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Abstract

Generative Adversarial Networks (GANs) can generate near photo realistic images
in narrow domains such as human faces. Yet, modeling complex distributions of
datasets such as ImageNet and COCO-Stuff remains challenging in unconditional
settings. In this paper, we take inspiration from kernel density estimation
techniques and introduce a non-parametric approach to modeling distributions
of complex datasets. We partition the data manifold into a mixture of overlapping
neighborhoods described by a datapoint and its nearest neighbors, and introduce a
model, called instance-conditioned GAN (IC-GAN), which learns the distribution
around each datapoint. Experimental results on ImageNet and COCO-Stuff show
that IC-GAN significantly improves over unconditional models and unsupervised
data partitioning baselines. Moreover, we show that IC-GAN can effortlessly
transfer to datasets not seen during training by simply changing the conditioning
instances, and still generate realistic images. Finally, we extend IC-GAN to
the class-conditional case and show semantically controllable generation and
competitive quantitative results on ImageNet; while improving over BigGAN
on ImageNet-LT. Code and trained models to reproduce the reported results are
available at https://github.com/facebookresearch/ic_gan.

1 Introduction

Generative Adversarial Networks (GANs) [18] have shown impressive results in unconditional
image generation [27, 29]. Despite their success, GANs present optimization difficulties and can
suffer from mode collapse, resulting in the generator not being able to obtain a good distribution
coverage, and often producing poor quality and/or low diversity generated samples. Although many
approaches attempt to mitigate this problem – e.g. [20, 32, 35, 38] –, complex data distributions
such as the one in ImageNet [45] remain a challenge for unconditional GANs [33, 36]. Class-
conditional GANs [5, 39, 40, 56] ease the task of learning the data distribution by conditioning on
class labels, effectively partitioning the data. Although they provide higher quality samples than their
unconditional counterparts, they require labelled data, which may be unavailable or costly to obtain.

Several recent approaches explore the use of unsupervised data partitioning to improve GANs [2,
14, 17, 23, 33, 42]. While these methods are promising and yield visually appealing samples, their
quality is still far from those obtained with class-conditional GANs. These methods make use of
relatively coarse and non-overlapping data partitions, which oftentimes contain data points from
different types of objects or scenes. This diversity of data points may result in a manifold with low
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(a) IC-GAN samples (b) Class-conditional IC-GAN samples

(c) IC-GAN transfer samples (d) Class-conditional IC-GAN transfer samples

Figure 1: Samples from unlabeled (a) and class-conditional (b) IC-GAN trained on the 256⇥256
ImageNet dataset. For each subfigure, the first column represents instances used to condition the
model and the next three columns depict model samples. For class-conditional generation in (b) we
include samples conditioned on the same image but different labels. We highlight the generalization
capacities of IC-GAN by applying the ImageNet-trained model to instances from other datasets in
unlabeled (c) and class-conditional (d) scenarios. Panels (c) and (d) display samples conditioned on
instances from the COCO-Stuff, Cityscapes, MetFaces, and PACS datasets (from top to bottom).

density regions, which degrades the quality of the generated samples [11]. Using finer partitions,
however, tends to deteriorate results [33, 36, 42] because the clusters may contain too few data points
for the generator and discriminator to properly model their data distribution.

In this work, we introduce a new approach, called instance-conditioned GAN (IC-GAN), which
extends the GAN framework to model a mixture of local data densities. More precisely, IC-GAN
learns to model the distribution of the neighborhood of a data point, also referred to as instance,
by providing a representation of the instance as an additional input to both the generator and
discriminator, and by using the neighbors of the instance as real samples for the discriminator. By
choosing a sufficiently large neighborhood around the conditioning instance, we avoid the pitfall
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of excessively partitioning the data into small clusters. Given the overlapping nature of these
clusters, increasing the number of partitions does not come at the expense of having less samples
in each of them. Moreover, unlike when conditioning on discrete cluster indices, conditioning on
instance representations naturally leads the generator to produce similar samples for similar instances.
Interestingly, once trained, our IC-GAN can be used to effortlessly transfer to other datasets not seen
during training by simply swapping-out the conditioning instances at inference time.

IC-GAN bears similarities with kernel density estimation (KDE), a non-parametric density estimator
in the form of a mixture of parametrized kernels modeling the density around each training data
point – see e.g. [4]. Similar to KDE, IC-GAN can be seen as a mixture density estimator, where
each component is obtained by conditioning on a training instance. Unlike KDE, however, we do
not model the data likelihood explicitly, but take an adversarial approach in which we model the local
density implicitly with a neural network that takes as input the conditioning instance as well as a noise
vector. Therefore, the kernel in IC-GAN is no longer independent on the data point on which we
condition, and instead of a kernel bandwidth parameter, we control the smoothness by choosing the
neighborhood size of an instance from which we sample the real samples to be fed to the discriminator.

