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Abstract

In multimodal machine learning, effectively addressing the
missing modality scenario is crucial for improving perfor-
mance in downstream tasks such as in medical contexts where
data may be incomplete. Although some attempts have been
made to effectively retrieve embeddings for missing modal-
ities, two main bottlenecks remain: the (1) consideration of
both intra- and inter-modal context, and the (2) cost of embed-
ding selection, where embeddings often lack modality-specific
knowledge. In response, we propose MoE-Retriever, a
novel framework inspired by the design principles of Sparse
Mixture of Experts (SMoE). First, MoE-Retriever define
a supporting group for intra-modal inputs, i.e., samples that
commonly lack the target modality. This group is formed
by selecting samples with complementary modality combina-
tions for the target modality. It is then integrated with inter-
modal inputs—i.e., inputs from different modalities of a sam-
ple—thereby establishing both intra- and inter-modal contexts.
These inputs are processed by Multi-Head Attention, gener-
ating context-aware embeddings that serve as inputs to the
SMoE Router, which automatically selects the most relevant
experts, i.e., the embedding candidates to be retrieved. Com-
prehensive experiments on both medical and general multi-
modal datasets demonstrate the robustness and generalizabil-
ity of MoE-Retriever, marking a significant step forward
in embedding retrieval methods for incomplete multimodal
data. The source code of MoE-Retriever is available here:
https://github.com/UNITES-Lab/moe-retriever

Introduction
In the era of generative AI and multimodal learning, effec-
tively addressing the missing modality scenario has become
a pivotal challenge for enhancing downstream task perfor-
mance (Baltrušaitis, Ahuja, and Morency 2018; Guo, Wang,
and Wang 2019; Wu, Wang, and Chen 2024). In practical
cases such as clinical and biological settings, modalities such
as imaging, genetic, and clinical data often contain missing
entries due to varying acquisition times, costs, or patient-
specific factors (Ma et al. 2021; Zhang et al. 2022a,b; Wang
et al. 2023). To address this, prior approaches primarily focus
on two strategies: imputing missing features directly within
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the input feature space or employing learnable embedding
to represent missing features in the latent space. The former
often involves some rule-based prior, such as using the pop-
ulation mean to perform imputation. This method does not
scale with data, as the imputation method remain fixed when
the underlying distribution changes. In contrast, recent re-
search has increasingly turned toward the latter — leveraging
learnable embedding to provide more adaptive and context-
aware representations for missing modalities (Zhang et al.
2022b,a; Wu et al. 2024; Han et al. 2024). However, despite
their promise, these learnable embedding-based methods still
face several critical limitations.
Intra- & Inter-Modal Context. As illustrated in Figure 1 (a),
current methods inadequately address both intra-modal and
inter-modal contexts when supplementing missing modali-
ties, often focusing on one or the other. In intra-modal sce-
narios, the goal is to retrieve embeddings for the missing (tar-
get) modality by identifying similar samples (Malitesta et al.
2024). However, existing works often choose unimodal ap-
proaches that primarily address intra-modal context, failing to
personalize the sample’s heterogeneous context. Conversely,
in inter-modal scenarios, it is assumed that modality-invariant
and modality-specific information exists across input modali-
ties, suggesting that missing modalities can be imputed from
the sample’s specific observed modalities (Zhang et al. 2022b;
Wang et al. 2023). However, these works do not carefully
consider intra-sample information while proceeding with
multi-modal fusion. As a result, focusing solely on either
intra-modal or inter-modal context leads to incomplete sup-
plementation and limits the model’s ability to effectively
leverage the rich multimodal information available in real-
world datasets. This highlights the need for a more holistic
approach that integrates both perspectives for more accurate
and robust imputation of missing modalities.
Embedding Selection. Figure 1 (b) illustrates the current
state of embedding retrieval. Current methods either treat
the learnable or retrieved embeddings as a single embedding
(Wang et al. 2023; Han et al. 2024) or use diverse embeddings
but require activating all candidates every time a retrieval is
performed, using operations like summation, averaging, or
attention mechanisms. These methods can incur a high com-
putational cost as the number of samples or modalities grows,
and they lack the ability to adapt to diverse observed modal-
ity combinations, treating all potential scenarios equally re-
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Figure 1: Motivation of this work. (a) Motivation 1: Intra- & Inter-Modal Context: Existing works typically consider either
the intra-modal context (between samples with the same missing modality, such as P2,I , P9,I) or the inter-modal context
(within a sample’s observed modalities, such as Pi,G , Pi,C). In contrast, our work incorporates both contexts simultaneously,
generating context-aware embeddings to enhance missing modality retrieval. (b) Motivation 2: Embedding Selection: When
retrieving the most relevant embedding (P̂i,I), existing approaches either use a single static embedding or combine multiple
embeddings with simple methods (e.g., sum, average, attention), which makes it difficult to obtain specialized knowledge and
requires activation of each embedding candidate every time. In contrast, our work leverages the design principles of SMoE, using
a router to automatically select the most relevant experts through top-k selection in a sparse and efficient manner.

