th row and pi is the sampling probability, we have wi ≥ 1
for all i. Then, the convex body Bw,2(M, ) is contained within B2(Mw, G), since

Bw,2(M) =

{
y ∈ range(M) :

m∑
i=1

wiy
2
i ≤ 1

}

⊆

{
y ∈ range(M) :

m∑
i=1

w
1/2
i y2i ≤ 1

}
= B2(Mw).
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Thus, for any t > 0, we have

logN(Bw,2(M,G), dX , t/G) ≤ logN(B2(Mw), 2∥ · ∥w,∞, t/G)

= logN (B2(Mw), B∞(Mw), t/2G) .

By Lemma 4 and Lemma 14, the following inequality holds

logN(Bw,2(M), dX , t) ≤ O(d log
Gm

t
).

Furthermore, by a slight adaptation to Lemma 4, we also have logN(Bw,2(M), dX , t) ≤
O(logmG2τ

t2 ).

Let H = max1≤i≤m ∥eTi M∥∞ be the maximum row-wise ℓ∞-norm of matrix M . By the
inequality ∥x∥∞ ≤ ∥x∥2 for any vector x, it follows that H = max1≤i≤m ∥eTi M∥∞ ≤
max1≤i≤m ∥eTi M∥2 ≤ τ . Consequently, applying Lemma 15, we obtain the following bounds on
the metric entropy logN(B1(1/λ), B∞(Mw), t/2)) ≤ O(τ log d·logm

λ2t2 ) for t > t0, and the inequality

logN(B1(1/λ), B∞(Mw), t/2)) ≤ O(m log(1+ t0
tλ )+logm) for t < t0, where t0 = O(τ

√
log d
m ).

Next, we consider the metric entropy on the Lw,M

logN(Lw,M , dX , t) ≤ logN(Lw,M , 2∥ · ∥w,∞,
t

G
)

= logN(Bw,2(M) ∩B1(1/λ), 2∥ · ∥w,∞,
t

G
)

≤min{N(Bw,2(M), 2∥ · ∥w,∞,
t

2G
), N(B1(1/λ), 2∥ · ∥w,∞,

t

2G
)}.

Combining the above inequalities, we conclude

logN(Lw,M , dX , t) ≤ min{O(d log
Gm

t
), O(m log(1 +

Gt0
tλ

) + logm)},

for t < t0, and

logN(Lw,M , dX , t) ≤ O(τG2)min{O(
logm

t2
),
log d · logm

λ2t2
},

for t > t0.

B.3 COMPUTING THE ENTROPY INTEGRAL

In this subsection, we bound the integral metric entropy of these t-nets using the following Dudley
inequality (Vershynin, 2018) for Gaussian processes.
Theorem 17. (Dudley inequality,(Vershynin, 2018)) Let (X(t))t∈T be a standard Gaussian process
defined on a measurable space with a pseudo-metric dX . Then, it holds that

E
[
sup
t∈T

Xt

]
≤ C

∫ ∞

0

√
logN(T, dX , t) dt,

where T is a convex set, C is an absolute constant, and Xt is the standard Gaussian vector at t ∈ T .

Lemma 18. (Woodruff & Yasuda, 2023) Let 0 < δ ≤ 1 and C be a positive constant. Then,∫ δ

0

√
log

C

t
dt ≤ δ

(√
log

C

δ
+
C
√
π

2

)
.

Lemma 19. Let M ∈ Rm×(d+1) be orthonormal and λ be a positive parameter. Then, the metric
entropy of Lw,M satisfies∫ ∞

0

√
logN(Lw,M , dX , t) dt ≤ O(G

√
τ · logm log d ·min{1,

√
log d

λ
}),

where τ is the maximum weighted ℓ2-leverage score of M .
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Proof. Note that it suffices to integrate the entropy integral from 0 to the diameter D =

diam(Lw,M ), because for t > D, the entropy is zero. Let t0 = τ
√

log d
m , and let t′ be a radii

with t′ ∈ [t0,D]. For small radii t < t′, we use the first bound of Lemma 16 as follows

logN(Lw,M , dX , t) ≤ min{O(d log
Gm

t
), O(m log(1 +

Gt0
tλ

) + logm)}.

By Lemma 18, the entropy integral is bounded by∫ t′

0

√
logN(Lw,M , dX , t) dt ≤ min{

∫ t′

0

√
O(d log

Gm

t
) dt,

∫ t′

0

√
O(m log(1 +

Gt0
tλ

) + logm) dt}

= min{O(
√
d)

∫ t′

0

√
log

Gm

t
dt,O(

√
m)

∫ t′

0

√
log(1 +

Gt0
λt

) dt}

≤ min{O(t′ ·
√
d log

Gm

t′
), O(

Gt0
λ

√
m logm · t′)}

≤ O(t′)min{
√
d log

Gm

t′
,
Gt0
λ

√
m logm}

≤ O(t′)min{
√
d log

Gm

t′
,
Gτ

λ

log d

m

√
m logm}

≤ O(t′)min{
√
d log

Gm

t′
,
Gτ log d

λ
}.

On the other hand, for large radii t > t′, we use the second bound of Lemma 16 (in Appendix),
which gives

logN(Lw,M , dX , t) ≤ O(
τG2 logm

t2
·min{1, log d

λ2
}).

Combining these inequalities, we obtain∫ D

t′

√
logN(Lw,M , dX , t) dt ≤ O(1)

√
τG2 logm ·min{1,

√
log d

λ
}
∫ D

t′

1

t
dt

= O(1)
√
τG2 logm ·min{1,

√
log d

λ
} log

(
G

t′

)
.

Applying Lemma 3 and choosing the radius t′ = G
√
τ/d, we get∫ ∞

0

√
logN(Lw,M , dX , t) dt ≤

∫ t′

0

√
logN(Lw,M , dX , t) dt

+

∫ D

t′

√
logN(Lw,M , dX , t) dt

≤ O(G)min{
√
logm log d,

G
√
τ

λ
}

+O(1)
√
τG2 logm ·min{1,

√
log d

λ
} log d

≤ O(G
√
τ · logm log d ·min{1,

√
log d

λ
}).