We validate our approach on two image generation tasks: (1) unlabeled image generation where
there is no class information available, and (2) class-conditional image generation. For the unlabeled
scenario, we report results on the ImageNet and COCO-Stuff datasets. We show that IC-GAN
outperforms previous approaches in unlabeled image generation on both datasets. Additionally, we
perform a series of transfer experiments and demonstrate that an IC-GAN trained on ImageNet
achieves better generation quality and diversity when testing on COCO-Stuff than the same model
trained on COCO-Stuff. In the class-conditional setting, we show that IC-GAN can generate images
with controllable semantics – by adapting both class and instance–, while achieving competitive
sample quality and diversity on the ImageNet dataset. Finally, we test IC-GAN in ImageNet-
LT, a long-tail class distribution ablated version of ImageNet, highlighting the benefits of non-
parametric density estimation in datasets with unbalanced classes. Figure 1 shows IC-GAN unlabeled
ImageNet generations (a), IC-GAN class-conditional ImageNet generations (b), and IC-GAN transfer
generations both in the unlabeled (c) and controllable class-conditional (d) setting.

2 Instance-conditioned GAN

The key idea of IC-GAN is to model the distribution of a complex dataset by leveraging fine-grained
overlapping clusters in the data manifold, where each cluster is described by a datapoint xi – referred
to as instance – and its nearest neighbors set Ai in a feature space. Our objective is to model the
underlying data distribution p(x) as a mixture of conditional distributions p(x|hi) around each of M
instance feature vectors hi in the dataset, such that p(x) ⇡ 1

M

P
i p(x|hi).

More precisely, given an unlabeled dataset D = {xi}Mi=1 with M data samples xi and an embedding
function f parametrized by �, we start by extracting instance features hi = f�(xi) 8xi 2 D,
where f�(·) is learned in an unsupervised or self-supervised manner. We then define the set Ai of k
nearest neighbors for each data sample using the cosine similarity – as is common in nearest neighbor
classifiers, e.g. [53, 54] – over the features hi. Figure 2a depicts a sample xi and its nearest neighbors.

We are interested in implicitly modelling the conditional distributions p(x|hi) with a generator
G✓G(z,hi), implemented by a deep neural network with parameters ✓G. The generator transforms
samples from a unit Gaussian prior z ⇠ N (0, I) into samples x from the conditional distribution
p(x|hi), where hi is the feature vector of an instance xi sampled from the training data. In IC-GAN,
we adopt an adversarial approach to train the generator G✓G . Therefore, our generator is jointly
trained with a discriminator D✓D (x,hi) that discerns between real neighbors and generated neighbors
of hi, as shown in Figure 2b. Note that for each hi, real neighbors are sampled uniformly from Ai.

Both G and D engage in a two player min-max game where they try to find the Nash equilibrium for
the following equation:

min
G

max
D

Exi⇠p(x),xn⇠U(Ai)[logD(xn, f�(xi))] +

Exi⇠p(x),z⇠p(z)[log(1�D(G(z, f�(xi)), f�(xi)))].
(1)
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(a) Neighborhood Ai of instance hi (b) Schematic illustration of the IC-GAN workflow

Figure 2: Overview of IC-GAN. (a) The goal of the generator is to generate realistic images similar
to the neighbors of hi, defined in the embedding space using cosine similarity. Five out of seven
neighbors are shown in the figure. Note that images in the same neighborhood may belong to different
classes (depicted as different shapes). (b) Conditioned on instance features hi and noise z, the
generator produces a synthetic sample xg . Generated samples and real samples (neighbors of hi) are
fed to the discriminator, which is conditioned on the same hi.

Note that when training IC-GAN we use all available training datapoints to condition the model. At
inference time, as in non-parametric density estimation methods such as KDE, the generator of IC-
GAN also requires instance features, which may come from the training distribution or a different one.

