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ABSTRACT

Large language models (LLMs) have been adopted to solve sequential decision-
making tasks such as multi-armed bandits (MAB), in which an LLM is directly
instructed to select the arms to pull in every iteration. However, this paradigm of
direct arm selection using LLMs has been shown to be suboptimal in many MAB
tasks. Therefore, we propose an alternative approach which combines the strengths
of classical MAB and LLMs. Specifically, we adopt a classical MAB algorithm
as the high-level framework and leverage the strong in-context learning capability
of LLMs to perform the sub-task of reward prediction. Firstly, we incorporate the
LLM-based reward predictor into the classical Thompson sampling (TS) algorithm
and adopt a decaying schedule for the LLM temperature to ensure a transition
from exploration to exploitation. Next, we incorporate the LLM-based reward
predictor (with a temperature of 0) into a regression oracle-based MAB algorithm
equipped with an explicit exploration mechanism. We also extend our TS-based
algorithm to dueling bandits where only the preference feedback between pairs
of arms is available, which requires non-trivial algorithmic modifications. We
conduct empirical evaluations using both synthetic MAB tasks and experiments
designed using real-world text datasets, in which the results show that our algo-
rithms consistently outperform previous baseline methods based on direct arm
selection. Interestingly, we also demonstrate that in challenging tasks where the
arms lack semantic meanings that can be exploited by the LLM, our approach
achieves considerably better performance than LLM-based direct arm selection.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive capabilities in various tasks OpenAI
(2023a;b); Liu et al. (2024a). As a result, many recent works have leveraged LLMs as agents to solve
real-world sequential decision-making tasks. Specifically, some recent works have adopted powerful
pre-trained LLMs to solve multi-armed bandit (MAB) problems Krishnamurthy et al. (2024); Chen
et al. (2024); Xia et al. (2024); Mukherjee et al. (2024). These works usually directly instruct a pre-
trained LLM to select the next arm to pull and do not require the costly LLM fine-tuning. However,
this paradigm has been demonstrated to lead to sub-optimal MAB algorithms in many scenarios
Krishnamurthy et al. (2024). In other words, it has been observed that directly using an LLM for arm
selection often struggles to explore efficiently in real-world environments. To this end, we propose
an alternative paradigm which combines classical MAB algorithms with LLMs such that we can
achieve the best of both worlds. Specifically, we leverage a classical MAB algorithm as the high-level
framework, and adopt a pre-trained LLM (without fine-tuning) to perform the sub-task of reward
prediction based on the history of (the features of) the selected arms and their observed rewards.
Compared to the previous approach of directly employing an LLM for arm selection Krishnamurthy
et al. (2024), this allows us to leverage the strength of LLMs in in-context learning (ICL) to solve
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prediction (i.e., supervised learning) tasks. In other words, instead of using an LLM to replace the
MAB algorithm, we leverage LLMs to enhance classical MAB algorithms.

We further motivate our approach by drawing analogy to recent works aiming to improve the
performance of LLMs in complex reasoning tasks via tree search methods Hao et al. (2023); Yao
et al. (2024); Zhang et al. (2024); Bi et al. (2024). Specifically, these methods often adopt a classical
tree search algorithm as the high-level framework (e.g., Monte-Carlo tree search), and use LLMs
to perform different sub-tasks such as reward/value prediction, action generation, etc. Therefore,
their overall paradigm aligns with our approach of using classical algorithms to guide the high-level
decision-making while leveraging the strengths of LLMs in performing some sub-tasks. For example,
the work of Koh et al. (2024) has also used a pre-trained LLM for reward prediction based on the
past history to improve classical algorithms. Specifically, they have adopted best-first search as the
high-level reasoning framework in web automation and used a pre-trained multimodal LLM as a
reward/value function in the framework.

In order to incorporate an LLM as a reward predictor into MAB in a principled way, we adopt
two classical MAB algorithms as our high-level framework which are naturally amenable to the
integration of an LLM-based reward predictor. Firstly, we adopt the classical Thompson sampling
(TS) algorithm Thompson (1933) and use a powerful pre-trained LLM to sample the reward values
used in TS, hence introducing our Thompson Sampling with LLM (TS-LLM) algorithm. We ensure a
proper balance between exploration and exploitation by carefully controlling the temperature of the
LLM. That is, we ensure that the temperature is large enough in the initial stages to achieve sufficient
exploration and gradually decay its value to promote more exploitation in later stages. Secondly, we
adopt a regression oracle-based MAB algorithm Foster & Rakhlin (2020) and leverage the LLM as
the regression oracle for reward prediction, to introduce our Regression Oracle-based bandit with
LLM (RO-LLM). Since the algorithm from Foster & Rakhlin (2020) is equipped with an explicit
exploration mechanism and hence only needs the LLM to provide an accurate reward prediction, we
set the LLM temperature to 0 to remove the randomness in the reward prediction.

In addition to classical stochastic MAB, we also introduce an LLM-enhanced algorithm for dueling
bandits Yue et al. (2012); Li et al. (2024); Verma et al. (2024). In dueling bandits, instead of a single
arm, a pair of arms are selected in every iteration, after which a binary preference observation is
revealed indicating which arm is preferred over the other. Thanks to the prevalence of preference
feedback, dueling bandits are widely applicable in various important real-world scenarios, such as
recommender systems Yang et al. (2024b), alignment of LLMs (via reinforcement learning from
human feedback) Dwaracherla et al. (2024), among others. However, adapting our algorithms to
dueling bandits is non-trivial due to the need to handle preference feedback (rather than numerical
feedback) and to select a pair of arms. We adapt our TS-LLM algorithm discussed above to introduce
the Thompson Sampling with LLM for Dueling Bandits (TS-LLM-DB) algorithm. In order to achieve
a seamless integration of the LLM (as a reward predictor) into dueling bandits, we have leveraged the
theoretical equivalence between the maximizers of the Borda function and the latent reward function
in dueling bandits Mehta et al. (2023) (more details in Sec. 3.3).