Lemma 20. (Woodruff & Yasuda, 2023) Let A′ ∈ Rn×(d+1) and λ > 0. Let Λ =
sup∥A′x∥2

2+λ∥x∥1≤1,x∈Rd+1

∣∣∑n
i=1 gi|[A′x](i)|2

∣∣. Given a convex set L, let ME be the metric en-
tropy of L, and let D be the Guassian width indexed by L. Then,

Eg∼N (0,In)[|Λ|
l] ≤ (2ME)

l(ME/D) +O(
√
lD)l.
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Lemma 21. LetA′ ∈ Rn×(d+1). Let S be a sampling matrix such that, with probability at least 3/4,

∥SA′x∥22 = (1± 1/2)∥A′x∥22
simultaneously for every x ∈ Rd+1. Then, with probability at least 1/2,

Pr{G(SA′) ≤ 8G(A′)} ≥ 1

2
.

Proof. We have

G(SA′) =

n∑
i=1

sup
SA′x ̸=0

|(SA′)ix|2 + λ
n∥x∥1

∥SA′x∥22 + λ∥x∥1

≤
n∑

i=1

sup
SA′x ̸=0

S2
ii

(
|A′

ix|2 + λ
n∥x∥1

)
∥SA′x∥22 + λ∥x∥1

=

n∑
i=1

sup
SA′x ̸=0

S2
ii

(
|A′

ix|2 + λ
n∥x∥1

)
∥A′x∥22 + λ∥x∥1

∥A′x∥22 + λ∥x∥1
∥SA′x∥22 + λ∥x∥1

=

n∑
i=1

sup
SA′x ̸=0

S2
iiϱi(A

′) sup
SA′x ̸=0

∥A′x∥22 + λ∥x∥1
∥SA′x∥22 + λ∥x∥1

.

We are guaranteed that

Pr{ sup
SA′x̸=0

∥A′x∥22 + λ∥x∥1
∥SA′x∥22 + λ∥x∥1

≤ 2} ≥ 3

4
.

On the other hand, we have that

E
n∑

i=1

S2
i,iϱi(A

′) =

n∑
i=1

E[S2
i,i]ϱi(A

′) = G(A′).

By Markov’s inequality,

Pr{
n∑

i=1

S2
iiϱi(A

′) ≤ 4G(A′)} ≥ 3

4
.

Combining the above inequalities, we conclude

Pr{G(SA′) ≤ 8G(A′)} ≥ 1

2
.

In the following theorem, we present the main result provides a bound on the l-th moment of the
sampling error E|E|l.

Theorem 22. Let A′ ∈ Rn×(d+1) be an input matrix, S be a random sampling matrix, and let ε, δ ∈
(0, 1) and λ > 0 parameters. If α = Õ

(
1
ϵ2 ·
(
log (d log(δ−1))(ln d)2 ·min

{
1, log d

λ2

}
+ ln δ−1

))
and for all i ∈ [n] it holds that

pi ≥ min{1, α(τi,2(A′) +
1

n
)},

where τi,2(A′) denotes the ℓ2 leverage score of the i-th row of A′. Then, with failure probability at
most δ, it holds that, ∀x ∈ Rd+1, xd+1 = 1,

∥SA′x̂∥22 + λ∥x̂∥1 ≤ (1± ϵ)(∥A′x∥22 + λ∥x∥1),
and the coreset size is at most

m = Õ

(
d(log d)3

ϵ2
·min{1, log d

λ2
}+ d

ϵ2
log

1

δ

)
.
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Proof. By the construction of the sampling matrix S, for any i ∈ [n], the sampling probabil-
ity satisfies 0 ≤ pi ≤ 1, and the corresponding sampling weight is Sii = 1/pi ≥ 1. This
implies that E(∥SAx∥ + λ∥x∥1) = ∥A′x∥ + λ∥x∥1 for λ > 0 and any vector x. We set

α = O(
√
l

ϵ · min{log (d(λ3 ∧ 1)), λ2d}), where
√
l = O

(
(log d/δ)2·min{1, log d

λ2 }+ϵ·log(1/δ)
ϵ·min{log(d(λ2∧1)),λ2d}

)
de-

notes the maximum number of finite moments of the sampling error E . To bound the coreset size
m, let Xi be the indicator random variable that represents whether the i-th row is included in S.
Applying Lemma 1 in Appendix, we get

E

(
n∑

i=1

Xi

)
=

n∑
i=1

pi = α

(
1 +

n∑
i=1

(2τi +
1

n
)

)
= α (2 + 2d) ≤ 4αd.

Similarly, we can derive the lower bound of m as follows

E

(
n∑

i=1

Xi

)
=

n∑
i=1

pi ≥ α

(
n∑

i=1

2τi

)
= 2αd.

By applying the Chernoff inequality, we have

m =

n∑
i=1

Xi ≤ 2 · E

(
n∑

i=1

Xi

)
≤ 8αd

with failure probability at most 2 exp (−E(
∑n

i=1Xi)/3) ≤ 2 exp(− 2αd
3 ) ≤ δ.

Applying Lemma 1, the analysis of the empirical process associated with the sampling error can be
reduced to a Gaussian process. Specifically, we obtain

ES sup∥A′x∥2
2+λ∥x∥1=1,x∈T ′ |∥SA′x∥22 − ∥A′x∥22|l

≤ (2π)l/2ES,g sup∥A′x∥2
2+λ∥x∥1=1,x∈T ′

∣∣∣∣∣∣
∑
i∈Q

giwi|A′
ix|2

∣∣∣∣∣∣
l

,

where l > 1 is an integer, wi denotes the weight for sampling the i-row, Q the indices of non-zero
diagonal entries in S, and g ∼ N (0, Im) is a standard Gaussian vector.

Next, we define Λ = sup∥A′x∥2
2+λ∥x∥1=1,x∈T ′

(∑
i∈S giwi|A′

ix|2
)

for the random sampling matrix
S. To further bound the quantity Λ, we utilize Lemma 20 to relate Λ to the metric entropyME and
the diameter D of geometric body resulted by the Gaussian process. This gives us the following
bound

Eg∼N (0,Im)[|Λ|l] ≤ (2ME)
l(ME/D) +O(

√
lD)l

for a fixed l.

Let M = SA′ denote an m-row submatrix of A′, and let w represent the weight vector cor-
responding to each row of M . Next, we bound the maximum weight leverage score τ =
sup∥Mx∥w,2=1,i∈[m] wi|Mix|2.

