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Abstract

3D MRI reconstruction with deep learning is limited not only by GPU memory1

and voxel data resolution but also by the tendency of standard neural networks to2

overfit to training discretizations (resolutions), which makes them highly sensitive3

to variations in image resolution and sampling patterns. This forces downsampling4

or dimensional collapse and restricts generalization to higher-resolution volumes.5

We present a new neural operator framework for learning local features backed by6

3D discrete-continuous convolutions (DISCO), which are inherently resolution-7

agnostic. Unlike conventional 3D convolutions or kernel-interpolated weights,8

the proposed 3D neural operator relies on filters in a continuous domain, while9

preserving local inductive biases. This design enables training on coarse, low-10

memory volumes with full backpropagation, and supports high-resolution zero-11

shot or few-shot inference without aliasing, while reducing memory cost. This12

coarse-to-fine regime allows memory-efficient 3D training and large-volume testing13

using inference only. We evaluate the proposed 3D local neural operator on the14

SKM-TEA dataset for accelerated 3D MRI reconstruction, demonstrating accurate15

reconstructions with strong runtime and memory efficiency. While we focus on 3D16

MRI, the proposed 3D DISCO-based operator is broadly applicable to other 3D17

imaging modalities and general 3D voxel-based data reconstruction tasks.18

1 Introduction19

Medical imaging plays a crucial role across numerous scientific fields [1–4], and building more20

robust models for modalities such as magnetic resonance imaging (MRI) [5] has therefore garnered21

tremendous attention [6–10]. Deep learning has proven extremely useful in improving medical22

imaging, particularly in MRI reconstruction from highly undersampled measurements [10–12].23

However, these deep learning architectures are limited by GPU memory, and as a result most medical24

imaging studies in the literature focus on 2D reconstruction tasks [13, 14]. Deep learning architectures25

for 3D MRI reconstruction are increasingly desirable for both methodological and practical reasons.26

Compared to slice-based 2D approaches, 3D models exploit volumetric structure to improve depth27

consistency and reconstruction fidelity [13]. This shift is supported by the availability of large28

volumetric MRI datasets such as SKM-TEA [15] and by advances in hardware and GPU acceleration,29

which enable efficient whole-volume processing in a single forward pass.30

3D imaging imposes substantially higher computational demands than its 2D counterpart, as algo-31

rithmic complexity significantly increases with the additional spatial dimension (the input resolution32

changes fromO(n2) in 2D toO(n3) in 3D). Such an extension not only raises the number of trainable33

parameters but also amplifies memory usage and computational cost during both forward and back-34

ward passes. Consequently, naïve scaling of 2D architectures to 3D results in prohibitive resource35

requirements, motivating the need for architectural modifications and efficiency-oriented methods.36
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Figure 1: (a) Although 3D MRI data (e.g., SKM-TEA, knee MRI) are acquired using volumetric
scanners, GPU memory constraints often necessitate training 2D “slice-based” models, which are
later stacked for 3D volume inference. (b) 3D CNN-based approaches can only be trained on a
single resolution due to their fixed kernel size, and the training resolution is thus constrained by
GPU memory. (c) Our 3D neural operator (NO) model can be trained on any resolution and perform
inference at any resolution. This capability allows for memory-efficient training on lower-resolution
"coarse" samples while maintaining MRI reconstruction performance at "finer" high-resolution
samples. (d) Our architecture is an end-to-end neural operator that learns local features to reconstruct
high-frequency details missing in undersampled MRI measurements. Our neural operator layers learn
continuous kernels as opposed to fixed-resolution conventional CNN kernels. This neural operator is
built on the discrete-continuous convolution framework.