Note that in addition to the strong reward prediction capability of LLMs, another benefit of our
LLM-enhanced MAB algorithms is that they do not require us to specify the form of the unknown
reward function. Specifically, classical MAB algorithms are usually only able to handle a specific
class of reward functions, such as linear reward functions Abbasi-Yadkori et al. (2011). As a result,
misspecification of the reward function (i.e., when the groundtruth reward function does not lie in
the pre-specified function class) has been an important challenge in MAB, and many efforts have
been made to address this difficulty Ghosh et al. (2017); Wang et al. (2024b). In contrast, due to
the flexibility of LLMs to predict reward functions of varying degrees of complexity, our algorithms
can automatically adapt to the level of difficulty of the problem. As a result, we are free from the
requirement to specify the class of reward functions beforehand.

We use extensive experiments to demonstrate the empirical advantage of our algorithms. We firstly
use synthetic stochastic MAB experiments to show that our TS-LLM and RO-LLM algorithms both
consistently outperform baseline methods which directly instruct the LLM to select actions (Sec. 4.1).
Next, we show that our TS-LLM-DB algorithm achieves small regrets in synthetic dueling bandit
experiments (Sec. 4.2). We also apply our TS-LLM to contextual MAB experiments designed using
two real-world text datasets (Sec. 4.3). The results show that in tasks where the LLM can exploit the
semantic meanings of the arm features (to accurately predict the association between the contexts
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and arms), directly instructing the LLM to select actions leads to strong performance which is
comparable to our TS-LLM. In other more challenging tasks in which the arms lack such semantic
information, LLM-based direct arm selection suffers from significant performance degradation, and
our TS-LLM performs dramatically better. We expected our findings to provide useful and practical
guidelines for future works and applications adopting LLMs as agents to solve real-world sequential
decision-making tasks.

2 PROBLEM SETTING

2.1 MULTI-ARMED BANDITS (MAB)

In our problem setting, every arm i = 1, . . . ,K is associated with a d-dimensional feature vector
xi ∈ Rd and the reward of an arm i is a function of its feature vector xi: f(xi). For example, in
the classical linear bandits, the reward of arm i is given by a linear function: f(xi) = θ⊤xi with
an unknown θ. In every iteration t, an MAB algorithm selects an arm it to pull, and observes a
corresponding noisy reward yt = f(xit)+ ϵ where ϵ is usually a zero-mean Gaussian noise. The goal
of an MAB algorithm is usually to minimize the cumulative regret: RT =

∑T
t=1[f(xi∗)− f(xit)]

where i∗ = argmaxi=1,...,Kf(xi) represents the optimal arm.

We also consider the setting of contextual MAB (Sec. 4.3), in which in every iteration t, we receive a
new set of K arms denoted as It = {it1, . . . , itK} and choose an arm it from It. When selecting an
arm in iteration t, an MAB algorithm needs to make use of (the feature vectors of) the previously
selected arms and their corresponding rewards: Dt−1 = {(xis , rs)}s=1,...,t−1. Therefore, we will
include Dt−1 in the prompt for the LLM-based agent in our algorithms.

2.2 DUELING BANDITS

In dueling bandits, in every iteration t, we select a pair of arms it,1 and it,2 and observe binary
preference feedback rt = 1(it,1 ≻ it,2), which is equal to 1 if it,1 is preferred over it,2 and 0
otherwise. We assume that the preference observation rt is generated by the commonly adopted BTL
model Luce (2005); Hunter (2004). Specifically, there exists a latent reward function f which maps
the feature vector xi of an arm i to its corresponding latent reward value f(xi). For a pair of arms
it,1 and it,2, the preference probability (i.e., the probability that arm it,1 is preferred over arm it,2)
under the BTL model is given by P(it,1 ≻ it,2) = µ(f(xit,1)− f(xit,2)), in which µ : R → [0, 1]
is the logistic function: µ(z) = 1/(1 + e−z). The preference observation rt = 1(it,1 ≻ it,2) is
then assumed to be sampled from a Bernoulli distribution with the probability P(it,1 ≻ it,2). The
performance of a dueling bandit algorithm is also often measured by regret. A common notion of
regret is RT =

∑T
t=1[2f(xi∗)− f(xit,1)− f(xit,2)]. However, in practical applications, we usually

need to devise a method to recommend an arm during the dueling bandit algorithm Lin et al. (2024).
Our LLM-based algorithm for dueling bandits recommends the first selected arm it,1 as the best arm
(more details in Sec. 3.3). Therefore, in our experiments (Sec. 4.2), we report the regret of the first
arm: RT =

∑T
t=1[f(xi∗)− f(xit,1))], which we believe is more relevant in practice.

3 LLM-ENHANCED MAB ALGORITHMS

3.1 THOMPSON SAMPLING WITH LLM (TS-LLM)

Our TS-LLM algorithm (Algo. 1) employs the LLM to predict the reward of every arm and leverages
the inherent randomness in the LLM-generated text to achieve exploration. Specifically, in every
iteration t, we include the current history of observations Dt−1 = {xis , rs}s=1,...,t−1 in the prompt
for the LLM. For each arm i = 1, . . . ,K, we append its feature vector xi to the end of the prompt
and instruct the LLM to predict its reward r̂t,i (line 3 of Algo. 1). The prompt adopted in this step is
illustrated in App. B.1. Then, the arm with the largest predicted reward r̂t,i is selected (line 5).

To achieve a gradual transition from exploration to exploitation, we choose a schedule for the
temperature of the LLM which decays across iterations. As a result, at the initial stage when
significant exploration is required, we use a large temperature to induce sufficient randomness in
the LLM-generated reward prediction. In later stages when a larger degree of exploitation is more
beneficial, we use a small temperature to reduce the randomness in the reward prediction. This
allows us to naturally combine the powerful reward prediction form the LLM, thanks to its impressive
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in-context learning (ICL) capability, and the classical TS algorithm to derive a coherent algorithm for
arm selection in MAB. We empirically verify that such a decaying schedule of temperatures indeed
achieves better performance than using a fixed temperature in Sec. 5.1.