gardless of the specific context. This uniformity in handling
observed modalities limits the capacity for more nuanced
and context-specific supplementation. For instance, specific
knowledge may be required when certain input modality
combinations are present, which is crucial for improving
downstream task performance.
Our Approach. To address these challenges, we pro-
pose MoE-Retriever, a novel framework for embedding
retrieval given a incomplete multimodal data. The main idea
of MoE-Retriever is to borrow the desgin principle from
the Sparse Mixture of Experts (SMoE), which activates most
relevant experts (i.e., embedding candidates) given a spe-
cific intra- and inter-modal context within in a router in a
sparse manner. To achieve this, we first generate context-
aware embeddings, which serve as inputs to SMoE. More
specifically, we define a supporting group based on the given
modality combination, aiming to reconstruct the target (miss-
ing) modality by sampling intra-modal examples. Next, by
incorporating inter-modal samples and applying Multi-Head
Attention, we generate context-aware embeddings. Finally,
the SMoE router retrieves the missing embedding by select-
ing the most relevant experts, which include both shared and
modality-specific experts. Extensive experiments on two med-
ical datasets (ADNI, MIMIC) and two general machine learn-
ing datasets (ENRICO, CMU-MOSI) validate the efficacy
and generalizability of MoE-Retriever, demonstrating
its robust performance across various multimodal settings.
• We highlight that current intra- or inter- modal or single or

multiple-but-lacking specialized knwoledge brings the bot-
tleneck into incomplete multimodal embedding retrieval.

• We propose MoE-Retriever, borrowing the design prin-
ciple of Sparse Mixture of Experts design, which inputs
the both intra-modal inter-sample and inter-modal intra-
sample contexts and retrieve most relevant embedding from
modality-specific and shared experts.

• Our comprehensive experimental evaluations on the medic-
inal dataset and machine learning datasets, showcase the
effectiveness and portability of MoE-Retriever.

Method

Motivation behind bringing SMoE design. In the context
of incomplete multimodal data, only the observed features in
the raw feature space can pass through the modality-specific
encoder. This raises a critical question: how can we effec-
tively handle samples with missing modalities to provide
robust embeddings for the missing features? Ensuring that
the embedding space, followed by the fusion and prediction
layers, remains trainable through continuous gradient flow is
essential. It is important to note that different samples exhibit
varying combinations of observed modalities, which neces-
sitates a personalized approach capable of handling each
sample’s unique environment, such as its specific modality
combination.

To address this challenge, we introduce the design princi-
ples of SMoE (Shazeer et al. 2017). Given a pool of diverse
experts (i.e., trainable feed-forward networks), the SMoE ar-
chitecture enables the automatic and sparse activation of dif-
ferent experts, each specializing in certain knowledge, based
on the input scenario. This dynamic routing mechanism ef-
fectively mitigates the limitations of static, one-size-fits-all
designs, where learnable embeddings are constrained to a
single expert or a fixed combination of embeddings with-
out a router. In such static setups, embeddings for missing
modalities are often selected at random, leading to subopti-
mal performance for downstream tasks.

Notation. Formally, SMoE consists of multiple experts, de-
noted as E1, . . . , E|E|, where |E| represents the total number
of experts, and a router, R, which governs the routing mech-
anism, sparsely selecting the top-k experts. For a given em-
bedding or token x, the router R activates the top-k experts
based on the highest scores derived from a softmax function
applied to the outputs of a learnable gating function, g(·),
typically modeled as a one or two-layer MLP. The router’s
output, R(x)i, indicates the selection of the i-th expert. This
process is formally described as follows:



y =

|E|∑
i=1

R(x)i · Ei(x),

R(x) = Top-K(softmax(g(x)), k),

TopK(v, k) =

{
v, if v is in the top k,

0, otherwise.

(1)

MoE-Retriever. The overall framework
of MoE-Retriever, along with the detailed proce-
dure, is illustrated in Figure 2. In essence, the key idea
behind MoE-Retriever is to retrieve the most relevant
embedding for the missing modality by leveraging two
contexts: (1) Intra-Modal Context, which samples similar
examples from a well-defined supporting group based on the
observed modality combination (Sec ), and (2) Inter-Modal
Context, which considers the sample-specific heterogeneous
combination of observed modalities (Sec ). The next step
is (3) Context-Aware Routing, where the expert pool
is designed modality-specifically, using both contexts to
effectively supplement the target (i.e., missing) modality.
Finally, the selected experts and their linear combination
with the inputs are integrated into a single embedding, which
is regarded as the final retrieved embedding (Sec ).

Intra-Modal Context We begin with the intra-modal con-
text (column-wise context in Figure 2), where intra-modal
refers to the homogeneous modality that matches the target
modality we aim to supplement. The rationale for incorporat-
ing this context is that, by forming a pool of similar samples,
we can capture patterns directly observed across patients,
without requiring any additional preprocessing. The observed
pattern can be represented as a modality combination, which
reflects similar trends or patterns, i.e., knowledge observed
across the samples. Empirically, samples (e.g., patients) with
similar observed modality combinations have shown exhibit
analogous characteristics. For instance, patients who lack the
image modality but possess both genetic and clinical modali-
ties may be more likely to display correlations with certain
domain-specific traits, such as early-stage diagnosis or slower
progression rates, often associated with genetic risk factors
like the APOE ϵ4 allele (Dubois et al. 2023; Jack Jr et al.
2018; Lambert et al. 2013).

