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Abstract

An ideal model evaluation should achieve two goals: identifying where the
model fails and providing actionable improvement guidance. Toward these
goals for language model (LM) evaluations, we formulate the problem of
generating a weakness profile, a set of weaknesses expressed in natural
language, given an LM’s performance on every individual instance in a
benchmark. We introduce a suite of quantitative assessments to compare
different weakness profiling methods. We also introduce a weakness pro-
filing method EVALTREE. EVALTREE constructs a capability tree where
each node represents a capability described in natural language and is
linked to a subset of benchmark instances that specifically evaluate this
capability; it then extracts nodes where the LM performs poorly to gen-
erate a weakness profile. On the MATH and WildChat benchmarks, we
show that EVALTREE outperforms baseline weakness profiling methods by
identifying weaknesses more precisely and comprehensively. Weakness
profiling further enables weakness-guided data collection, and training
data collection guided by EVALTREE-identified weaknesses improves LM
performance more than other data collection strategies. We also show how
EVALTREE exposes flaws in Chatbot Arena’s human-voter-based evalua-
tion practice. To facilitate future work, we provide an interface that allows
practitioners to interactively explore the capability trees built by EVALTREE.

() Codeand Data github.com/Zhiyuan-Zeng/EvalTree
&  Web Interface  zhiyuan-zeng.github.io/EvalTree

1 Introduction

An ideal model evaluation ought to achieve the goals of (1) identifying where the evaluated
model fails in a human-interpretable way, and (2) providing actionable guidance to improve
the model (Liang et al., 2023; Holtzman et al., 2023; Gu et al., 2024; Saxon et al., 2024).
However, current model evaluations commonly treat diverse instances in a benchmark
uniformly, reducing model performance to a single aggregate metric or coarse-grained,
category-level metrics at best (Raunak et al., 2022). Doing so obscures the reality that a
benchmark is heterogeneous, which evaluates diverse capabilities at varying granularities,
and that model performance can vary significantly across these capabilities. For example, on
the MATH benchmark (Hendrycks et al., 2021b), GPT-40 mini (OpenAl, 2024a) achieves an
accuracy of 75.1% when calculating combinations and arrangements of elements, but only
49.1% when analyzing geometric relationships using trigonometric principles, as shown
in Figure 1(a). As a result, current model evaluations often fail to achieve the two goals.

Inspired by the preceding observation, we formulate the problem of generating a weakness
profile, a set of natural language descriptions of a model’s weaknesses, given the model’s
performance on every individual benchmark instance. We focus on profiling language
model (LM) weaknesses (Figure 1(a)). A weakness (e.g., “analyzing geometric relationships
using trigonometric principles”) is a capability where the LM performs poorly on instances that
test for this capability. Weakness profiles advance both goals of model evaluation: (1) they
provide practitioners with an intuitive takeaway to interpret where an LM fails, based on
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mance on every individual benchmark instance, and then generates a weakness profile by
extracting tree nodes with statistically low performance. (b) Training data collection guided
by weakness profiling effectively improves LM performance, e.g., achieving an accuracy
gain that is 2.5 larger than that obtained when being guided by a generic capability.

its heterogeneous performance across diverse capabilities; and (2) they are actionable, e.g.,
model developers can collect targeted training data to address the identified weaknesses.

In terms of how to profile LM weaknesses, manually analyzing LM performance on all
instances is becoming increasingly unrealistic. Some works thus attempt to automatically
profile LM weaknesses by constructing a single-level capability categorization across all
benchmark instances and identifying low-performing categories (Murahari et al., 2024;
Moayeri et al., 2024); however, fixed-granularity categorizations could be either too broad to
provide precise diagnoses or too specific to retain high-level interpretability. More critically,
while some methods, including those mentioned above, have been qualitatively shown to
identify LM weaknesses, there is no existing study to compare them quantitatively.

To overcome these challenges, we establish a standard for what an ideal weakness profile
should achieve and introduce a suite of quantitative assessments. We then propose
EVALTREE, a weakness profiling method that automatically constructs a hierarchical tree for
any LM benchmark, where each node represents a capability described in natural language
and is linked to a subset of instances that specifically evaluate this capability. Instances
linked to each node are partitioned into subsets corresponding to children’s capabilities,
which are further subdivided into more specific, finer-grained sub-capabilities at successive
levels of the children’s subtrees. EVALTREE then evaluates an LM’s performance at every tree
node, providing a capability tree. To generate a weakness profile, EVALTREE extracts tree
nodes with statistically low performance and takes their capability descriptions (Figure 1(a)).

Our experiments show that EVALTREE advances both evaluation goals via weakness pro-
filing: (1) EVALTREE profiles LM weaknesses more precisely and comprehensively than
existing methods on the MATH and WildChat (Zhao et al., 2024a) benchmarks; (2) syn-
thetic data generation guided by EVALTREE-identified weaknesses effectively improves LM
performance, e.g., achieving an accuracy gain that is 2.5x larger than that obtained when
being guided by a generic capability (Figure 1(b)). Furthermore, we show how EVALTREE
uncovers abnormal LM rankings in Chatbot Arena, exposing flaws in its human-voter-based
evaluation practice. We also provide an interface that lets practitioners interactively explore
capability trees to facilitate future work. Finally, we discuss future directions, including
improving capability trees and leveraging capability trees for potential applications.

1.1 Related Work

Structured Categorization. Structured categorization of benchmark instances is the essential
idea behind EVALTREE. Murahari et al. (2024); Moayeri et al. (2024) automatically categorize
benchmark instances into capability groups, providing single-level capability categorization
structures. A small number of datasets are released with hierarchical structures defined by
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their creators. For example, some provide shallow trees, e.g., a two-layer taxonomy (Wang
etal., 2022; Bai et al., 2024; Zhong et al., 2024a); some adopt existing trees to guide data collec-
tion, such as ImageNet (Deng et al., 2009) using WordNet (Miller, 1994) and iNat2017 (Horn
et al., 2018) using a biological taxonomy. Most related to our work, Wang et al. (2023); Zhong
et al. (2024b) recursively cluster instances in a dataset to construct trees, and Anthropic’s
internal system Clio (Tamkin et al., 2024) employs Claude 3.5 (Anthropic, 2024) to build
trees of human-LM conversations based on specific attributes or characteristics (e.g., topic).
However, these techniques either incur prohibitively high LM usage costs or do not release
key implementation details and source code, making them difficult to use.

Automatic Weakness Identification. Manually analyzing LM performance on instances in a
benchmark for weakness profiling is becoming increasingly unrealistic. This is because LM
benchmarks are growing in complexity to match the expanding versatility of emerging LMs;
moreover, some datasets (e.g., WildChat (Zhao et al., 2024a)) collect real-world human-LM
interactions, leading to the emergence of capabilities (tested within the benchmark) that
are not foreseeable even by their creators in advance, further complicating manual efforts.
Some works thus attempt to automatically profile LM weaknesses by using LMs to ana-
lyze evaluation results (Zhong et al., 2022) or by identifying low-performing categories
from a single-level capability categorization (Murahari et al., 2024; Moayeri et al., 2024).
Among these works, we are the first to formulate the problem of weakness profiling with
quantitative assessments. Targeting similar goals, some works identify interpretable weak-
nesses (Eyuboglu et al., 2022; Hua et al., 2023), but assume closed output spaces, making
them unsuitable for open-ended tasks; others (Wu et al., 2019; Ribeiro et al., 2020) propose
interactive tools based on predefined failure modes, whereas we aim for fully automated
profiling without such assumptions. Separately, while weakness profiling operates entirely
on existing benchmarks and emphasizes interpretability, some prior work explores identify-
ing model weaknesses by constructing custom instance sets to highlight underperforming
areas (Ribeiro & Lundberg, 2022; Gao et al., 2023; Li et al., 2024; Wang et al., 2025).

2 LM Weakness Profiles

2.1 Definition and Desiderata

The problem of identifying LM weaknesses is broad. In this paper, we define a weakness
profile in the simplest way that aligns with the two goals of identifying where an LM fails and
providing improvement guidance. We let C denote the set of all possible natural language
descriptions and assume an underlying data distribution D. A weakness profile for an LM
on a given benchmark drawn from the distribution D is a set W = {wq, w, ..., wy} C C,
where M can vary among different profiles, and each identified weakness w; € W is a
natural language description of a capability, such as “analyzing geometric relationships using
trigonometric principles.” An ideal weakness profile W satisfies three (informal) desiderata:

1. Low-performance identification (precision): The LM should exhibit low perfor-
mance on instances (sampled from D) testing for each identified weakness w; € W.
2. Comprehensive coverage (comprehensiveness): W should reflect weaknesses that
can be captured from the LM’s performance on D as comprehensively as possible.
3. Appropriate granularity: Each w; should avoid being overly specific or generic.