Beyond computational demands, ensuring generalization presents an additional challenge, particularly37

under the severe subsampling often required in 3D imaging. Standard neural networks tend to overfit38

to training discretizations, restricting their ability to generalize across different sampling patterns or39

resolutions. This is particularly problematic in 3D MRI where scan protocols vary widely. A popular40

workaround is to train on down-scaled samples, but traditional convolutions are highly sensitive to41

variations in resolution [14]. Kernel interpolation, involving upscaling kernels to match the original42

resolution, often introduces aliasing and hallucinated structures which are unacceptable in MRI since43

they can obscure critical anatomy, mislead clinical interpretation, and compromise patient safety.44

Neural operators provide a principled alternative, as they are inherently resolution agnostic and45

can map functions to functions regardless of discretization [16, 17]. This allows for a desirable46

training–inference paradigm in which models can be trained on low-resolution coarse volumes with47

full backpropagation, and then applied at high resolution finer volumes during inference without48

additional memory burden from backpropagation. Recent studies have shown that neural operators49

for capturing local data features with localized integral improve computational imaging tasks like50

2D MRI [11] and 3D photoacoustic tomography [18]. They outperform standard convolutions in51

adapting to diverse undersampling schemes and imaging resolutions. Such local neural operators are52

built on the basic block called discrete-continuous convolutions (DISCO) [19, 20], which mimics53

standard convolutions but in a resolution-agnostic manner.54

Our approach. Motivated by the success of the local neural operator backed by DISCO in 2D MRI55

reconstruction [11], we propose its extension to 3D, creating a unified resolution-agnostic framework56

for efficient and scalable 3D MRI reconstruction. The proposed neural operator layers provide a57

resolution-agnostic alternative to conventional Conv3D layers. The resulting 3D neural operator can58
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be trained on low-resolution samples while maintaining accurate reconstruction at higher resolutions,59

enabling super-resolution inference at scales beyond those seen during training.60

On the SKM-TEA 3D knee MRI dataset [15], we compare our neural operator 3D MRI reconstruction61

models against the standard 3D CNN baselines in super-resolution tasks and find their performance is62

on par. The implemented 3D DISCO and corresponding neural operator architecture repository will63

be publicly available (after acceptance). Although we demonstrate on 3D MRI, the framework can64

thus be used for other 3D computational/medical imaging tasks and other scientific and engineering65

areas where 3D volumetric data is involved, such as seismic imaging, fluid dynamics simulations and66

3D microscopy. Its flexibility enables seamless adaptation to different data modalities and physical67

constraints, making it a promising tool for a broad range of volumetric inverse problems.68

2 Related Works69

Standard Convolutions. E2E-VarNet [10] is a state-of-the-art unrolled model which demonstrates70

superior performance over traditional optimization-based approaches [21, 22] for compressed sensing71

MRI reconstruction from undersampled measurements. We extend this architecture to 3D for our72

baseline model. We compare our neural operator model with this convolution-based 3D MRI baseline.73

Neural Operators. A common neural operator architecture is the Fourier neural operator (FNO) [23],74

which applies a Fourier transform to the input, truncates high-frequency modes, and multiplies the75

result pointwise with a learned weight tensor. By the convolution theorem, this operation is equivalent76

to a global convolution. FNOSeg3D [14] presents a specialized implementation of the FNO for77

resolution-robust 3D MRI segmentation. However, MRI segmentation and reconstruction from78

undersampled measurements are fundamentally different tasks. Reconstruction requires capturing79

intricate anatomical structures, favoring architectures that can learn local inductive biases. Because80

FNO truncates high frequencies, it may lose information crucial for reconstruction. In contrast,81

DISCO does not truncate frequencies and can learn the local inductive biases necessary for accurate82

reconstruction. Jatyani et al. [11] demonstrate that DISCO-based neural operators are robust in83

super-resolution and extended field-of-view tasks in 2D MRI reconstruction from undersampled84

measurements. Building on this framework, we extend DISCO to 3D Cartesian coordinates.85

