
Graph Convolution Network based Recommender
Systems: Learning Guarantee and Item Mixture

Powered Strategy

Leyan Deng†, Defu Lian †§∗, Chenwang Wu†, Enhong Chen†§
† School of Data Science, University of Science and Technology of China

§ School of Computer Science and Technology, University of Science and Technology of China
{dleyan, wcw1996}@mail.ustc.edu.cn, {liandefu, cheneh}@ustc.edu.cn

Abstract

Inspired by their powerful representation ability on graph-structured data, Graph
Convolution Networks (GCNs) have been widely applied to recommender systems,
and have shown superior performance. Despite their empirical success, there is
a lack of theoretical explorations such as generalization properties. In this paper,
we take a first step towards establishing a generalization guarantee for GCN-based
recommendation models under inductive and transductive learning. We mainly
investigate the roles of graph normalization and non-linear activation, providing
some theoretical understanding, and construct extensive experiments to further
verify these findings empirically. Furthermore, based on the proven generalization
bound and the challenge of existing models in discrete data learning, we propose
Item Mixture (IMix) to enhance recommendation. It models discrete spaces in a
continuous manner by mixing the embeddings of positive-negative item pairs, and
its effectiveness can be strictly guaranteed from empirical and theoretical aspects.

1 Introduction

With the explosive growth of online information, Internet users rely on recommender systems to
alleviate such information overload [1, 2, 3, 4, 5, 6]. In order to take full advantage of the rich graph
structure with high-hop neighbors in recommender systems, recent studies have begun to apply Graph
Convolution Networks (GCNs) [7] to recommender systems. As expected, GCN-based models have
emerged as one of the most attractive approaches to recommender systems due to their powerful
graph representation abilities. However, these works only demonstrate the effectiveness of GCNs
empirically and do not provide theoretical guarantees.

GCN-based Recommendation. [8] was the first to introduce GCN into recommender systems.
Specifically, GCN in their approach was applied to the user-user and item-item graphs to learn
auxiliary information, respectively. GC-MC [9] proposed to apply GCN to the user-item interaction
graph to learn the relations between users and items. SpectralCF [10] directly discovered all possible
connectivity between users and items from the spectral domain of the user-item graph. However,
SpectralCF fails to capture the information in high order. NGCF [11] further proposed employing
the element-wise product between users and embeddings to augment the item features that users
care about and the user features that items are selected by. Some works [11, 12, 13, 14, 15]
observed that removing the non-linear activation not only simplifies the update operation, but also
retains or enhances the recommendation performance. LightGCN [12] further removed the feature
transformation to simplify the design of GCN. However, these changes only depend on the empirical

∗ Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

results, without theoretical guarantees. In addition to the user-item interaction matrix, there exist
studies combining the social network [16] and knowledge graph [17] to enhance the representations
of users and items. In this paper, we mainly consider the user-item interaction matrix, i.e. bipartite
graph.

Generalization Analysis for GNNs. Due to the numerical success [18, 8, 19], several theoretical
studies have been devoted to establishing generalization guarantees for Graph Neural Networks
(GNNs). In inductive learning, [20] studied the generalization capability of GNNs by the VC-
dimension, which is polynomial with respect to (w.r.t.) the number of parameters and the number
of nodes in the graph. [21] provided the first data-dependent bounds via Rademacher Complexity
for message passing GNNs and did not allow the analysis of graph information. Subsequently, [22]
derived a tighter bound for GNNs based on the PAC-Bayes framework. In transductive learning,
[23] analyzed the uniform stability of (single layer) GCNs and thereby deriving their generalization
guarantees. They proved that the graph filter, which makes the largest absolute eigenvalue independent
of the graph size, satisfies this uniform stability criterion. [24] derived a Rademacher complexity
based bound for two layers GCN model. [25] provided a more informative bound according to
the relations between normalized graph and input feature at the first layer. However, these works
mentioned above only focused on node or graph classification tasks, different from recommendations.
The recent works [26, 27] have studied the link prediction and graph embedding tasks; however, they
did not concern with the specific models.

Contributions and paper structure. The main contributions are shown as follows:

1) We quantify the model complexity for GCN-based recommender systems on the bipartite graph
via l∞-covering number. And then, in Section 3, we relate the Covering number to the generalization
error under inductive and transductive settings, leading to the generalization guarantees.

2) Motivated by the proven bound that generalization needs to compromise empirical risk and model
complexity and the fact that the recommendation model overfits the sampled discrete data, we propose
a simple but effective augmentation strategy, Item mixture (IMix) in Section 4. It makes discrete
sample space continuous by mixing positive-negative item pairs about the same user. Notably, we
theoretically demonstrate that it is beneficial for recommendation generalization.

3) In Section 5, extensive evaluations are conducted on two datasets, Gowalla and Yelp2018. First, to
confirm the previous theoretical foundation, we present the corresponding numerical results, mainly
including graph normalization and non-linear activation. Second, we validate the effectiveness of
the proposed IMix on different models, and the experimental results consistently show that the
recommendation performance is significantly improved after configuring IMix.

We conclude in Section 6. All proofs and more experimental results are provided in the appendix.

2 Preliminary

In this section, we first formulate the problem of collaborative filtering (CF) based recommender
system. We then describe the GCN-based CF models in detail.