We set the number of samplesm at least Õ(d+log(1/δ)) using ℓ2 leverage scores sampling method
(Cohen et al., 2015), which achieves ∥S′A′x∥ ≤ (1± 1

2 )∥A
′x∥22 for fixed sampling matrix S′ with

probability at least 1 − δ. By applying above inequality and the definition of sampling probability,
we have τ ≤ 8/α.

According to Lemma 6, by choosing the constants for α sufficiently large, we obtain a bound on the
metric entropy

O(Gτ1/2(logm)1/2 log d ·min{1,
√
log d

λ
})

≤ O(Gα−1/2(logm)1/2 log d ·min{1,
√
log d

λ
})

≤ Gϵ/8 :=ME .
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By Lemma 3, we derive a bound on the diameter O(τ ·
√
log (d(λ2 ∧ 1)) ∧ (λ

√
d)) ≤ O((1/α) ·√

log (d(λ2 ∧ 1)) ∧ (λ
√
d)) ≤ ϵ

2
√
l
:= D.

By combining the bounds on the metric entropyME and the diameter D, we ensure the sampling
error Eg∼N (0,Im)[|Λ|l] ≤ ϵlδ. Since the sampling error E = supx′∈LM

∣∣∥SA′x′∥22 − ∥A′x′∥22
∣∣, we

have E l ≤ 3lεlδ, which yields E|E|l ≤ (3ε)lδ. By using Markov inequality, we have E ≤ 3ε with
probability at least 1− δ.

B.4 OMITTED PROOFS OF LOWER BOUND FOR CORESET SIZE

In this section, we provide the lower bound of the coreset size for LASSO regression, using a
standard information-theoretic approach (Wang et al., 2010; Wainwright, 2009; Parulekar et al.,
2021; Mai et al., 2023) based on Fano’s inequality and KL divergence computations. Here, we start
by constructing the hard instance for the k-sparse supports.

Let C ⊂ {0, 1}d be a set of k-sparse binary vectors (i.e., each vector has exactly k non-zeros entries),
such that |C| = N ≥ (d/k)k and for any two distinct vectors c(i), c(j) ∈ C satisfy |supp(c(i)) ∩
supp(c(j))| ≤ Ck for some constantC ∈ (0, 1). Such a codebook can be constructed using standard
techniques from coding theory. For each codeword c(i) ∈ C, we define

v(i) =

[
1,

ϵ√
k
c(i)
]
∈ Rd+1.

Let G ∈ Rm×d be a matrix with i.i.d standard Gaussian entries. Define the data matrix Zi =
G(I + v(i)v(i)⊤)1/2. Then, each row zij ∼ N (0, I + v(i)v(i)⊤), and the data distribution is

Pi = N (0, I + v(i)v(i)⊤).

We show that exact support recovery is impossible with fewer measurements than those suggested
by the information-theoretic lower bound, given the input distribution.

Lemma 23. Let ϵ ∈ (0, 1), and let v ∈ Rd+1 be the vector with v = (1, 1√
k
c), where c is a codeword

uniformly chosen from C. Let Pi be the multivariate Gaussian distribution with covariance I+ vv⊤.
Then, for any estimator attempting to recover a k-sparse vector c, with at least 1/2 probability, the
number of samples m must satisfy

m ≥ Ω(
k log(d/k)

ϵ2
).

Proof. Let Pi, . . . ,PN be the distributions constructed above. By the Fano’s inequality, we have

Pr[error] ≥ 1−
1

N2

∑
i̸=j DKL(Pi||Pj) + log 2

log(N − 1)
,

where DKL(Pi||Pj) denotes the Kullback-Leibler divergence between distributions Pi and Pj .

To ensure the error probability is less than 1/2, it suffices to ensure

1

N2

∑
i ̸=j

DKL(Pi||Pj) ≤
1

4
logN.

According the definition of Pi, the KL divergence between two such distributions is

DKL(Pi||Pj) = m ·DKL(N (0,Σi)||N (0,Σj)),

where Σi = I + v(i)v(i)⊤. Using the formula for KL divergence between zero-mean Gaussian
distribution, we have

DKL(N (0,Σi)||N (0,Σj)) =
1

2
(tr(Σ−1

j Σi)− d+ log
detΣj

detΣi
)
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Since Σi is a rank-1 perturbation, by the Sherman-Morrison Formula, we apply det(Σi) = 1 +

∥v(i)∥22 and Σ−1
i = I − v(i)v(i)⊤

1+∥v(i)∥2
2

. Thus, we obtain

DKL(Pi||Pj) =
n

2
(∥v(i)∥22 −

∥v(j)∥22 + (v(j)⊤v(i))2

1 + ∥v(i)∥22
+ log

1 + ∥v(j)∥22
1 + ∥v(i)∥22

)

For any i ∈ [N ], it holds that ∥v(i)∥22 = 1 + ϵ2. Similarity, for any i ̸= j, the inner product satisfies

(v(j)⊤v(i))2 =

(
1 +

ϵ2

k
⟨c(i), c(j)⟩

)2

≤ (1 + Cϵ2)2.

Plugging into the expression for KL divergence, we get
DKL(Pi||Pj) ≤ O(ϵ2m).

Let logN = Θ(k log(d/k)). Applying the Fano’s inequality, it holds that

Pr[error] ≥ 1− mCϵ2 + log 2

logN
.

To ensure Pr[error] ≤ 1/2, we have

Cϵ2 ·m ≥ 1

2
logN = Ω(k log(d/k))→ m ≥ Ω(

k log(d/k)

ϵ2
).

Our proof method, while differing in approach from previous work (Wainwright, 2009; Mai et al.,
2023) that focuses on sketching algorithms, is based on similar ideas. In particular, by analyzing
the coreset algorithm on a constructed hard instance, we establish a lower bound on the sample size
required by any algorithm to achieve a (1 + ϵ)-approximation on the constructed hard instance.

Lemma 24. LetA ∈ Rn×d, b ∈ Rn, and λ ∈ (0, 1). Assume that ∥A∥2 ≤ 1 and ∥b∥2 ≤ 1. Let S be
a diagonal sampling matrix with m non-zero entries. Suppose there exists an estimator that returns
x̃ = argminx∈Rd ∥SAx− Sb∥22 + λ∥x∥1 satisfies

∥Ax̃− b∥22 + λ∥x̃∥1 ≤ (1 + ϵ) · min
x∈Rd

(∥Ax− b∥22 + λ∥x∥1).