To effectively sample from an intra-modal sample pool,
we first need to generate a modality combination-specific
pool, which we denote as the supporting group. The core
idea behind the supporting group is that, given an observed
modality combination and a target (missing) modality, the
corresponding group must include the observed modalities
as well as the target modality to support the patient’s intra-
modal pool. For example, if a sample contains the modalities
‘GC’ and we aim to impute the modality ‘I’ (as illustrated
in Figure 2), the supporting group should include samples
with ‘GC’ as well as the missing modality ‘I’. Consequently,
the supporting group would comprise samples with modality
combinations such as ‘IGC’ or ‘IGCB’.

Formally, as an example from Figure 2 , let
the set of modalities be M = {I,G, C,B}. With
a specific modality combination mc ∈ MC =

{I, (I,G), (I,G, C), . . . ,G, (G, C), . . . , (I,G, C,B)},
where the total number of combinations in MC is
|MC| =

∑|M|−1
m=1

(|M|
m

)
= 2|M| − 1, the supporting

group G consists of the samples that satisfy the following
constraints:

G(j | T ,mc) =
{
j ∈ {1, . . . , N}

∣∣ mcj ∈ X (S | T ,mc)
}

where X (S | T ,mc) =
{
S ⊆M

∣∣ (mc ⊆ S) ∧ (T ∈ S)
}
,

∀T ∈ M, ∀mc ∈MC.
(2)

where G(j | T ,mc) denotes the set of sample indices among
total sample size N , derived from the set of possible modality
combinations X (S | T ,mc) for a given target modality T
and modality combination mc. In this context, the satisfying
S denotes any arbitrary set of modality combinations that
satisfies the constraint of including both mc (i.e., (mc ⊆ S))
and (i.e., ∧) the target modality T as subsets (i.e., (T ∈ S)).
Given the supporting group G, we sample1 intra-modal ex-
amples that assist in the final retrieval by SMoE by referring
to similar examples within the homogeneous modality.

Inter-Modal Context Beyond intra-modal context, we now
consider another critical dimension: inter-modal context (il-
lustrated row-wise in Figure 2). This approach allows us
to incorporate personalized context specific to a given sam-
ple that would be missed by only considering intra-modal
context. As a real-world example, this perspective is partic-
ularly meaningful in multimodal medical scenarios such as
Alzheimer’s diagnosis. When genetic (G) and clinical (C)
data are available but imaging (I) is missing (case of Fig-
ure 2), it may suggest the patient is in the early stages of the
disease, where less invasive and more accessible modalities
are prioritized. Imaging, typically more expensive, may be re-
served for later stages when symptoms progress (Dubois et al.
2023; Li et al. 2022). Additionally, genetic and clinical data
alone can provide valuable early insights, guiding initial inter-
ventions before resorting to costly imaging techniques (Kim
2023).

Formally, to consider inter-modal context, we directly fo-
cus on the observed modalities, i.e., mc (e.g., (G, C)) for
a sample index, i. By doing so, we integrate these sample-
specific heterogeneous modality combinations, which will
serve as input for the inter-modal examples in the final re-
trieval by SMoE, referring to the personalized context within
the heterogeneous modalities.

Context-Aware Routing Policy Now, given two contexts,
i.e., intra-modal and inter-modal, we proceed with context-
aware routing via the SMoE design. The goal of this routing
is to retrieve the most relevant expert given an input combi-
nation that includes both homogeneous and heterogeneous
modality information. For each embedding (i.e., token) input
to the router, the router is trained to select the most relevant

1For the number of samples, we used a count that matches the
observed modalities of the samples (i.e., |mc|) to ensure a balanced
impact of both. They may vary and can be treated as a hyperparam-
eter for flexibility. However, empirical observations indicate that
varying the number of intra-modal samples has only a marginal
effect on model performance.
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Figure 2: Overall illustration of MoE-Retriever. (a) The role of MoE-Retriever. Given a sample (Pi) with a missing
modality, I (Image), our goal is to retrieve the most relevant embedding (Pi,I) by considering two contextual factors. First, we
focus on (b) Intra-Modal Context, which seeks to find embeddings within the same modality as the missing one (I) to reflect
similar contextual knowledge. To achieve this, we define a supporting group (G(I|G, C)), where the target modality (I) and
the sample’s observed modalities (G, C) form a sufficient context for grouping. After sampling from this group, we incorporate
the sample’s specific (c) Inter-Modal Context, leveraging the observed modalities. We then proceed to (d) Context-Aware
Routing Policy, which first applies multi-head attention and adopts the SMoE framework. Here, the router (top-1 selection in
this example) selects the most relevant experts given two intra- and inter-modal inputs. After integrating all the embeddings, the
final embedding is regarded as the retrieved embedding for the sample i’s missing modality I, denoted as Pi,I . For retrieving
an embedding for another missing modality, B, the supporting group would be updated to G(B|G, C), and the intra-modal
embeddings would consist of P·,B, with the expert selection adapted accordingly to {B1, . . . ,BE}.

expert that can benefit the downstream task. The selected
experts are expected to specialize in handling the specific
input modalities.