2.1 Problem Formulation

We use u ∈ U and i ∈ I to denote the user and item, and use R = {(u, i)|u ∈ U , i ∈ I} to denote
the collected user-item interactions. Let Z = {(u, i)|u ∈ U , i ∈ I} to be the set of user-item pairs,
for any triplet (z, z′, y), y = +1 if the preference between user-item pair z ∈ Z is higher than
z′ ∈ Z , otherwise y = −1. Let f ∈ F : U × I → R be a recommender system. For any user-item
pair z ∈ Z , the model predicts a preference score f(z) by the learned user representation eu and
item representation ei. In this paper, we consider the inner-product as the preference function, i.e.,
f(z) = eTuei. To optimize the recommendation ability of f , we adopt a pairwise ranking loss as
follows, for any (z, z′, y),

loss = l(y(f(z)− f(z′))).

2

2.2 GCN-based Recommendation

Let xu,xi ∈ Rd be the user and item feature, where d is the input dimension. Without loss of
generality, we fix the collected user-item interactions as matrix R ∈ R|U|×|I|, where each entry
Rui = 1 if user u has interacted with item i. Let A and Ã to be the adjacency matrix and the
corresponding laplacian matrix, which are both block anti-diagonal matrices since the graph is
bipartite. We formalize these two matrices as follows.

A =

[
0 R
RT 0

]
and Ã =

[
0 R̃u

R̃T
i 0

]
.

Following [28], the existing GCN-based collaborative filtering models can be generalized into two
steps. Note that we omit the update formula of items for the sake of brevity.

(1) Update operation. The most straightforward layer-wise updations are inspired by the GNN
techniques, and they can be summarized as follows,

hl+1
u = ϕ

(
Wl

1h
l
u +

∑
i∈Nu

ãuiW
l
1h

l
i

)
, (1)

where ãui = [R̃u]ui represents the assigned weights of user u to item i; Nu is the set of adjacent
items of user u. Some recent works [11] further adopt the element-wise product between nodes
with their neighbors to leverage the consistency between user preferences and item attributes. This
operation is formulated as,

hl+1
u = ϕ

(
Wl

1h
l
u +

∑
i∈Nu

ãui
(
Wl

1h
l
i +Wl

2

(
hl
i ⊙ hl

u

)))
. (2)

In this paper, we focus on the more complex operation defined in Eq. (2) since the Eq. (1) can be
seen as a special case of it when W l

2 = O.

(2) Final node representation. The CF-based recommender systems require the representation of
users and items for the final prediction task. The mainstream approaches include linear combination
and concatenation, respectively defined as,

Linear combination: eu =
∑L

l=0
αlhl

u,

Concatenation: eu = h0
u ⊕ h1

u ⊕ · · · ⊕ hL
u ,

where αl is a learnable parameter or hyper-parameter, L is the network depth. In this paper, for
convenience, we only consider the embeddings of the last layer as the final representation, i.e.,
eu = hL

u . We will prove that the generalization analysis can be easily extended to other integration
operations in appendix.

3 Generalization for GCN-based Recommender Systems

We first investigate the model complexity of GCN-based recommender system via covering number
with specific radius in Section 3.1. Then we link the l∞−covering number and generalization errors
for inductive and transductive learning in Section 3.2, which finally yield the meaningful bounds.

Assumptions. To establish the generalization guarantee, let us immediately make some mild
assumptions that are easy to implement. For the loss function, assuming l : R → [−B,B] is
any bounded Cl-lipschitz continuous function. For the non-linear activation function, we assume ϕ
is Cϕ-lipschitz continuous with some Cϕ > 0, ϕ(0) = 0 . For the weight matrices, we assume that
W l

1,W
l
2 ∈ Rd×d are shared across layers, and have bounded norms ∥W l

1∥2 ≤ B1 and ∥W l
2∥2 ≤ B2.

For the input feature, we assume max
u∈U

∥xu∥2 ≤ Bu and max
i∈I

∥xi∥2 ≤ Bi.

3.1 Covering Number for GCN-based Recommender Systems

In classical learning theory, the complexity of function class is closely related to the generalization
ability [29], and the typical complexity measurements are VC-Dimension [30] and Rademacher

3

complexity [31]. In this paper, we adopt the covering number [32] to investigate the model complexity
of GCN-based recommender systems. Based on the properties of bipartite graphs, we study the
complexity by combining the recommendations of GCN-based models for any user-item pairs.
Lemma 1 (Covering number bound). Under Assumptions, we further assume that ∥hl

u∥∞, ∥hl
i∥∞ ≤

b for any u ∈ U , i ∈ I, and l = [L], let γ = ∥Ã∥∞. Given a sample set S with size n, the covering
number of F over S with specific ϵ is bounded as

logN
(
F|S , ϵ, ∥ · ∥∞

)
≤ d2 log

(
1 +

4(γ + 1)MB1

√
d

ϵ

)(
1 +

4γbMB2

√
d

ϵ

)
.

Moreover, when ϵ ≤ 4M
√
dmax{(γ + 1)B1, γbB2},

logN
(
F|S , ϵ, ∥ · ∥∞

)
≤ 2d2 log

8M(γ + 1)
√
dB1B2b

ϵ
, where

M = CϕC2L−1(Bu +Bi)
2 (2C)L − 1

2C − 1
,

C = Cϕ[B1 + γ(B1 +B2b)].