Extension to class-conditional generation. We extend IC-GAN for class-conditional generation by
additionally conditioning the generator and discriminator on a class label y. More precisely, given a
labeled dataset Dl = {(xi,yi)}Mi=1 with M data sample pairs (xi,yi) and an embedding function
f�, we extract instance features hi = f�(xi) 8xi 2 Dl, where f�(·) is learned in an unsupervised,
self-supervised, or supervised manner. We then define the set Ai of k nearest neighbors for each
data sample using the cosine similarity over the features hi, where neighbors may be from different
classes. This results in neighborhoods, where the number of neighbors belonging to the same class as
the instance hi is often smaller than k. During training, real neighbors xj and their respective labels
yj are sampled uniformly from Ai for each hi. In the class-conditional case, we model p(x|hi,yj)
with a generator G✓G(z,hi,yj) trained jointly with a discriminator D✓D (x,hi,yj).

3 Experimental evaluation

We describe our experimental setup in Section 3.1, followed by results presented in the unlabeled
setting in Section 3.2, dataset transfer in Section 3.3 and class-conditional generation in Section 3.4.
We analyze the impact of the number of stored instances and neighborhood size in Section 3.5.

3.1 Experimental setup

Datasets. We evaluate our model in the unlabeled scenario on ImageNet [45] and COCO-Stuff [6].
The ImageNet dataset contains 1.2M and 50k images for training and evaluation, respectively. COCO-
Stuff is a very diverse and complex dataset which contains multi-object images and has been widely
used for complex scene generation. We use the train and evaluation splits of [8], and the (un)seen
subsets of the evaluation images with only class combinations that have (not) been seen during
training. These splits contain 76k, 2k, 675 and 1.3k images, respectively. For the class-conditional
image generation, we use ImageNet as well as ImageNet-LT [34]. The latter is a long-tail variant of
ImageNet that contains a subset of 115k samples, where the 1,000 classes have between 5 and 1,280
samples each. Moreover, we use some samples of four additional datasets to highlight the transfer
abilities of IC-GAN: Cityscapes [10], MetFaces [28], PACS [31] and Sketches [15].

Evaluation protocol. We report Fréchet Inception Distance (FID) [22], Inception Score (IS) [47],
and LPIPS [57]. LPIPS computes the distance between the AlexNet activations of two images
generated with two different latent vectors and same conditioning. On ImageNet, we follow [5], and
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compute FID over 50k generated images and the 50k real validation samples are used as reference.
On COCO-Stuff and ImageNet-LT, we compute the FID for each of the splits using all images in the
split as reference, and sample the same number images. Additionally, in ImageNet-LT we stratify
the FID by grouping classes based on the number of train samples: more than 100 (many-shot FID),
between 20 and 100 (med-shot FID), and less than 20 (few-shot FID). For the reference set, we split
the validation images along these three groups of classes, and generate a matching number of samples
per group. In order to compute all above-mentioned metrics, IC-GAN requires instance features
for sampling. Unless stated otherwise, we store 1,000 training set instances by applying k-means
clustering to the training set and selecting the features of the data point that is the closest to each one
of the centroids. All quantitative metrics for IC-GAN are reported over five random seeds for the
input noise when sampling from the model.

Network architectures and hyperparameters. As feature extractor f�, we use a ResNet50 [21]
trained in a self-supervised way with SwAV [7] for the unlabeled scenario; for the class-conditional
IC-GAN, we use a ResNet50 trained for the classification task on either ImageNet or ImageNet-
LT [26]. For ImageNet experiments, we use BigGAN [5] as a baseline architecture, given its
superior image quality and ubiquitous use in conditional image generation. For IC-GAN, we replace
the class embedding layers in the generator by a fully connected layer that takes the instance
features as input and reduces its dimensionality from 2,048 to 512; the same approach is followed to
adapt the discriminator. For COCO-Stuff, we additionally include the state-of-the-art unconditional
StyleGAN2 architecture [29], as it has shown good generation quality and diversity in the lower data
regime [28, 29]. We follow its class-conditional version [28] to extend it to IC-GAN by replacing
the input class embedding by the instance features. Unless stated otherwise, we set the size of the
neighborhoods to k=50 for ImageNet and k=5 for both COCO-Stuff and ImageNet-LT. See the
supplementary material for details on the architecture and optimization hyperparameters.

3.2 Unlabeled setting

Table 1: Results for ImageNet in unlabeled setting. For fair
comparison with [42] at 64⇥ 64 resolution, we trained an
unconditional BigGAN model and report the non-official FID
and IS scores – computed with Pytorch rather than TensorFlow
– indicated with *. †: increased parameters to match IC-GAN
capacity. DA: 50% horizontal flips in (d) real and fake samples,
and (i) conditioning instances. ch⇥: Channel multiplier that
affects network width as in BigGAN.

