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AN-Net: An Anti-Noise Network For Anonymous Traffic
Classification
Anonymous Author(s)∗

ABSTRACT
Anonymous networks employ a triple proxy to transmit packets to
enhance user privacy, causing traffic packets from all applications
and web services to form a unified flow. The traditional approach
of applying flow-level encrypted traffic classification methods to
anonymous traffic (i.e., treating consecutive packets as a single
flow) is hindered by irrelevant packet noise. Moreover, fluctuations
in the network environment can introduce per-packet attribute
noise and discrepancies between training and test data. How to
extract robust patterns from consecutive packets replete with noise
remains a key challenge. In this paper, we propose the Anti-Noise
Network (AN-Net) to construct robust short-term representations
for a single modality, effectively countering irrelevant packet noise.
We also incorporate an enhanced multi-modal fusion approach to
combat per-packet attribute noise. AN-Net achieves state-of-the-art
performance across two anonymous traffic classification tasks and
one VPN traffic classification task, notably elevating the F1 score of
SJTU-AN21 to 94.39% (6.24%↑). In particular, attackers cannot easily
disrupt all short-term features of all modalities and thus AN-Net
is robust against injected noise packet attacks. Our codes will be
available on GitHub after the double-blind review process.

CCS CONCEPTS
• Information systems → Traffic analysis; • Security and pri-
vacy→ Network security; • Computing methodologies→ Artifi-
cial intelligence.

KEYWORDS
Anonymous Traffic Classification, Irrelevant Packet Noise, Per-
Packet Attribute Noise, Short-Term Representation, Multi-Modal
Fusion
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1 INTRODUCTION
Network traffic classification, aiming at classifying network traffic
from various applications or web services, plays a critical role in
quality of service (QoS) enhancement, resource usage planning,
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Figure 1: Threat models of encrypted network traffic classifi-
cation and anonymous network traffic classification.

and even malware detection [6, 31, 35]. Recently, various traffic
encryption techniques have been employed [18, 28], such as SSL,
for protecting user privacy. However, these encryption mechanisms
also help malicious traffic evade the surveillance system, thus bring-
ing great challenges to traffic classification [7]. Traditional deep
packet inspection (DIP) based methods [15, 32], which explore
regular expression for matching the payload data, fail to identify
encrypted traffic since the payload data is changed relying on the
encryption algorithm. Therefore, encrypted traffic classification
has become a research hotspot in recent years.

Over the past decade, many different methods have been pro-
posed to classify encrypted traffic, which can be divided into three
categories according to the types of input: statistical feature-based
methods, sequential attribute-based methods, and raw traffic-based
methods. Early works [2, 3, 12, 13, 37] extract the statistical features
at the flow level (e.g., mean, minimum, maximum, and standard
deviation of packet sizes in a flow) to train the machine learning-
based classifier. These methods rely on expert-designed features
heavily and have limited generalization ability. Recently, some deep
learning-based methods [24, 26, 34] automatically learn compli-
cated patterns from the raw flow attribute sequences (e.g., packet
sizes in a flow), and achieve significant performance improvement.
However, these methods require a large number of labeled data
to train the deep learning-based models for more robustness. As a
comparison, raw traffic-based methods [25, 42] directly capture the
implicit and robust patterns in the encrypted payload at flow level
using complicated models. In addition to large amounts of labeled
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Figure 2: The relationship between the number of consecu-
tive packets and the probability that they belong to the same
flow. Consecutive packets in short-term are likely to origi-
nate from the same flow.

data, these methods are also limited by long training time and high
requirements on computing resources.

Most importantly, the majority of encrypted traffic classification
methods described above is based on flow-level features. Flow level
aggregation is beneficial for extracting robust patterns, but also
limits the effectiveness in special cases, e.g., the anonymous net-
work. As illustrated in Figure 1, tor network, the most mainstream
anonymous network, uses triple proxy to transmit traffic packets for
protecting user privacy. As a result, traffic packets from all applica-
tions or web services form a single flow. The conventional approach
of applying flow-level encrypted traffic classification methods to
anonymous traffic is to take consecutive packets as a flow [45]. Ob-
viously, this approach cannot guarantee that all packets originate
from the same web service. Therefore, the key difference between
anonymous traffic and encrypted traffic is noise, i.e., irrelevant
packets from other flows, denoted as irrelevant packet noise.

Extracting robust patterns from consecutive packets full of noisy
packets is crucial for anonymous traffic classification. Fu et.al. [17]
found that most flows completed in less that 2 seconds, which indi-
cates that consecutive packets in short-term are likely to originate
from the same flow. Inspired by their observation, we visualize the
number of consecutive packets and their probability of belonging
to the same flow on ISCX-nonTor [22], Cross-Platform [38], and
Browser datasets (see Figure 2). For simplicity, we use the first
1×104 packets of each pcap file to plot the figure. Results show that
consecutive packets in long-term have a high probability of not
belonging to the same flow, but packets in short-term are likely to
originate from the same. Therefore, anonymous traffic classification
methods should learn to model short-term features with low noise
and then aggregate them for robust representation.