Remark 1. The key idea of the proof is to exploit the properties of the bipartite graph in the
recommender system. To investigate the complexity of the recommendation for any user-item pair
generated by GCN-based models, we establish the connection between the complexities of function
space and weight space. Here C describes the layer-wise updation complexity, which is the important
term for the following generalization analysis. According to the norm bound of hidden states, the
assumption can be naturally satisfied when the activation function is bounded. And we will discuss
the role of unbounded activation in Section 3. Note that the layer-wise complexity reduces to
C = Cϕ(γ + 1)B1 when ignoring element-wise between users and items, which means that there is
no need to discuss the value of b.

3.2 Generalization Bound for Inductive & Transductive Learning

Transductive and inductive learning are both commonly used in GNNs and recommender systems.
The primary difference between these two settings is whether the testing set depends on the training
set. The testing samples in inductive learning are drawn from some unknown distribution, while in
transductive learning, they are sampled without replacement from a fixed data set. In the following,
we first relate the generalization error for two settings to the covering number of GCN-based
recommendations, then derive the final generalization guarantees using Lemma 1.

Inductive Learning. Let D to be a fixed but unknown distribution over Z × Z × {−1,+1}, we
assume that all samples in training set Sm = {(zi, z′i, yi)}mi=1 are i.i.d. according to D, denoted as
Sm ∼ Dm, and we aim to make accurate prediction for any unobserved samples (z, z′, y) ∼ D.
Under this inductive setting, the empirical error over the training set Sm and the corresponding
generalization error is defined as follows,

Empirical error: L̂m(f) =
1

m

∑
(zi,z′

i,yi)∈Sm

l(yi(f(zi)− f(z′i)),

Generalization error: L(f) = E(z,z′,y)∼D[l(y(f(z)− f(z′))].
(3)

Under inductive learning, we can derive the following generalization error bound by the complexity
term according to the covering number.
Lemma 2. Let F be a real-valued function class taking values in [−e, e], and assume that 0 ∈ F .
Under assumptions, for any function f in a class F , with probability of at least 1− δ over an i.i.d.
size-m training set, we have

L(f) ≤ L̂m(f) + 4Cl inf
α>0

(
4α√
m

+
12

m

∫ 2e
√
m

α

√
logN

(
F|Sm

, ϵ, ∥ · ∥2
)
dϵ

)
+ 4B

√
2 log 4/δ

m
.

Transductive Learning. For the transductive learning setting, the full samples are observed prior to
learning. Given a fixed set S = {(zi, z′i, yi)}

m+u
i=1 , a labeled training set Sm with size m is selected

from S uniformly at random. The goal of transductive learning is to predict the labels of the samples

4

in testing set Su = S\Sm. Under this transductive setting, the formulation of empirical error L̂m(f)
is similar to Eq. (3), and the generalization error is defined as follows,

Lu(f) =
1

u

∑
(zi,z′

i,yi)∈Su

l(yi(f(zi)− f(z′i)).

Following the same strategy adopted in proving Lemma 2, we again need to perform a generalization
bound under transductive setting via covering number of function class. As shown above, the
generalization and empirical error under transductive setting do not depend on any underlying
distributions. The important difference induces two versions of generalization analysis. For the
transductive learning, we consider the transductive Rademacher complexity [33] defined on both the
training and testing data. Then the covering number bounded generalization error can be derived by
the interdependence between model complexity measurements [34, 35].
Lemma 3. Let F be a real-valued function class taking values in [−e, e], and assume that 0 ∈ F .
Let Q1 = 1

u + 1
m , Q2 = m+u

(m+u−1/2)(1−1/2(max(m,u))) and c0 < 5.05. Under assumptions, for any
function f in a class F , with probability of at least 1− δ over random partitions of S, we have

Lu(f) ≤L̂m(f) + 2Cl inf
α>0

(
4α√
m+ u

+
12

m+ u

∫ 2e
√
m+u

α

√
logN

(
F|S , ϵ, ∥ · ∥2

)
dϵ

)

+Bc0Q1

√
min(m,u) + 2B

√
Q1Q2

2
ln

1

δ
.

Armed with Lemma 2, Lemma 3 and Lemma 1, we now present the generalization error bounds for
inductive and transductive learning.
Proposition 1 (Generalization Bound). Under assumptions, for any function f in a class F , in
inductive learning, with probability of at least 1− δ, we have,

L(f) ≤L̂m(f) +
24Cl√
m

C2L(Bu +Bi)
2d

√
2 log

(
8mM(γ + 1)

√
dB1B2b

)
(4)

+
16Cl

m
+ 4B

√
2 log 4/δ

m
.

Accordingly, in transductive learning, with probability of at least 1− δ, we have,

Lu(f) ≤L̂m(f) +
24Cl√
m+ u

C2L(Bu +Bi)
2d

√
2 log

(
8(m+ u)M(γ + 1)

√
dB1B2b

)
+

4Cl

√
2mu

(m+ u)2
+Bc0Q1

√
min(m,u) + 2B

√
Q1Q2

2
ln

1

δ
.

Remark 2. Proposition 1 states that the gap between generalization error and empirical error con-
verges uniformly to 0 with the rate of

√
(logm)/m. We first discuss several obvious findings

about the dependency of the bound on some terms. For the hidden dimension d, the generaliza-
tion bound scales as O(d

√
log d); for the input feature norms Bu and Bi, the bound scales as

O
(
(Bu +Bi)

2
√

log(Bu +Bi)
)

. The most important term is the layer-wise complexity C, which
depends on the value of γ according to the graph structure, the spectral norms of weight matrices
B1 and B2, and the value of Cϕ and b according to the non-linear activation function. A natural
idea is to constrain the weight matrices during training such that the generalization bound would not
grow exponentially with the network depth L, which is a regularization techniques commonly used
in machine learning. The subsequent discussions focus on the γ, Cϕ and b to investigate the influence
of graph normalization and non-linear activation functions.