The context-aware router design is detailed as follows:

P̂i,T =

|E|∑
e=1

R(x)e · ETe (x)where x ∈ {P
′
iintra,T ∪P

′
i,mc},

∀iintra ∈ G(T | mc),∀T ∈ M, ∀mc ∈MC
(3)

where P̂i,T is the predicted retrieved embedding for sam-
ple i’s missing modality T . R(·) denotes the router respon-
sible for top-k expert selection, as defined in Equation 1,
given an input embedding or token. Here, the input of SMoE,
context-aware embedding, x includes (i.e., ∪) both intra-
modal examples (P

′

iintra,T ) and inter-modal examples (P
′

i,mc).
P

′
= MHA(P), where P represents the embedding after

passing through the modality-specific encoder from raw fea-
ture space. This denotes the embedding or token after under-
going Multi-Head Attention (MHA), i.e., Cross-Attention, en-
abling interaction between tokens. Thus, tokens are endowed
with not only self-modality knowledge but also inter-modal
harmonization before being passed to the SMoE router.

For the expert design, ET
e (x) represents the modality-

specific expert , where each expert corresponds to a
distinct FFN layer, is distinct and newly introduced in
MoE-Retriever to enhance context-awareness, particu-
larly in handling missing modality scenarios. Notably, the
retrieval target differs for each modality combination in vari-
ous samples, leading us to allocate specific expert indices for
each target modality. For instance, if there are 32 experts and
four modalities, each modality will have its own pool of 8 ex-
perts. Additionally, to enhance flexibility and generalizability,
we include shared experts (denoted as ’Shared’ in Figure 2),
expecting that common knowledge can be leveraged across
different modalities. The number of shared experts is con-
trolled by the hyperparameter b, and we elaborate on this
design in Appendix D.

After retrieving the most relevant embedding for each
missing modality, we proceed to the subsequent fusion layer2,
followed by the prediction head for the downstream task.
Since gradients flow continuously from the input features to
the output predictions, this enables end-to-end training. For
the overall algorithm, please refer to Appendix A.

2The fusion layer can be based on diverse architectures, such
as Transformers or even an SMoE layer. To ensure generalizability,
we choose a vanilla Transformer encoder as our fusion layer and
explore alternative backbones in the Experiments section.



Table 1: Performance comparison in ADNI and MIMIC Datasets. Image (I), Genetic (G), Clinical (C), and Biospecimen (B)
modalities are used for ADNI dataset. For ADNI dataset, we use the image modality as a central reference, and sequentially
added genetic, clinical, and finally all four modalities. Lab (L), Notes (N ), and Code (C) modalities are used in MIMIC dataset.