Justifications for TS-LLM (Algo. 1). Our TS-LLM algorithm shares a similar motivation with some
previous works which have also relied on the randomness in the output generated by the LLM to
achieve exploration in sequential decision-making tasks. For example, the work of Yang et al. (2024a)
has adopted an LLM with a large temperature to select a batch of diverse input queries for Bayesian
optimization; the work of Liu et al. (2024b) has used an LLM to predict the performance achieved by
different hyperparameter configurations in Bayesian optimization, and used the variance of multiple
independently sampled predictions from the LLM as the exploration term in their upper confidence
bound-based algorithm. Another line of works with similar underlying principles as our TS-LLM is
approximating Thompson sampling (TS) with neural networks. Some previous works have adopted
an ensemble of neural networks (NNs) Osband et al. (2016; 2023); Dwaracherla et al. (2024) and
performed approximate TS by randomly sampling from the ensemble. In contrast, we approximate
the posterior distribution of rewards in TS using the stochastic predictions generated by the LLM in
our TS-LLM.

Algorithm 1 TS-LLM
1: for iteration t = 1, . . . , T do
2: for arm i = 1, . . . ,K do
3: r̂t,i = LLM(Dt−1, xi) // predict

reward
4: end for
5: Select arm it = argmaxi=1,...,K r̂t,i,

observe reward rt
6: Update history Dt = Dt−1 ∪

{(xit , rt)}
7: end for

Algorithm 2 RO-LLM
1: for iteration t = 1, . . . , T do
2: for arm i = 1, . . . ,K do
3: l̂t,i = LLM(Dt−1, xi) // predict loss
4: end for
5: Let jt = argmini=1,...,K l̂t,i
6: for arm i = 1, . . . ,K and i ̸= jt do
7: pt,i =

1

µ+γ(l̂t,i−l̂t,jt )

8: end for
9: Let pt,jt = 1−

∑
i ̸=jt

pt,i
10: Sample it ∼ pt, observe loss lt (negated reward)
11: Update history Dt = Dt−1 ∪ {(it, lt)}
12: end for

3.2 REGRESSION ORACLE-BASED BANDIT WITH LLM (RO-LLM)

A line of works have proposed to adopt a generic regression oracle for reward prediction in MAB, and
incorporated explicit exploration mechanisms to derive theoretically principled algorithms Foster et al.
(2018); Foster & Rakhlin (2020). Interestingly, the high-level principle of these works aligns well
with our approach in this work, i.e., adopting a model capable of reward prediction (i.e., a regression
oracle in these previous works and an LLM in our work) and utilizing a separate high-level framework
to achieve exploration. Therefore, here we incorporate an LLM as the regression oracle into the
SquareCB algorithm from Foster & Rakhlin (2020), hence proposing our RO-LLM algorithm
(Algo. 2). To be consistent with Foster & Rakhlin (2020), instead of rewards, we consider the
observations as losses (line 10 of Algo. 2), which are simply the negation of rewards.

In every iteration t of our RO-LLM algorithm, we use the LLM to predict the loss l̂t,i of every arm i
(line 3 of Algo. 2). Here we adopt the same prompt as the TS-LLM algorithm (shown in App. B.1),
except that here we use losses as observations rather than rewards. Next, we choose the arm with the
smallest predicted loss and denote it as jt (line 4). After that, we use the LLM-based loss predictions
to construct a distribution pt over all K arms (lines 5-7), from which the next arm it is sampled (line
8). Note that the SquareCB algorithm from Foster & Rakhlin (2020) is equipped with an explicit
exploration mechanism (via the sampling distribution pt). As a result, unlike our TS-LLM algorithm,
here we no longer need to exploit the inherent randomness in the LLM-generated output to achieve
exploration. Therefore, when using the LLM for loss prediction in our RO-LLM algorithm (line 3 of
Algo. 2), we set the temperature of the LLM to 0 and hence obtain deterministic reward predictions.

3.3 THOMPSON SAMPLING WITH LLM FOR DUELING BANDITS (TS-LLM-DB)
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Algorithm 3 TS-LLM-DB
1: for iteration t = 1, . . . , T do
2: for arm i = 1, . . . ,K do
3: for uniformly sampled arm j = 1, . . . , N do
4: p̂t,i,j = LLM(Dt−1, [xi, xj ])
5: end for
6: Calculate r̂t,i =

1
N

∑N
n=1 p̂t,i,n

7: end for
8: Select the first arm it,1 = argmaxi=1,...,K r̂t,i
9: for arm j = 1, . . . ,K do

10: p̂t,j = LLM(Dt−1, [xj , xit,1 ])
11: end for
12: Select the second arm it,2 = argmaxi=1,...,K p̂t,i
13: Observe binary preference rt = 1(it,1 ≻ it,2)
14: Update history Dt = Dt−1 ∪ {([it,1, it,2], rt)}
15: end for

Here we introduce our TS-LLM-DB algorithm for dueling bandit, in which we select a pair of arms
it,1 and it,2 in every iteration and collect a binary observation indicating their relative preference
rt = 1(it,1 ≻ it,2).

Preference Probability Prediction. In contrast to our TS-LLM (Algo. 1) and RO-LLM (Algo. 2)
which use an LLM to predict the reward of every arm, our TS-LLM-DB algorithm (Algo. 3) instead
adopts an LLM to predict the probability that an arm is preferred over another arm. Specifically,
when adopting the LLM for preference probability prediction via ICL (line 4 of Algo. 3), for the sth

input-output pair in the dataset Dt−1 included in the prompt, the input corresponds to the features of
the pair of arms xis,1 and xis,2 (instead of a single arm in Algo. 1 and Algo. 2). The corresponding
output represents the observed preference rs = 1(is,1 ≻ is,2). When predicting the preference
probability of a pair of arms xi and xj , we append their features at the end of the prompt, denoted as
[xi, xj ] (line 4 of Algo. 3). As a result, the LLM is able to predict the probability that the first arm xi

is preferred over the second arm xj , i.e., predict P(xi ≻ xj). The prompt template we have adopted
here is shown in App. B.1.

Representing The Features of Arm Pairs. We adopt two approaches to incorporate the features of a
pair of arms into the prompt. Firstly, when the latent reward function f is linear: f(x) = θ⊤x, we
have that P(x1 ≻ x2) = µ(f(x1)− f(x2)) = µ

(
θ⊤(x1 − x2)

)
. That is, the preference probability

P(x1 ≻ x2) is a function of the difference x1 − x2. Therefore, we use the difference between the
feature vectors of the first arm and second arm (i.e., x1 − x2) in the prompt. Secondly, when the
latent reward function is non-linear, the preference probability is no longer a function of x1 − x2. In
this case, we concatenate the feature vectors of x1 and x2 and included them in the prompt.