We introduce concrete assessments in the next subsection to quantitatively compare weak-
ness profiles along these desiderata and introduce experimental details in Section 5.

A weakness profiling method takes as input an LM’s evaluation result on a given benchmark

of size N sampled from the data distribution D, represented as a vector ¢ € RN, where each
gi denotes the performance metric achieved by the LM on the i-th instance. We refer to this
instance set as the profiling set. Since “weakness” is inherently a relative concept, a weakness
profiling method should also include a user-tunable hyperparameter 7 to control strictness;
for example, increasing T makes weakness identification less strict, allowing capabilities
with relatively higher performance to be identified, whereas decreasing T makes it more
strict, restricting identification to the LM’s most severe failures. When referring to a specific
method in context, we denote W; as the weakness profile generated with a given .
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2.2 Assessment for Comparing Weakness Profiles

We assume the existence of a test set sampled from the data distribution D. Furthermore,
given a capability description ¢ € C, we call an instance that tests for this capability an
associated instance of ¢, with the index set of all associated instances in the test set denoted as
A(c). In our experiments, we prompt an LM to determine whether a given instance is an
associated instance of a capability ¢ to get A(c), with further details in Appendix E.1.

We introduce two assessments below to measure the effectiveness of a weakness profile in
the first evaluation goal of identifying where an LM fails, based on the three desiderata.

Low-Performance Identification Assessment. We denote the LM’s evaluation result vector
on the test set as f, analogous to g defined above for the profiling set. We also define the
LM'’s performance metric over a set of instance indices S as F(S) = Y_cs fx/|S|, assuming
that the performance metric can be averaged; for example, each f; might be a binary value
(0/1) indicating whether the LM correctly solved the i-th instance, in which case F(S) is
the accuracy of the LM on the set S. To measure desideratum 1, i.e., low-performance
identification, we examine how low the average performance across identified weaknesses
can be, computed as Y, ey F(A(w;))/|W|. Denoting S = Uy, cw A(w;), we also compare
how low F(S) can be, i.e., the performance metric on all instances that test for at least one
identified weakness in W. In the two comparisons, a lower metric value indicates weaker
performance on the identified weaknesses, which can better satisfy desideratum 1.

Ground-Truth Weakness Assessment. To measure all three desiderata, inspired by Zhong
etal. (2023), we generate a synthetic evaluation result for a “hypothetical” LM's performance
on the profiling set. We use synthetic evaluation results rather than evaluation results of
real LMs because desideratum 2, i.e., comprehensive coverage, cannot be reliably measured
without prior knowledge of the LM’s true weaknesses, which is exactly the problem we are
trying to solve. By generating a synthetic evaluation result, we can control the ground-truth
weaknesses and thus have such prior knowledge, allowing for a rigorous assessment. We
start with a predefined ground-truth weakness profile W* = {w}, w3, ..., w} }. Then, we
independently sample each g; such that instances associated with weaknesses in W* have
systematically lower values of g; than others. Finally, to assess a weakness profile W, we
measure its alignment with the ground-truth profile W* based on the overlap of associated
instances in the test set; we restrict |IW| to values that are not significantly larger than |W*|,
preventing methods from inflating scores by generating overly specific descriptions that
increase |W|, which would violate desideratum 3, i.e., appropriate granularity.

Extrinsic Assessment: Weakness-Guided Training Data Collection. We examine the
effectiveness of a weakness profile in supporting the second evaluation goal of improving
the evaluated LM. In the real world, LM developers collect additional training data and
perform finetuning to further improve an LM. A common strategy is to collect data guided
by a generic capability such as “mathematical reasoning”. We hypothesize that a weakness-
guided strategy, wherein a weakness profile for the LM serves as actionable guidance for
targeted data collection, may be more effective by directly addressing where the LM fails.
For a controlled comparison, we collect data by synthetic data generation and compare LMs
trained on data generated under the guidance of different weakness profiles.

3 EVALTREE: A Tree-Based Method for Profiling LM Weaknesses

3.1 Automatic Construction of Capability Trees

EVALTREE constructs a capability tree automatically. EVALTREE first constructs a tree that
hierarchically organizes and interprets the capabilities tested within a benchmark. Each tree
node represents a specific capability expressed in natural language and is linked to a subset
of benchmark instances that evaluate this capability. The root node is linked to all instances,
and each node’s children together partition instances linked to it into subsets corresponding
to more specific sub-capabilities, as shown in Figure 1(a). Finally, every leaf corresponds
one-to-one with an individual instance; it is worth noting that instances linked to each node
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Figure 2: EVALTREE’s four-stage tree construction pipeline. (1) Capability Annotation
prompts an LM to identify a natural language description of each instance’s capability. (2)
Capability Embedding maps instances to a vector space using sentence embeddings of
their annotated capabilities. (3) Recursive Clustering-Based Construction builds the tree
by clustering capability embeddings using K-Means recursively. (4) Capability Description
assigns each node a natural language summary of its children’s capabilities using an LM.

are exactly the leaves in its subtree. We propose an automatic four-stage tree construction
pipeline, which takes all instances of a benchmark as input, as shown in Figure 2.

Stage (1) Capability Annotation identifies the specific capability description required for
each benchmark instance by prompting an LM, a practice also adopted in previous work
analyzing LM capabilities (Ouyang et al., 2023; Didolkar et al., 2024; Kaur et al., 2024). The
LM is asked to not mention the instance’s specific content. See Figure 2 for an example.

Stage (2) Capability Embedding uses an off-the-shelf sentence embedding model to gener-
ate a capability embedding for each annotated capability from the stage (1).

Stage (3) Recursive Clustering-Based Construction recursively builds the hierarchical
structure of the tree, starting from the root node linked to all instances. For each node,
we cluster the capability embeddings of instances linked to it using K-Means (MacQueen,
1967). We iterate over cluster numbers from 2 to a predefined maximum value and select the
one that yields the highest Silhouette score (Rousseeuw, 1987). This practice follows Katz
et al. (2024), which also determines the cluster number automatically when the value is not
predefined. Each cluster in the selected clustering becomes the set of instances linked to a
newly created child node. The process continues recursively for each (non-leaf) child node.

Stage (4) Capability Description assigns a natural language description to each tree node to
interpretably specify the capability represented by this node. For each leaf node (instance),
we take its annotated capability directly as its capability description. For non-leaf nodes,
we describe their capabilities at progressive granularities by proceeding up the tree in a
bottom-up way, prompting an LM to summarize the capabilities of a node’s children into
a natural language description that captures their overarching scope; the LM’s output is
prompted to cover all children’s capabilities without introducing extraneous concepts.

After constructing the tree, EVALTREE then provides a capability tree by evaluating LM
performance at every node. Since each node is linked to a subset of benchmark instances, an
evaluation practice can be seamlessly applied to this subset. For example, metrics such as
accuracy or win-rate (Dubois et al., 2023) can be computed on instances linked to each node.
See Appendix A and G for more details and an alternative tree construction approach.

3.2 Generating a Weakness Profile from the Capability Tree

EVALTREE generates an LM weakness profile by extracting nodes where the LM’s perfor-
mance metric is significantly below a user-tunable threshold t; for clarity, we consider
the specific case of correctness-based accuracy being the metric. The extraction algorithm
traverses the capability tree from the root to the leaves (see Appendix B for details):
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1. Statistical Test. At each visited node, we perform a binomial test to determine
whether its accuracy is significantly lower than 7. The test uses the number of linked
instances as the total sample size and the number of correctly solved instances as

the count of successes. We apply the same test to the node’s direct children'.

2. Node Extraction. A visited node is extracted if: (a) it passes the test described
above, and (b) all its direct children with sufficient instances (determined by a
hyperparameter threshold of number) also pass the test. The design of (b) aims
to identify the weakness at a granularity that is sufficiently specific. For example,
if “algebra” performs statistically below the threshold overall but the LM performs
well on its “four-operations” child while performing poorly on “abstract algebra,”
identifying “algebra” as a weakness obscures the fact that the real weakness might
lie in “abstract algebra” (or other sub-capabilities); here, further traversal is required.

3. Stopping Criteria. Traversal stops at a node if: (a) its instance number is smaller
than a hyperparameter threshold, or (b) the node has been extracted.