Method Res. #FID "IS
Self-sup. GAN [42] 64 19.2* 16.5*
Uncond. BigGAN† 64 16.9* ± 0.0 14.6* ± 0.1
IC-GAN 64 10.4* ± 0.1 21.9* ± 0.1
IC-GAN + DA (d,i) 64 9.2* ± 0.0 23.5* ± 0.1

MGAN [23] 128 58.9 13.2
PacGAN2 [32] 128 57.5 13.5
Logo-GAN-AE [46] 128 50.9 14.4
Self-cond. GAN [33] 128 41.7 14.9
Uncond. BigGAN [36] 128 25.3 20.4
SS-cluster GAN [36] 128 22.0 23.5
PGMGAN [2] 128 21.7 23.3
IC-GAN 128 13.2 ± 0.0 45.5 ± 0.2
IC-GAN + DA (d,i) 128 11.7 ± 0.0 48.7 ± 0.1

ADM [12] 256 32.5 37.6
IC-GAN (ch⇥ 64) 256 17.0 ± 0.2 53.0 ± 0.4
IC-GAN (ch⇥ 64) + DA (d,i) 256 17.4 ± 0.1 53.5 ± 0.5
IC-GAN (ch⇥ 96) + DA (d) 256 15.6 ± 0.1 59.0 ± 0.4

ImageNet. We start by comparing
IC-GAN against previous work in
Table 1. Note that unconditional
BigGAN baseline is trained by set-
ting all labels in the training set to
zero, following [36, 42]. IC-GAN
surpasses all previous approaches
at both 64⇥64 and 128⇥128 res-
olutions in both FID and IS scores.
At 256⇥256 resolution, IC-GAN
outperforms the concurrent uncon-
ditional diffusion-based model of
[12]; the only other result we are
aware of in this setting. Additional
results in terms of precision and re-
call can be found in Table 8 in the
supplementary material.

As shown in Figure 1a, IC-GAN
generates high quality images pre-
serving most of the appearance of
the conditioning instance. Note that
generated images are not mere train-
ing memorizations; as shown in the
supplementary material, generated
images differ substantially from the
nearest training samples.

COCO-Stuff. We proceed with the
evaluation of IC-GAN on COCO-
Stuff in Table 2. We also compare to state-of-the-art complex scene generation pipelines which rely
on labeled bounding box annotations as conditioning – LostGANv2 [49] and OC-GAN [50]. Both of
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(a) xi (b) IC-GAN (StyleGAN2) (c) IC-GAN (BigGAN) (d) IC-GAN (BigGAN, transf.)

Figure 3: Qualitative comparison for scene generation on 256⇥256 COCO-Stuff.

these approaches use tailored architectures for complex scene generation, which have at least twice
the number of parameters of IC-GAN. Our IC-GAN matches or improves upon the unconditional
version of the same backbone architecture in terms of FID in all cases, except for training FID with
the StyleGAN2 backbone at 256⇥256 resolution. Overall, the StyleGAN2 backbone is superior to
BigGAN on this dataset, and StyleGAN2-based IC-GAN achieves the state-of-the-art FID scores,
even when compared to the bounding-box conditioned LostGANv2 and OC-GAN. IC-GAN exhibits
notably higher LPIPS than LostGANv2 and OC-GAN, which could be explained by the fact that the
latter only leverage one real sample per input conditioning during training; whereas IC-GAN uses
multiple real neighboring samples per each instance, naturally favouring diversity in the generated
images. As shown in figures 3b and 3c, IC-GAN generates high quality diverse images given the
input instance. A qualitative comparison between LostGANv2, OC-GAN and IC-GAN can be found
in Section E of the supplementary material.

Table 2: Quantitative results on COCO-Stuff. IC-GAN trained on ImageNet indicated as “transf”.
Some non-zero standard deviations are reported as 0.0 because of rounding.

#FID " LPIPS
128⇥128 # prms. train eval eval seen eval unseen eval
LostGANv2 [49] 41 M 12.8 ± 0.1 40.7 ± 0.3 80.0 ± 0.4 55.2 ± 0.5 0.45 ± 0.1
OC-GAN [50] 170 M — 45.1 ± 0.3 85.8 ± 0.5 60.1 ± 0.2 0.13 ± 0.1
Unconditional (BigGAN) 18 M 17.9 ± 0.1 46.9 ± 0.5 103.8 ± 0.8 60.9 ± 0.7 0.68 ± 0.1
IC-GAN (BigGAN) 22 M 16.8 ± 0.1 44.9 ± 0.5 81.5 ± 1.3 60.5 ± 0.5 0.67 ± 0.1
IC-GAN (BigGAN, transf.) 77 M 8.5 ± 0.0 35.6 ± 0.2 77.0 ± 1.0 48.9 ± 0.2 0.69 ± 0.1
Unconditional (StyleGAN2) 23 M 8.8 ± 0.1 37.8 ± 0.2 92.1 ± 1.0 53.2 ± 0.5 0.68 ± 0.1
IC-GAN (StyleGAN2) 24 M 8.9 ± 0.0 36.2 ± 0.2 74.3 ± 0.8 50.8 ± 0.3 0.67 ± 0.1