Selection of A Pair of Arms. To select the pair of arms it,1 and it,2 in every iteration, we draw
inspirations from the arm selection strategy from the work of Verma et al. (2024). Specifically, in
iteration t, for every arm i, we use the LLM to predict the probability that arm i is preferred over N
uniformly sampled arms and calculate their average predicted probability r̂t,i (line 3-5 of Algo. 3).
Then, we choose the first arm by maximizing r̂t,i (line 6). This is equivalent to approximately
maximizing the Borda function fborda Xu et al. (2020), which is defined as the expected probability
that an arm is preferred over a randomly selected arm: fborda(x) = Ej∈U([K])[P(x ≻ xj)] where
U([K]) denotes the uniform distribution among all K arms. Specifically, we estimate the expectation
in fborda(x) by uniformly and independently sampling N arms (lines 3-5 of Algo. 3). Theoretically,
maximizing the Borda function fborda is equivalent to maximizing the latent reward function f
(see Sec. 2.2) Mehta et al. (2023). Therefore, the first arm it,1 is selected greedily, i.e., via pure
exploitation. As a result, after each iteration t, we let our TS-LLM-DB algorithm recommend the
first arm as the best arm. To choose the second arm, we firstly predict the probability that each arm is
preferred over the first arm it,1 (lines 7-8 of Algo. 3), and then select the second arm by maximizing
this predicted probability (line 9). This is inspired by the TS-based algorithm from Verma et al.
(2024), which encourages the second selected arm to both have large reward and be different from
it,1 and all previously selected arms. The work of Verma et al. (2024) has theoretically shown that
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Linear Reward Function Square Reward FunctionSinusoidal Reward Function Function Sampled from GP

Figure 1: The performance of our TS-LLM and RO-LLM in classical stochastic MAB tasks.

such an approach to selecting the pair of arms lead to strong performances (i.e., small cumulative
regrets) both in theory and in practice.

4 EXPERIMENTS

We firstly apply our TS-LLM and RO-LLM algorithms to synthetic stochastic MAB tasks with both
linear and non-linear reward functions (Sec. 4.1). Next, we apply our TS-LLM-DB algorithm to
solve synthetic dueling bandit problems (Sec. 4.2). Lastly, we adopt MAB tasks designed using two
real-world text datasets (Sec. 4.3) to unveil some interesting insights about our algorithms. We adopt
GPT-3.5-Turbo OpenAI (2023a) as the black-box LLM in the majority of our experiments, and also
use DeepSeek-V3 Liu et al. (2024a) in the experiments in (Sec. 4.3).

4.1 TS-LLM AND RO-LLM FOR CLASSICAL STOCHASTIC MAB

Here we compare our TS-LLM and RO-LLM algorithms with some baseline algorithms from the work
of Krishnamurthy et al. (2024). Specifically, we adopt the best prompt design from Krishnamurthy
et al. (2024), i.e., the prompt design which achieved the largest median reward among a total of
32 prompt designs when using GPT-3.5 in the hard bandit instance. Note that the prompt designs
from Krishnamurthy et al. (2024) do not take into account the features of the arms, therefore, we
have proposed and tested multiple variants of their baseline algorithm which differ in terms of the
position of the arm features: (a) Baseline NoFeature: the original algorithm from Krishnamurthy
et al. (2024); (b) Baseline FramingFeature: we add the arm features after the problem framing; (c)
Baseline History Feature: we add the arm features immediately before the history of interactions.

Here we adopt 4 different reward functions: a linear function, a square function, a sinusoidal function
and a function sampled from a Gaussian process (GP). Every arm is associated with a d = 4-
dimensional feature vector, and we use K = 16 arms in all experiments here. The cumulative
regrets of different algorithms are shown in Fig. 1. The figures show that both our TS-LLM and
RO-LLM algorithms consistently achieve smaller regrets than the baseline algorithms. In addition,
our TS-LLM significantly outperforms our RO-LLM algorithm, which is likely attributed to the strong
exploration capability enabled by the inherent randomness in the LLM-generated output (Sec. 3.1).
On the other hand, our RO-LLM algorithm generally have smaller variance across multiple trials,
which is indicated by the narrower error bars. This is likely due to the use of a temperature of 0 in
our RO-LLM algorithm (Sec. 3.2) and may make our RO-LLM algorithm more desirable in scenarios
where more consistent performance is preferred.

4.2 DUELING BANDITS

Here we apply our TS-LLM-DB algorithm to solve dueling bandit problems with two different latent
reward functions f : a linear function and a square function. Same as the experiments in Sec. 4.1, we
also let d = 4 and K = 16. In our experiments here, when selecting the first arm, we use N = 15
uniformly sampled arms to approximate the Borda function (Sec. 3.3). Similar to the experiments
on classical stochastic MAB (Sec. 4.1), we also adopt a decaying schedule of temperature when
selecting both arms. Since our TS-LLM-DB selects the first arm greedily (i.e., pure exploitation)
and chooses the second arm optimistically by balancing exploration and exploitation (Sec. 3.3), we
adopt a schedule of smaller temperatures when selecting the first arm to encourage exploitation. As
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Linear Reward Function Square Reward Function

Figure 2: The performance of our TS-LLM-DB algorithm in dueling bandits with linear and square
latent reward functions.

we have discussed in Sec. 3.3, for the linear latent reward function, we use the difference between
the feature vectors of the first arm and the second arm as the feature vector in the prompt; for the
non-linear square function, we instead adopt the concatenation of the pair of feature vectors.

The results are shown in Fig. 2. Following the common practice in dueling bandits Lin et al. (2024);
Verma et al. (2024), here we have reported the reward of the first selected arm (i.e., f(xit,1)) in every
iteration t. This is because the first arm is selected to be the one that is predicted to achieve the
largest reward (Sec. 3.3). Here we have only compared with the baseline of random search, because
it is highly non-trivial to adapt the algorithm from Krishnamurthy et al. (2024) to the sophisticated
dueling bandit problem. As shown in the figures, our TS-LLM-DB significantly outperforms random
search for both reward functions. Moreover, the regrets are generally larger in the more challenging
problem of non-linear (square) reward function.