Finally, the nodes extracted from running the algorithm are non-overlapping, i.e., no instance
(leaf node) is linked to more than one extracted node. The final weakness profile consists of
the capability descriptions of the extracted nodes. By adjusting the meaning of “count of
successes” in the statistical test, this algorithm also supports various metrics (e.g., accuracy
and win-rate) and can identify strengths (performance above a threshold).

4 Baseline Methods for Profiling LM Weaknesses

We describe the baseline methods, which are representative of existing methods that have
been qualitatively shown to profile LM weaknesses. See Appendix D for additional details.

TEXTDIFF (Zhong et al., 2022) is an LM-based method that automatically describes differ-
ences between two text distributions in natural language. While not originally designed for
weakness profiling, prior work has used it to describe distributional differences between
two instance sets. We adapt this method by comparing instances where the evaluated LM
fails versus succeeds, using the described differences to identify its weaknesses. Specifically,
we randomly sample two sets of instances: those where the evaluation result indicates that
the evaluated LM has failed, and those where it has succeeded. We then prompt a diagnostic
LM using the sampled instances to output a predefined number of potential weaknesses that
might cause the evaluated LM to struggle. We compute the evaluated LM'’s performance on
the associated instances in the profiling set (Section 2.2) for each potential weakness and
select those with the lowest performance metrics as the weakness profile. Note that this step
actually gives TEXTDIFF an unfair advantage over other methods in our experiments, as it
uses the identical implementation used by the method assessment to determine associated
instances; however, a method should not have access to this information in principle, such
as which LM is used or what prompt is used for method assessment.

QUALEVAL (Murahari et al., 2024) uses an automatic LM-based pipeline to derive a pre-
defined number of capabilities (e.g., 20) described in natural language from all benchmark
instances. The method then applies a linear programming algorithm to assign each bench-
mark instance to some of the derived capabilities. Finally, it outputs a single-level capability
categorization structure. We compute the evaluated LM’s performance metric on all in-
stances (in the profiling set) assigned to each capability and identify a set of weaknesses as
the weakness profile by selecting capabilities with the lowest performance metrics.

In these two methods, T could be either the size of the weakness profile or a performance
metric threshold, and the two can be transformed interchangeably.

Note that setting a significance level of & for each node’s statistical test does not guarantee an
overall 1 — a confidence level across all tests, as they are not corrected for multiple comparisons.
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Figure 3: Comparison of weakness profiling methods using Low-Performance Identification
Assessment. The first row shows how the average LM performance across identified
weaknesses changes as we vary the minimum weakness profile size M'. The second row
shows how the overall performance on all associated instances changes as we vary the
minimum number of associated instances N'. Experiments in (a) were conducted on MATH
with Llama 3.1 8B Instruct (Dubey et al., 2024) and DART-Math-Llama3-8B (Uniform) (Tong
et al., 2024), and experiments in (b) were conducted on WildChat10K, where the win-rate is
the percentage of instances in which Llama 3.2 3B Instruct (Meta, 2024) is preferred over
Gemma 2 IT 2B (Riviere et al., 2024). A lower curve indicates more precise identification of
true low-performing weaknesses and EVALTREE consistently achieves the lowest curve.

5 Experimental Results

We now present the results of our experiments that compare all weakness profiling meth-
ods, i.e., those introduced in Section 4 and EVALTREE, using the three assessments for
weakness profiles introduced in Section 2.2. As preparation for the first two assessments,
for each method, we sweep over T to obtain a collection of all distinct weakness profiles
{Wx,, Wy, ...}, where each profile is included only once even if generated by multiple 7.

5.1 Low-Performance Identification Assessment

Low-Performance Identification Assessment compares how low the LM’s performance is
on weaknesses identified by different methods. We assess all weakness profiling meth-
ods on the MATH (Hendrycks et al., 2021b) and WildChat10K (a subset we curated from
WildChat (Zhao et al., 2024a)) benchmarks and randomly split each benchmark into profil-
ing/test sets (see Appendix C for more configuration details). We constrain the minimum
weakness profile size to compare the average performance across identified weaknesses
and constrain the minimum number of associated instances to compare overall perfor-
mance on all associated instances. To visualize the comparisons, we plot two curves
in Figure 3: one with the minimum profile size M’ (ranging from 1 to 20) on the x-axis
and min{Y >, cw, F(A(w;))/|Wz| | ¥T,|[Wz| > M’} on the y-axis, and another with the
minimum associated instance number N’ (ranging from 1 to the test set size) on the x-axis
and min{F(S;) | V7,[Sz| > N} on the y-axis, where St = Uy, ew, A(w;). EVALTREE con-
sistently achieves the lowest curve, demonstrating its superior precision in capturing true
weaknesses compared to other methods. See Appendix E.2 for qualitative analysis.

5.2 Ground-Truth Weakness Assessment

Ground-Truth Weakness Assessment compares how precisely and comprehensively dif-
ferent weakness profiling methods capture ground-truth weaknesses (on synthetic LM
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Figure 4: Comparison of weakness profiling methods using Ground-Truth Weakness
Assessment. The plot shows F1 score curves of TEXTDIFF, QUALEVAL, and EVALTREE,
where the weakness profile size varies from 1 to 20; the F1 score measures how precisely
and comprehensively ground-truth weaknesses are captured. A horizontal line indicates
each method’s highest score. d is a hyperparameter to control the sampling probability.

evaluation results) with appropriate description granularities. We manually curated 10
ground-truth weaknesses at various granularities for MATH and WildChat10K. For each
benchmark, we generated three synthetic evaluation results by sampling with different
hyperparameters that shape the probability distribution. For a given weakness profile, we
compute the F1 score based on the overlap of associated instances to measure both precision
and comprehensiveness relative to the ground-truth weakness profile W*. We plot a curve
with M’ (ranging from 1 to 20) on the x-axis and the F1 score of W, where |W;| = M’ 2 on
the y-axis. All curves are shown in Figure 4 and Appendix E.3.3. We observe that for most
M/, the F1 scores achieved by EVALTREE surpass the highest F1 scores obtained by the
other two methods. For additional details and analysis, see Appendix E.3.1 and E.3.2.

5.3 Extrinsic Assessment: Weakness-Guided Training Data Collection

Extrinsic Assessment compares how effectively weakness profiles from different methods
guide targeted training data collection to improve the evaluated LM; here, we conducted
proof-of-concept experiments using a data-generation LM to generate (synthetic) data
inputs (Kim et al., 2024) for data collection. The generic-capability-guided data collection
strategy uses a description of the targeted benchmark’s overall capability as guidance. For
each weakness profiling method, we have a corresponding data collection strategy that
randomly samples an identified weakness (in the weakness profile generated by the method)
as guidance for generating each data input. For context, we also included the result in which
training data inputs were directly sampled from the profiling set; however, we emphasize
that this strategy has an inherently unfair advantage due to its distributional match to the
test set and is not a direct point of comparison in our proof-of-concept experiments, which
focus on LM developers’ real-world practice of collecting new finetuning data.

We started with Llama 3.1 8B Instruct (Dubey et al., 2024) for MATH and DeepSeek-Coder-
Base 6.7B (Guo et al., 2024) for DS-1000 (Lai et al., 2023), following configurations in Ap-
pendix C. When generating an input, we randomly sampled 5 inputs from the profiling
set as in-context examples for the data-generation LM. We compared the performance of
different LMs on the test set. For all data collection strategies, we collected the same amount
of finetuning data inputs, with the output produced by separately feeding the input to

2If multiple thresholds T for EVALTREE result in the same profile size, we select the lowest 7. Note
that the same profile size does not necessarily imply identical weakness profiles.
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Figure 5: Accuracy of different LMs on MATH and DS-1000 test sets. Each chart includes
the accuracy of the initial LM (Llama 3.1 8B Instruct and DeepSeek-Coder-Base 6.7B for
MATH and DS-1000). For all other results, bars represent the accuracy of LMs trained on
data collected by the corresponding strategy, with error bars indicating the standard error
across 5 seeds. Bars for LMs trained on directly sampled data are included for reference,
although they have an unfair advantage and are not a direct point of comparison. Data
collection guided by EVALTREE-identified weaknesses yields the highest accuracy gain.

the data-generation LM. Refer to Appendix E.4 for more details. The results in Figure 5
demonstrate that the LM trained on EVALTREE-guided synthetic data significantly outper-
formed other LMs. Notably, the EVALTREE-guided data collection strategy even slightly
outperformed directly sampling data from the profiling set. Therefore, EVALTREE provides
effective and targeted signals for guiding data collection to improve LM performance.