Then, the coreset size m must satisfy

m =

{
Ω( log d

λ2·ϵ2 ), if λ = Ω( 1√
d
)

Ω( d
ϵ2 log d), if λ = O( 1√

d
)
.

Proof. We prove this result using a similar approach to that in Theorem 13 (Mai et al., 2023). We
will take [b A] ∼ 1√

n
G(I + vv⊤)1/2, where v is a codeword in set C. Let S be a sampling matrix

that selects m rows of A and b. Since only the row indices selected by S affect the coreset, and the
weights can be absorbed into the analysis via rescaling, we may, without loss of generality, assume
that all non-zero diagonal entries of S are equal to 1. Under this assumption, the compressed matrix
SG(I + vv⊤)1/2 has the same distribution as G(I + vv⊤)1/2.

By the concentration properties of Gaussian matrices (see Exercise 4.7.3 in (Vershynin, 2018)), with
high probability, the LASSO objective satisfies

∥Ax− b∥22 + λ∥x∥1 ≈ 1 + ∥x∥22 + (1− ϵcTx)2 + λ∥x∥1 =: L(x),

where v = (1 c). Since L(x) is a 1-strongly convex function, we get
L(x̂) ≥ L(x∗) + ∥x̂− x∗∥22.

for any x̂, where x∗ is the minimizer of L(x).

Fix ϵ = 1/2, we set λ = 1
2
√
k

. Here, it holds that x∗ = c/5 and L(x∗) ≈ 2. Suppose there exist a
estimator algorithm satisfies L(x̂) ≤ (1 + c1)L(x

∗) for a sufficiently small c1. Then we have
(1 + c1)L(x

∗) ≥ L(x∗) + ∥x̂− x∗∥22,
which means the gap ∥x̂− x∗∥22 ≤ 2 · c1.

Choosing a small enough constant c1, we can recover supp(v). By Lemma 23 (in Appendix), if
1

4λ2 = o(d), the required lower bound of Ω( 1
λ2ϵ2 log d) on the coreset size; if 1

4λ2 = Θ(d), the
required size is at least Ω( d

ϵ2 log d).

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

C COMPLEMENTARY EXPERIMENTS

C.1 EXPERIMENTS ON SKETCHING ALGORITHM AND LASSO-SENS

In this section, we present experimental results comparing the performance of our proposed LASSO-
Sens algorithm with a sketching-based algorithm for solving LASSO regression. We also acknowl-
edge recent advances in sketching for LASSO, such as the work by Mai et al. (2023), which utilizes
random projections to accelerate the optimization process.

To ensure a fair comparison, we follow the same experimental setup used in Section 4, conducting
experiments on four datasets with identical coreset sizes and regularization parameters. We evaluate
algorithm performance in terms of loss, runtime, and sparsity. For the sketching-based algorithm,
we set the number of sketching rows equal to the coreset size and run each experiment 10 times,
reporting the average results.

As shown in Tables 6,7, 8, and 9, the proposed LASSO-Sens algorithm consistently achieves lower
loss values than the sketching method on both small- and large-scale datasets. On the large-scale
mnist8m dataset, LASSO-Sens is up to 10 times faster than the sketching algorithm when the coreset
size is set tom = {15, 20}×d. Moreover, on the Synthetic and mnist8m datasets, the sparsity of the
LASSO-Sens solution is highly lower than that of the sketching algorithm. Overall, the experimental
results show that the proposed algorithm achieves lower regression loss and sparsity, particularly on
large-scale dataset.

C.2 EXPERIMENTS ON SENSITIVITY SAMPLING FOR STANDARD AND MODIFIED LASSO
OBJECTIVES

In this section, we compare the performance of the sensitivity sampling algorithm on both the stan-
dard LASSO objective and the modified LASSO objective proposed in Chhaya et al. (2020), which
takes the form ∥Ax− b∥22+λ∥x∥21. In Section 4, we used the FISTA algorithm to solve the standard
LASSO problem, as it leverages the proximal operator of the ℓ1 norm. However, this solver is not
applicable to the modified LASSO formulation, which involves a squared ℓ1 regularization term and
lacks an efficient proximal operator. As a result, directly comparing the two objectives under our
original framework would be unfair.

To ensure a fair comparison, we follow the methodology of Chhaya et al. (2020), which utilizes the
global optimization toolbox from MATLAB. Specifically, we use the patternsearch solver to
address both standard and modified LASSO problems. In our experiments, the solver parameters are
set as follows: MaxFunctionEvaluations = 1, 000, 000, and MaxIterations = 25, 000.
To quantify the approximation quality of the coreset solution, we utilize the LASSO objective func-
tion as the evaluation metric. The experiments are conducted on a machine equipped with an Intel(R)
Core(TM) i7-9700 CPU and 16 GB of RAM, and the implementation is executed MATLAB R2021.

We first use Algorithm 1 to construct the coreset, and then apply the patternsearch solver to
solve both objective functions on the coreset samples. The experiments are conducted on synthetic
datasets using the same coreset sizes and regularization parameters λ as in Section 4. Each exper-
iment is repeated 10 times, and we report the average results. As shown in Table 10, the sensitiv-
ity sampling algorithm for standard LASSO achieve lower sparsity compare to modified objective.
Meanwhile, the computational time required by the two objectives is comparable.

D USE OF LARGE LANGUAGE MODELS (LLMS)

No large language models were used in the ideation or writing of this paper.
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Figure 2: Comparison results of LASSO regression loss across varying coreset sizes

Table 2: Comparison results of loss, runtime, and sparsity on CTs dataset (n = 53,500, d = 386)
for varying coreset sizes at λ = {1, 5, 10}.