In addition to irrelevant packet noise, fluctuations in the network
environment can introduce noise in the per-packet attributes, de-
noted as per-packet attribute noise. For example, internal arrival
time (IAT) is likely to be affected by network congestion and time-
to-live (TTL) may also change due to network routing. Therefore,
extracting robust patterns from noisy per-packet attributes is also
important for anonymous traffic classification. Considering that
traffic packets usually have more than one attribute, e.g., packet size,
IAT, TTL, etc., a good idea to combat the interference of per-packet
attribute noise is to combine attributes from different modalities.

In this paper, we propose an Anti-Noise Network (AN-Net) for
classifying anonymous traffic via short-term representation build-
ing and enhanced multi-modal fusion. It aims to learning robust
patterns from anonymous traffic full of irrelevant packet noise and
per-packet attribute noise. We first propose a Uni-modal Short-term
Representation Learning Module. It divides consecutive packets
in a "flow" into multiple short-term packet sequences. Short-term
features are then extracetd from them by using the Short-term
Feature Extraction Module (SFEM). Once short-term features are
extracted, they are fed into the Short-term Representation Aggre-
gation Module (SRAM), which aggregates the short-term features
into flow-level representation. The SRAM is specifically designed to
identify which short-term features come from irrelevant flows and
which ones originate from the target flow by adopting a novel high
temperature self-attention mechanism, thus helps resist the irrele-
vant packet noise. Finally, flow-level representations from different
modalities are fused in the Enhanced Multi-modal Representation
Fusion Module to combat the per-packet attribute noise.

The main contributions of this paper are summarized as follows:
• We present a Uni-modal Short-term Representation Learn-

ing Module to construct robust short-term representations
for a single modality to resist irrelevant packet noise. We
design a novel high temperature self-attention mechanism,
which pays less attention to noise packets.

• We propose to fuse representations from different modal-
ities to combat per-packet attribute noise. A novel repre-
sentation enhancement strategy is employed to further im-
prove fusion performance.

• AN-Net achieves state-of-the-art performance over two
anonymous traffic classification tasks and one VPN traffic
classification task. Moreover, it exhibits strong robustness
against injected noise packet attacks.

2 RELATEDWORK
2.1 Conventional Traffic Classification
Port-based methods [30] identify the application type based on the
port used. Their efficiency declinedwith the increase use of dynamic
ports [8] and default ports [14]. Payload-based methods [6, 15, 21,
32, 33], also called deep packet inspection (DPI), explore the specific
signature strings for matching the payload data. These methods are
unable to classify encrypted traffic because the signature strings
cannot be obtained from payloads after encryption.

2.2 Encrypted Traffic classification
Encrypted traffic classification methods can be divided into three
categories according the the types of input: statistical feature-based
methods, sequential attribute-based methods, and raw traffic-based
methods.

2.2.1 Machine Learning Based Encrypted Traffic Classification. Most
statistical feature-based methods use ML-based models for classi-
fication. These methods propose to leverage statistical features
at flow-level (e.g., mean, minimum, maximum, and standard de-
viation of packet sizes in a flow) to solve encrypted traffic clas-
sification problem combined with machine learning algorithms
[1, 4, 12, 27, 37]. AppScanner [37] trains random forest classifiers by
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Figure 3: Overview of AN-Net Framework.

exploiting statistical features of packet sizes, while Gerard et.al. [12]
trains C4.5 decision tree and KNN classifiers using time-related fea-
tures. As a supplement of statistical features, Whisper [16] extracts
the frequency domain features of flows and uses clustering algo-
rithms for classification. Thesemethods rely heavily on professional
knowledge and it is difficult to design generic statistical features to
handle different applications.

2.2.2 Deep Learning Based Encrypted Traffic Classification. Some
statistical feature-based methods [44] also apply DL-based models
for better representation extraction capabilities, and they also rely
on human-designed features and have limited generalization ability.
As an alternative, sequential attribute-based methods [5, 24, 26, 34,
36] extracts discriminative representations from raw sequential
attributes (e.g., packet sizes in a flow). Flowlens [5] computes for
each flow a memory-efficient representation of packet sizes named
"flow marker". FlowPic [34] transforms raw packet size sequences
and arrival interval sequences in a flow into an intuitive picture.
FS-Net [26] uses recurrent neural networks (RNN) to automatically
extract representations from raw packet size sequences. Another
alternative approach is to learning implicit representations from
raw traffic. Raw traffic-based methods [24, 25, 29, 42] directly cap-
ture the implicit and robust patterns in the encrypted payload at
flow level using complicated DL-based models.

However, the majority of encrypted traffic classification methods
described above is based on flow-level features, which limits their
effectiveness in anonymous networks, where the traffic from all
applications or web services form a single flow. Moreover, None

of these methods paid attention to the unreliability of per-packet
attributes and attempted to solve it by combining information from
different modalities. In this paper, we propose to build strong short-
term representations to resist irrelevant packet noise, and adopt
an enhanced multi-modal fusion module to combat per-packet
attribute noise.

3 AN-NET
In this paper, we aim to accurately classify anonymous network traf-
fic under the interference of irrelevant packet noise and per-packet
attribute noise. To this end, we propose an Anti-Noise network
(AN-Net) (see Figure 3) to build strong short-term representations
for a single modality to resist irrelevant packet noise (Secion 3.1)
and achieve enhanced multi-modal fusion to combat per-packet
attribute noise (Secion 3.2).