Role of graph normalization. It is easy to see that γ is equal to the maximum degree Dmax of
the user-item interaction graph without graph normalization. Therefore, fixed other terms in C, the
generalization bound grows as O(DL

max). For the random-walk graph, i.e., Ã = D−1A, γ = 1, and
for symmetric normalized graph, i.e., Ã = D−1/2AD−1/2, γ ≤

√
Dmax/Dmin, and hence, the

growth is much smaller than the unnormalized graph.

5

Role of non-linear activation. As pointed above, the activation functions affect the generalization
performance through two quantities: the Lipschitz constant Cϕ and the norm bound of hidden states
b. Due to the most activation functions satisfy the condition Cϕ ≤ 1, and particularly LeakyReLU,
ReLU, and Tanh are 1-Lipschitz, Cϕ presents negligible influence. For the norm bound b, while
the bounded activation naturally provides explicit value, the unbounded function can also satisfy the
assumption by constraints on the weight matrices. As discussed in Remark 2, weight regularization is
widely used in machine learning and can help improve model generalization performance to prevent
overfitting. In addition, one recent work [36] gives a new theoretical finding that non-linearity does
not bring considerable expressive power to improve representation learning in GNNs, but negatively
increase the difficulty of model training. Therefore, this generalization bound provides theoretical
support for removing the activation function to simplify the model without incurring a performance
penalty.

4 Item Mixture Powered Recommendation

The upper bound in Proposition 1 inspires us that the generalization needs to balance empirical risk
and model complexity. Most models [37, 11] inevitably lead to excessive complexity in pursuit of
high expressiveness, but simple models may lead to higher empirical errors, so it is valuable to reduce
the complexity while ensuring model expressiveness. In addition, the recommendation algorithm
is trained based on the limited discrete data obtained by sampling, making the model perform well
in the discrete space of sampling and prone to overfitting. Considering the above and inspired by
Mixup [38], we propose Item Mixture (IMix) to power recommendation, which forces the model to
deal with regions between discrete samples continuously by mixing any two positive-negative item
pairs. In addition, IMix does not make changes to the model, while we can theoretically prove that it
reduces the model complexity, and then enjoys generalization. Below we give specific details.

Since the original representations of items are discrete and unprocessable (e.g., orange or apple),
we suggest mixing their embeddings. Specifically, given a triplet (u, i, i′) with a label yi, where
yi = 1 if user u prefers item i to i′, otherwise yi = 0. The embeddings of (u, i, i′) are (eu, ei, ei′)
computed according to Section 2.2, we arbitrarily sample another triplet (u, j, j′) with label yj of
the same user. If yi = yj , we can obtain mixed embedding triplet (eu, ẽi, ẽi′) = (eu, λei + (1 −
λ)ej , λei′ + (1 − λ)ej′) with λ ∼ Dλ = Beta(α, β), otherwise, (eu, ẽi, ẽi′) = (eu, λei + (1 −
λ)ej′ , λei′ + (1− λ)ej). So in IMix, we will train the recommendation model on the new mixed
embeddings. We consider the logistic loss ℓ(f(x), y) = log(1 + ef(x))− yf(x), the standard loss
and IMix loss are defined as

Standard loss: Lstd
m =

1

m

∑m

k=1
ℓ(eTuk

(eik − ei′k), yk),

IMix loss: LIMix
m =

1

m

∑m

k=1
ℓ(eTuk

(ẽik − ẽi′k), yk).

(5)

Considering the motivation above, IMix preserves the model expressiveness without modification of
the model structure. Besides, it transforms the learning of discrete sample pairs into the learning of
continuous regions between sample pairs, which may help to alleviate the overfitting.

Notably, although IMix is inspired by the generalization bound in Proposition 1, it is decoupled from
the model structure. Therefore, it is theoretically applicable to any embedding-based recommendation
model, and we will show its performance in non-GCN-based models in Appendix A.3.

Next, we theoretically guarantee the effectiveness of the proposed IMix. Following a similar approach
in [39], we adopt second-order Taylor expansion to state the IMix training loss is approximately
equivalent to standard empirical error with a regularization term.

Consider a training set Sm, denote by Du all users and Di all item-pairs in Sm, where (i, i′) ∈ Di

if (i′, i) ∈ Di. We assume that the samplings of user and item-pair are independent, and for
∀u ∈ Du,∀(i, i′) ∈ Di, (u, i, i′) ∈ Sm. For convenience, let yu,i,i′ denote the label of (u, i, i′).

Lemma 4. Consider the symmetric dataset Sm and denote Σ̂ = 1
m

m∑
k=1

(eik − ei′k)(eik − ei′k)
T , the

second-order approximation of IMix loss defined in Eq. (5) is given by

Lmix
m ≈ Lstd

m + Eλ(1− λ)2 · 1

2m

∑m

k=1

[
eηk

(1 + eηk)2
eTuk

Σ̂euk

]
,

6

where ηk = eTuk
(eik − ei′k).