5.4 LM Usage Cost Comparison

EVALTREE also incurs significantly lower LM usage costs than other methods. When each
method identifies 20 weaknesses on MATH, the LM usage costs of TEXTDIFF and QUALEVAL
were approximately 20 and 8 times higher than EVALTREE’s cost, respectively. This occurs
because EVALTREE’s LM usage cost remains constant regardless of the weakness profile size
|W|, whereas the costs of the others scale linearly with [W|. See Appendix E.5 for details.

5.5 Analysis on Threshold 7 for EVALTREE’s Node Extraction

We analyze how the choice of T influences the nodes extracted by the algorithm in Sec-
tion 3.2. We examine the LM performance on all extracted nodes as 7 varies, referred to as
weakness/strength nodes, i.e., nodes extracted by the algorithm where the LM’s performance
is significantly lower/higher than a given threshold 7. To do this, we use the profiling set to
build the capability tree and extract weakness/strength nodes with varying thresholds 7.
We locate the position of each instance in the test set on the capability tree by computing its
capability embedding and then traversing from the root guided by the embedding. Specifi-
cally, at each non-leaf node, we predict the child cluster to which the instance belongs (by
comparing its capability embedding with the K-Means clustering centers and then picking
the closest one), determining which child’s subtree to traverse into next; we call an instance
that enters a weakness/strength node’s subtree a weakness/strength instance and study LM
performance on all weakness/strength instances from the test set as T varies.

We experimented with the MATH, MMLU (Hendrycks et al., 2021a), DS-1000, and Wild-
Chat10K benchmarks, and Figure 6, 7, 8, and 10(a) show the LMs’ performance on weak-
ness/strength instances. To further study generalizability, we experimented with two setups
using different benchmarks as profiling and test sets; in the first setup, MATH is the profiling
set and CollegeMath (Tang et al., 2024) is the test set; in the second setup, WildChat10K is the
profiling set, and the test sets consisted of 10K instances we curated from ShareGPT, called
ShareGPT10K, and a released subset of Chatbot Arena (Chiang et al., 2024), respectively; we
show the results in Figure 9 and 10(b). See Appendix C for more configuration details. We
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observe that LM performance on weakness/strength instances from the test set aligns well
with the node extraction algorithm’s goal. Specifically, performance on weakness/strength
instances is generally below/above 7. Furthermore, as T for extracting weakness/strength
nodes decreases/increases, the performance on weakness/strength instances generally
decreases/increases, so T is an effective hyperparameter for controlling strictness.

6 Further Applications of EVALTREE

Beyond identifying LM weaknesses, EVALTREE has broader applications in improving
evaluation practices and facilitating LM capability analysis. We present two examples: (1)
using EVALTREE to expose flaws in a widely used human-voter-based evaluation practice,
and (2) implementing an interface for exploring capability trees to support future research.

Identifying Flaws in Chatbot Arena Evaluation. We give an application example by
showing how EVALTREE exposes flaws in the human-voter-based evaluation practice of
Chatbot Arena (Chiang et al., 2024). We begin by using EVALTREE to profile LM weaknesses
on Chatbot Arena. To do this, we construct the capability tree for Chatbot Arena, where
EVALTREE ranks 64 LMs at each node by computing Elo scores based on human comparison
pairs for instances linked to the node; it then identifies weaknesses of strong LMs like GPT-
4 (OpenAl, 2023) by extracting nodes where their ranking is unexpectedly low. The weakness
profile reveals surprising patterns, leading us to discover that the identified weakness may
not stem from the LM itself but from flaws in the evaluation practice. For instance, at the
node “Facilitating inclusive, ethical, and strategic communication and engagement across diverse
and sensitive contexts,” LMs such as Zephyr-7B-B (Tunstall et al., 2023) and Alpaca 13B (Taori
et al., 2023) rank significantly higher than GPT-4 and Claude 2.1 (Anthropic, 2023). We
observed that this node contains many user instructions with toxic requests, where human
voters tended to prefer models that provide toxic responses over well-aligned models that
refuse to answer; more quantitative analysis is provided in Appendix F. This shows that the
evaluation practice of Chatbot Arena allows uncontrolled user preferences to diverge from
the values of LM development, producing potentially unreliable evaluation results. Because
even minor misaligned preferences can significantly change LM rankings (Zhao et al., 2024b;
Huang et al., 2025; Min et al., 2025), the need for improved evaluation practices is pressing.
In this example, EVALTREE provides actionable insights for refining evaluation practices.

User Interface of Capability Trees. While the weakness profile provides a concise summary
of where an LM fails, the full capability tree offers deeper and more comprehensive insights
beyond this flat representation. Practitioners may wish to explore the capability tree itself to
gain insights into a benchmark and analyze LM performance across capabilities at diverse
granularities. To support this, we implement an interface that allows practitioners to
interactively explore the capability trees constructed by EVALTREE. Users can expand a
node to look deeper into its subtree, check the instances linked to the node, view its sub-
capabilities represented by the node’s children, examine LM performance at each node, etc.
The interface provides an intuitive way for humans to navigate capability trees manually,
establishing itself as a useful analysis tool. The interface is available here.

7 Future Work

Future work can enhance EVALTREE in several ways. For example, capability tree construc-
tion can be improved by optimizing the tree structure and capability descriptions, making its
dimensionality and granularity more controllable by humans, exploring model-dependent
hierarchical structures, and extending it beyond language to other modalities, etc. Addition-
ally, it is useful to study how to quantitatively compare two capability trees directly. Beyond
direct enhancements, capability trees can also support a variety of potential applications.
For example, they can help analyze LM evaluation results to tailor benchmarks to specific
needs, to provide actionable insights into training data mixture, etc. By moving beyond
aggregate metrics from existing evaluations, EVALTREE enables a more comprehensive and
interpretable analysis of LM performance across diverse capabilities, providing a useful
foundation for future innovations in understanding and improving LM capabilities.
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A Implementation Details of Automatic Capability Tree Construction

This section provides additional details about the implementation of the automatic four-
stage tree construction pipeline of EVALTREE, which is introduced in Section 3.1.

Capability Annotation. By default, we use OpenAl’s gpt-40-mini-2024-07-18 (OpenAl,
2024a) in our experiments to generate natural language descriptions of the capabilities
required to solve each benchmark instance. The prompt for the mathematics reasoning
benchmarks (MATH (Hendrycks et al., 2021b) and CollegeMath (Tang et al., 2024)) is
in Table 1; the prompt for MMLU (Hendrycks et al., 2021a) is in Table 2; the prompt for
the Python code generation benchmark (DS-1000 (Lai et al., 2023)) is in Table 3; the prompt
for the instruction-following benchmarks (WildChat10K (Zhao et al., 2024a), ShareGPT10K,
and Chatbot Arena (Chiang et al., 2024)) is in Table 4. We set the max new tokens and
temperature to 1024 and 0.0, respectively.

Capability Embedding. When generating capability embeddings, we prepend the pre-
fix “The model has the following skill or capability: ” to the annotated capability and feed
the resulting sentence into a sentence embedding model. By default, we use OpenAl’s
text-embedding-3-small (OpenAl, 2024c) in our experiments.

Recursive Clustering-Based Construction. As we mentioned in the main text above,
clusterings are generated for each cluster number from 2 to a predefined maximum value,
and the Silhouette score® (Rousseeuw, 1987), which measures clustering quality based on
cohesion and separation, is computed for each clustering. In our experiments, the predefined
maximum value is set to 10 by default. One detail is that, if no clustering achieves a positive
score, all instances linked to the current node are treated as leaves and become direct
children of it. For the K-Means implementation, we use sklearn.cluster.KMeans®.

Capability Description. By default, we use OpenAl’s gpt-40-mini-2024-07-18 in our
experiments to describe the specific capability each node represents in natural language. The
prompt for the mathematics reasoning benchmarks (MATH and CollegeMath) is in Table 5;

3https ://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.
html. All hyperparameters are set to their default values.

4https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html. All hy-
perparameters are set to their default values.
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System Prompt
Given a mathematical question and its correct solution, generate a gerund phrase that
thoroughly and precisely describes the **specific** mathematical skill or capability

required to solve the question.

User Prompt
## Question

{input}

## Solution
{output}

## Requirement

- The skill description should be an action-oriented gerund phrase that is **informa-
tive** and **detailed**.

- The phrase should refer to a **specific** skill or capability that comprehensively
covers the key aspects of the solution, without including any context or specifics
from the question or solution.

- Avoid unnecessary elements unrelated to the core capability.

- Please output **only a gerund phrase** describing the skill, with NO additional

text.

Table 1: The capability annotation prompt for the mathematics reasoning benchmarks
(MATH (Hendrycks et al., 2021b) and CollegeMath (Tang et al., 2024)).