Lambda Metrics Algorithms Coreset Sizes
1d 2d 5d 10d 15d 20d

λ = 1

Loss
LASSO 49.61±0.06

LASSO-Sens 52.94±2.73 49.95±0.31 49.66±0.02 49.64±0.01 49.63±0.01 49.63±0.01
LASSO-Uniform 68.98±7.72 54.80±3.34 50.84±1.21 50.29±1.09 49.98±0.29 49.90±0.29

Time (s)
LASSO 695.79

LASSO-Sens 6.08 8.76 11.59 16.40 22.58 35.79
LASSO-Uniform 6.41 8.29 11.24 17.07 23.73 34.98

Sparsity
LASSO 229

LASSO-Sens 325 243 226 221 226 227
LASSO-Uniform 320 251 223 219 221 211

λ = 5

Loss
LASSO 247.94±0.68

LASSO-Sens 267.49±10.93 251.30±2.29 248.69±0.49 248.34±0.29 248.19±0.19 248.04±0.19
LASSO-Uniform 307.27±38.10 258.08±4.63 251.28±2.26 249.22±1.15 248.68±0.71 248.83±0.54

Time (s)
LASSO 689.77

LASSO-Sens 6.02 8.22 10.24 16.38 22.40 35.91
LASSO-Uniform 6.45 7.67 9.45 16.98 27.48 38.40

Sparsity
LASSO 166

LASSO-Sens 185 167 158 160 162 160
LASSO-Uniform 192 179 163 155 158 161

λ = 10

Loss
LASSO 495.91±0.77

LASSO-Sens 537.53±13.62 506.01±3.84 498.99±1.92 497.75±1.46 496.58±0.88 496.45±0.64
LASSO-Uniform 609.27±75.35 517.43±9.40 503.88±3.16 498.92±2.36 498.10±1.78 497.87±1.77

Time (s)
LASSO 693.29

LASSO-Sens 5.95 9.18 10.38 16.71 22.41 35.96
LASSO-Uniform 5.92 8.31 10.23 18.53 28.86 42.11

Sparsity
LASSO 162

LASSO-Sens 172 160 154 159 155 153
LASSO-Uniform 181 165 157 158 156 155
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Figure 3: Comparison results of running time across varying coreset sizes for different λ values
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Table 3: Comparison results of loss, runtime, and sparsity on Synthetic dataset (n = 10, 000, d =
200) for varying coreset sizes at λ = {0.5, 1, 5, 10}.

Lambda Metrics Algorithm Coreset Sizes
1d 2d 5d 10d 15d 20d

λ = 0.5

Loss
LASSO 13.82±0.78

LASSO-Sens 14.46±0.54 14.50±0.49 14.26±0.32 14.23±0.26 14.05±0.25 13.99±0.23
LASSO-Uniform 16.26±0.08 16.20±0.20 16.00±0.25 15.82±0.34 15.34±0.42 15.22±0.53

Time (s)
LASSO 49.11

LASSO-Sens 3.40 3.65 4.73 6.54 8.22 9.32
LASSO-Uniform 4.14 4.19 5.29 7.17 8.77 10.59

Sparsity
LASSO 41

LASSO-Sens 41 34 35 36 38 39
LASSO-Uniform 28 28 28 30 29 31

λ = 1

Loss
LASSO 23.74±0.60

LASSO-Sens 23.57±0.13 23.54±0.14 23.61±0.11 23.64±0.10 23.67±0.07 23.67±0.06
LASSO-Uniform 23.85±0.12 23.93±0.18 24.01±0.16 23.95±0.13 23.74±0.15 23.57±0.16

Time (s)
LASSO 48.94

LASSO-Sens 2.91 3.72 4.79 6.62 8.76 9.38
LASSO-Uniform 3.28 4.17 5.20 7.25 9.36 10.27

Sparsity
LASSO 28

LASSO-Sens 32 29 29 28 28 28
LASSO-Uniform 28 28 28 30 30 32

λ = 5

Loss
LASSO 83.42±0.34

LASSO-Sens 83.63±0.23 83.46±0.03 83.43±0.01 83.42±0.00 83.42±0.00 83.42±0.00
LASSO-Uniform 84.71±1.56 85.25±1.87 84.35±0.95 83.55±0.48 83.56±0.22 83.42±0.01

Time (s)
LASSO 48.86

LASSO-Sens 3.10 3.60 4.69 6.55 8.28 9.10
LASSO-Uniform 3.35 4.14 5.09 7.28 9.19 10.19

Sparsity
LASSO 28

LASSO-Sens 32 28 28 28 28 28
LASSO-Uniform 28 28 28 28 28 28

λ = 10

Loss
LASSO 158.01±0.72

LASSO-Sens 158.95±1.37 158.13±0.06 158.05±0.03 158.03±0.01 158.03±0.01 158.02±0.01
LASSO-Uniform 159.85±2.80 160.03±2.55 158.28±0.80 158.02±0.01 158.01±0.01 158.02±0.01

Time (s)
LASSO 49.54

LASSO-Sens 3.17 3.76 4.79 6.83 8.26 9.01
LASSO-Uniform 3.32 4.15 5.16 7.45 8.94 9.83

Sparsity
LASSO 28

LASSO-Sens 28 27 27 28 28 28
LASSO-Uniform 27 28 28 28 28 28
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Table 4: Comparison results of loss, runtime, and sparsity on mediamill dataset (n = 30, 993, d =
120) for varying coreset sizes at λ = {0.5, 1, 5, 10}.

Lambda Metrics Algorithms Coreset Sizes
1d 2d 5d 10d 15d 20d

λ = 0.5

Loss
LASSO 7.13±0.69

LASSO-Sens 7.34±0.13 7.19±0.02 7.15±0.00 7.15±0.00 7.14±0.01 7.14±0.00
LASSO-Uniform 7.94±0.69 7.25±0.07 7.17±0.02 7.16±0.01 7.15±0.01 7.15±0.01

Time (s)
LASSO 37.12

LASSO-Sens 2.13 2.97 4.53 4.91 4.74 5.76
LASSO-Uniform 1.96 2.94 4.32 4.55 4.38 5.36

Sparsity
LASSO 47

LASSO-Sens 44 44 44 45 45 46
LASSO-Uniform 39 42 42 45 45 44

λ = 1

Loss
LASSO 14.27±0.53

LASSO-Sens 14.99±0.39 14.40±0.08 14.32±0.03 14.30±0.02 14.29±0.01 14.29±0.01
LASSO-Uniform 16.45±2.14 14.93±0.59 14.38±0.08 14.32±0.05 14.31±0.03 14.29±0.02

Time (s)
LASSO 37.43

LASSO-Sens 2.16 3.10 5.07 5.43 4.71 5.76
LASSO-Uniform 1.76 3.01 4.77 5.03 4.55 5.36