3.1 Short-term Representation Learning
In this section, we propose a Uni-modal Short-term Representation
Learning Module to build short-term representations for resisting
irrelevant packet noise.

3.1.1 Flow Division and Packet Parsing. Given a "flow" that con-
sists of consecutive packets 𝑃 of length 𝐿, we first divide 𝑃 into 𝑁
parts and obtain multiple short-term consecutive packet sequences:
𝑃 = [𝑃1, 𝑃2, · · · , 𝑃𝑁 ]. As illustrated in Figure 2, packets in short-
term are likely to originate from the same flow. Therefore, features
extracted from short-term packet sequences are more likely to be

3
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immune to the interference of irrelevant packet noise. Then we
parse out the short-term per-packet attribute/payload sequences
for classification, denoted as 𝐴 = [𝐴1, 𝐴2, · · · , 𝐴𝑁 ], where 𝐴𝑖 is a
short-term per-packet attribute/payload sequence.

3.1.2 Short-term Feature Extraction. We design two Short-term
Feature Extraction Modules (SFEM) to extract short-term features
from raw data and statistical data respectively, denoted as Raw-
SFEM and Stat-SFEM.

Suppose the input is a short-term per-packet payload sequence
𝐴𝑖 ∈ R𝑙×𝑑 , where 𝑙 is the length of the short-term sequence and 𝑑
is the length of payload, Raw-Stat employs a bidirectional GRU to
extract the short-term feature: 𝐹𝑖 = 𝐺𝑅𝑈 (𝐴𝑖 ) ∈ R𝐶 . If the input is
a short-term per-packet attribute sequence 𝐴𝑖 ∈ R𝑙×1 (e.g., packet
size), Raw-Stat first embeds each attribute to a vector via an em-
bedding layer, and then also uses a bidirectional GRU to extract the
short-term feature 𝐹𝑖 ∈ R𝐶 . The extracted short-term features are
denoted as 𝐹 = [𝐹1, 𝐹2, · · · , 𝐹𝑁 ] ∈ R𝑁×𝐶 .

Stat-SFEM can only deal with attribute sequences. It first extracts
7 general statistical features (i.e., mean, max, min, median, stan-
dard deviation, skewness, and kurtosis) and the frequency domain
features from these short-term attribute sequences as the short-
term statistical features, denoted as 𝑇 = [𝑇1,𝑇2, · · · ,𝑇𝑁 ]. Then it
employs a MLP to extract the short-term feature 𝐹𝑖 for each short-
term statistic feature: 𝐹𝑖 = 𝑀𝐿𝑃 (𝑇𝑖 ) ∈ R𝐶 . The MLP consists of two
fully-connected layers and one ReLU layer between them. Despite
its simplicity, the MLP is able to extract discriminative features
thanks to the high-level statistical features and the nonlinear trans-
formation of the ReLU layer. Thanks to the high-level statistical
features, Stat-SFEM exhibits higher stability than Raw-SFEM when
training data collection environment is inconsistent with the actual
test environment, as detailed in Section 4.5.

3.1.3 Short-term Representation Aggregation. Once short-term fea-
tures 𝐹 ∈ R𝑁×𝐶 are extracted, we use the Short-term Represen-
tation Aggregation Module (SRAM) to aggregate the short-term
features 𝐹 ∈ R𝑁×𝐶 into flow-level representation 𝑍 . Since short-
term features may also come from irrelevant flows, it is critical
to distinguish among 𝑁 short-term features which ones originate
from the irrelevant flow and which ones come from the target flow.
We design a novel high temperature self-attention mechanism to
achieve this. Specifically, the SRAM is composed of a Transform
Layer [39] and a Pooling layer. A normal Transformer layer consists
of two key sub-layers: self-attention layer and feed forward layer.
Each sub-layer uses the residual structure [19] to avoid the degra-
dation problem that occurs as the depth of the network increases.

Given the short-term features 𝐹 = [𝐹1, 𝐹2, · · · , 𝐹𝑁 ] ∈ R𝑁×𝐶 , the
self-attention layer first calculate Query Matrix 𝑄 by using linear
transformation:

𝑄 = 𝐹𝑊𝑄 = [𝑞1, 𝑞2, · · ·𝑞𝑁 ]𝑇 , (1)

where𝑊𝑄 ∈ R𝐶×𝐷 is learnable parameter and𝑞𝑖 ∈ R𝐷 denotes the
query vector of i-th short-term feature 𝐹𝑖 . Similarly, we calculate
KeyMatrix and Value Matrix by another two linear transformations:

𝐾 = 𝐹𝑊𝐾 = [𝑘1, 𝑘2, · · ·𝑘𝑁 ]𝑇 , (2)

𝑉 = 𝐹𝑊𝑉 = [𝑣1, 𝑣2, · · · 𝑣𝑁 ]𝑇 , (3)

where 𝑘𝑖 denotes the key vector and 𝑣𝑖 denotes the value vector of
i-th short-term feature 𝐹𝑖 . Then, considering the query vector of
i-th short-term feature 𝑞𝑖 , we compute the dot products of 𝑞𝑖 and
key vectors of all short-term features:

𝑆𝑖 = [𝑞𝑖 · 𝑘𝑇1 , 𝑞𝑖 · 𝑘
𝑇
2 , · · · , 𝑞𝑖 · 𝑘

𝑇
𝑁 ] = [𝑠𝑖1, 𝑠𝑖2, · · · , 𝑠𝑖𝑁 ], (4)

where 𝑠𝑖 𝑗 is the similarity between 𝑞𝑖 and 𝑘 𝑗 , and reflects the impor-
tance of j-th short-term feature to i-th short-term feature. Normal
self-attention layer scales dot products 𝑆𝑖 by 1√

𝐷
before applying a

softmax function to make the sum of the elements be 1:

W𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑆𝑖√
𝐷
) = [𝑤𝑖1,𝑤𝑖2, · · · ,𝑤𝑖𝑁 ],

𝑁∑︁
𝑗=1

𝑤𝑖 𝑗 = 1, (5)

The output at i-th position is then calculated using weighted sum-
mation over value vectors of all short-term features 𝑉 :

𝑧𝑖 = W𝑖𝑉 =

𝑁∑︁
𝑗=1

𝑤𝑖 𝑗𝑣 𝑗 . (6)

Finally, the output of self-attention layer on all short-term features
𝐹 is represented as: 𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡𝑛(𝐹 ) = [𝑧1, 𝑧2, · · · , 𝑧𝑁 ]. The above
process can also be expressed in matrix form:

𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡𝑛(𝐹 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝐷

)𝑉 . (7)

As stated above, the original self-attention layer scales the dot
products 𝑆𝑖 by 1√

𝐷
before applying a softmax function.Wei et.al. [41]

demonstrated that increasing the magnitude | |𝑆𝑖 | | will cause a sharp
distribution for softmax weight scoreW𝑖 . Original self-attention
layer reduces the magnitude | |𝑆𝑖 | | by scaling by 1√

𝐷
to avoid the

softmax function from producing extremely small weights inW𝑖 .
However, in the anonymous traffic classification scenario, since
some short-term features may come from irrelevant flows, a sharp
distribution for softmax weight score W𝑖 needs to be generated to
resist irrelevant packet noise. To this end, we design a novel high
temperature self-attention mechanism by increasing the magnitude
of dot products:

𝐻𝑇 -𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡𝑛(𝐹 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ( N (𝑄)N (𝐾)𝑇
𝜏

)𝑉 , (8)

where N is the normalize function that makes the vector norm
equal to 1 and 𝜏 is the temperature hyper-parameter. Note that the
real temperature is the reciprocal of 𝜏 . After employing a high tem-
perature, the softmax function produces extremely small weights
for short-term features from irrelevant flows.

The feed forward layer can enhance the expression ability of the
output features by mapping them to high-latitude space and then
back to low-latitude space through two linear transformations. In
the middle of them, a GeLU layer [20] is adopted to alleviate the
vanishing gradient problem.

Finally, the short-term features are aggregated into flow-level
uni-modal representation 𝑍 by using an Average Pooling layer.

3.2 Multi-modal Representation Fusion
In this section, we propose the Enhanced Multi-modal Representa-
tion Fusion Module to fuse flow-level representations from different
modalities for combating per-packet attribute noise.

4
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3.2.1 Modal Selection. Before fusing representations from differ-
ent modalities, we resort to information leakage [23] to remove
useless modalities. We utilize the mutual information between sta-
tistical features 𝑇 of each modality and the ground truth labels 𝐶
to measure the importance of this modality:

𝐼 (𝑇 ;𝐶) = 𝐻 (𝐶) − 𝐻 (𝐶 |𝑇 ). (9)

Representations from modalities with high information leakage are
then fused to obtain the final robust representation.

3.2.2 Representation Enhancement. As mentioned above, the unre-
liability of per-packet attributes may make the representation of
certain modalities full of noise. A conventional approach to com-
bat input noise is to employ data augmentation strategy, which
has been widely used in CV [9–11] and NLP [40, 43]. However,
due to the limitation of input data type (i.e., numeric values), few
data augmentation methods have been proposed to cope with en-
crypted traffic classification. To this end, we propose a novel repre-
sentation enhancement strategy to perform data augmentation in
representation-level.

Given representations from𝑀 modalities [𝑍1, 𝑍2, · · · , 𝑍𝑀 ], we
perform data augmentation on representation from each modality,
respectively:

𝑍𝑖 =

{
0, 𝑝

𝐵 × 𝑍𝑖 , 1 − 𝑝 (10)

where 𝑝 is a random probability and 𝐵 is a scaling factor sampled
from Beta distribution. Note that the representation-level data aug-
mentation will only be adopted during the training phase. For a
uni-modal representation, we randomly drop it to force the model
to learn from other modalities, or scale it to make the model learn
more robust patterns.

3.2.3 Representation Fusion. We then aggregate the enhanced rep-
resentations from different modalities into the final multi-modal
representation by using an Average Pooling layer:

𝑍 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔( [𝑍1, 𝑍2, · · · , 𝑍𝑀 ]). (11)

Finally, we make the prediction on it with a fully-connected layer
𝑌 = 𝐹𝐶 (𝑍 ), and train the whole model through cross-entropy loss:
L = 𝐶𝐸 (𝑌,𝑌 ), where 𝑌 is the ground-truth label.