Then we are ready to investigate the following function class: let Σ =

E(ik,i′k)

[
(eik − ei′k)(eik − ei′k)

T
]
,

Fmix
τ = {F , such that E(uk,ik,i′k)

[
eηk

(1 + eηk)2
eTuk

Σeuk

]
≤ τ}.

Remark 3. Let ψ(u) = eu

(1+eu)2 , similar to [39, 40], we assume that the distribution of
(ei − ei′) is ρ−retentive for some ρ ∈ (0, 1/2], that is, if for any non-zero vector eu,[
E(i,i′)ψ

(
eTu (ei − ei′)

)]2 ≥ ρmin{1,E(i,i′)

(
eTu (ei − ei′)

)2}. Suppose there exists a loss func-
tion, which isCl−lipschitz continuous and bounded by [−B,B], for any f ∈ Fmix

τ , with probability
of at least 1− δ, we have the following bound on generalization error.

L(f) ≤ L̂(f) + 2Cl

(
max{(τ

ρ
)1/4, (

τ

ρ
)1/2}

√
rank(Σ)

|Di|

)
+B

√
2 log 2/δ

m
. (6)

If we consider the function class with a general regularization technique on the weight matrices, as we
discussed above, the constraint on weights will ultimately control the node representation. Therefore,
for the general condition, we focus on the function class Fstd

τ = {F|E(u,i)

[
∥eu∥22 + ∥ei∥22

]
≤ τ},

then the similar proof strategy would yield the generalization error bound L(f) ≤ L̂(f)+2Cl

√
τ2

|Di|+

B
√

2 log 2/δ
m , we can conclude that when rank(ΣX) < τ , IMix has a better generalization. It is

easily met because τ tends to be large to pursue high performance. For example, in the experiment,
the embedding size d is 64 (noted that rank(ΣX) < d), while the minimum value of τ is 130.8.

5 Experiments

In this section, we conduct extensive experiments to validate our theoretical findings and the effec-
tiveness of the proposed IMix.

Dataset. We follow existing work [11, 12], using two datasets: (1) Gowalla, contains 1,027,370
check-in information from 29,858 users to 40,981 locations; (2) Yelp2018, comprises 31,668 users
who have reviewed 38,048 items (e.g., restaurants, bars) with 1,561,406 times. The training set,
validation set, and test set are randomly sampled in a ratio of 7 : 1 : 2.

Model Structure. Two competitive GCN-based algorithms, NGCF [11] and LightGCN [12], are
used to construct experiments. Among them, NGCF explicitly models the high-order connectivity
between users and items through message construction and message aggregation, thereby improving
the expressiveness of embedding. LightGCN, on the other hand, is keenly aware that the nonlinear
activation function and feature transformation of NGCF have no specific semantics in the recom-
mendation, so it is simplified to only a domain message aggregation module. Correspondingly,
these models are configured with the proposed IMix denoted as NGCF-IMix and LightGCN-IMix,
respectively.

We use the public implementation version of LightGCN and follow the default parameters of their
algorithms unless otherwise specified. More details are provided in Appendix A.1.

Metrics. The recommendation performance is measured by the positive items’ rankings in the test set.
We use two ranking metrics widely used in recommender systems [41, 42, 43]: Recall and NDCG.
Recall at a cutoff K, denoted as Recall@K, denotes the proportion of positive items predicted to be
correct. NDCG at a cutoff K, denoted as NDCG@K, measures the reward for the positive items’
position in the top-K recommendation list. For these two metrics, we truncate the ranked list K to 20.

5.1 Numerical Discussion

In this subsection, we discuss the implication of the generalization bound defined in Proposition. 1,
and the results are built on NGCF because it is more similar to traditional GCNs.

https://github.com/kuandeng/LightGCN

7

https://github.com/kuandeng/LightGCN

1 2 3 4 5
Layer Number

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

G
ap

Recall@K
20
40
60
80
100

1 2 3 4 5
Layer Number

0.08

0.10

0.12

0.14

0.16

0.18

0.20

G
ap

NDCG@K
20
40
60
80
100

(a) The generalization effect of Layers (b) The generalization effect of weight norms

0.85 0.90 0.95 1.00 1.05
L2 Norm of Weight

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

G
ap Recall@K

20
40
60
80
100

0.85 0.90 0.95 1.00 1.05
L2 Norm of Weight

0.12

0.14

0.16

0.18

0.20

0.22

0.24

G
ap NDCG@K

20
40
60
80
100

Figure 1: (a): the effect of number of layers L on Generalization Performance on Gowalla. (b): the
effect of weight norms B1, B2 on Generalization Performance on Gowalla.

Quantitative Analysis. We investigate the effects of two major values on the generalization gap,
which represents the differences between recommendation performances in training and testing sets.
We consider the number of layers L, as shown in the left part of Fig. 1. As the number of layers
increases, the generalization gaps of ndcg@K and recall@K significantly increase. The empirical
results imply that the generalization error is proportional to the number of layers, consistent with
the theoretical analysis. We also consider the spectral norms of weight matrices B1 and B2, as
shown in the right part of Fig. 1. We compare the generalization abilities with different weight
norms. As the norms increase, the generalization gaps increase steadily. Compared with the number
of layers, we can observe that the weight norms increase more slowly. The theoretical reason is
that the generalization performance is L-th order with respect to the weight norms B1 and B2, and
exponential with respect to the number of layers L.

The Role of Normalized Graph. We compare the generalization performances with different normal-
ized graphs, as shown in the left part of Fig. 2. It is clear that the two normalized graphs have higher
generalizations than the unnormalized graph. This result is consistent with the theoretical findings.
The comparison between two normalized graphs depends on the specific user-item interaction graph.