Sparsity
LASSO 49

LASSO-Sens 40 43 44 45 44 45
LASSO-Uniform 41 41 44 45 43 45

λ = 5

Loss
LASSO 70.97±0.61

LASSO-Sens 78.09±3.52 73.50±1.15 71.68±0.50 71.37±0.35 71.26±0.20 71.07±0.15
LASSO-Uniform 87.79±12.04 78.56±5.31 73.24±1.89 71.98±1.06 71.51±0.61 71.55±0.58

Time (s)
LASSO 45.70

LASSO-Sens 2.11 2.93 4.60 4.76 4.78 5.75
LASSO-Uniform 2.05 2.77 4.36 4.54 4.39 5.37

Sparsity
LASSO 45

LASSO-Sens 32 39 39 39 41 40
LASSO-Uniform 31 35 38 39 38 39

λ = 10

Loss
LASSO 140.43±0.46

LASSO-Sens 150.49±6.70 144.93±2.66 142.27±1.36 141.17±0.63 140.95±0.52 140.72±0.44
LASSO-Uniform 166.49±18.80 153.72±11.25 144.49±2.85 142.19±1.51 141.23±0.90 141.12±0.95

Time (s)
LASSO 41.19

LASSO-Sens 2.16 3.01 5.08 4.85 4.81 5.74
LASSO-Uniform 2.01 2.70 4.76 4.52 4.69 5.56

Sparsity
LASSO 40

LASSO-Sens 31 32 34 34 36 38
LASSO-Uniform 28 30 33 33 35 36
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Table 5: Comparison results of loss, runtime, and sparsity on mnist8m datasets (n =
8, 000, 000, d = 784) for varying coreset sizes at λ = {0.5, 1, 5, 10}. If an algorithm fails to
output a solution within 48 hours, the metrics are marked as 48 > h.

Lambda Metrics Algorithms Coreset Sizes
1d 2d 5d 10d 15d 20d

λ = 0.5

Loss
LASSO 48 > h

LASSO-Sens 1.27E7 ± 1.02E7 3.30E4 ± 7.71E3 1.64E4 ± 4.03E2 1.45E4 ± 3.06E2 1.43E4 ± 1.80E2 1.37E4 ± 1.16E2
LASSO-Uniform 5.83E8± 2.73E8 1.79E8 ± 4.25E7 3.59E7 ± 3.63E7 6.53E6 ± 2.90E6 4.46E6 ± 2.85E6 3.00E6 ± 1.09E6

Time (s)
LASSO 48 > h

LASSO-Sens 304.32 314.23 370.11 512.73 703.91 859.22
LASSO-Uniform 19.39 30.61 58.05 184.22 336.58 459.11

Sparsity
LASSO 48 > h

LASSO-Sens 780 776 770 770 763 760
LASSO-Uniform 704 712 725 728 735 735

λ = 1

Loss
LASSO 48 > h

LASSO-Sens 1.61E7 ± 1.04E7 3.46E4 ± 8.18E3 1.68E4 ± 5.27E2 1.48E4 ± 2.05E2 1.41E4 ± 1.38E2 1.38E4 ± 7.54E1
LASSO-Uniform 4.77E8 ± 5.68E7 1.35E8 ± 6.33E7 1.80E7 ± 3.20E6 9.35E6 ± 4.36E6 5.37E6 ± 2.21E6 3.04E6 ± 1.13E6

Time (s)
LASSO 48 > h

LASSO-Sens 302.37 316.26 366.99 522.60 724.51 838.05
LASSO-Uniform 20.25 30.3 58.01 187.43 352.15 463.57

Sparsity
LASSO 48 > h

LASSO-Sens 778 774 768 763 765 758
LASSO-Uniform 705 709 731 737 737 729

λ = 5

Loss
LASSO 48 > h

LASSO-Sens 1.39E7 ± 4.50E6 2.87E4 ± 4.21E3 1.72E4 ± 4.57E2 1.49E4 ± 2.52E2 1.45E4 ± 1.88E2 1.42E4 ± 1.49E2
LASSO-Uniform 5.98E8 ± 7.60E7 1.23E8 ± 3.26E7 2.15E7 ± 7.61E6 9.22E6 ± 2.22E6 3.99E6 ± 1.09E6 3.05E6 ± 9.08E5

Time (s)
LASSO 48 > h

LASSO-Sens 299.24 317.45 368.02 527.51 708.16 875.08
LASSO-Uniform 19.32 26.66 57.07 186.32 341.58 401.96

Sparsity
LASSO 48 > h

LASSO-Sens 780 776 770 767 765 763
LASSO-Uniform 691 714 729 735 730 741

λ = 10

Loss
LASSO 48 > h

LASSO-Sens 1.10E7 ± 8.22E6 9.47E4 ± 1.27E5 1.73E4 ± 1.06E2 1.55E4 ± 1.54E2 1.49E4 ± 3.28E1 1.47E4 ± 8.80E1
LASSO-Uniform 4.96E8 ± 1.81E8 1.25E8 ± 5.99E7 1.58E7 ± 5.71E6 8.34E6 ± 1.86E6 3.99E6 ± 9.91E5 3.50E6 ± 6.16E5

Time (s)
LASSO 48 > h

LASSO-Sens 302.45 318.28 363.87 528.66 720.44 870.80
LASSO-Uniform 19.95 24.2 59.64 187.25 327.57 513.41

Sparsity
LASSO 48 > h

LASSO-Sens 781 777 769 769 765 763
LASSO-Uniform 700 713 730 736 728 737

Table 6: Comparison of the sketching algorithm and LASSO-Sens on the CTs dataset (n =
53,500, d = 386).