4 EXPERIMENTS
In this section, we first present the datasets, baselines, evaluation
metrics and implementation details (Section 4.1). We then compare
AN-Net with seven methods (Section 4.2), and demonstrate that AN-
Net is robust against injected noise packet attacks (Section 4.3). We
further perform an ablation analysis of two key structures: Short-
term Representation Learning (Section 4.4.1) and Multi-modal Rep-
resentation Fusion (Section 4.4.2). Finally, we show that high-level
statistical features are more stable when there are discrepancies
between training and test data (Section 4.5).

4.1 Experiment Setup
4.1.1 Datasets. To evaluate the effectiveness and generalization
of AN-Net, we conduct experiments on two anonymous traffic
datasets [22, 44] and one VPN traffic dataset [12]. The statistical
information of three datasets is shown in Table 1. Note that we take
100 consecutive packets as a flow. SJTU-AN21 provides a test set

Table 1: The Statistical Information of three Datasets.

Dataset Type #Flows #Labeltrain test

SJTU-AN21 [45] Anonymous 37529 9133 10
ISCX-Tor [22] Anonymous 92458 23101 8
ISCX-VPN [12] VPN 20009 4957 7

separately, which is collected in a different network environment
than the training set. For other two datasets, we divide them into
the training set and the test set according to the proportion of 80%
and 20% for each class.

4.1.2 Baselines. Weuse seven state-of-the-art flow-level encrypted
traffic classification methods covering three basic categories as base-
lines. For a fair comparison, all methods use the same partitioned
flows for training and test.

• AppScanner (Statistical features and ML-based model).
AppScanner [37] trains random forest classifiers by ex-
ploiting statistical features of packet sizes at flow-level.
We retrained the ML-based model using the default hyper-
parameter settings in their paper.

• Decision Tree (Statistical features and ML-based model).
Gerard et.al. [12] trains C4.5 decision tree using statistical
features of internal arrivals at flow-level. Likewise, we use
the default settings.

• Whisper (Statistical features and ML-based model).
Whisper [16] extracts the frequency domain features of
packet sizes at flow-level as a supplementation of conven-
tional statistical features, and uses clustering algorithms
for classification. We reproduce Whisper on three datasets
without modifications and then retrain theML-based model.

• Flowlens (Sequential attributes and ML-based model).
Flowlens [5] computes for each flow amemory-efficient rep-
resentation of packet sizes named "flow marker", and uses
a Multinomial Naive-Bayes classifier for classification. We
retrained the ML-based model using the hyper-parameter
settings that produce the most accurate results.

• FS-Net (Sequential attributes and DL-based model).
FS-Net [26] uses recurrent neural networks (RNN) to au-
tomatically extract representations from raw packet size
sequences. Amulti-layer encoder-decoder structure and the
reconstruction mechanism are adopted to enhance the ef-
fectiveness of features. We use the default hyper-parameter
setting in their paper.

• AttnLSTM (raw traffic and DL-based model).
AttnLSTM [42] is an end-to-end network based on the
LSTMmodel to directly perform classification on raw traffic.
It introduces an attention mechanism to score the impor-
tance of each flow. Similarly, we use the default setting in
their paper.

• ET-Bert (raw traffic and DL-based model).
ET-Bert [25] pre-trains deep traffic representations from
large-scale unlabeled raw traffic, then fine-tunes on a small
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Table 2: Comparison Results on SJTU-AN21, ISCX-Tor, and ISCX-VPN datasets.

Dataset SJTU-AN21 ISCX-Tor ISCX-VPN

Method AC PR RC F1 AC PR RC F1 AC PR RC F1

AppScanner [37] 0.7181 0.7535 0.7181 0.7038 0.8203 0.8117 0.8203 0.8022 0.7293 0.7378 0.7293 0.7193
Decision Tree [12] 0.5702 0.6630 0.5702 0.5621 0.8059 0.7926 0.8059 0.7942 0.8259 0.8204 0.8259 0.8211
Whisper [16] 0.4820 0.5629 0.4820 0.5066 0.6723 0.7886 0.6723 0.6975 0.5848 0.6027 0.5848 0.5486

Flowlens [5] 0.6943 0.7576 0.6943 0.7128 0.8003 0.8703 0.8003 0.8256 0.6336 0.6674 0.6336 0.5820
FS-Net [26] 0.8083 0.8233 0.8083 0.7949 0.9322 0.9342 0.9322 0.9315 0.8457 0.8502 0.8457 0.8398

AttnLSTM [42] 0.8120 0.8176 0.8120 0.8030 0.9725 0.9718 0.9725 0.9708 0.9778 0.9781 0.9778 0.9778
ET-Bert [25] 0.8661 0.9163 0.8661 0.8815 0.9525 0.9514 0.9525 0.9445 0.9885 0.9895 0.9885 0.9888

AN-Net (ours) 0.9476 0.9490 0.9476 0.9439 0.9951 0.9951 0.9951 0.9950 0.9996 0.9996 0.9996 0.9996

amount of labeled data. We re-pretrain the model and fine-
tune it on three datasets, respectively.