Dataset Modality Metric mmFormer ShaSpec M3Care MUSE FuseMoE MoE-Retriever

ADNI

I+G Acc. 50.42±4.98 54.81±4.47 48.69±4.03 43.90±2.59 52.19±4.25 61.09±2.12

F1 46.66±2.40 54.43±4.11 40.29±6.49 26.83±2.68 48.22±6.28 62.10±1.12

I+G+C Acc. 51.73±1.40 58.36±1.65 48.97±2.45 45.04±2.65 60.97±1.32 63.12±1.19

F1 49.97±1.89 52.69±4.99 43.55±6.24 37.21±2.61 52.21±3.87 62.17±2.90

I+G+C+B Acc. 55.46±1.05 59.94±2.25 54.68±0.70 52.24±2.61 59.52±1.00 64.52±2.55

F1 46.94±0.31 59.94±1.88 46.09±2.29 43.07±2.01 54.63±1.16 63.80±2.96

MIMIC

L+N Acc. 77.37±0.00 77.37±0.15 76.14±0.46 77.40±1.12 60.50±3.82 76.82±3.02

F1 43.62±0.00 55.19±1.52 45.26±0.44 51.53±1.90 51.58±1.32 58.06±2.19

L+C Acc. 77.37±0.00 77.37±0.13 76.76±0.59 77.40±1.12 63.31±3.21 77.20±0.47

F1 43.62±0.00 57.32±0.52 43.92±0.52 51.53±1.90 51.24±0.60 57.73±0.64

N+C Acc. 77.37±0.00 77.40±0.03 77.26±0.35 77.32±1.13 64.77±0.36 77.45±0.14

F1 43.62±0.00 54.59±0.65 45.31±1.22 51.53±1.90 48.11±1.05 56.65±1.23

L+N+C Acc. 77.37±0.00 77.40±0.09 76.04±0.70 77.40±1.12 63.90±1.72 76.59±0.07

F1 43.62±0.00 55.79±0.94 45.43±1.17 51.25±1.87 55.72±1.03 59.74±0.81

Experiments
Datasets. We evaluate MoE-Retriever on four mul-
timodal datasets across medical and general domains. For
medical data, we use the ADNI dataset (Weiner et al. 2010,
2017), which integrates imaging (MRI), genetics, clinical
metrics, and biospecimens to classify Alzheimer’s Disease
stages (Dementia, Cognitively Normal, or Mild Cognitive
Impairment) from 2,380 samples, and the MIMIC-IV dataset
(Johnson et al. 2023), consisting of structured (labs, vitals)
and unstructured data (clinical notes, ICD-9 codes) from
9,003 critical care patients for one-year mortality prediction.
For general multimodal datasets, we use CMU-MOSI (Zadeh
et al. 2016), a video sentiment analysis dataset with 2,199
annotated clips, and ENRICO (Leiva, Hota, and Oulasvirta
2020), a collection of 1,460 app screens classified into 20 de-
sign categories. Detailed preprocessing steps for each dataset
and implementation details are provided in Appendix B.
Baselines. We compare MoE-Retriever against vari-
ous state-of-the-art baselines from three categories. (1) fea-
ture modeling methods: mmFormer (Zhang et al. 2022b) and
ShaSpec (Wang et al. 2023)). (2) graph-based approaches:
MUSE (Wu et al. 2024) and M3Care (Zhang et al. 2022a).
(3) MoE-based method: FuseMoE (Han et al. 2024). For de-
tails on the modality-specific encoder settings, please refer to
Appendix B. For a more comprehensive discussion of related
works, including these baselines is provided at Appendix E.
Primary Results. Table 1 presents several insights: 1)
On the ADNI dataset, among all modality combina-
tions, MoE-Retriever outperforms all baselines by a
notable margin. 2) Notably, as the number of available
modalities increases (e.g., I + G + C + B), the potential
of MoE-Retriever grows, providing a large margin of
improvement (7.64% gain compared to the best-performing
model, ShaSpec, and 8.40% gain compared to the state-of-
the-art model, FuseMoE). This shows that with more modal-
ities, there is greater room for improvement, which can be
attributed to the fact that a larger number of intra- and inter-

modal samples facilitate the retrieval process. 3) The two
graph-based methods, M3Care (Zhang et al. 2022a) and
MUSE (Wu et al. 2024), perform the worst on the ADNI
dataset. This suggests that while graph-based approaches cap-
ture intra-modal relationships between samples, they struggle
due to the lack of handling inter-modal interactions, high-
lighting the importance of these interactions. 4) FuseMoE
(Han et al. 2024), a mixture-of-experts (MoE)-based method,
achieves the best performance on the ADNI dataset but sig-
nificantly underperforms on the MIMIC dataset 3. This can
be attributed to FuseMoE’s reliance on a single random em-
bedding to impute missing modalities. 5) On the MIMIC
dataset, all baseline models suffer from the label imbalance
problem, resulting in either Acc or F1 scores being biased.
However, MoE-Retriever appears to be a well-balanced
model, where the F1 score, being more significant than Acc
in imbalanced cases, consistently outperforms all baselines.
All in all, MoE-Retriever achieves notable performance
gains on both datasets, thanks to its ability to model intra-
and inter-modal contexts and its context-aware routing pol-
icy via the SMoE design, showcasing that better-retrieved
embeddings for missing modalities lead to downstream per-
formance improvements. For the results on ENRICO and
CMU-MOSI datasets, please refer to Appendix C.

How MoE-Retriever Contributes?
In-depth Analysis. To gain a deeper understanding of
how MoE-Retriever functions and contributes to embed-
ding retrieval, we provide an in-depth analysis using the
ADNI dataset in Figure 3. First, as shown in Figure 3 (a),
we observe six unique modality combination regions. Inter-
estingly, the clinical modality is present in all combinations,
indicating that the input token will always include the clinical

3We attempted to use the authors’ code but observed unstable
performance. Thus, we borrowed FuseMoE’s performance on these
datasets from the recent Flex-MoE paper (Yun et al. 2024).
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Figure 3: (a) Statistics of modality combinations observed in the ADNI dataset. We observe that although the ADNI dataset
comprises four modalities, the modality combinations are not as diverse, showing only six unique regions. Notably, all modality
combinations include the clinical modality. (b) Given an input token (i.e., modality combination), we track the expert selection
ratio based on the modality combination. Alternatively, (c) from the expert’s perspective, we provide how each expert selects the
input token and their relative ratio. The backbone illustration of (a) is adapted from (Yun et al. 2024).

(C) modality. This also suggests that the missing modality,
i.e., the target modality, will often include I , G, or B, depend-
ing on its interaction with other modalities.

Next, after training MoE-Retriever , we track the ac-
tivation ratio from both token and expert perspectives. In
Figure 3 (b), we observe: 1) MoE-Retriever successfully
learns which modality should be selected and imputed. For
example, when the token index is given as BCG, which lacks
the I modality, the majority of tokens select image-specific
experts, ranging from I1 to I8. 2) This imputation tendency is
also observed when the input token is BCI or BC, naturally
incorporating the missing modality. This indicates that both
the router and the experts are equipped with the knowledge
of how to handle different input modality combinations. 3)
It is also notable that shared experts are frequently selected
among activated experts, suggesting that these shared experts
have learned and contain common knowledge that can in-
teract with various modalities, aligning with the motivation
behind designing shared experts as a buffer.

4) In Figure 3 (c), which shows the token selection ratio
from the expert’s perspective, it is expected that BCGI is
widely chosen by the experts, as this full modality combina-
tion is the majority in the ADNI dataset. This combination is
frequently sampled through the supporting group, serving as
a reference for missing cases. 5) We also observe that experts
select the necessary inputs, such as B3, B4, B5, which most
often select tokens like CI . 6) In summary, by equipping
the router and experts with the knowledge to select the most
relevant embedding candidates, missing embeddings are ef-
fectively retrieved to interact with other modalities. This, in
turn, boosts performance in downstream tasks by leveraging
intra- and inter-modal context and a context-aware routing
policy. For the ablation study and variants of each module,
please refer to Appendix D.