3 Methods86

While neural networks have had successes in medical imaging, they learn mappings between finite-87

dimensional vectors and are not resolution-agnostic. As a result, they usually perform well only at88

the training resolution, suffering a significant performance drop when measurements are taken at89

different resolutions [11]. Neural operators offer a principled generalization of neural networks to90

learn mappings between functions [16, 17], and have been successfully applied to a wide range of91

applications, including medical imaging [11, 24, 25]. By design, they can be applied to signals at any92

discretization or sampling pattern and their output can be queried on arbitrary discretizations. As a93

result, they offer a highly desirable unified approach to discretization-agnostic MRI reconstruction.94

Given that accurate MRI reconstruction depends on capturing local anatomical structures, we propose95

a neural operator architecture that incorporates local inductive biases.96

Local Features via Local Integration Operator. The most common method of embedding a local97

inductive bias into deep neural networks has been by using locally supported convolutional kernels,98

as in convolutional neural networks (CNNs). However, standard discrete convolutional kernels used99

in CNNs do not satisfy the resolution-agnostic properties of neural operators. Specifically, Liu et100

al. [20] show that CNN-style convolutional kernels converge to pointwise linear operators as the101

resolution is increased, instead of the desired local integration in the limit of infinite resolution. For102

a kernel κ and input function g defined over some compact subset D ⊂ Rd, the local convolution103

operator in a standard convolution layer, which transforms input u to output v, is given by104

(k ⋆ g)(v) =

∫
D

κ(u− v) · g(u) du. (1)

Discrete-Continuous Convolution (DISCO). Given a particular set of input points (uj)mj=1 ⊂ D105

with corresponding quadrature weights qj and output positions vi ∈ D, we adopt the discrete-106

continuous convolution (DISCO) framework for operator learning [19, 20] and approximate the107
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Figure 2: Left: first few 3D Morlet wavelet basis filter functions. Each row represents a basis
function, with columns showing cross-section slices of the 3D basis function. Right: computed 3D
DISCO kernel, as a linear combination of the basis filters. Note that this visualization is made with an
arbitrarily chosen resolution. Since the filter-basis functions are continuous, we can discretize them
at any desired resolution and compile the same kernel to any resolution at training or inference time.

continuous convolution as108

(k ⋆ g)(vi) =

∫
D

κ(u− vi) · g(u) du ≈
m∑
j=1

κ(uj − vi) · g(xj)qj . (2)

We parameterize the kernel κ as a linear combination of pre-defined kernel basis functions κℓ, i.e.,109

κ =
∑L

ℓ=1 θ
ℓ · κℓ, where the coefficients θℓ are learnable parameters. The convolutional kernel110

is thus parameterized by a finite number of parameters θℓ, independently of the grid on which the111

kernel is evaluated. This makes the kernel resolution-agnostic because the resolution-agnostic basis112

is disentangled from the discrete learnable parameters. The basis κℓ is defined in the function space,113

and will be discretized at the desired resolution. Since we are operating on an equidistant grid on a114

compact subset of R3, we follow [20] and implement Eqn. (2) using standard convolutional kernels115

(thus enjoying the benefits of acceleration on GPUs using standard deep learning libraries). We make116

two crucial modifications however: 1) the kernel itself is defined as a linear combination of basis117

functions κℓ, and 2) the size of the kernel scales with the input resolution so as to remain at fixed118

size with respect to the input domain. We use the local integration operator as the resolution-agnostic119

building block for the measurement space and image space operators.120

3D Morlet-Wavelet Basis. We write a new parametrized 3D filter basis that can be queried at any121

resolution. It employs a 3D Morlet wavelet–like basis as the predefined kernel functions κℓ, extending122

the 2D construction introduced in [20]. Internal kernel weights are obtained as a linear combination123

κ =
∑L

ℓ=1 θ
ℓ · κℓ of these filter basis functions, with trainable parameters θℓ [19, 20].124

The Morlet wavelet-like basis is formulated by multiplying a Gaussian window with a complex125

exponential in 3D. More details on this construction are provided in Section A of the Appendix. For126

ease of use, our implementation follows the API of the nn.Conv3D layer in PyTorch. We visualize127

the first few Morlet wavelet basis filters as well as the construction of a DISCO 3D kernel in Figure 2.128