OneShotWikiLinks OneShotWikiLinks AmazonCat-13K AmazonCat-13K
(GPT-3.5-Turbo) (DeepSeek-V3) (GPT-3.5-Turbo) (DeepSeek-V3)

Figure 3: The cumulative rewards in the text experiments using the OneShotWikiLinks and
AmazonCat-13K datasets (Sec. 4.3).

4.3 REAL-WORLD DATASETS WITH TEXT FEATURES

Here we perform experiments using two real-world text dataset: the OneShotWikiLinks dataset
Singh et al. (2012); Vasnetsov (2018) and the AmazonCat-13K dataset Bhatia et al. (2016), both
of which have been widely used in previous works on contextual bandits Chen et al. (2024). The
OneShotWikiLinks dataset Singh et al. (2012); Vasnetsov (2018) is a named-entity recognition
task in which the contexts consist of text phrases surrounding the mention text (both preceding and
following it), and the arms are text phrases representing concept names. AmazonCat-13K Bhatia
et al. (2016) is an extreme multi-label dataset where the contexts are text phrases derived from the title
and content of an item, and the arms are integers representing item tags. Thus, in the former dataset,
the arm features (i.e., the text phrases) contain semantic information that is likely beneficial for the
LLM in selecting arms, whereas in the latter dataset, the arm features lack such semantic content.
As a result, the latter dataset (i.e., AmazonCat-13K) requires a larger degree of exploration and is
hence more challenging.

We apply our TS-LLM to the tasks here, since it performs better than RO-LLM in the synthetic
experiments (Sec. 4.1). Since it is non-trivial to adapt the method from Krishnamurthy et al. (2024)
to the sophisticated problem setting here, we instead compare our TS-LLM with a baseline which
is obtained by modifying the prompt of our algorithm (originally designed for reward prediction)
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AmazonCat-13K AmazonCat-13K
(GPT-3.5-Turbo, 30 arms) (DeepSeek-V3, 30 arms)

Figure 4: The cumulative rewards in the text experiments using the AmazonCat-13K dataset with
K = 30 arms.

to instead directly select an arm. We refer to this baseline method as Baseline (Direct Arm Se-
lection). We have included the prompt templates used by our TS-LLM and the baseline (for both
experiments) in App. B.4. We consider K = 10 randomly sampled arms (i.e., 10 concept names
in OneShotWikiLinks and 10 items in AmazonCat-13K) in the experiments, and adopt two
powerful black-box LLMs: GPT-3.5-Turbo and DeepSeek-V3.

The results are shown in Fig. 3. The figures show that our TS-LLM algorithm achieves compara-
ble performance with the baseline of direct arm selection in the OneShotWikiLinks task and
significantly outperforms the baseline in the AmazonCat-13K task. This is likely because in
OneShotWikiLinks task, the powerful LLMs possesses in-depth knowledge about the semantic
meanings of the individual arms, i.e., the names of the entities. As a result, given some context
(i.e., the text before and after the entity), the LLM is able to accurately choose the corresponding
arm whose semantic meaning is associated with the context, which explains the strong performance
of the baseline of direct arm selection in the OneShotWikiLinks task. On the other hand, in
the AmazonCat-13K task, since the arms lack such semantic information useful for the LLMs,
the LLMs are not able to accurately infer the association between the contexts (i.e., text phrases
describing an item) and the arms (i.e., integers representing item tags). Therefore, in such tasks,
an algorithm needs to perform substantial exploration in order to learn the association between the
contexts and the arms and hence to achieve small regrets. The inadequate performance of the baseline
algorithm in this task can likely be attributed to the inability of LLM-based direct arm selection to
engage in efficient exploration, which aligns with the findings from Krishnamurthy et al. (2024).
Meanwhile, thanks to the strong exploration capability of the high-level classical TS mechanism
(Sec. 3.1), our TS-LLM algorithm is able to efficiently explore the space of arms and hence to achieve
small regrets in this task.

To further verify this insight, we have additionally conducted an experiment using the
AmazonCat-13K dataset in a more challenging setting, i.e., with a larger number of arms (i.e., 30).
The results (Fig. 4) show that the performance advantage of our TS-LLM over the baseline is further
enlarged. Therefore, the results in Figs. 3 and 4 show that compared with the approach of directly
instructing the LLM to select arms, our TS-LLM algorithm is particularly beneficial in challeng-
ing tasks where considerable exploration is required. On the other hand, LLM-based direct arm
selection is expected to perform well in scenarios where the LLM has significant knowledge about
the arms or the association between the contexts and the arms.

5 ABLATION STUDY

5.1 IMPACT OF DIFFERENT TEMPERATURES

Here we investigate the impact of the temperature of the LLM on the performance of our
TS-LLM (Algo. 1). As we have discussed in Sec. 3.1, we adopt a decaying schedule for the LLM
temperature to ensure a transition from exploration to exploitation. We follow the same experimental
setting as Sec. 4.1 and adopt the linear reward function. The results in Fig. 5 show that the best
performance is achieved by adopting decaying LLM temperatures, whereas fixing the temperature
to various values leads to inferior performance. This is because fixing the temperature to a large
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Figure 5: The performance of our TS-LLM in stochastic MAB tasks with different temperatures.

value hinders the exploitation capability of TS-LLM in later stages, while the use of a fixed small
temperature results in insufficient exploration in the initial stage.

5.2 IMPACT OF THE NUMBER N OF SAMPLES WHEN SELECTING THE FIRST ARM IN
TS-LLM-DB

Recall that our TS-LLM-DB algorithm selects the first arm by approximately maximizing the Borda
function fborda (Sec. 3.3), in which we use N randomly sampled arms to approximate the expectation
in fborda (lines 3-5 of Algo. 3). Fig. 6 presents the results of our TS-LLM-DB with different values
of N , which demonstrate that a larger N improves the performance because it leads to a better
approximation of fborda. However, also note that the use of a larger N increases the number of API
calls to the LLM and hence incurs more cost. Therefore, in practice, the value of N should be selected
based on the trade-off between the desired performance and the budget.

TS-LLM-DB TS-LLM-DB
(Linear Reward Function) (Square Reward Function)

Figure 6: The impact of the number N of uniformly sampled arms when estimating the Borda
function to select the first arm in our TS-LLM-DB algorithm (lines 3-5 of Algo. 3).