4.1.3 Evaluation Metrics and Implementation Details. We evaluate
our AN-Net and compare it with other state-of-the-art methods by
four typical metrics, including Accuracy (AC), Precision (PR), Recall
(RC), and F1 [25, 38, 46]. In the training phase, we train the AN-Net
with a stochastic gradient descent (SGD) optimizer, and the learning
rate is set to 0.001. The batch size is 64 and the total steps is 50,000.
The temperature hyper-parameter 𝜏 is set to 0.1. The probability
of randomly drop uni-modal representation 𝑝 is set to 0.2 and the
scaling factor 𝐵 is sampled from beta distribution 𝐵 ∼ 𝐵𝑒 (4, 4). All
the experiments are implemented using Pytorch 1.9.0 and trained
on PC with Intel® Xeon® Gold 5218R CPU@2.10GHz, 256 GB
RAM, and an NVIDIA GeForce RTX3090 GPU. The modal selection
criteria is illustrated in Appendix B. For ISCX-VPN and ISCX-Tor
datasets, we use Raw-SFEM for short-term feature extraction. For
SJTU-AN21 dataset, we employ Stat-SFEM and drop the payload
modality (see Section 4.5 for more details).

4.2 Comparison with State-of-the-Art Method
We compare AN-Net with seven state-of-the-art (SOTA) methods
on three datasets. The experimental results are shown in Table 2.
The seven methods can be devided into three categories: statistical
feature-based methods (i.e., AppScanner, Decision Tree, and Whis-
per), sequential attribute-based methods (i.e., Flowlens and FS-Net),
and raw traffic-based methods (i.e., AttnLSTM and ET-Bert).

SJTU-AN21. SJTU-AN21 [44] is a new anonymity network traf-
fic dataset collected in the open network and the test set is collected
separately in different network environment. Due to the interfer-
ence of irrelevant packets and discrepancies between training and
test data, previous methods never achieved more than 90% accuracy.
According to Table 2, AN-Net significantly outperforms all exist-
ing methods. Specifically, AN-Net improves Accuracy and F1 by
8.15% and 6.24% respectively over the existing state of the art (i.e.,
ET-Bert). Previous methods designed for encrypted traffic classifica-
tion ignored the noise of irrelevant packets and the unreliability of
uni-modal attributes. As a comparison, we build strong short-term
features and aggregate them with a carefully designed high tem-
perature self-attention mechanism to resist irrelevant packet noise,
and then propose to fuse representations from different modalities

to combat per-packet attribute noise. Moreover, Stat-SFEM exhibits
strong transfer capabilities thanks to the high-level statistical fea-
tures when the network environments of the training data and test
data are inconsistent (see Section 4.5 for more details).

ISCX-Tor. ISCX-Tor [22] is a frequently used Tor network traffic
dataset. Compared with SJTU-AN21, this dataset is less noisy and
significantly larger in size. Because of the purity and large amount
of data, DL-based methods that directly learn from raw sequential
attributes or raw traffic payload (i.e., FS-Net, AttnLSTM, and ET-
Bert) perform very well. AN-Net has an accuracy of 99.50% and a
F1 of 99.51%, slightly better than these three DL-based methods,
and significantly outperforms other four ML-based methods (i.e.,
AppScanner, Decision Tree, Whisper, and Flowlens). For example,
AN-Net achieves 2.42% and 5.05% improvement on F1 over AttnL-
STM and ET-Bert, respectively. Although the amount of data is large
enough to support raw traffic-based methods to extract implicit
and robust features from payload, attributes from other modalities
can still help improve model performance.

ISCX-VPN. ISCX-VPN [12] is a commonly used VPN traffic
dataset. Similar to anonymous networks, VPN networks use prox-
ies to transmit information for hiding IP information. Therefore,
VPN traffic classification also suffers from irrelevant packet noise.
AN-Net pushes F1 on ISCX-VPN to 99.96%. Our model achieves
more than 15.98% improvement on F1 over statistical-based meth-
ods and sequential attribute-based methods, and performs slightly
better than two raw traffic-based methods (2.18% and 1.08% im-
provement on F1 over AttnLSTM and ET-Bert). Moreover, AN-Net
exhibits greater robustness against injected noise packet attacks
(see Section 4.3).

4.3 Robustness Analysis
To evaluate the robustness of AN-Net, we assume that attackers con-
struct injected noise packet attacks, i.e., injecting irrelevant packets
into original traffic to evade supervision. In the experiments, for
simplicity, we assume attackers randomly select packet sequences
from the entire dataset as noise traffic. We then mix original traffic
with noise traffic in different ratios, i.e., the proportion of noise
traffic ranges from 0 to 75%. We do not inject a higher proportion of
noise traffic because the effectiveness of other methods is already
low. Figure 4 shows F1 scores of AN-Net and seven SOTA methods
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Figure 4: F1 score of AN-Net and seven SOTA methods under injected noise packet attacks.

Table 3: Ablation study on short-term features and high tem-
perature (HT) self-attention mechanism.