Lambda Metrics Algorithms Coreset Sizes
1d 2d 5d 10d 15d 20d

λ = 0.5

Loss LASSO-Sens 24.11±0.30 23.99±0.01 23.98±0.00 23.97±0.00 23.97±0.00 23.97±0.00
Sketching 24.13±0.03 23.99±0.00 23.98±0.00 23.97±0.00 23.97±0.00 23.97±0.00

Time (s) LASSO-Sens 7.21 7.18 9.66 13.58 17.68 22.62
Sketching 5.91 6.61 10.49 16.05 21.37 27.46

Sparsity LASSO-Sens 383 359 322 317 314 316
Sketching 382 360 327 319 313 309

λ = 1

Loss LASSO-Sens 48.10±0.75 47.97±0.02 47.93±0.00 47.93±0.00 47.93±0.00 47.92±0.00
Sketching 48.17±0.06 47.98±0.01 47.94±0.00 47.93±0.04 47.93±0.02 47.93±0.03

Time (s) LASSO-Sens 6.83 7.26 9.95 13.38 18.51 22.27
Sketching 6.11 6.74 10.40 16.12 21.54 27.23

Sparsity LASSO-Sens 345 241 219 215 217 215
Sketching 327 243 222 214 214 216

λ = 5

Loss LASSO-Sens 242.48±1.45 240.20±0.62 239.77±0.11 239.65±0.06 239.61±0.05 239.61±0.04
Sketching 243.89±1.67 240.39±0.14 239.86±0.05 239.68±0.05 239.65±0.05 239.64±0.02

Time (s) LASSO-Sens 7.13 7.28 9.90 13.85 18.00 21.96
Sketching 6.12 6.79 10.20 16.36 21.52 26.74

Sparsity LASSO-Sens 179 168 156 154 158 157
Sketching 174 166 159 155 159 158

λ = 10

Loss LASSO-Sens 495.54±2.59 481.58±1.01 479.82±0.69 479.18±0.22 479.17±0.14 479.00±0.23
Sketching 495.48±2.57 482.36±1.07 479.98±0.24 479.52±0.14 479.33±0.17 479.28±0.05

Time (s) LASSO-Sens 7.21 7.29 9.77 13.34 18.26 21.74
Sketching 6.09 7.05 10.41 16.14 21.51 26.85

Sparsity LASSO-Sens 169 153 157 153 155 153
Sketching 170 159 149 149 156 153
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Table 7: Comparison of the sketching algorithm and LASSO-Sens on the Synthetic dataset (n =
10, 000, d = 200).

Lambda Metrics Algorithm Coreset Sizes
1d 2d 5d 10d 15d 20d

λ = 0.5

Loss LASSO-Sens 14.24±0.41 14.02±0.30 13.27±0.59 12.83±0.43 12.93±0.26 13.12±0.10
Sketching 25.82±4.57 17.15±0.81 14.12±0.51 13.52±0.20 13.39±0.12 13.19±0.16

Time (s) LASSO-Sens 4.23 4.77 5.55 6.19 7.60 8.21
Sketching 3.84 4.96 5.72 6.38 7.93 9.21

Sparsity LASSO-Sens 40 34 38 9 40 40
Sketching 101 106 113 111 111 108

λ = 1

Loss LASSO-Sens 21.41±0.17 21.42±0.22 21.53±0.06 21.47±0.14 21.57±0.12 21.61±0.06
Sketching 31.52±1.92 24.89±0.22 22.90±0.18 22.31±0.08 22.23±0.03 22.14±0.05

Time (s) LASSO-Sens 4.03 4.98 4.88 6.34 7.67 7.99
Sketching 4.02 4.99 5.14 6.51 7.85 9.11

Sparsity LASSO-Sens 35 29 28 27 26 26
Sketching 96 95 94 92 90 90

λ = 5

Loss LASSO-Sens 66.78±0.08 66.77±0.01 66.76±0.00 66.76±0.00 66.76±0.00 66.76±0.00
Sketching 72.24±1.33 69.02±0.43 67.58±0.19 67.09±0.05 67.00±0.06 66.88±0.02

Time (s) LASSO-Sens 3.90 5.40 4.81 6.39 7.64 8.04
Sketching 3.82 5.29 5.18 6.64 7.84 9.20

Sparsity LASSO-Sens 29 25 24 24 24 24
Sketching 80 78 70 58 55 49

λ = 10

Loss LASSO-Sens 122.99±0.28 122.87±0.09 122.81±0.02 122.82±0.01 122.82±0.01 122.83±0.01
Sketching 127.49±0.81 124.60±0.35 123.48±0.16 123.02±0.04 122.96±0.02 122.92±0.03

Time (s) LASSO-Sens 4.13 5.30 4.83 6.48 7.63 8.07
Sketching 3.95 5.20 5.11 6.65 7.71 9.16

Sparsity LASSO-Sens 30 25 24 24 24 24
Sketching 65 59 47 37 33 27

Table 8: Comparison of the sketching algorithm and LASSO-Sens on the mediamill dataset (n =
30, 993, d = 120).

Lambda Metrics Algorithms Coreset Sizes
1d 2d 5d 10d 15d 20d

λ = 0.5

Loss LASSO-Sens 8.40±0.43 8.19±0.04 8.17±0.02 8.15±0.01 8.15±0.00 8.15±0.00
Sketching 8.54±0.15 8.25±0.04 8.18±0.01 8.16±0.00 8.15±0.00 8.15±0.00

Time (s) LASSO-Sens 2.57 3.37 4.69 4.94 4.69 5.81
Sketching 2.14 3.28 4.59 5.07 5.13 5.82

Sparsity LASSO-Sens 58 60 62 63 61 61
Sketching 57 60 62 60 62 63

λ = 1

Loss LASSO-Sens 16.77±0.23 16.34±0.16 16.27±0.03 16.24±0.02 16.23±0.02 16.22±0.01
Sketching 17.16±0.45 16.46±0.07 16.29±0.04 16.25±0.01 16.25±0.01 16.24±0.01

Time (s) LASSO-Sens 2.47 3.68 4.68 4.91 4.48 5.82
Sketching 2.13 3.07 4.61 4.91 5.30 5.78

Sparsity LASSO-Sens 57 58 59 61 57 60
Sketching 54 59 62 59 61 60

λ = 5

Loss LASSO-Sens 83.62±4.37 81.00±0.93 80.30±0.18 79.95±0.18 80.07±0.08 80.01±0.09
Sketching 87.07±1.31 82.66±0.93 80.57±0.37 80.24±0.11 80.26±0.17 80.20±0.11

Time (s) LASSO-Sens 2.46 3.45 4.71 4.93 4.49 5.82
Sketching 2.26 3.30 4.64 5.02 5.20 5.90

Sparsity LASSO-Sens 44 51 51 51 51 51
Sketching 46 49 49 53 51 52

λ = 10

Loss LASSO-Sens 163.26±8.88 160.69±5.25 159.24±0.35 158.89±0.50 158.91±0.34 158.65±0.40
Sketching 177.47±5.03 163.25±0.83 160.31±0.97 159.24±0.37 159.08±0.26 159.03±0.14

Time (s) LASSO-Sens 2.56 3.45 4.65 4.90 4.47 5.81
Sketching 2.11 3.23 4.50 4.80 5.31 5.83

Sparsity LASSO-Sens 40 44 48 51 49 49
Sketching 41 46 51 49 49 49
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Table 9: Comparison of the sketching algorithm and LASSO-Sens on the mnist8m datasets (n =
8, 000, 000, d = 784).