Computational Efficiency
In Figure 4, we compare the inference time for a single epoch,
computational cost, and the number of parameters for each
model across different modality configurations in the ADNI

dataset. The results show that MoE-Retriever outper-
forms in all three computational dimensions: 1) Mean Time,
2) GFLOPs, and 3) Number of Parameters, thanks to the
adoption of the SMoE design. Notably, as the modality com-
binations increase, the efficiency is maintained, highlighting
the advantage of SMoE, which sparsely activates the rele-
vant parameters. This represents a significant step forward in
embedding retrieval design.
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Figure 4: Comparison of computational efficiency of different
methods. The left figure displays the averaged inference time
for a single epoch of testing data, with error bar showing the
variance. The middle plot illustrates the computational cost
in GFLOPs (floating-point operations per second divided by
109), while the right figure shows the number of parameters
on a logarithmic scale. The FLOPs and GFLOPs are com-
puted using the fvcore package.

Conclusion
In this work, we propose MoE-Retriever, a novel
framework inspired by the SMoE design that uniquely
integrates both intra-modal and inter-modal con-
texts. MoE-Retriever first generates context-aware
embeddings from a modality combination-based supporting
group for intra-modal and inter-modal contexts. Then, SMoE
router selects the most relevant experts—i.e., embeddings
tailored to specific missing modality scenarios. Our extensive
experiments on both medical and general domain datasets
demonstrate that MoE-Retriever not only enhances
accuracy and robustness in missing modality scenarios but
also exhibits scalability and computational efficiency.
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A Overall Algorithm
To summarize, the overall algorithm of MoE-Retriever is
detailed in Algorithm 1.

Algorithm 1: The overall procedure of MoE-Retriever.

1: Input: Samples, i ≤ N , Supporting Group, G(T | mc),
Modality Set,M, Modality Combination Set, mc

2: Output: Retrieved Embedding for Missing Modality, T
3: for i = 1, · · · , N do
4: if |mci| < |M| :
5: for t ∈ Ti do
6: x = []
7: /* Intra-Modal Context */
8: Samples ∼ G(t | mci)
9: for j ∈ Samples do

10: x.append(Pj,T )
11: end for
12: /* Inter-Modal Context */
13: for mc ∈ mci do
14: x.append(Pi,mc)
15: end for
16: /* Context-Aware Routing Policy */
17: x← MHA(x)

18: P̂i,T ← SMoE(x,R, ET , top-k)
19: end for
20: end for

B Details on Datasets
We followed the same preprocessing procedure of the ADNI
dataset and MIMIC dataset, as described in Flex-MoE (Yun
et al. 2024).

Detailed Data Preprocessing in ADNI
Image Modality To preprocess the image data, we first ap-
plied a correction for magnetic field intensity inhomogene-
ity to ensure consistency and reliability across MRI images.
Next, we used the MUSE (Multiatlas Region Segmentation
Utilizing Ensembles of Registration Algorithms and Parame-
ters) method to segment gray matter tissue, the primary focus
of this study (Doshi et al. 2016). This technique involves
utilizing multiple atlases to extract the most accurate region-
of-interest values from the segmented gray matter. Afterward,
voxel-wise volumetric maps of tissue regions were created
by spatially aligning skull-stripped images to a template in
the Montreal Neurological Institute (MNI) space, using a
registration method (Ou et al. 2011).
Genetic Modality We obtained SNP (single nucleotide poly-
morphisms) data from the ADNI 1, GO/2, and 3 studies, and
pre-processed it as follows. First, SNP data from these studies
were aligned to a unified reference build using Liftover https:
//liftover.broadinstitute.org/, converting all data to NCBI
build 37 (UCSC hg19). Next, we aligned strands based on
the 1000 Genome Project phase 3, using McCarthy Group
Tools https://www.well.ox.ac.uk/~wrayner/tools/. Linkage
disequilibrium (LD) pruning was then applied with parame-
ters (50, 5, 0.1) to remove highly correlated SNPs, reducing
the total SNPs from 565, 989 to 144, 746. Imputation was
performed on this pruned set using the Michigan Imputation



Server https://imputationserver.sph.umich.edu/index.html#!,
and the resulting SNP data was recoded as {0, 1, 2}.
Biospecimen Modality Biospecimen data was extracted
from several ADNI-provided csv files. CSF Aβ1-42 and Aβ1-
40 data were taken from ISOPROSTANE_09May2024.csv,
Total Tau and Phosphorylated Tau from
UPENNBIOMK_ROCHE_ELECSYS_09May2024.csv,
Plasma Neurofilament Light Chain data from bateman-
lab_20221118_09May2024.csv, and ApoE genotype data
from APOERES_09May2024.csv. Numerical data was
scaled using a MinMax scaler to a range of -1 to 1, while
categorical data was one-hot encoded. For missing values,
we imputed the mean for numerical fields and the mode for
categorical fields.
Clinical Modality Clinical data was ex-
tracted from ADNI csv files, including MED-
HIST_09May2024.csv, NEUROEXM_09May2024.csv, PT-
DEMOG_09May2024.csv, RECCMEDS_09May2024.csv,
and VITALS_09May2024.csv. During preprocessing, we
excluded the columns ’PTCOGBEG,’ ’PTADDX,’ and
’PTADBEG,’ which contain direct Alzheimer’s Disease
diagnosis information. Numerical data was scaled using a
MinMax scaler (-1 to 1), while categorical data was one-hot
encoded. Missing values were imputed by using the mean for
numerical columns and the mode for categorical columns.