0 25 50 75 100 125 150 175 200
Epochs

0.04

0.06

0.08

0.10

0.12

0.14

R
ec

al
l@

20

Method
A + I
D 1A + I
D 1/2AD 1/2 + I

0 25 50 75 100 125 150 175 200
Epochs

0.02

0.04

0.06

0.08

0.10

0.12

N
D

C
G

@
20

Method
A + I
D 1A + I
D 1/2AD 1/2 + I

(a) The generalization effect of normalized graph (b) The generalization effect of activation function

0 25 50 75 100 125 150 175 200
Epochs

0.09

0.10

0.11

0.12

0.13

R
ec

al
l@

20

Method
None
LeakyRelu
Relu
Sigmoid
Tanh

0 25 50 75 100 125 150 175 200
Epochs

0.075

0.080

0.085

0.090

0.095

0.100

0.105

0.110

N
D

C
G

@
20

Method
None
LeakyRelu
Relu
Sigmoid
Tanh

Figure 2: (a): the effect of normalized graph on Generalization Performance on Gowalla. (b): the
effect of activation function on Generalization Performance on Gowalla.

The Role of Non-linear Activation Function. We study the role of non-linear activation function in
GCN-based recommender systems. Since most activation functions are all 1-Lipschitz continuous, we
compare the generalization performances with the popular activation functions, including LeakyReLU,
ReLU, Sigmoid, and Tanh. Furthermore, we compare these results with the model without activation
function. As shown in the right part of Fig. 2, these models present similar performances, which
provide theoretical support for removing activation functions. Although the Sigmoid presents great
recommendations at first, it overfitted as the training continued, while the performance of other
models is still improved, and their optimal performance tends to be unified.

5.2 Performance Analysis of IMix

Effectiveness Validation. We apply the proposed IMix to NGCF and LightGCN and perform a
detailed comparison, as shown in Table 1. The percentage of relative improvement is shown in
parentheses. Obviously, the proposed augmentation strategy (corresponding to NGCF-IMix and
LightGCN-IMix) significantly improves the performance of the corresponding models (NGCF and
LightGCN). For example, in the Gowalla dataset, the best performance of NGCF on Recall@20 is
0.1308, while with IMix configured, the performance improves to an encouraging 0.1496. In addition,
the improvements of IMix on NGCF are larger than that on LightGCN. We reasonably believe that

8

Table 1: Overall evaluation. All models’ performance is improved after configured with IMix.

Dataset Gowalla Yelp2018

Layer # Method Recall@20 NDCG@20 Recall@20 NDCG@20

1 layer NGCF 0.1308 0.1032 0.0419 0.0336
NGCF-IMix 0.1451(+10.93%) 0.1146(+11.05%) 0.0492(+17.42%) 0.0360(+7.14%)

2 layer NGCF 0.1274 0.1050 0.0431 0.0348
NGCF-IMix 0.1454(+14.13%) 0.1164(+10.86%) 0.0491(+13.92%) 0.0391(+12.36%)

3 layer NGCF 0.1303 0.1082 0.0435 0.0353
NGCF-IMix 0.1496(+14.81%) 0.1191(+10.07%) 0.0504(+15.86%) 0.0405(+14.73%)

1 layer LightGCN 0.1556 0.1340 0.0526 0.0427
LightGCN-IMix 0.1699(+9.19%) 0.1436(+7.16%) 0.0562(+6.84%) 0.0458(+7.26%)

2 layer LightGCN 0.1672 0.1425 0.0564 0.0462
LightGCN-IMix 0.1765(+5.56%) 0.1507(+5.75%) 0.0621(+10.10%) 0.0507(+9.74%)

3 layer LightGCN 0.1759 0.1500 0.0602 0.0492
LightGCN-IMix 0.1793(+1.93%) 0.1524(+1.6%) 0.0644(+6.98%) 0.0527(+7.11%)

0 25 50 75 100 125 150 175 200
Epochs

0.11

0.12

0.13

0.14

0.15

0.16

0.17

R
ec

al
l@

20

Method
LightGCN
LightGCN-IMix

0 25 50 75 100 125 150 175 200
Epochs

0.10

0.11

0.12

0.13

0.14

N
D

C
G

@
20

Method
LightGCN
LightGCN-IMix

(a) Gowalla (b) Yelp2018

0 25 50 75 100 125 150 175 200
Epochs

0.035

0.040

0.045

0.050

0.055

R
ec

al
l@

20

Method
LightGCN
LightGCN-IMix

0 25 50 75 100 125 150 175 200
Epochs

0.0300

0.0325

0.0350

0.0375

0.0400

0.0425

0.0450

N
D

C
G

@
20

Method
LightGCN
LightGCN-IMix

Figure 3: Test curves (Recall@20 and NDCG@20) for 200 epochs of training.

LightGCN is more expressive (better performance), and the benefit of the boosting strategy decreases
accordingly. Nonetheless, the performance on LightGCN is also a pleasant surprise.

Besides, Fig. 3 presents the performance curves regarding Recall and NDCG for the test set during
the training of LightGCN-based models (LightGCN and LightGCN-IMix). Throughout the training
process, LightGCN-IMix consistently outperforms LightGCN. After 50 epochs, LightGCN shows
different degrees of overfitting. On the contrary, the performance of LightGCN-IMix is still further
improved, and their gap is gradually enlarged. We reasonably believe that the proposed strategy adds
a data-dependent regularization term to LightGCN (Lemma 4), which helps to alleviate overfitting.