RO-LLM RO-LLM
(Linear Reward Function) (Square Reward Function)

Figure 7: The impact of the exploration parameter γ in our RO-LLM algorithm.
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5.3 IMPACT OF THE EXPLORATION PARAMETER IN OUR RO-LLM ALGORITHM

The parameter γ in our RO-LLM can be used to control the degree of exploration. As can be seen from
lines 4-7 of Algo. 2, a larger value of γ results in a larger weight (in the arm sampling distribution pt)
on the arm jt that is predicted to be the best arm. Therefore, a larger γ leads to greater emphasis on
exploitation, thereby reducing the focus on exploration. Here we test three values of γ and display
the results in Fig 7. The figures show that an overly small value of γ = 1 significantly deteriorates
the performance due to excessive exploration. In the relatively simpler MAB problem with a linear
reward function, a larger γ = 10 (i.e., more emphasis on exploitation) benefits the algorithm since
only minimal exploration is required to learn the simple reward function. Meanwhile, in the more
difficult problem with a non-linear (square) function, a larger γ = 10 leads to worse regrets than
γ = 5 since a larger degree of exploration is needed compared to the linear function.

6 RELATED WORK

LLM-Based Multi-Armed Bandits (MAB). The work of Krishnamurthy et al. (2024) has used
an LLM to sequentially choose the arms in MAB. They have consider standard MAB problems
with a finite number of arms, and their results have shown that LLMs struggle in MAB tasks in
most scenarios (i.e., for most of their prompt designs). More recently, the work of Chen et al.
(2024) has proposed to adopt an LLM-based arm selection strategy in the initial stage of MAB and
gradually switch to classical MAB algorithms in later stages. However, their method requires the
availability of the likelihood of the LLMs and are hence not able to adopt the typically more powerful
black-box LLMs such as ChatGPT OpenAI (2023a;b). The work of Xia et al. (2024) has proposed an
LLM-based algorithm for dueling bandits. Compared with our TS-LLM-DB (Sec. 3.3), they have
considered a simpler setting of dueling bandits in which the preference feedback is generated by a
preference matrix. In contrast, we have adopted the BTL model (Sec. 2.2), which allows us to take
into account the arm features and hence makes our setting more general. The work of Mukherjee
et al. (2024) has proposed to train a decision transformer to predict the rewards of different arms
in MAB and hence to assist in arm selection. In contrast, our algorithms can adopt any black-box
LLM and does not require the potentially expensive training procedure. We defer discussions on
other LLM-based sequential decision-making methods (e.g., reinforcement learning) to App. A.

7 CONCLUSION

In this work, we propose an alternative paradigm of LLM-based sequential decision-making and focus
on the MAB problem. We adopt a classical MAB algorithm as the high-level framework and leverage
the strong in-context learning capability of LLMs to perform the sub-task of reward prediction in
MAB. We propose our TS-LLM and RO-LLM for classical stochastic MAB and our TS-LLM-DB for
dueling bandits. Synthetic experiments demonstrate that our algorithms consistently outperform
baseline methods of LLM-based direct arm selection. Through contextual MAB experiments designed
using two real-world text datasets, we show that in challenging tasks where the arm features are
not associated with semantic meanings exploitable by the LLM, our TS-LLM achieves dramatically
better performance than LLM-based direct arm selection. As future work, we plan to apply our
algorithms to handle more complicated sequential decision-making problems, such as those from
commonly used benchmarks for LLM-based agents such as Liu et al. (2023); Wu et al. (2023); Xi
et al. (2024).
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A ADDITIONAL RELATED WORKS

Other LLM-Based Sequantial Decision-Making Methods. In addition to MAB, some previous
works have proposed methods to incorporate LLMs into other sequential decision-making algorithms.
For example, some prior works have used LLMs to improve the performance of Bayesian optimization
(BO) by either directly instructing the LLM to sequentially select the input queries in BO Yang
et al. (2024a) or using LLMs to enhance different components of BO (such as initial input selection,
surrogate model prediction, etc.) Liu et al. (2024b). A number of recent works have used the
transformer model to learn a policy for action selection in reinforcement learning Dai et al. (2024);
Laskin et al. (2022); Lee et al. (2024). The field of LLM-based agents is broad and has garnered
significant attention due to the rapidly advancing capabilities of modern LLMs. Many surveys on
LLM-based agents have been released Cheng et al. (2024); Wang et al. (2024a); Xi et al. (2023),
offering comprehensive overviews of this area.

B MORE EXPERIMENTAL DETAILS

In all our synthetic experiments (Secs. 4.1 and 4.2), the MAB tasks have K = 16 features and the
feature vectors of the arms are 4-dimensional.

B.1 THE PROMPT TEMPLATE ADOPTED BY OUR ALGORITHMS

Below is the prompt we have used for our TS-LLM algorithm (Algo. 1) and RO-LLM algorithm
(Algo. 2) in classical stochastic bandits experiment in Sec. 4.1. Here every [INPUT] contains the
feature vectors of an arm, and every [OUTPUT] corresponds to its corresponding observed reward.

Prompt for Our TS-LLM and RO-LLM

Help me predict the function value at the last input. Each function value is associated with a Normal
distribution with a fixed but unknown mean. Your response should only contain the function value in
the format of #function value#.
input: [INPUT], output: [OUTPUT]
input: [INPUT], output: [OUTPUT]
...
input: [INPUT], output:

The template below is the prompt we have used for our TS-LLM-DB algorithm (Algo. 3) in the
dueling bandit experiment in Sec. 4.2. Here every [INPUT] contains the difference or concatenation of
the feature vectors of a pair of arms (see Sec. 4.2 for more details), and every [OUTPUT] corresponds
to a binary observation which is equal to 1 if the first arm is preferred over the second arm and 0
otherwise. Although the output labels for each data point in the prompt is binary, here we have
instructed the LLM to predict a continuous value, to ensure that the LLM-generated output can be
used as the preference probability.