System Prompt

Given a multiple-choice question testing a model’s wide-ranging knowledge and
reasoning skills, generate a gerund phrase that thoroughly and precisely describes
the **specific** skill or capability required to determine the correct answer.

User Prompt
## Question

{input}

## Answer
{output}

## Requirement

- The skill description should be an action-oriented gerund phrase that is **informa-
tive** and **detailed**.

- The phrase should refer to a **specific** skill or capability that comprehensively
covers the key aspects of selecting the correct answer, without including any context
or specifics from the question or answer.

- Avoid unnecessary elements unrelated to the core capability.

- Please output **only a gerund phrase** describing the skill, with NO additional

text.

Table 2: The capability annotation prompt for MMLU (Hendrycks et al., 2021a).
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System Prompt
Given a code generation problem (involving data science) and its correct Python

implementation, generate a gerund phrase that thoroughly and precisely describes
the coding skill or capability required to solve the problem in detail.

User Prompt
## Problem

{input}

## Implementation

{output}

## Requirement

- The skill description should be an action-oriented gerund phrase that is **informa-
tive** and **detailed**.

- The phrase should refer to a **specific** coding skill or capability that comprehen-
sively covers the key aspects of the implementation, without including any context
or specifics from the problem or implementation.

- Avoid unnecessary elements unrelated to the core capability.

- Please output **only a gerund phrase** describing the skill, with NO additional

text.

Table 3: The capability annotation prompt for the Python code generation benchmark
(DS-1000 (Lai et al., 2023)).

System Prompt
Given a user instruction and a reference response to the instruction, generate a

gerund phrase that thoroughly and precisely describes the **specific** skill or capa-
bility required to respond to the instruction.

User Prompt
## Instruction

{input}

## Response
{output}

## Requirement

- The skill description should be an action-oriented gerund phrase that is **informa-
tive** and **detailed**.

- The phrase should refer to a **specific** skill or capability that comprehensively
covers the key aspects of the response, without including any context or specifics
from the instruction or reference response.

- Avoid unnecessary elements unrelated to the core capability.

- Please output **only a gerund phrase** describing the skill, with NO additional

text.

J

Table 4: The capability annotation prompt for the instruction-following benchmarks
(WildChat10K (Zhao et al., 2024a), ShareGPT10K, and Chatbot Arena (Chiang et al., 2024)).
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the prompt for MMLU is in Table 6; the prompt for the Python code generation benchmark
(DS-1000) is in Table 7; the prompt for the instruction-following benchmarks (WildChat10K,
ShareGPT10K, and Chatbot Arena) is in Table 8. We set the max new tokens and temperature
to 1024 and 0.0, respectively.

System Prompt

Given a set of phrases, each summarizing the mathematical skills or capabilities
needed to solve questions within a specific group, generate a gerund phrase that
summarizes the collective set of mathematical skills or capabilities described across
all groups.

User Prompt

## Task

You are given a set of phrases, each summarizing the mathematical skills or capabili-
ties needed to solve questions within a specific group. There are {group_number}
groups in total. Your task is to **summarize** the collective set of mathematical
skills or capabilities that represents the union of these descriptions in a detailed and
informative manner.

## Skill Descriptions
{skill_descriptions}

## Requirements

- The output should be a **single gerund phrase** that succinctly summarizes the
overarching mathematical skill or capability represented by the union of all the
provided phrases.

- The output should comprehensively cover each skill description without going
beyond them.

- The output should not simply enumerate the given phrases but instead provide a
meaningful and informative summary of the mathematical skills or capabilities they
collectively represent.

- Please output **only a gerund phrase** summarizing the mathematical skill or
capability, with NO additional text.

Table 5: The capability description prompt for the mathematics reasoning benchmarks
(MATH (Hendrycks et al., 2021b) and CollegeMath (Tang et al., 2024)).

B Implementation Details of Extracting Nodes with Low Performance
Algorithm 1 provides the pseudocode for extracting nodes with significantly low accuracy

on the capability tree (the algorithm introduced in Section 3.2). In the pseudocode, we use
SIZE to indicate the number of instances linked to a node.

In our experiments, we use « = 0.05, oy = 5, and 0> = 20 by default.

This framework supports various metrics and deviation directions by adjusting the meaning
of “total sample size” and “count of successes” in the statistical test step.

C Default Experimental Configurations

This section provides the experimental configurations used in Section 5.

C.1 Evaluation Results of LMs Across Different Benchmarks

For GPT-40 mini (OpenAl, 2024a) evaluation results on mathematics reasoning benchmarks,
we run the generation ourselves; the system prompt is “Please solve a math problem step-
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System Prompt

Given a set of phrases, each summarizing the skills or capabilities needed to answer
multiple-choice questions testing broad knowledge and reasoning within a specific
group, generate a gerund phrase that summarizes the collective set of skills or
capabilities described across all groups.

User Prompt

## Task

You are given a set of phrases, each summarizing the skills or capabilities needed
to answer multiple-choice questions testing broad knowledge and reasoning
within a specific group. There are {group_number} groups in total. Your task is to
**summarize** the collective set of skills or capabilities that represents the union of
these descriptions in a detailed and informative manner.

## Skill Descriptions
{skill_descriptions}

## Requirements

- The output should be a **single gerund phrase** that succinctly summarizes the
overarching skill or capability represented by the union of all the provided phrases.
- The output should comprehensively cover each skill description without going
beyond them.

- The output should not simply enumerate the given phrases but instead provide a
meaningful and informative summary of the skills or capabilities they collectively
represent.

- Please output **only a gerund phrase* summarizing the skill or capability, with
NO additional text.

Table 6: The capability description prompt for MMLU (Hendrycks et al., 2021a).
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System Prompt

Given a set of phrases, each summarizing the coding skills or capabilities needed to
solve code generation problems involving data science tasks within a specific group,
generate a phrase that encapsulates the common coding skill or capability required
across all the groups. The overall description should comprehensively cover each
skill description without going beyond them, avoiding generic terms.

User Prompt

## Task

You are given a set of phrases, each summarizing the coding skills or capabilities
needed to solve code generation problems involving data science tasks within
a specific group. There are {groupnumber} groups in total. Your task is to
**summarize** the common coding skill or capability that represents the union of
these descriptions in a detailed and informative manner.

## Skill Descriptions
{skill_descriptions}

## Requirements

The output should be a **single phrase** that succinctly summarizes the overarching
coding skill or capability shared across all groups. It should not introduce any
new concepts outside of those described in the provided phrases and must remain
informative.

Please output **only a phrase** summarizing the skill or capability, with no
additional text. Any output other than a phrase will NOT be accepted!

Table 7: The capability description prompt for the Python code generation benchmark
(DS-1000 (Lai et al., 2023)).
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Algorithm 1 Extracting Nodes with Significantly Low Accuracy

Input: capability tree T, accuracy threshold T {LM accuracy is pre-computed at each node
of T given the definition of a capability tree}

Hyperparameter: minimum node size o7 and 03, confidence level «

Output: a set of extracted nodes R

Initialize R < @

Initialize a map BINOMIALPASS < {} {Stores the binomial test result for each node}

End of Initialization 1

First Pass: Binomial Test
Define recursive function TESTNODE(node):
Perform a binomial test on node with accuracy threshold T and confidence level «
if the accuracy is significantly below T at level a then
BINOMIALPASS[node| + true
else
BINOMIALPASS[node| +— false
end if
for each child in node.children do
TESTNODE(child)
end for
Call TESTNODE(T.root)

End of First Pass }
Second Pass: Node Extraction
Define recursive function EXTRACTNODE(node):
if SIZE(node) > o7 and BINOMIALPASS[node] = true then
Initialize allChildrenPass < true
for each child in node.children do
if S1ZE(child) > 0, and BINOMIALPASS|child] = false then
allChildrenPass < false
end if
end for
if allChildrenPass = true then
Add node to R
Return {Skip its subtree to avoid overlap}
end if
end if
for each child in node.children do
EXTRACTNODE(child)
end for
Call EXTRACTNODE(T.root)
Output R

{ End of Second Pass 1
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System Prompt

Given a set of phrases, each summarizing the skills or capabilities needed to respond
to instructions within a specific group, generate a gerund phrase that summarizes
the collective set of skills or capabilities described across all groups.

User Prompt

## Task

You are given a set of phrases, each summarizing the skills or capabilities needed to
respond to instructions within a specific group. There are {group_number} groups
in total. Your task is to **summarize** the collective set of skills or capabilities that
represents the union of these descriptions in a detailed and informative manner.