256⇥256

LostGANv2 [49] 46 M 18.0 ± 0.1 47.6 ± 0.4 88.5 ± 0.4 62.0 ± 0.6 0.56 ± 0.1
OC-GAN [50] 190 M — 57.0 ± 0.1 98.7 ± 1.2 71.4 ± 0.5 0.21 ± 0.1
Unconditional (BigGAN) 21 M 51.0 ± 0.1 81.6 ± 0.5 135.1 ± 1.6 95.8 ± 1.1 0.77 ± 0.1
IC-GAN (BigGAN) 26 M 24.6 ± 0.1 53.1 ± 0.4 88.5 ± 1.8 69.1 ± 0.6 0.73 ± 0.1
IC-GAN (BigGAN, transf.) 90 M 13.9 ± 0.1 40.9 ± 0.3 79.4 ± 1.2 55.6 ± 0.6 0.76 ± 0.1
Unconditional (StyleGAN2) 23 M 7.1 ± 0.0 44.6 ± 0.4 98.1 ± 1.7 59.9 ± 0.5 0.76 ± 0.1
IC-GAN (StyleGAN2) 25 M 9.6 ± 0.0 41.4 ± 0.2 76.7 ± 0.6 57.5 ± 0.5 0.74 ± 0.1

3.3 Off-the-shelf transfer to other datasets

In our first transfer experiment, we train IC-GAN with a BigGAN architecture on ImageNet, and use
it to generate images from COCO-Stuff instances at test time. Quantitative results are reported as
“IC-GAN (transf.)” in Table 2. In this setup, no COCO-Stuff images are used to train the model, thus,
all splits contain unseen objects combinations. Perhaps surprisingly, IC-GAN trained on ImageNet
outperforms the same model trained on COCO-Stuff for all splits: 8.5 vs. 16.8 train FID at 128
resolution. This raises the question of how close ImageNet and COCO-Stuff data distributions are.
We compute the FID between real data train split of the two datasets at 128⇥128 resolution and
obtain a score of 37.2. Hence, the remarkable transfer capabilities of IC-GAN are not explained
by dataset similarity and may be attributed to the effectiveness of the ImageNet pre-trained feature
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extractor and generator. When we replace the conditioning instances from COCO-Stuff with those of
ImageNet, we obtain a train FID score of 43.5, underlining the important distribution shift that can be
implemented by changing the conditioning instances.

Interestingly, the transferred IC-GAN also outperforms LostGANv2 and OC-GAN which condition
on labeled bounding box annotations. Transferring the model from ImageNet boosts diversity w.r.t.
the model trained on COCO-Stuff (see LPIPS in Table 2), which may be in part due to the larger
k=50 used for ImageNet training, compared to k=5 when training on COCO-Stuff. Qualitative
results of COCO-Stuff generations from the ImageNet pre-trained IC-GAN can be found in Figure 1c
(top row) and Figure 3d. These generations suggest that IC-GAN is able to effectively leverage
the large scale training on ImageNet to improve the quality and diversity of the COCO-Stuff scene
generation, which contains significantly less data to train.

We further explore how the ImageNet trained IC-GAN transfers to conditioning on other datasets
using Cityscapes, MetFaces, and PACS in Figure 1c. Generated images still preserve the semantics
and style of the images for all datasets, although degrading their quality when compared to samples
in Figure 1a, as the instances in these datasets –in particular MetFaces and PACS– are very different
from the ImageNet ones. See Section F in the supplementary material for more discussion, additional
evaluations, and more qualitative examples of dataset transfer.

3.4 Class-conditional setting

Table 3: Class-conditional results on ImageNet. *: Trained using
open source code. DA: 50% horizontal flips in (d) real and fake
samples, and (i) conditioning instances. ch⇥: Channel multiplier
that affects network width. †: numbers from the original paper,
as training diverged with the BigGAN opensourced code.