Prompt for Our TS-LLM-DB

Help me predict the value for the last input as a continuous value between 0 and 1. Your response
MUST only contain the value in the format of #value#.
input: [INPUT], output: [OUTPUT]
input: [INPUT], output: [OUTPUT]
...
input: [INPUT], output:

B.2 MORE DETAILS ON THE SYNTHETIC EXPERIMENTS (SECS. 4.1 AND 4.2)

In our synthetic experiments in Sec. 4.1, we have adopted synthetic functions as the reward functions
f , including linear function: f(x) = θ⊤x, square function: f(x) = (θ⊤x)2, sinusoidal function:
f(x) = sin(θ⊤x), and a function sampled from a Gaussian process with a length scale of 0.4. We
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repeat each experiment 10 times with a different random seed for each repetition. We run each
method for 100 iterations, with the initial 2 arms randomly selected. We add a Gaussian noise with a
noise variance of 0.02 to each observation. In all our experiments here, we have adopted the optimal
schedule for the temperature discovered in Sec. 5.1 (Fig. 5).

In our synthetic experiments on dueling bandits in Sec. 4.2, we adopt the following latent reward
functions: linear function: f(x) = θ⊤x, and square function: f(x) = (θ⊤x)2. We repeat each
experiment 5 times with a different random seed for each repetition. We run each method for 150
iterations, with the initial 2 arms randomly selected. As we have discussed in Sec. 4.2, we use
a decaying schedule of LLM temperatures, and adopt a smaller schedule of temperatures when
selecting the first arm to encourage exploitation. Specifically, for linear latent reward function, in
iteration t, we use temp(t) = 1.5−min(0.1×

√
t, 1.4) as the temperature when selecting the first

arm and use temp(t) = 1.5 −min(0.1 ×
√
t, 1.1) when choosing the second arm. For the square

latent reward function, we adopt larger values of the temperature, because the non-linear reward
function makes the dueling bandit problem more challenging and hence a larger degree of exploration
is needed. Specifically, we use temp(t) = 1.6−min(0.13×

√
t, 1.5) when choosing the first arm

and let temp(t) = 1.6−min(0.13×
√
t, 1.1) when selecting the second arm.

In our experiments here, we use the BTL model to obtain the preference observation (Sec. 2.2).
Specifically, after a pair of arms it,1 and it,2 are selected, we firstly calculate their preference
probability:

P(xit,1 ≻ xit,2) =
1

1 + e−10(f(xit,1 )−f(xit,2 ))
. (1)

We have added a 10 in the exponent to reduce the noise in the preference observations and hence
simplify the dueling bandit problem. Then, we sample the binary reward observation rt from a
Bernoulli distribution with the probability P(xit,1 ≻ xit,2).

B.3 MORE DETAILS ABOUT THE BASELINE ALGORITHMS

Here we present the prompts we have used for different baseline algorithms we have used in
Sec. 4.1. Specifically, how we have modified the prompt from the LLM-based MAB method from
Krishnamurthy et al. (2024) in different ways in order to incorporate the features of the arms, to make
their method comparable with our algorithms. We have highlighted the arm features we have added
in blue.

Baseline: NoFeature

You are in a room with 16 buttons labeled
[’blue’, ’green’, ’red’, ’yellow’, ’purple’, ’orange’, ’cyan’, ’magenta’, ’lime’, ’pink’, ’teal’, ’lavender’, ’brown’, ’beige’, ’maroon’, ’mint’]
Each button is associated with a Normal distribution with a fixed but unknown mean; the means for the buttons could be different and
are associated with features of buttons. For each button, when you press it, you will get a reward that is sampled from the button’s
associated distribution.
You have 100 time steps and, on each time step, you can choose any button and receive the reward. Your goal is to maximize the total
reward over the 100 time steps. So far you have played [TIMES] times with the following choices and rewards:
[COLOR] button, reward [REWARD]
[COLOR] button, reward [REWARD]
...
You MUST output a distribution over the 16 buttons as probabilities, formatted EXACTLY like this example:
#[COLOR]:p1,[COLOR]:p2,...,[COLOR]:p16#. Each probability value(p1,p2,...,p16) MUST be a number between 0
and 1, and the total of all probabilities MUST equal 1.
Let’s think step by step to make sure we make a good choice. Which button will you choose next? YOU MUST provide your final
answer within the tags <Answer>DIST </Answer>where DIST is #[COLOR]:p1,[COLOR]:p2,...,[COLOR]:p16#.
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Baseline: FramingFeature

You are in a room with 16 buttons labeled
[’blue’, ’green’, ’red’, ’yellow’, ’purple’, ’orange’, ’cyan’, ’magenta’, ’lime’, ’pink’, ’teal’, ’lavender’, ’brown’, ’beige’, ’maroon’, ’mint’]
Feature of [COLOR] button: [FEATURE]
Feature of [COLOR] button: [FEATURE]
...
Each button is associated with a Normal distribution with a fixed but unknown mean; the means for the buttons could be different and
are associated with features of buttons. For each button, when you press it, you will get a reward that is sampled from the button’s
associated distribution.
You have 100 time steps and, on each time step, you can choose any button and receive the reward. Your goal is to maximize the total
reward over the 100 time steps. So far you have played [TIMES] times with the following choices and rewards:
[COLOR] button, reward [REWARD]
[COLOR] button, reward [REWARD]
...
You MUST output a distribution over the 16 buttons as probabilities, formatted EXACTLY like this example:
#[COLOR]:p1,[COLOR]:p2,...,[COLOR]:p16#. Each probability value(p1,p2,...,p16) MUST be a number between 0
and 1, and the total of all probabilities MUST equal 1.
Let’s think step by step to make sure we make a good choice. Which button will you choose next? YOU MUST provide your final
answer within the tags <Answer>DIST </Answer>where DIST is #[COLOR]:p1,[COLOR]:p2,...,[COLOR]:p16#.

Baseline: HistoryFeature

You are in a room with 16 buttons labeled
[’blue’, ’green’, ’red’, ’yellow’, ’purple’, ’orange’, ’cyan’, ’magenta’, ’lime’, ’pink’, ’teal’, ’lavender’, ’brown’, ’beige’, ’maroon’, ’mint’]
Each button is associated with a Normal distribution with a fixed but unknown mean; the means for the buttons could be different and
are associated with features of buttons. For each button, when you press it, you will get a reward that is sampled from the button’s
associated distribution.
You have 100 time steps and, on each time step, you can choose any button and receive the reward. Your goal is to maximize the total
reward over the 100 time steps.
Feature of [COLOR] button: [FEATURE]
Feature of [COLOR] button: [FEATURE]
...
So far you have played [TIMES] times with the following choices and rewards:
[COLOR] button, reward [REWARD]
[COLOR] button, reward [REWARD]
...
You MUST output a distribution over the 16 buttons as probabilities, formatted EXACTLY like this example:
#[COLOR]:p1,[COLOR]:p2,...,[COLOR]:p16#. Each probability value(p1,p2,...,p16) MUST be a number between 0
and 1, and the total of all probabilities MUST equal 1.
Let’s think step by step to make sure we make a good choice. Which button will you choose next? YOU MUST provide your final
answer within the tags <Answer>DIST </Answer>where DIST is #[COLOR]:p1,[COLOR]:p2,...,[COLOR]:p16#.