## Skill Descriptions
{skill_descriptions}

## Requirements

- The output should be a **single gerund phrase** that succinctly summarizes the
overarching skill or capability represented by the union of all the provided phrases.
- The output should comprehensively cover each skill description without going
beyond them.

- The output should not simply enumerate the given phrases but instead provide a
meaningful and informative summary of the skills or capabilities they collectively
represent.

- Please output **only a gerund phrase** summarizing the skill or capability, with
NO additional text.

Table 8: The capability description prompt for the instruction-following benchmarks
(WildChat10K (Zhao et al., 2024a), ShareGPT10K, and Chatbot Arena (Chiang et al., 2024)).

by-step. Break down each step logically and reason through intermediate steps until reaching the
final solution.”, and the user prompt is the question; we use gpt-40-mini-2024-07-18, and
set the max new tokens and temperature to 1024 and 0.0, respectively. For Llama 3.1 8B
Instruct (Dubey et al., 2024) evaluation results, we also run the generation ourselves; we
use the default system prompt, append the suffix “Please reason step by step, and put your
final answer within \ \boxed{}.” to the question and set the max new tokens and temperature
to 1024 and 0.0, respectively; the vVLLM library (Kwon et al., 2023) is used to accelerate
generation. Their generations are evaluated by our internal evaluation toolkit. We directly
adopt DART-Math-Llama3-8B (Uniform) (Tong et al., 2024) evaluation results provided by
the authors of its original paper.

For the evaluation results of all models on MMLU (Hendrycks et al., 2021a), we directly
adopt the evaluation results provided by the authors of TULU 3 (Lambert et al., 2024).

MMLU (Hendrycks et al., 2021a) and CollegeMath (Tang et al., 2024) provide only the final
answer to each question, but not the solution (reference output) needed for all weakness
profiling methods. To address this, we take the response generated by GPT-40 mini as the
reference output, which may have errors.

For DeepSeek-Coder-Base 6.7B (Guo et al., 2024) evaluation result on DS-1000 (Lai et al.,
2023), we use the scripts provided by the DS-1000 GitHub repository ° for generation, with
vLLM added to accelerate generation. For GPT-40 (OpenAl, 2024b) and GPT-3.5 Turbo (Ope-
nAl, 2022) evaluation results, we directly evaluate the generations of gpt-40-2024-08-06
and gpt-3.5-turbo-0613 provided by the GitHub repository. In both cases, we use the
scripts provided by the DS-1000 GitHub repository for evaluation.

Shttps: //github.com/xlang-ai/DS-1000
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To build the WildChat10K and ShareGPT10K benchmarks, we start with the publicly re-
leased versions of WildChat (Zhao et al., 2024a) and ShareGPT from HuggingFace Datasets®

7; for both datasets, we keep only first-round conversations to collect instruction-response
pairs, filter pairs where the combined length of the instruction and response exceeds
4096 Llama 3.2 tokens, and deduplicate the instructions; finally, we randomly sample
10K instruction-response pairs. For Chatbot Arena (Chiang et al., 2024), we use the publicly
released version from HuggingFace Datasets®; for each instruction, we retain it only once
and assign its reference output as the response from the strongest model (indicated by the
overall ranking) for it; we finally have 44,230 instances in the Chatbot Arena benchmark.

In the instruction-following setup (Ouyang et al., 2022), where LMs respond to a set of
free-form user instructions, the responses are commonly evaluated using the LM-as-a-judge
paradigm (Zheng et al., 2023; Dubois et al., 2023), in which a significantly stronger LM
serves as a judge by comparing responses produced by two LMs to the same instruction to
determine which one is better. This produces a win-rate for each LM, ranging from 0% to
100%, representing the proportion of instances where its response is chosen as the better one.
A higher win-rate is generally interpreted as a signal of better overall performance. When
using the LM-as-a-judge paradigm, we use gpt-40-mini-2024-07-18 (OpenAl, 2024a) as the
judge. The prompt for the LM judge is provided in Table 9, and we set the max new tokens
and temperature to 50 and 0.0, respectively. Following Zeng et al. (2024), we compare each
pair of responses to an instruction by querying the LM judge twice, swapping the order of
the responses; this is due to potential positional bias (Wang et al., 2024a; Zeng et al., 2024),
which can influence judgments based on the response order. For win-rate computation, we
average the results of all comparisons. When using win-rate as the evaluation metric in the
node extraction algorithm introduced in Section 3.2, the total sample size for the binomial
test is twice the number of instances, and the count of successes corresponds to the number
of times that one model’s output is preferred or not preferred.

When running Llama 3.2 3B Instruct (Meta, 2024) and Gemma 2 IT 2B (Riviere et al., 2024)
on instruction-following benchmarks (WildChat10K, ShareGPT10K, and Chatbot Arena),
we use the default system prompt, directly use the instruction as the user prompt, and set
the max new tokens and temperature to 4096 and 0.0, respectively. The vLLM library is also
utilized to accelerate generation.

C.2 Profiling/Test Splits

In Sections 5.1, 5.3, and 5.5, whenever the profiling and test sets originate from the same
individual benchmark, we apply the following random profiling/test splits: the MATH
benchmark was randomly partitioned into a 4000/1000 split, the MMLU benchmark into
a 10042 /4000 split, the DS-1000 benchmark into a 600/400 split, and the WildChat10K
benchmark into an 8000/2000 split to create the profiling and test sets. In Section 5.5, the
full sets of benchmarks are used in the cross-benchmark generalization setup.

D Implementation Details of Baseline Methods for Profiling LM
Weaknesses

This section provides additional details about the implementation of baselines we assessed
for profiling LM weaknesses, which are introduced in Section 4.

D.1 Implementation Details of TEXTDIFF

When sampling instances where the evaluated LM has succeeded/failed, the sampling
pool consists of all instances where the evaluated LM’s correctness is correct/incorrect

6WildChat: https://huggingface.co/datasets/allenai/WildChat

7ShareGPT: https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/
blob/main/ShareGPT_V3_unfiltered_cleaned_split_no_imsorry. json

8https://huggingface.co/datasets/potsawee/chatbot—arena—1lm—judges
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System Prompt
You are a helpful assistant in evaluating the quality of the outputs for a given
instruction. Your goal is to select the best output for the given instruction.

User Prompt
Select the Output (a) or Output (b) that is better for the given instruction. The two
outputs are generated by two different Al chatbots respectively.

Do NOT provide any explanation for your choice.

Do NOT say both / neither are good.

You should answer using ONLY “Output (a)” or “Output (b)”. Do NOT output any
other words.

# Instruction:
{instruction}

# Output (a):
{response_1}

# Output (b):
{response_2}

# Which is better, Output (a) or Output (b)? Your response should be either
“Output (a)” or “Output (b)”:

Table 9: The prompt for the LM judge.

for correctness-based accuracy, and for win-rate, all instances where the LM judge prefers
the evaluated LM’s response in both orders/does not prefer the evaluated LM’s response
in either order (before and after swapping the response order; see Appendix C). In our
experiments, we sample 50 failed instances and 50 successful instances due to the context
length limit. We then prompt GPT-40 (gpt-40-2024-08-06) (OpenAl, 2024b) as the diag-
nostic LM using the sampled 50+50=100 instances. The prompts for MATH, WildChat10K,
and DS-1000 are provided in Table 10, 11, and 12, respectively. We set the max new tokens
and temperature to 4096 and 0.0, respectively. The diagnostic LM is asked to identify 20
(potential) weaknesses given these sampled instances. Then, we determine the associated
instances (in the profiling set) for each outputted potential weakness, following the imple-
mentation described in Appendix E.1. We finally compute the performance metric on the
associated instances for each potential weakness and identify a set of weaknesses as the
weakness profile by selecting those with the lowest performance metrics.

D.2 Implementation Details of QUALEVAL

As the authors of Murahari et al. (2024) have not released the code yet before we released
this paper, we implemented QUALEVAL ourselves based on our scenario.

QUALEVAL starts with all instances in the benchmark, denoted as 3. All instances are first

randomly partitioned into [@1 chunks (we use k = 20 in all of our experiments), with each
chunk size being no more than k, and each chunk is fed to gpt-40-mini-2024-07-18 (OpenAl,
2024a) to summarize a list of capabilities for instances in the chunk. The prompts used here
for MATH, WildChat10K, and DS-1000 are provided in Table 13, 14 and 15, respectively. We
set the max new tokens and temperature to 4096 and 0.0, respectively. We concatenate all
capabilities generated for each chunk, getting a long list of capabilities for this benchmark.