Feature HT Noise Ratio

0 1/4 1/2 3/4

Long-Term / 0.9427 0.9276 0.9093 0.7295

Short-Term % 0.9352 0.9329 0.9327 0.9068
! 0.9439 0.9430 0.9423 0.9200

over three datasets under injected noise packet attacks. According
to the results, we conclude that attackers cannot confuse AN-Net
via injected noise packet attacks. However, attackers can fool other
encrypted traffic classification models.

Raw traffic-based methods (i.e., AttnLSTM and ET-Bert) are very
vulnerable to injected noise packet attacks. For instance, the F1
scores of ET-Bert and AttnLSTM on three datasets are reduced by at
least 64.6% and 69.6% respectively. Payloads from irrelevant packets
can easily lead to incorrect recognition results. Similarly, long-term
statistical features (e.g., Maximum value, Mean value) can also be
severely corrupted by inserted noise packets. Statistical feature-
based methods (i.e., AppScanner, Decision Tree, and Whisper) have
at most 43.0%, 36.5%, and 36.7% F1 score decrease over three datasets,
respectively. As a comparison, sequential attribute-based methods
(i.e., Flowlens and FS-Net) is more robust against irrelevant packet
noise, since a part of clean original attribute sequences is retained.
However, the F1 scores of FS-Net on the SJTU-AN21 and ISCX-VPN
datasets still drop by 17.9% and 16.9%, respectively. In contrast,
AN-Net maintains similar classification performance, where the F1
score fluctuations are less than 2.39% on SJTU-AN21 dataset and
0.32% on ISCX-VPN dataset. On ISCX-Tor dataset, due to the large
amount of data, the F1 score of AN-Net drops by 8.8% to 90.71%,
which is still higher than all other SOTA methods.

In summary, AN-Net can achieve robust classification because
of the short-term representation learning and the multi-modal rep-
resentation fusion. In particular, attackers cannot easily disrupt
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Figure 5: The impact of the temperature hyper-parameter 𝜏 .

all short-term features of all modalities and thus AN-Net is robust
against injected noise packet attacks.

4.4 Ablation Analysis
We provide an ablation analysis to verify the contribution of each
component on SJTU-AN21 dataset. In addition to normal traffic,
we also perform ablation experiments under injected noise packet
attacks to prove the effectiveness of these components against noise.

4.4.1 Short-term Representation Learning. In this section, we ab-
late short-term features and high temperature (HT) self-attention
mechanism, as shown in Table 3. We do not perform flow division
and directly extract long-term statistical features when ablating
short-term features. Then we use vanilla self-attention mechanism
to substitute high temperature self-attention mechanism. As dis-
cussed above (Section 4.3), long-term statistical features are se-
verely corrupted by inserted noise packets. Results show that the
F1 score of using long-term features is 19.05% lower than using
short-term features when the noise ratio of irrelevant packets is
set to 75%. Therefore, it is crucial to model short-term features
to combat irrelevant packet noise. Besides, high temperature self-
attention mechanism improves model performance through paying
less attention to noise packets. This improvement increases as the
noise ratio increases, from 0.87% to 1.32%. The visualization of high
temperature self-attention mechanism is shown in Appendix 5.

We further investigate the impact of the temperature hyper-
parameter 𝜏 , as shown in Figure 5. Results show that AN-Net
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Table 4: Ablation study on multi-modalities.

Packet Size IAT TTL TCPFlag AC F1

! % % % 0.7958 0.8014
! ! % % 0.8314 0.8304
! ! ! % 0.9269 0.9234
! ! ! ! 0.9476 0.9439

Table 5: Ablation study on representation enhancement (RE)
strategy.

RE SJTU-AN21 ISCX-Tor ISCX-VPN

1/2 3/4 1/2 3/4 1/2 3/4

% 0.9378 0.9101 0.9334 0.8934 0.9957 0.9881
! 0.9423 0.9200 0.9377 0.9071 0.9964 0.9933

achieves better performance at higher temperatures. Note that the
real temperature is the reciprocal of temperature hyper-parameter
𝜏 . The self-attention mechanism with a higher temperature gen-
erates a sharper distribution for weight score matrix, thus helps
resist the irrelevant packet noise by paying little attention to noisy
short-term features from irrelevant packets. When the temperature
gradually decreases, the model performance gradually drops to the
level of vanilla self-attention mechanism.

4.4.2 Multi-modal Representation Fusion. In this section, we first
construct an ablation study on multi-modalities. As shown in Ta-
ble 4, the uni-modal model using packet size only achieves an F1
score of 80.14%. By combining the attributes of other modalities, the
F1 score of the multi-modal model is increased to 94.39% (14.25%↑).
On the one hand, attributes of different modalities can provide
complementary information to support better decision-making. On
the other hand, when the network environment fluctuates, the at-
tributes of different modalities can verify each other to combat
per-packet attribute noise.

We further construct an ablation study on representation en-
hancement (RE) strategy. As shown in Table 5, representation en-
hancement strategy improves model performance through perform-
ing data augmentation in representation-level to combat the noise
of uni-modal representations. The improvement also increases as
the noise ratio increases, from 0.45% to 0.99% on SJTU-AN21 dataset
and from 0.43% to 1.37% on ISCX-Tor dataset. The unreliability of
per-packet attributes and the noise of irrelevant packets both make
the uni-modal representation full of noise. The representation-level
data augmentation strategy enables AN-Net to learn robust multi-
modal representation from noisy uni-modal representations.