8 16 32 64 128
Feature Size

0.13

0.14

0.15

0.16

0.17

R
ec

al
l@

20

Method
LightGCN
LightGCN-IMix

8 16 32 64 128
Feature Size

0.105
0.110
0.115
0.120
0.125
0.130
0.135
0.140
0.145

N
D

C
G

@
20

Method
LightGCN
LightGCN-IMix

(a) Gowalla (b) Yelp2018

8 16 32 64 128
Feature Size

0.046

0.048

0.050

0.052

0.054

0.056

0.058

0.060

R
ec

al
l@

20

Method
LightGCN
LightGCN-IMix

8 16 32 64 128
Feature Size

0.036

0.038

0.040

0.042

0.044

0.046

0.048

0.050

N
D

C
G

@
20

Method
LightGCN
LightGCN-IMix

Figure 4: Performance comparison of different embedding sizes.

Sensitivity w.r.t. Model Hyperparameters. We also explore the impact of the model’s hyperparam-
eters: different feature sizes (dimension of xu and xi) and hidden layer sizes (dimension of W l

1 and
W l

2). Here, the number of layers is set to 1, and the results are shown in Fig. 4 and Fig. 5.

In Fig. 4, we find that the larger the feature size, the more beneficial it is to the recommendation.
Moreover, LightGCN-IMix is better than LightGCN, and even more, the better the performance of the
original model, the better the improvement after configuring IMix, which highlights the superiority
of the proposed IMix.

9

8 16 32 64 128
Hidden Layer Size

0.125

0.130

0.135

0.140

0.145

R
ec

al
l@

20

Method
NGCF
NGCF-IMix

8 16 32 64 128
Hidden Layer Size

0.100

0.102

0.104

0.106

0.108

0.110

0.112

0.114

0.116

N
D

C
G

@
20

Method
NGCF
NGCF-IMix

(a) Gowalla (b) Yelp2018

8 16 32 64 128
Hidden Layer Size

0.042

0.044

0.046

0.048

0.050

R
ec

al
l@

20

Method
NGCF
NGCF-IMix

8 16 32 64 128
Hidden Layer Size

0.033

0.034

0.035

0.036

0.037

0.038

0.039

0.040

N
D

C
G

@
20

Method
NGCF
NGCF-IMix

Figure 5: Performance comparison of different hidden layer size.

Fig. 5 reveals that the hidden layer size does not cause a significant change in model performance,
while when the hidden layer size is only 8, the performance is sufficiently satisfactory, which provides
support for the practicality of GCN-based algorithms. In addition, with similar conclusions to Fig. 4
and Table 1, the IMix-configured models outperform the original models in all cases. In conclusion,
we validate the effectiveness of IMix.

6 Conclusion and Future Work

GCNs achieve superior empirical success in recommender systems but lack theoretical understanding.
In this paper, we provide a model complexity analysis for GCN-based recommendations via Covering
number, and then induce the generalization error bounds in inductive and transductive learning.
We report several theoretical findings and again verify them via experimental results. Inspired by
the generalization analysis, we introduce an augmentation strategy, Item Mixture, to improve the
recommendation generalization by mixing item embeddings.

There are several interesting future directions. First, it would be interesting to further analyze the
user-item bipartite graph with social relationship and knowledge graph. The second is to extend our
analysis to investigate the plausibility of the other GNN-based variants. The third is to study the role
of graph spectral properties in generalization ability.

Acknowledgments and Disclosure of Funding

The work was supported by grants from the National Key R&D Program of China (No.
2021ZD0111801) and the National Natural Science Foundation of China (No. 62022077).

References
[1] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommenda-

tions. In Proceedings of the 10th ACM conference on recommender systems, pages 191–198,
2016.

[2] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 974–983, 2018.

[3] Fajie Yuan, Xiangnan He, Alexandros Karatzoglou, and Liguang Zhang. Parameter-efficient
transfer from sequential behaviors for user modeling and recommendation. In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 1469–1478, 2020.

[4] Binbin Jin, Defu Lian, Zheng Liu, Qi Liu, Jianhui Ma, Xing Xie, and Enhong Chen. Sampling-
decomposable generative adversarial recommender. In Neural Information Processing Systems,
January 2020.

[5] Defu Lian, Qi Liu, and Enhong Chen. Personalized ranking with importance sampling. In
Proceedings of The Web Conference 2020, WWW ’20, page 1093–1103, New York, NY, USA,
2020. Association for Computing Machinery.

10

[6] Jin Chen, Defu Lian, Binbin Jin, Xu Huang, Kai Zheng, and Enhong Chen. Fast variational
autoencoder with inverted multi-index for collaborative filtering. In Proceedings of the ACM
Web Conference 2022, WWW ’22, page 1944–1954, New York, NY, USA, 2022. Association
for Computing Machinery.

[7] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[8] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M Bronstein. Geometric deep learning on graphs and manifolds using mixture model
cnns. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
5115–5124, 2017.

[9] Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix completion.
arXiv preprint arXiv:1706.02263, 2017.

[10] Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, and Philip S Yu. Spectral collaborative
filtering. In Proceedings of the 12th ACM conference on recommender systems, pages 311–319,
2018.