Detailed Data Preprocessing in MIMIC
Lab, Notes, Codes Modalities. For the MIMIC dataset, we
use the Medical Information Mart for Intensive Care IV
(MIMIC-IV) database, which contains de-identified health
data for patients who were admitted to either the emergency
department or stayed in critical care units of the Beth Is-
rael Deaconess Medical Center in Boston, Massachusetts24.
MIMIC-IV excludes patients under 18 years of age. We take a
subset of the MIMIC-IV data, where each patient has at least
more than 1 visit in the dataset as this subset corresponds
to patients who likely have more serious health conditions.
For each datapoint, we extract ICD-9 codes, clinical text,
and labs and vital values. Using this data, we perform binary
classification on one-year mortality, which foresees whether
or not this patient will pass away in a year. We drop visits
that occur at the same time as the patient’s death.
Missingness in MIMIC dataset. Code Modality: This com-
bines diagnosis and procedure data. There are 4 records with
missing diagnoses and 1777 with missing procedures. Note
Modality: Derived from the “text" column of the original
CSV file, there are 108 records with missing notes. Lab
Modality: This presents a more complex scenario, as it in-
cludes 2172 different measurements. If we consider all 2172
measurements as potentially missing, then technically, there
is no missing data since essential measurements, like heart
rate, are consistently collected for each patient. However, if
we evaluate the proportion of missing values in the (9003,
2172) matrix, we find that 94.216% of the entries are NaN.
Implementations. To ensure a fair comparison with other
baselines, we utilized the optimal hyperparameter settings
provided in the original papers. For dataset split, we choose
70% for training, 15% as validation set, and the remaining
15% for testing. Both the ADNI and MIMIC datasets contain

missing data. For the CMU-MOSI and ENRICO datasets,
we applied random dropping with probability of 0.3 for each
modality independently to simulate missing modality scenar-
ios. Given the incomplete nature of the datasets, if a baseline
implementation could impute or interact with other modali-
ties, we leveraged those methods. Otherwise, we used zero-
padding to support batch-wise training. All experiments were
conducted on NVIDIA A100 GPUs. Each experiment was
run three times with different seeds to ensure reproducibility,
and the results were averaged.

Modality-specific Encoder Settings
ADNI Dataset. For image modality, we used a customized
3D-CNN (Esmaeilzadeh et al. 2018) with hidden dimension
256 as encoder . For genomics, clinical, and biospecimen
modalities, we used MLP with hidden dimension 256 as
encoder. MIMIC Dataset. For all lab, note, and code modal-
ities, we used LSTM with hidden dimension 256 as encoder.
ENRICO Dataset. For both screenshot image and wireframe
image modality, we used VGG11 from torchvision library
with hidden dimension size 16 as encoder. CMU-MOSI
Dataset. For both vision, audio, and text modality, we used
Gated Recurrent Unit with hidden dimension 256 as encoder.

C More Results
Results on ENRICO and CMU-MOSI Datasets. Ta-
ble 2 shows the performance across generalized domains:
design motifs for the ENRICO dataset and sentiment
analysis for the CMU-MOSI dataset. We observe that
1) MoE-Retriever outperforms current multimodal base-
lines, demonstrating its generalizability across diverse mul-
timodal domains. Specifically, in the CMU-MOSI dataset,
we observe 2) that as the number of modalities increases, the
performance of existing baselines improves, but the increase
does not surpass that of MoE-Retriever, highlighting its
effectiveness as a strong benchmark model for various do-
mains and modality combinations.

D Ablation Study
To verify the effectiveness of MoE-Retriever, we con-
ducted an extensive ablation study using the ADNI dataset
in the I + G + C + B scenario in Table 3. Key ob-
servations include: 1) Regarding the core module design
in MoE-Retriever , involving inter-modal context is cru-
cial as it personalizes the specific observed modality context
of each sample. 2) When designing shared experts (Esh),
it is important to strike a balance in the number of shared
experts. Having too many can deteriorate the acquisition of
specialized knowledge required by modality-specific experts.
3) For modality-specific experts, selecting too few or too
many experts can lead to suboptimal results, emphasizing
the need for a balanced number, such as eight. 4) For the
router design, utilizing a single router to handle both intra-
and inter-modal contexts proved to be sufficient. The more
examples it encounters during training, the more knowledge
it is able to accumulate. 5) In the subsequent fusion layer,
we experimented with both a vanilla transformer design and