Res. #FID "IS
BigGAN* [5] 64 12.3 ± 0.0 27.0 ± 0.2
BigGAN* [5] + DA (d) 64 10.2 ± 0.1 30.1 ± 0.1
IC-GAN 64 8.5 ± 0.0 39.7 ± 0.2
IC-GAN + DA(d, i) 64 6.7 ± 0.0 45.9 ± 0.3

BigGAN* [5] 128 9.4 ± 0.0 98.7 ± 1.1
BigGAN* [5] + DA(d) 128 8.0 ± 0.0 107.2 ± 0.9
IC-GAN 128 10.6 ± 0.1 100.1 ± 0.5
IC-GAN + DA(d, i) 128 9.5 ± 0.1 108.6 ± 0.7

BigGAN* [5] (ch⇥ 64) 256 8.0 ± 0.1 139.1 ± 0.3
BigGAN* [5] (ch⇥ 64) + DA(d) 256 8.3 ± 0.1 125.0 ± 1.1
IC-GAN (ch⇥ 64) 256 8.3 ± 0.1 143.7 ± 1.1
IC-GAN (ch⇥ 64) + DA(d, i) 256 7.5 ± 0.0 152.6 ± 1.1
BigGAN† [5] (ch⇥ 96) 256 8.1 144.2
IC-GAN (ch⇥ 96) + DA(d) 256 8.2 ± 0.1 173.8 ± 0.9

ImageNet. In Table 3, we
show that the class-conditioned
IC-GAN outperforms BigGAN in
terms of both FID and IS across
all resolutions except the FID at
128⇥128 resolution. It is worth
mentioning that, unlike BigGAN,
IC-GAN can control the seman-
tics of the generated images by
either fixing the instance features
and swapping the class condition-
ing, or by fixing the class condi-
tioning and swapping the instance
features; see Figure 1b. As shown
in the figure, generated images
preserve semantics of both the
class label and the instance, gen-
erating different dog breeds on
similar backgrounds, or generat-
ing camels in the snow, an unseen
scenario in ImageNet to the best
of our knowledge. Moreover, in
Figure 1d, we show the transfer capabilities of our class-conditional IC-GAN trained on ImageNet
and conditioned on instances from other datasets, generating camels in the grass, zebras in the city,
and husky dogs with the style of MetFaces and PACS instances. These controllable conditionings
enable the generation of images that are not present or very rare in the ImageNet dataset, e.g. camels
surrounded by snow or zebras in the city. Additional qualitative transfer results which either fix
the class label and swap the instance features, or vice-versa, can be found in Section F of the
supplementary material.

ImageNet-LT. Due to the class imbalance in ImageNet-LT, selecting a subset of instances with either
k-means or uniform sampling can easily result in ignoring rare classes, and penalizing their generation.
Therefore, for this dataset we use all available 115k training instances to sample from the model and
compute the metrics. In Table 4 we compare to BigGAN, showing that IC-GAN is better in terms
of FID and IS for modeling this long-tailed distribution. Note that the improvement is noticeable
for each of the three groups of classes with different number of samples, see many/med/few column.
In Section G of the supplementary material we present experiments when using class-balancing to
train BigGAN, showing that it does not improve quality nor diversity of generated samples. We
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Table 4: Class-conditional results on ImageNet-LT. *: Trained using open source code.
Res. #train FID "train IS #val FID many/med/few #val FID "val IS

BigGAN* [5] 64 27.6 ± 0.1 18.1 ± 0.2 28.1 ± 0.1 28.8 / 32.8 / 48.4 ± 0.2 16.0 ± 0.1
IC-GAN 64 23.2 ± 0.1 19.5 ± 0.1 23.4 ± 0.1 23.8 / 28.0 / 42.7 ± 0.1 17.6 ± 0.1

BigGAN* [5] 128 31.4 ± 0.1 30.6 ± 0.1 35.4 ± 0.1 34.0 / 43.5 / 64.4 ± 0.2 24.9 ± 0.2
IC-GAN 128 23.4 ± 0.1 39.6 ± 0.2 24.9 ± 0.1 24.3 / 31.4 / 53.6 ± 0.3 32.5 ± 0.1

BigGAN* [5] 256 27.8 ± 0.0 58.2 ± 0.2 31.4 ± 0.1 28.1 / 40.9 / 67.6 ± 0.3 44.7 ± 0.2
IC-GAN 256 21.7 ± 0.1 66.5 ± 0.3 23.4 ± 0.1 20.6 / 32.4 / 60.0 ± 0.2 51.7 ± 0.1

hypothesize that oversampling some classes may result in overfitting for the discriminator, leading to
low quality image generations.