4.5 Stability Analysis
In this section, we provide an stability analysis to demonstrate that
statistical features are more stable than raw attribute sequences or
raw traffic payloads when training data collection environment is
inconsistent with the actual test environment.

Table 6: Comparison of Stat-SFEM and Raw-SFEM and abla-
tion of payload modality on SJTU-AN21 dataset.

SFEM Payload AC F1

Raw-SFEM % 0.9055 0.9098

Stat-SFEM ! 0.9358 0.9391
% 0.9476 0.9439
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Figure 6: Training loss and test loss curves during training.

Specifically, we construct an comparison experiment to compare
Stat-SFEM and Raw SFEM, and then perform an ablation exper-
iment on the payload modality over SJTU-AN21 dataset. Results
are shown in Table 6. It can be concluded that Stat-SFEM outper-
forms Raw-SFEM by a large margin (4.21% in Accuracy and 3.41%
in F1 score) and adding payload modality slightly reduces model
performance (1.18% in Accuracy and 0.48% in F1 score). We fur-
ther plot the training loss and test loss curves during the training
process, as shown in Figure 6. Stat model has the largest training
loss, but the smallest test loss, which indicates that learning from
raw attribute sequences or raw traffic payloads will suffer from
severely overfitting. When training data collection environment is
inconsistent with the actual test environment, some specific raw
attribute sequences or raw traffic payloads that are very useful
in training data may become ineffective in test data. For example,
changes in encryption algorithms result in different payloads for
the same plaintext. In contrast, high-level statistical features are
more stable because they measure the distribution and variation of
raw attribute sequences, and thus are more transferable.

5 CONCLUSION
In this paper, we propose a new anonymous traffic classification
model, AN-Net, to construct robust short-term representations for
a single modality and then combine representations from different
modalities. AN-Net is able to resist irrelevant packet noise and
per-packet attribute noise, thus exhibits strong robustness against
injected noise packet attacks. We comprehensively evaluate the
effectiveness and generalization of AN-Net on two anonymous
traffic datasets and one VPN traffic dataset. Experimental results
show that AN-Net achieves a new state-of-the-art performance,
notably evelating the F1 score of SJTU-AN21 to 94.39% (6.24%↑).
Moreover, AN-Net is more robust than existing works against in-
jected noise packet attacks, because attackers cannot easily disrupt
all short-term features of all modalities.
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Figure 7: The visualization of the weight score matrices in the high temperature self-attention mechanism. Results show that
the high temperature self-attention mechanism generates a sharp distribution for weight score matrix and all short-term
features (including noisy short-term features) pay little attention to noisy short-term features from irrelevant packets.

A VISUALIZATION OF HT SELF-ATTENTION.
We visualize the weight score matrix to exhibit how high tempera-
ture self-attention mechanism helps resist irrelevant packets noise.
Specifically, we first construct a noisy dataset containing 50% irrele-
vant packets by injecting irrelevant packets, and then train AN-Net
with this noisy dataset. The weight score matrices of two special
text examples are shown in Figure 7. Each flow is divided into 10
short-term packet sequences. In Figure 7(a), the left half is the tar-
get packet sequences, and the right half is the irrelevant packet
sequences, which is exactly the opposite of Figure 7(b).

It can be concluded that the high temperature self-attention
mechanism generates a sharp distribution for weight score matrix
and all short-term features (including noisy short-term features)
pay little attention to noisy short-term features from irrelevant
packets. The high temperature self-attention mechanism increases
the magnitude of dot products by the temperature hyper-parameter
𝜏 . After employing a high temperature, the softmax function can
produce extremely small weights for noisy short-term features from
irrelevant packets (0.00 or 0.05 in Figure 7). By combining short-
term features with high temperature self-attention mechanism,
AN-Net is effective to resist irrelevant packet noise.

B MODAL SELECTION.
As mentioned above, before fusing representations from different
modalities, we resort to information leakage to remove useless
modalities. We compute the mutual information between statis-
tical features of a certain modalities and the ground truth labels
to measure the importance of this modality. The calculation re-
sults and selection strategies are shown in Table 7. Modalities with
lower information leakage are removed to reduce model complex-
ity. Specifically, we remove the IPFlag modality and TTL modality

Table 7: Mutual information and selection strategies of each
modality on three datasets.

Dataset Metric Packet Size IAT TTL IPFlag TCPFlag

SJTU-AN21 MI 0.81 0.81 1.50 0.01 0.99
Selection ✔ ✔ ✔ ✗ ✔

ISCX-Tor MI 1.14 0.82 0.00 0.95 0.84
Selection ✔ ✔ ✗ ✔ ✔

ISCX-VPN MI 0.68 0.75 1.34 0.23 0.42
Selection ✔ ✔ ✔ ✗ ✗

for SJTU-AN21 and ISCX-Tor datasets, respectively. For ISCX-VPN
dataset, we drop the IPFlag and TCPFlag modalities.
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