Dataset Modality mmFormer ShaSpec M3Care MUSE FuseMoE MoE-Retriever

ENRICO S+W 36.19±0.98 21.03±0.32 19.06±5.17 36.01±2.81 36.99±6.83 38.24±1.16

CMU-MOSI

V+A 42.23±0.00 50.91±1.63 42.23±0.00 44.64±1.94 47.46±2.36 53.12±2.26

V+T 62.20±0.90 60.01±1.44 42.12±0.14 52.54±1.92 63.77±1.62 65.74±0.55

A+T 65.65±0.63 65.09±1.02 47.05±6.83 50.82±1.91 61.33±0.93 66.13±0.69

V+A+T 62.75±1.12 64.02±0.65 42.23±0.00 50.66±1.93 60.67±0.22 65.21±2.72

Table 2: Performance comparison in ENRICO and CMU-MOSI Datasets. Screenshot (S), and Wireframe (W) modalities are
used for ENRICO dataset. Vision (V), Audio (A), and Text (T ) modalities are used in CMU-MOSI dataset. We report Accuracy
(Acc.) for both datasets.

a version with the SMoE layer attached. However, no sig-
nificant performance gain was observed, suggesting that the
utilization of SMoE in embedding retrieval was sufficient.

Table 3: Ablation Study.

Model Variants Acc. F1

MoE-Retriever
64.52±2.55 63.80±2.96

(|ET |=8, |ESh.|=4, |R|=1)

w/o Intra-Modal Context 61.26±2.33 61.80±1.67

w/o Inter-Modal Context 60.97±1.50 61.60±0.78

w/o Context-Aware Routing 62.34±1.25 63.11±2.11

|ET |=8, |ESh.|=1, |R|=1 60.60±1.32 59.70±1.26

|ET |=8, |ESh.|=2, |R|=1 63.77±1.35 62.92±0.28

|ET |=8, |ESh.|=8, |R|=1 62.98±0.79 62.75±1.41

|ET |=4, |ESh.|=4, |R|=1 63.14±2.47 60.88±2.21

|ET |=16, |ESh.|=4, |R|=1 60.14±2.97 59.91±1.22

|ET |=8, |ESh.|=4, |R|=2 61.14±1.85 61.04±1.12

|ET |=8, |ESh.|=4, |R|=4 60.54±2.52 60.23±2.71

2 x Transformer Layer 63.34±0.97 62.79±1.31

Sparse MoE Fusion Layer 62.84±2.85 63.11±2.25

E Related Work
Multimodal Learning with Missing Modality. Multimodal
learning has garnered increasing attention in the machine
learning community, particularly in the medical domain,
where clinical data is inherently multimodal (Khader et al.
2023; Steyaert et al. 2023). However, in real-world clinical
practice, missing modalities are a common challenge (Zhou,
Ruan, and Hu 2023; Liu et al. 2023). To address this issue,
one straightforward approach is to leverage generative mod-
els to impute the missing modalities (Pan et al. 2021; Zhang
et al. 2024). Nonetheless, generative modeling of another
distribution is a ill-posed problem (Zhang et al. 2022a). In
contrast, non-generative approaches have emerged, utilizing
techniques such as graph-based modeling (Wu et al. 2024),
and modality fusion (Zhang et al. 2022b; Wang et al. 2023;
Yao et al. 2024). While these methods can harness both inter-
patient and intra-patient information, they face challenges
related to scalability and struggle to handle fleximodal scenar-
ios (Han et al. 2024), where any combination of modalities

may be present. To improve scalability, FuseMoE (Han et al.
2024) introduced a sparse Mixture-of-Experts (MoE) model
aims to be robust to any combination of missing modality
scenario. However, despite its scalability advantages, Fuse-
MoE do not explicitly account both the inter-patient and
intra-patient relationships simultaneously, limiting its ability
to fully utilize the multimodal context of clinical data.

Sparse Mixture-of-Experts (SMoE). SMoE (Shazeer
et al. 2017) builds on the traditional Mixture-of-Experts
(MoE) model (Jacobs et al. 1991; Jordan and Jacobs 1994;
Chen, Xu, and Chi 1999; Yuksel, Wilson, and Gader 2012)
by introducing sparsity, which enhances both computational
efficiency and model performance. By selectively activating
only the most relevant experts for a specific task, SMoE min-
imizes overhead and improves scalability, making it partic-
ularly useful for complex, high-dimensional datasets across
various applications. It has been widely applied in both vi-
sion (Riquelme et al. 2021; Lou et al. 2021; Ahmed, Baig,
and Torresani 2016; Wang et al. 2020) and language pro-
cessing (Lepikhin et al. 2021; Zhang et al. 2021; Zuo et al.
2022; Jiang et al. 2021). Its capacity to dynamically allocate
different network parts to specific tasks (Ma et al. 2018; Chen
et al. 2023) or data modalities (Kudugunta et al. 2021) has
been explored for various applications (Mustafa et al. 2022).
Research shows its effectiveness in areas like classification
tasks for digital number recognition (Hazimeh et al. 2021)
and medical signal processing (Aoki, Tung, and Oliveira
2021). However, the current use of SMoE is often biased
toward its role as a backbone design, typically integrated into
Transformer architectures to improve embedding represen-
tations in fusion or prediction layers. Its potential for more
effective use, such as serving as a retriever or supplementing
missing embeddings to bridge the feature space and encoder
space, remains underexplored.