3.5 Selection of stored instances and neighborhood size

In this section, we empirically justify the k-means procedure to select the instances to sample from
the model, consider the effect of the number of instances used to sample from the model, as well as
the effect of the size k of the neighborhoods Ai used during training. The impact of different choices
for the instance embedding function f�(x) is evaluated in the supplementary material.

Selecting instances to sample from the model. In Figure 4 (left), we compare two instance selection
methods in terms of FID: uniform sampling (Random) and k-means (Clustered), where we select
the closest instance to each cluster centroid, using k = 50 neighbors during training (solid and
dotted green lines). Random selection is consistently outperformed by k-means; selecting only 1,000
instances with k-means results in better FID than randomly selecting 5,000 instances. Moreover,
storing more than 1,000 instances selected with k-means does not result in noticeable improvements
in FID. Additionally, we computed FID metrics for the 1,000 ground truth images that are closest
to the k-means cluster centers, obtaining 41.8 ± 0.2 FID, which is considerably higher than the
10.4± 0.1 FID we obtain with IC-GAN (k = 50) when using the same 1,000 cluster centers. This
supports the idea that IC-GAN is generating data points that go beyond the stored instances, better
recovering the data distribution.

We consider precision (P) and recall (R) [30] (using an InceptionV3 [51] as feature extractor and
sampling 10,000 generated and real images) to disentangle the factors driving the improvement in
FID, namely image quality and diversity (coverage) – see Figure 4 (right). We see that augmenting
the number of stored instances results in slightly worse precision (image quality) but notably better
recall (coverage). Intuitively, this suggests that by increasing the number of stored instances, we
can better recover the data density at the expense of slightly degraded image quality in lower density
regions of the manifold – see e.g. [11].

Figure 4: Impact on the number of stored instances used to evaluate IC-GAN and the size of the
neighborhood k. Experiments performed on the 64⇥64 unlabeled ImageNet dataset.
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Neighborhood size. In Figure 4 (both panels) we analyze the interplay between the neighborhood
size and the number of instances used to recover the data distribution. For small numbers of stored
instances, we observe that larger the neighborhoods lead to better (lower) FID scores (left-hand side
of left panel). For recall, we also observe improvements for large neighborhoods when storing few
instances (left-hand side of right panel), suggesting that larger neighborhoods are more effective in
recovering the data distribution from few instances. This trend is reverted for large numbers of stored
instances, where smaller values of k are more effective. This supports the idea that the neighborhood
size acts as a bandwidth parameter – similar to KDE –, that controls the smoothness of the implicitly
learnt conditional distributions around instances. For example, k = 500 leads to smoother conditional
distributions than k = 5, and as a result requires fewer stored instances to recover the data distribution.
Moreover, as expected, we notice that the value of k does not significantly affect precision (right panel).
Overall, k = 50 offers a good compromise, exhibiting top performance across all metrics when using
at least 500 stored instances. We visualize the smoothness effect by means of a qualitative comparison
across samples from different neighborhood sizes in Section K of the supplementary material. Using
(very) small neighborhoods (e.g. of k = 5), results in lower diversity in the generated images.

4 Related work

Data partitioning for GANs. Previous works have attempted to improve the image gen-
eration quality and diversity of GANs by partitioning the data manifold through clustering
techniques [2, 19, 33, 36, 42, 46], or by leveraging mixture models in their design [14, 17, 23].
In particular, [36, 46] apply k-means on representations from a pre-trained feature extractor to
cluster the data, and then use cluster indices to condition the generator network. Then, [19, 33]
introduce an alternating two-stage approach where the first stage applies k-means to the discriminator
feature space and the second stage trains a GAN conditioned on the cluster indices. Similarly, [42]
proposes to train a clustering network, which outputs pseudolabels, in cooperation with the generator.
Further, [2] trains a feature extractor with self-supervised pre-training tasks, and creates a k-nearest
neighbor graph in the learned representation space to cluster connected points into the same
sub-manifold. In this case, a different generator is then trained for each identified sub-manifold. By
contrast, IC-GAN uses fine-grained overlapping data neighborhoods in tandem with conditioning
on rich feature embeddings (instances) to learn a localized distribution around each data point.