B.4 MORE DETAILS ON THE TEXT EXPERIMENTS

Here we present more details on the experiment in Sec. 4.3 in which we have adopted a real-world
text dataset. Every experiment in this section is repeated 10 times with a different random seed in
every repetition.

In the experiment using the OneShotWikiLinks dataset, contexts exceeding 400 words were first
removed. Then, 10 concept names were randomly selected, each associated with 2,000 to 3,000
contexts. Finally, 2,000 contexts were randomly sampled for each of these 10 concept names. For the
experiment using the AmazonCat-13K dataset, contexts exceeding 500 characters in length were
first removed. Then, only data containing a single item tag was retained. Finally, the top 10 or 30
item tags with the highest number of contexts were selected, and all corresponding data were used as
experimental data. The number of data samples for the 10-arm and 30-arm experiments were 34,227
and 40,287, respectively.

We display below the prompts we have used for our TS-LLM algorithm and the baseline algorithm in
the two text datasets. For fair comparisons, we keep most of the contents between the prompts of the
two methods identical. Therefore, the only major difference between the prompts of the two methods
is that the prompt for the baseline method directly instructs the LLM to select the next arm to pull.
On the other hand, in the prompt for our TS-LLM algorithm, we let the LLM predict the score of a
combination of a context and an arm. As a result, the prompt for our TS-LLM bears a larger degree
of resemblance to standard in-context learning, because we are effectively leveraging the LLM to
solve a supervised learning task.
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Prompt for TS-LLM in OneShotWikiLinks task

**Task Description**
At the TEST DATA, Please assign a reward indicating how well the Incomplete Text aligns with the
Previous Text and Next Text.

**reward**:
- 0 indicates poor alignment.
- 1 indicates perfect alignment.
- A reward closer to 1 should only be assigned when the Incomplete Text is perfectly aligned with the
surrounding texts.

**The Incomplete Text can be one of the following words**:
[’Microsoft Windows’, ’Telugu’, ’XML’, ’Moscow’, ’help’, ’MTV’, ’Halloween’, ’Ottoman Empire’, ’Soviet’, ’Bangladesh’].

The reward value MUST be a number between 0 and 1. Your response MUST be the reward
value only, formatted as #reward value#.

Below are previous examples:
**Previous Text**: [PREVIOUS TEXT]
**Next Text**: [NEXT TEXT]
**Incomplete Text**: [INCOMPLETE TEXT]
**Reward**: [REWARD]

**Previous Text**: [PREVIOUS TEXT]
**Next Text**: [NEXT TEXT]
**Incomplete Text**: [INCOMPLETE TEXT]
**Reward**: [REWARD]

...

###TEST DATA:
This is the TEST DATA for which the reward needs to be assigned:
**Previous Text**: [PREVIOUS TEXT]
**Next Text**: [NEXT TEXT]
**Incomplete Text**: [INCOMPLETE TEXT]
**Reward**:
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Prompt for the Baseline Method in OneShotWikiLinks task

The task is to choose the most suitable word to complete the Incomplete Text from the following list of
options in order to earn the most reward:
[’Microsoft Windows’, ’Telugu’, ’XML’, ’Moscow’, ’help’, ’MTV’, ’Halloween’, ’Ottoman Empire’, ’Soviet’, ’Bangladesh’].
Your response MUST only contain one word from the list.

Reward indicates how well the Incomplete Text aligns with the Previous Text and Next Text.
- 0 indicates poor alignment.
- 1 indicates perfect alignment.

Below is the historical data:
**Previous Text**: [PREVIOUS TEXT]
**Next Text**: [NEXT TEXT]
**Incomplete Text**: [INCOMPLETE TEXT]
**Reward**: [REWARD]

**Previous Text**: [PREVIOUS TEXT]
**Next Text**: [NEXT TEXT]
**Incomplete Text**: [INCOMPLETE TEXT]
**Reward**: [REWARD]

...

Below is the incomplete text for which you need to complete:
**Previous Text**: [PREVIOUS TEXT]
**Next Text**: [NEXT TEXT]
**Incomplete Text**:

Prompt for TS-LLM in AmazonCat task

There are Titles and Contents of some items.

Labels and items correspond one-to-one.
There are a total of 10 items.The Labels MUST be ONE of the following numbers:
[2571, 1471, 7961, 12246, 5754, 342, 5456, 5960, 11235, 10688]

The Reward is a number between 0 and 1 determined by whether the Label is correct or
not.

Help me predict the Reward at the last Title, Content and Label.

Your response MUST be the predicted Reward only, formatted as #predicted Reward#.

**Title**: [Title]
**Content**: [Content]
**Label**: [Label]
**Reward**: [REWARD]

**Title**: [Title]
**Content**: [Content]
**Label**: [Label]
**Reward**: [REWARD]

...

**Title**: [Title]
**Content**: [Content]
**Label**: [Label]
**Reward**:
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Prompt for the Baseline Method in AmazonCat task

There are Titles and Contents of some items.

Labels and items correspond one-to-one.
There are a total of 10 items.The Labels MUST be ONE of the following numbers:
[2571, 1471, 7961, 12246, 5754, 342, 5456, 5960, 11235, 10688]

The Reward is a number between 0 and 1 determined by whether the Label is correct or
not.

Help me choose the correct Label at the last Title and Content. Your response MUST be the
chosen Label only, formatted as #chosen Label#.

**Title**: [Title]
**Content**: [Content]
**Label**: [Label]
**Reward**: [REWARD]

**Title**: [Title]
**Content**: [Content]
**Label**: [Label]
**Reward**: [REWARD]

...

**Title**: [Title]
**Content**: [Content]
**Label**:
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