Proposed 3D MRI NO Architecture. We denote the forward imaging operator as A with forward129

imaging process k = Ax + ϵ, where ϵ is the error. The neural operator architecture, depicted in130

Fig. 1d), is an unrolled neural operator designed to solve the inverse problem. Classical compressed131

sensing methods reconstruct the image x̂ by solving an optimization problem132

x̂ = argminx
1

2

∑
i

∥∥A(x)− k̃
∥∥2
2
+ λΨ(x). (3)

The unrolled architecture uses successive cascades to mimic different iterations in the optimization133

problem (Eqn. (3)) and to process subsampled MRI measurements with a soft data-consistency term134

that prevents the model from overriding the acquired measurements. Over multiple cascades, the135

4



model learns to denoise the sample image x. Specifically, we learn the prior in function space via136

discretization-agnostic neural operators in image space (NO). A cascade of unrolled layers is applied,137

each incorporating a data-consistency term and an image-space operator NO for prior learning:138

xt+1 ←− xt − ηtA∗(A(xt)− k̃) + λt NOt(xt). (4)

where ηt is the step size at each cascade that controls the weight of the physics prior. λ is a139

hyperparameter that controls the weight of the data prior from the deep learning model. NOt refers to140

the image-space neural operator at cascade t. Each cascade mimics the gradient descent step from xt141

to xt+1.142

The model is trained end-to-end and can thus also be considered as an entire model that reconstructs143

the final 3D MRI x̂ from subsampled MRI k-space measurements.144

4 Experiments145

Dataset and Setup. Details are provided in Section B of the Appendix.146

Implementation Details. We provide more implementation details in Section C of the Appendix.147

Zero-Shot Super-Resolution. We setup a zero-shot super-resolution task by downscaling full-148

resolution (512 × 512 × 320) samples to create a secondary half-resolution (256 × 256 × 160)149

dataset. First, both our model (NO3d) and the baseline model (E2E-VarNet3d) are trained on the150

half-resolution dataset, seeing no full-resolution examples. Then, after training, both models are151

evaluated on the original full-resolution dataset. Example (full-resolution) outputs of both our model152

and the baseline model are shown in Section D of the Appendix.153

Method Half Resolution Full Resolution
NO3d (DISCO, ours) 31.73 33.21
E2E-VarNet3D [10] (CNN, baseline) 31.73 33.47

Table 1: Performance comparison of the baseline CNN-based E2E-VarNet3D and our DISCO-based
NO3D models at half and full resolution. Models were trained on 1/2 resolution. Inference was
performed at full resolution. Notably, our DISCO-based method is on par with the conventional
CNN-based method. The metric is PSNR (dB).

5 Conclusion154

We introduced a resolution-agnostic neural operator framework for 3D MRI reconstruction using155

DISCO (discrete-continuous convolutions) [19]. By representing convolutional kernels in a continu-156

ous function space while retaining local inductive biases, our approach overcomes the limitations of157

standard 3D convolutions, which overfit to specific discretizations and require substantial memory for158

high-resolution volumes. This coarse-to-fine paradigm enables training on low-resolution volumes159

with full backpropagation and zero-shot or few-shot inference at higher resolutions without aliasing160

or additional memory cost.161

Our experiments on the SKM-TEA 3D MRI knee reconstruction dataset demonstrate that 3D DISCO162

achieves accurate and reliable reconstructions while maintaining strong runtime and memory effi-163

ciency in super-resolution tasks. Beyond 3D MRI, this framework offers a robust solution for 3D164

imaging and volumetric data reconstruction, with potential applications across scientific and clinical165

domains where data resolution varies or computational resources are limited.166

Future work could consider the following directions: 1) Implement and evaluate the performance of167

other filter bases for DISCO [19], such as piece-wise linear basis in [11]. 2) While this paper only168

reports zero-shot super-resolution reconstruction results, it is of interest to evaluate the proposed169

framework’s performance on different measurement sampling rates (acceleration rates) and measure-170

ment patterns. 3) Extend and evaluate the framework to other 3D MRI tasks (e.g. liver and brain171

reconstruction) as well as other 3D inverse problems like seismic imaging.172
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Appendix248