Lambda Metrics Algorithms Coreset Sizes
1d 2d 5d 10d 15d 20d

λ = 0.5

Loss LASSO-Sens 1.27E7±1.02E7 3.30E4±7.71E3 1.64E4±4.03E2 1.45E4±3.06E2 1.43E4±1.80E2 1.37E4±1.16E2
Sketching 4.27E7±5.20E5 4.62E4±3.90E4 1.67E4±1.58E3 1.48E4±1.05E2 1.43E4±1.55E3 1.41E4±6.27E2

Time (s) LASSO-Sens 304.32 314.23 370.11 512.73 703.91 859.22
Sketching 533.75 1000.12 2484.28 5048.47 7635.30 10265.84

Sparsity LASSO-Sens 780 776 770 770 763 760
Sketching 783 779 770 773 771 764

λ = 1

Loss LASSO-Sens 1.61E7±1.04E7 3.46E4±8.18E3 1.68E4±5.27E2 1.48E4±2.05E2 1.41E4±1.38E2 1.38E4±7.54E1
Sketching 3.67E7±1.43E6 2.18E4±4.26E3 1.73E4±9.62E2 1.48E4±1.29E3 1.43E4±2.82E3 1.40E4±9.60E2

Time (s) LASSO-Sens 302.37 316.26 366.99 522.60 724.51 838.05
Sketching 499.51 990.37 2475.33 5055.59 7678.16 10277.15

Sparsity LASSO-Sens 778 774 768 763 765 758
Sketching 783 776 775 776 767 764

λ = 5

Loss LASSO-Sens 1.39E7±4.50E6 2.87E4±4.21E3 1.72E4±4.57E2 1.49E4±2.52E2 1.45E4±1.88E2 1.42E4±1.49E2
Sketching 1.58E7±5.96E5 2.90E4±2.26E3 1.72E4±2.53E3 1.53E4±2.29E3 1.47E4±1.04E3 1.45E4±2.14E3

Time (s) LASSO-Sens 299.24 317.45 368.02 527.51 708.16 875.08
Sketching 498.59 994.44 2477.81 5033.69 7690.62 10277.57

Sparsity LASSO-Sens 780 776 770 767 765 763
Sketching 783 779 774 770 770 768

λ = 10

Loss LASSO-Sens 1.10E7±8.22E6 9.47E4±1.27E5 1.73E4±1.06E2 1.55E4±1.54E2 1.49E4±3.28E1 1.47E4±8.80E1
Sketching 1.55E7±2.22E5 2.85E4±3.36E3 1.79E4±1.17E3 1.58E4±6.86E2 1.53E4±1.16E3 1.48E4±1.92E3

Time (s) LASSO-Sens 302.45 318.28 363.87 528.66 720.44 870.80
Sketching 502.08 994.11 2483.74 5034.16 7666.31 10231.89

Sparsity LASSO-Sens 781 777 769 769 765 763
Sketching 782 777 774 762 763 767

Table 10: Comparison of sensitivity sampling applied to standard and modified LASSO objectives
on Synthetic dataset (n = 10,000, d = 200).

Lambda Metrics Algorithms Coreset Sizes
1d 2d 5d 10d 15d 20d

λ = 0.5

Relative error LASSO 4.06E5±5.61E4 2.00E5±2.54E4 9.88E4±1.35E4 3.02E4±7.42E3 1.69E4±4.61E3 1.27E4±1.66E3
modified LASSO 4.10E5±3.33E4 2.16E5±3.15E4 9.97E4±1.42E4 3.54E4±1.07E4 1.65E4±4.09E3 1.21E4±1.84E3

Time (s) LASSO 25.85 29.26 37.15 47.91 60.96 74.55
modified LASSO 26.26 29.78 37.97 48.39 61.33 75.62

Sparsity LASSO 200
modified LASSO 200

λ = 1

Relative error LASSO 3.28E5±3.09E4 1.94E5±3.14E4 7.39E4±2.67E4 2.15E4±3.53E3 1.32E4±1.06E3 1.12E4±3.67E3
modified LASSO 3.39E5±4.80E4 1.73E5±1.56E4 7.52E4±3.10E4 2.13E4±1.81E3 1.46E4±3.53E3 1.14E4±2.54E3

Time (s) LASSO 25.85 29.05 36.98 47.96 60.90 74.55
modified LASSO 26.06 29.21 37.38 48.56 62.13 76.29

Sparsity LASSO 200 200 199 197 197 197
modified LASSO 200 200 199 198 198 198

λ = 5

Relative error LASSO 2.94E5±2.24E4 1.60E5±1.30E4 4.22E4±5.26E3 1.47E4±2.28E3 6.26E3±2.62E3 4.30E3±1.17E3
modified LASSO 3.14E5±2.38E4 1.65E5±3.15E4 5.49E4±1.46E4 1.77E4±3.61E3 9.66E3±2.09E3 7.23E3±6.02E2

Time (s) LASSO 25.74 29.03 37.20 47.78 60.88 74.50
modified LASSO 26.15 29.29 37.48 48.66 61.06 76.17

Sparsity LASSO 200 200 197 197 196 192
modified LASSO 200 200 199 198 197 197

λ = 10

Relative error LASSO 2.55E5±3.39E4 1.43E5±6.77E3 2.42E4±2.89E3 1.33E4±2.36E3 6.82E3±9.08E2 5.23E3±8.21E2
modified LASSO 2.71E5±4.12E4 1.61E5±1.90E4 4.70E4±8.35E3 1.62E4±1.74E3 1.13E4±2.03E3 7.58E3±2.88E3

Time (s) LASSO 25.70 29.19 37.15 48.07 61.15 75.83
modified LASSO 25.80 29.24 37.49 48.50 61.27 78.09

Sparsity LASSO 197 192 191 185 176 173
modified LASSO 200 197 186 188 182 177
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