Mitigating mode collapse in GANs. Works which attempt to mitigate mode collapse may also bear
some similarities to ours. In [32], the discriminator takes into consideration multiple random samples
from the same class to output a decision. In [35], a mixed batch of generated and real samples is fed
to the discriminator with the goal of predicting the ratio of real samples in the batch. Other works use
a mixture of generators [17, 23] and encourage each generator to focus on generating samples from a
different mode. Similarly, in [14], the discriminator is pushed to form clusters in its representation
space, where each cluster is represented by a Gaussian kernel. In turn, the generator tends to learn to
generate samples covering all clusters, hence mitigating mode collapse. By contrast, we focus on
discriminating between real and generated neighbors of an instance conditioning, by using a single
generator network trained following the GAN formulation.

Conditioning on feature vectors. Very recent work [37] uses image self-supervised feature repre-
sentations to condition a generative model whose objective is to produce a good input reconstruction;
this requires storing the features of all training samples. In contrast, our objective is to learn a
localized distribution (as captured by nearest neighboring images) around each conditioning instance,
and we only need to save a very small subset of the dataset features to approximately recover the
training distribution.

Kernel density estimation and adversarial training. Connections between adversarial training and
nonparametric density estimation have been made in prior work [1]. However, to the best of our
knowledge, no prior work models the dataset density in a nonparametric fashion with a localized
distribution around each data point with a single conditional generation network.

Complex scene generation. Existing methods for complex scene generation, where natural looking
scenes contain multiple objects, most often aim at controllability and rely on detailed condition-
ings such as a scene graphs [3, 25], bounding box layouts [48–50, 58], semantic segmentation
masks [9, 43, 44, 52, 55] or more recently, freehand sketches [16]. All these methods leverage
intricate pipelines to generate complex scenes and require labeled datasets. By contrast, our approach
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relies on instance conditionings which control the global semantics of the generation process, and does
not require any dataset labels. It is worth noting that complex scene generation is often characterized
by unbalanced, strongly long tailed datasets. Long-tail class distributions negatively affect class-
conditional GANs, as they struggle to generate visually appealing samples for classes in the tail [8].
However, to the best of our knowledge, no other previous work tackles this problem for GANs.

5 Discussion

Contributions. We presented instance-conditioned GAN (IC-GAN), which models dataset dis-
tributions in a non-parametric way by conditioning both generator and discriminator on instance
features. We validated our approach on the unlabeled setting, showing consistent improvements
over baselines on ImageNet and COCO-Stuff. Moreover, we showed through transfer experiments,
where we condition the ImageNet-trained model on instances of other datasets, the ability of IC-GAN
to produce compelling samples from different data distributions. Finally, we validated IC-GAN
in the class-conditional setting, obtaining competitive results on ImageNet and surpassing the Big-
GAN baseline on the challenging ImageNet-LT; and showed compelling controllable generations by
swapping the class-conditioning given a fixed instance or the instance given a fixed conditioning.

Limitations. IC-GAN showed excellent image quality for labeled (class-conditional) and unlabeled
image generation. However, as any machine learning tool, it has some limitations. First, as kernel
density estimator approaches, IC-GAN requires storing training instances to use the model. Experi-
mentally, we noticed that for complex datasets, such as ImageNet, using 1,000 instances is enough to
approximately cover the dataset distribution. Second, the instance feature vectors used to condition
the model are obtained with a pre-trained feature extractor (self-supervised in the unlabeled case)
and depend on it. We speculate that this limitation might be mitigated if the feature extractor and the
generator are trained jointly, and leave it as future work. Third, although, we highlighted excellent
transfer potential of our approach to unseen datasets, we observed that, in the case of transfer to
datasets that are very different from ImageNet, the quality of generated images degrades.

Broader impacts. IC-GAN brings with it several benefits such as excellent image quality in labeled
(class-conditional) and unlabeled image generation tasks, and the transfer potential to unseen datasets,
enabling the use of our model on a variety of datasets without the need of fine-tuning or re-training.
Moreover, in the case of class-conditional image generation, IC-GAN enables controllable generation
of content by adapting either the style – by changing the instance – or the semantics – by altering
the class –. Thus, we expect that our model can positively affect the workflow for creative content
generators. That being said, with improving image quality in generative modeling, there is some
potential for misuse. A common example are deepfakes, where a generative model is used to
manipulate images or videos well enough that humans cannot distinguish real from fake, with the
intent to misinform. We believe, however, that open research on generative image models also
contributes to better understand such synthetic content, and to detect it where it is undesirable.
Recently, the community has also started to undertake explicit efforts towards detecting manipulated
content by organizing challenges such as the Deepfake Detection Challenge [13].
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