We then iteratively shrink the list to get a final list of m capabilities (we use m = 20 in
our experiments). In each iteration, we split the list into multiple mp-size chunks (we use
p = 4 in our experiments), and prompt gpt-40-mini-2024-07-18 to shrink each chunk into
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System Prompt
Given a set of mathematics questions and their corresponding correct solutions,
identify the specific weaknesses of a model.

You are provided with 50 mathematics questions that the model fails to solve
and 50 mathematics questions that the model successfully solves. Based on this
data, analyze and describe the model’s weaknesses by identifying the high-level
mathematical capabilities that the model struggles with. Group similar weaknesses
under broader categories where applicable.

User Prompt

## Task

You are given 50 mathematics questions that the model fails to solve and their
corresponding correct solutions, along with 50 questions that the model successfully
solves. Analyze and describe the weaknesses of the model by identifying specific
high-level mathematical capabilities it struggles with, summarizing any related
weaknesses under broader categories.

## Questions and Solutions
#it# Failed Cases
{negative_inputs_and_outputs}

### Successful Cases
{positive_inputs_and_outputs}

## Requirements

- *Qutput exactly 20 weaknesses.**

- Each weakness should be an **informative and detailed phrase** that refers to a
**specific skill or capability** comprehensively covering key aspects of the failure,
without including any specifics from the questions or solutions.

- Where possible, group related weaknesses under a single broader weakness
category.

- Output each capability as a standalone phrase, with **no additional text, prefixes,
symbols, or notations** on any line. For example, do NOT include numbered list
markers, numerical prefixes, or numeric labels (e.g., ‘1.”, 2./, etc.) in the output.

Table 10: The diagnostic LM prompt for MATH (Hendrycks et al., 2021b) used by TEXTDIFF.
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System Prompt
Given a set of user instructions and their corresponding reference responses, identify
the specific weaknesses of a model.

You are provided with 50 user instructions and their corresponding refer-
ence responses that the model fails to address effectively, and 50 user instructions
and their corresponding reference responses that the model addresses successfully.
Based on this data, analyze and describe the model’s weaknesses by identifying the
high-level capabilities it struggles with. Group similar weaknesses under broader
categories where applicable.

User Prompt

## Task

You are given 50 user instructions and their corresponding reference responses
that the model fails to address effectively, along with 50 user instructions and their
corresponding reference responses that the model addresses successfully. Analyze
and describe the weaknesses of the model by identifying specific high-level capabil-
ities it struggles with, summarizing any related weaknesses under broader categories.

## User Instructions and Reference Responses
### Failed Cases
{negative_inputs_and_outputs}

### Successful Cases
{positive_inputs_and_outputs}

## Requirements

- **Output exactly 20 weaknesses.**

- Each weakness should be phrased as a specific capability, avoiding negative
phrasing such as “lack,” “difficulty,” or similar terms.

- Each weakness should be an **informative and detailed phrase** that refers to a
**specific skill or capability** comprehensively covering key aspects of the failure,
without including any specifics from the instructions or reference responses.

- Where possible, group related weaknesses under a single broader weakness
category.

- Output each capability as a standalone phrase, with **no additional text, prefixes,
symbols, or notations** on any line. For example, do NOT include numbered list
markers, numerical prefixes, or numeric labels (e.g., “1.”, 2./, etc.) in the output.

Table 11: The diagnostic LM prompt for WildChat10K (Zhao et al., 2024a) used by TEXTDIFF.
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System Prompt

Given a set of Python coding problems (involving data science) and their corre-
sponding correct Python implementations, identify the specific weaknesses of a
model.

You are provided with 50 code generation problems that the model fails to
solve and 50 code generation problems that the model successfully solves. Based on
this data, analyze and describe the model’s weaknesses by identifying the high-level
coding capabilities (related to data science) that the model struggles with. Group
similar weaknesses under broader categories where applicable.

User Prompt

## Task

You are given 50 Python coding problems (involving data science) that the model
fails to solve and their corresponding correct Python implementations, along with
50 coding problems that the model successfully solves. Analyze and describe the
weaknesses of the model by identifying specific high-level coding capabilities it
struggles with, summarizing any related weaknesses under broader categories.

## Problems and Implementations
### Failed Cases
{negative_inputs_and_outputs}

### Successful Cases
{positive_inputs_and_outputs}

## Requirements

- **Output exactly 20 weaknesses.**

- Each weakness should be phrased as a specific capability, avoiding negative
phrasing such as “lack,” “difficulty,” or similar terms.

- Each weakness should be an **informative and detailed phrase** that refers to a
**specific skill or capability** comprehensively covering key aspects of the failure,
without including any specifics from the code problems or implementations.

- Where possible, group related weaknesses under a single broader weakness
category.

- Output each capability as a standalone phrase, with **no additional text, prefixes,
symbols, or notations** on any line. For example, do NOT include numbered list
markers, numerical prefixes, or numeric labels (e.g., “1.”, 2./, etc.) in the output.

Table 12: The diagnostic LM prompt for DS-1000 (Lai et al., 2023) used by TEXTDIFF.

28



Published as a conference paper at COLM 2025

m capabilities. The prompts used here for MATH, WildChat10K, and DS-1000 are provided
in Table 16, 17 and 18, respectively. We set the max new tokens and temperature to 4096 and
0.0, respectively. After multiple iterations, this finally ends up with m capabilities.

After deriving m = 20 capabilities in natural language from all benchmark instances, QUAL-
EVAL assigns a relevance score to each pair of benchmark instances and capabilities, indicat-
ing the relevance of the instance to the capability. The score is an integer ranging from 1 to 5,
where 5 indicates strong relevance and 1 indicates no relevance. This is done by prompting
gpt-40-mini-2024-07-18 with each instance and the list of all derived capabilities, which
outputs a list of scores for all instance-capability pairs for this instance. The prompts used
here for MATH, WildChat10K, and DS-1000 are provided in Table 19, 20 and 21, respectively.
We set the max new tokens and temperature to 4096 and 0.0, respectively.

After scoring each pair of benchmark instances and capabilities, QUALEVAL assigns each
instance to exactly 2 capabilities to maximize the sum of the relevance scores of the chosen
pairs (instance and assigned capability). The assignment is constrained such that the number
of instances assigned to each capability is roughly proportional to the sum of its relevance
scores across all instances. We use linear programming to perform the assignment, im-
plemented with scipy.optimize. linprog®. Finally, QUALEVAL computes the performance
metric for each capability, i.e., the performance metric on all its assigned instances, and
identifies the capabilities with the lowest performance metrics as the weakness profile.

System Prompt

Given a set of mathematics questions and their corresponding correct solutions,
identify the high-level mathematical capabilities required to solve these questions.
Group similar capabilities where relevant.

User Prompt

## Task

You are given {instance num} mathematics questions and their corresponding
correct solutions. Identify the high-level mathematical capabilities required to
solve these questions, summarizing any related capabilities under broader categories.

## Questions and Solutions
{inputs_and_outputs}

## Requirements

- Each capability should be an **informative and detailed phrase** that refers to a
**specific skill or capability** comprehensively covering key aspects of the solution,
without including any specifics from the questions or solutions.

- Where possible, group related capabilities under a single broader capability.

- Output each capability as a standalone phrase, with **no additional text, prefixes,
symbols, or notations** on any line.

Table 13: The capability initialization prompt for MATH (Hendrycks et al., 2021b) used by
QUALEVAL.

E Experimental Details of Assessing Weakness Profiling Methods

This section provides additional details about Section 5.

E.1 Details of Determining Associated Instances

As described in Section 2.2, we prompt gpt-40-mini-2024-07-18 (OpenAl, 2024a) to de-
termine whether an instance tests for a given capability (if yes, the instance is called an

9https ://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html. All
hyperparameters are set to their default values.
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System Prompt

Given a set of user instructions and their corresponding reference responses, identify
the high-level capabilities required to respond effectively to these instructions. Group
similar capabilities where relevant.

User Prompt

## Task

You are given {instance_num} user instructions and their corresponding reference
responses. Identify the high-level capabilities required to respond effectively to
these instructions, summarizing any related capabilities under broader categories.

## User Instructions and Reference Responses
{inputs_and_outputs}

## Requirements

- Each capability should be an **informative and detailed phrase** that refers to a
**specific skill or capability** comprehensively covering key aspects of the response,
without including any specifics from the instructions or reference responses.

- Where possible, group related capabilities under a single broader capability.

- Output each capability as a standalone phrase, with **no additional text, prefixes,
symbols, or notations** on any line.

Table 14: The capability initialization prompt for WildChat10K (Zhao et al., 2024a) used by
QUALEVAL.