A Discrete-Continuous Convolution Implementation249

Our implementation of the 3D neural operator is built upon the discrete-continuous-convolution250

framework [11]. We implement 3D filter basis functions in an anonymous code repository, which251

will be public after acceptance. We also implement 3D local neural operator layers that construct252

continuous filters to perform discrete-continuous convolutions in the same repository.253

We implement a 3D Morlet-wavelet-like filter basis. Each basis function is constructed by multiplying
three separate 1D Fourier bases along the x, y, and z axes to create 3D wave patterns as a Fourier
basis H . Higher frequency basis functions multiply higher frequency harmonics. The result is
multiplied by a Hann window W . Specifically,

ψp,m,n(x⃗) =W (r) ·Hp,m,n(x⃗)

where

W (r) =

{
cos2

(
πr

2Rcutoff

)
if r ≤ Rcutoff

0 if r > Rcutoff

and

Hp,m,n(x, y, z) = hn(x) · hm(y) · hp(z) with hn(x) =

{
cos

(
knπx
w

)
if n is even

sin
(
knπx
w

)
if n is odd

254

B Dataset and Setup255

The SKM-TEA dataset [15] is a multi-coil knee volume MRI dataset, sized at 1.3 TB. Acquisitions256

are captured with the qDESS technique and each sample has two echoes. We choose the first echo in257

all of our experiments. Raw k-space data is captured at a 512×512×160 resolution. In image-space,258

this corresponds to MR volumes of the same 512× 512× 160 resolution. As described in the dataset259

source paper, voxel spacing/resolution at this configuration is 0.3125× 0.3125× 0.8. That is, the260

third dimension was acquired at roughly half the resolution as the first two dimensions.261

To achieve near-isotropic resolution, we preprocess the dataset by interpolating the 512× 512× 160262

dataset over the last dimension to 512× 512× 320. We denote this the full-resolution dataset. By263

downscaling these samples by a factor of 2, we get the 1/2 resolution 256× 256× 160 dataset.264

Both the baseline CNN and our neural operator (NO) model are trained on the half-resolution265

256 × 256 × 160 samples. Then, we perform zero-shot inference on out-of-domain full super-266

resolution 512× 512× 320 samples. Both models see no prior examples of full-resolution samples267

before evaluation, making this a true zero-shot setup.268

269

C Neural Operator for 3D MRI Reconstruction from Undersampled270

Measurements271

Our neural operator architecture is trained across 4×GH200 nodes for quicker training. Each node272

handles a batch size of 2, for a total batch size of 8. Each neural operator "NO" layer in Fig. 1 is a273

U-shaped DISCO Neural Operator, as first introduced in [11] with 4 encoder layers and 4 decoder274

layers. A DISCO kernel radius cutoff of 0.02 is used, with kernel shape parameter of [6, 6, 6].275

The baseline 3D CNN architecture closely follows the state-of-the-art for 2D MRI reconstruction, i.e.276

the E2E-VarNet [10], where 2D convolution layers are replaced with fully 3D convolution layers, and277

U-Nets are initialized with 4 encoders and 4 decoders.278

Both models are trained with the Adam optimizer for up to 50 epochs. Finally, both models are279

trained with 0.001 learning rate. Sweeps were ran to choose these optimal hyperparameters.280
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D Visualizations281

We visualize 3D MRI reconstruction in Fig. 3, with projections on different coordinate planes.282
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Figure 3: A visualization of three different viewpoints (slices along different planes) for a particular
sample of the MRI dataset. The leftmost column depicts the target image, the middle column depicts
the predictions of the trained neural operator, and the rightmost column depicts the output from the
CNN baseline. All models were trained on 1/2 resolution, with a 4x measurement sampling rate.
Inference was performed at full resolution.
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