[11] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collabo-
rative filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research
and development in Information Retrieval, pages 165–174, 2019.

[12] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of
the 43rd International ACM SIGIR conference on research and development in Information
Retrieval, pages 639–648, 2020.

[13] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. Revisiting graph based
collaborative filtering: A linear residual graph convolutional network approach. Proceedings of
the AAAI Conference on Artificial Intelligence, 34:27–34, 04 2020.

[14] Le Wu, Yonghui Yang, Kun Zhang, Richang Hong, Yanjie Fu, and Meng Wang. Joint item
recommendation and attribute inference: An adaptive graph convolutional network approach. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 679–688, 2020.

[15] Zhiwei Liu, Lin Meng, Fei Jiang, Jiawei Zhang, and Philip S Yu. Deoscillated graph collabora-
tive filtering. arXiv preprint arXiv:2011.02100, 2020.

[16] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The World Wide Web Conference, pages 417–426,
2019.

[17] Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wenjie Li, and
Zhongyuan Wang. Knowledge-aware graph neural networks with label smoothness regular-
ization for recommender systems. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 968–977, 2019.

[18] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pages 2323–2332.
PMLR, 2018.

[19] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A
deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

[20] Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik–chervonenkis
dimension of graph and recursive neural networks. Neural Networks, 108:248–259, 2018.

[21] Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits
of graph neural networks. In International Conference on Machine Learning, pages 3419–3430.
PMLR, 2020.

11

[22] Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization
bounds for graph neural networks. arXiv preprint arXiv:2012.07690, 2020.

[23] Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural
networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1539–1548, 2019.

[24] Shaogao Lv. Generalization bounds for graph convolutional neural networks via rademacher
complexity. arXiv preprint arXiv:2102.10234, 2021.

[25] Pascal Esser, Leena Chennuru Vankadara, and Debarghya Ghoshdastidar. Learning theory can
(sometimes) explain generalisation in graph neural networks. Advances in Neural Information
Processing Systems, 34, 2021.

[26] Yihan Gao, Chao Zhang, Jian Peng, and Aditya Parameswaran. The importance of norm
regularization in linear graph embedding: Theoretical analysis and empirical demonstration.
arXiv preprint arXiv:1802.03560, 2018.

[27] Atsushi Suzuki, Atsushi Nitanda, Linchuan Xu, Kenji Yamanishi, Marc Cavazza, et al. General-
ization bounds for graph embedding using negative sampling: Linear vs hyperbolic. Advances
in Neural Information Processing Systems, 34, 2021.

[28] Shiwen Wu, Fei Sun, Wentao Zhang, and Bin Cui. Graph neural networks in recommender
systems: a survey. arXiv preprint arXiv:2011.02260, 2020.

[29] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT press, 2018.

[30] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. Learnability
and the vapnik-chervonenkis dimension. Journal of the ACM (JACM), 36(4):929–965, 1989.

[31] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

[32] Ding-Xuan Zhou. The covering number in learning theory. Journal of Complexity, 18(3):739–
767, 2002.

[33] Ran El-Yaniv and Dmitry Pechyony. Transductive rademacher complexity and its applications.
Journal of Artificial Intelligence Research, 35:193–234, 2009.

[34] Minshuo Chen, Xingguo Li, and Tuo Zhao. On generalization bounds of a family of recurrent
neural networks. arXiv preprint arXiv:1910.12947, 2019.

[35] Peter Bartlett, Dylan J Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for
neural networks. arXiv preprint arXiv:1706.08498, 2017.

[36] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. arXiv preprint arXiv:1905.10947, 2019.

[37] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie.
Self-supervised graph learning for recommendation. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 726–735,
2021.

[38] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

[39] Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghorbani, and James Zou. How does
mixup help with robustness and generalization? arXiv preprint arXiv:2010.04819, 2020.

[40] Raman Arora, Peter Bartlett, Poorya Mianjy, and Nathan Srebro. Dropout: Explicit forms and
capacity control. 03 2020.

[41] Haoyu Wang, Defu Lian, and Yong Ge. Binarized collaborative filtering with distilling graph
convolutional networks. arXiv preprint arXiv:1906.01829, 2019.

12

[42] Shuyi Ji, Yifan Feng, Rongrong Ji, Xibin Zhao, Wanwan Tang, and Yue Gao. Dual channel
hypergraph collaborative filtering. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2020–2029, 2020.

[43] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua. Disentangled
graph collaborative filtering. In Proceedings of the 43rd international ACM SIGIR conference
on research and development in information retrieval, pages 1001–1010, 2020.

[44] Yehuda Koren, Steffen Rendle, and Robert Bell. Advances in collaborative filtering. Recom-
mender systems handbook, pages 91–142, 2022.

[45] Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation
for graph classification. arXiv preprint arXiv:2202.07179, 2022.

[46] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Mixup for node and graph
classification. In Proceedings of the Web Conference 2021, pages 3663–3674, 2021.

[47] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[48] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to Algo-
rithms. Understanding Machine Learning: From Theory to Algorithms. Cambridge University
Press, 2014.

13

	Introduction
	Preliminary
	Problem Formulation
	GCN-based Recommendation

	Generalization for GCN-based Recommender Systems
	Covering Number for GCN-based Recommender Systems
	Generalization Bound for Inductive & Transductive Learning

	Item Mixture Powered Recommendation
	Experiments
	Numerical Discussion
	Performance Analysis of IMix

	Conclusion and Future Work