System Prompt

Given a set of Python coding problems and their corresponding correct implemen-
tations, identify the high-level programming capabilities required to solve these
problems. Group similar capabilities where relevant.

User Prompt

## Task

You are given {instance_num} Python coding problems and their corresponding cor-
rect implementations. Identify the high-level programming capabilities required to
solve these problems, summarizing any related capabilities under broader categories.

## Problems and Implementations
{inputs_and_outputs}

## Requirements

- Each capability should be an **informative and detailed phrase** that refers to a
**specific skill or capability** comprehensively covering key aspects of the solution,
without including any specifics from the problems or implementations.

- Where possible, group related capabilities under a single broader capability.

- Output each capability as a standalone phrase, with **no additional text, prefixes,
symbols, or notations** on any line.

Table 15: The capability initialization prompt for DS-1000 (Lai et al., 2023) used by QUALE-
VAL.
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System Prompt
Given a list of mathematics capabilities, generate a shorter list of the most critically
relevant capabilities by combining related items where appropriate.

User Prompt

## Task

You are given {current-num_capabilities} mathematics capabilities. Generate a list
of no more than 20 capabilities by merging related capabilities into broader items
where relevant.

## Capabilities
{capability_list}

## Requirements

- You should output **up to 20 capabilities**, ideally exactly 20.

- Each capability should be an **informative and concise phrase** that represents a
**specific skill or capability** while covering key aspects of the capabilities provided.
- Consolidate related capabilities into a single, broader capability wherever possible
to reduce the list length.

- Output each capability as a standalone phrase, with **no additional text, prefixes,
symbols, or notations** on any line.

Table 16: The capability shrinking prompt for MATH (Hendrycks et al., 2021b) used by
QUALEVAL.

System Prompt
Given a list of capabilities required for responding to user instructions, generate a
shorter list of the most critically relevant capabilities by combining related items
where appropriate.

User Prompt

## Task

You are given {current_num_capabilities} capabilities related to responding to user
instructions. Generate a list of no more than 20 capabilities by merging related
capabilities into broader items where relevant.

## Capabilities
{capability list}

## Requirements

- You should output **up to 20 capabilities**, ideally exactly 20.

- Each capability should be an **informative and concise phrase** that represents a
**specific skill or capability** while covering key aspects of the capabilities provided.
- Consolidate related capabilities into a single, broader capability wherever possible
to reduce the list length.

- Output each capability as a standalone phrase, with **no additional text, prefixes,
symbols, or notations** on any line.

Table 17: The capability shrinking prompt for WildChat10K (Zhao et al., 2024a) used by
QUALEVAL.
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System Prompt

Given a list of capabilities required for solving Python coding problems, generate
a shorter list of the most critically relevant capabilities by combining related items
where appropriate.

User Prompt

## Task

You are given {current.num_capabilities} capabilities related to solving Python
coding problems. Generate a list of no more than 20 capabilities by merging related
capabilities into broader items where relevant.

## Capabilities
{capability list}

## Requirements

- You should output **up to 20 capabilities**, ideally exactly 20.

- Each capability should be an **informative and concise phrase** that represents
a **specific programming skill or capability** while covering key aspects of the
capabilities provided.

- Consolidate related capabilities into a single, broader capability wherever possible
to reduce the list length.

- Output each capability as a standalone phrase, with **no additional text, prefixes,
symbols, or notations** on any line.

Table 18: The capability shrinking prompt for DS-1000 (Lai et al., 2023) used by QUALEVAL.

associated instance), which is a basic operation used in our assessments and TEXTDIFF. The
prompts used here for MATH and WildChat10K are provided in Table 22 and Table 23,
respectively; we also provide the prompt for DS-1000 in Table 24, used in experiments of
Section 5.3. We set the max new tokens and temperature to 128 and 0.0, respectively.

E.2 Qualitative Analysis of Low-Performance Identification Assessment

Table 25 presents the identified weaknesses from TEXTDIFF, QUALEVAL, and EVALTREE
when the weakness profile size is 10, along with the LM performance on the associated
instances (in the test set) of each identified weakness; they are based on applying the three
methods to Llama 3.1 8B Instruct (Dubey et al., 2024) evaluation result on MATH (see
Section 5.1). We observe that EVALTREE-identified weakness descriptions are generally
more specific than those identified by the other two methods, enabling a more precise
diagnosis and thus capturing capabilities where the LM exhibits lower performance.

E.3 Experimental Details of Ground-Truth Weakness Assessment

E.3.1 Details of the Assessment Setup

This subsection provides additional details about the setup of Ground-Truth Weakness
Assessment in Section 5.2, based on the setup introduced in Section 2.2.

We used two benchmarks as testbeds, the MATH benchmark (Hendrycks et al., 2021b) and
the WildChat10K benchmark (Zhao et al., 2024a). As described above, we manually curated a
set of 10 ground-truth weaknesses (described in natural language) at diverse granularities as
the ground-truth weakness profile, for MATH and WildChat10K, respectively. The ground-
truth weakness profiles for MATH and WildChat10K are provided in Table 26 and Table 27,
denoted as W*. We aim to generate a synthetic evaluation result (on the profiling set) g
where the actual weaknesses are exactly this predefined ground-truth weakness profile
W*. First, we identify the associated instances for each ground-truth weakness. We then
define two hyperparameters, the base probability p € (0,1] and the decrease rate d € (0,1),
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System Prompt

Given a mathematics question with its solution and a numbered list of mathematical
capabilities, rate each capability on a scale of 1-5 to indicate its relevance in solving
this question. A score of 5 means the capability is very used, while 1 means it is not
used at all.

User Prompt

## Task

You are given a mathematics question and solution, along with a list of 20
mathematical capabilities. For each capability, rate the degree to which it is required
to solve this question.

## Question
{input}

## Solution
{output}

## Capabilities
{capability list}

## Requirements

- For each capability, provide an integer **score from 1 to 5**. A score of 5 means the
capability is very used, while 1 means it is not used at all.

- Include a brief **reasoning** for each score, explaining how you determined the
score.

- Output the result in **JSON format** as follows:

{

json

"1": {"reasoning”: "THE REASONING", "score": SCORE},
"2": {"reasoning”: "THE REASONING", "score": SCORE},
"3": {"reasoning”: "THE REASONING", "score": SCORE},

)

- Do NOT include any additional text outside of the JSON format, as **I will directly
use ‘json.loads’ in Python to convert your output to a dictionary object**.

Table 19: The scoring prompt for MATH (Hendrycks et al., 2021b) used by QUALEVAL.
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System Prompt

Given a user instruction with its reference response and a numbered list of capabili-
ties, rate each capability on a scale of 1-5 to indicate its relevance in responding to
this instruction. A score of 5 means the capability is very used, while 1 means it is
not used at all.

User Prompt

## Task

You are given a user instruction and its reference response, along with a list of 20
capabilities. For each capability, rate the degree to which it is required to respond to
this instruction.

## User Instruction
{input}

## Reference Response

{output}

## Capabilities
{capability list}

## Requirements

- For each capability, provide an integer **score from 1 to 5**. A score of 5 means the
capability is very used, while 1 means it is not used at all.

- Include a brief **reasoning** for each score, explaining how you determined the
score.

- Output the result in **JSON format** as follows:

json
{
"1": {"reasoning”: "THE REASONING", "score": SCORE},
"2": {"reasoning”: "THE REASONING", "score": SCORE},
"3": {"reasoning”: "THE REASONING", "score": SCORE},
}

- Do NOT include any additional text outside of the JSON format, as **I will directly
use ‘json.loads’ in Python to convert your output to a dictionary object**.

Table 20: The scoring prompt for WildChat10K (Zhao et al., 2024a) used by QUALEVAL.

34



Published as a conference paper at COLM 2025

System Prompt

Given a Python coding problem with its correct implementation and a numbered
list of capabilities, rate each capability on a scale of 1-5 to indicate its relevance in
solving this problem. A score of 5 means the capability is very used, while 1 means
it is not used at all.

User Prompt

## Task

You are given a Python coding problem and its correct implementation, along with a
list of 20 capabilities. For each capability, rate the degree to which it is required to
solve this problem.

## Coding Problem
{input}

## Correct Implementation

{output}

## Capabilities
{capability list}

## Requirements

- For each capability, provide an integer **score from 1 to 5**. A score of 5 means the
capability is very used, while 1 means it is not used at all.

- Include a brief **reasoning** for each score, explaining how you determined the
score.

- Output the result in **JSON format** as follows:

{

json

"1": {"reasoning”: "THE REASONING", "score": SCORE},
"2": {"reasoning”: "THE REASONING", "score": SCORE},
"3": {"reasoning”: "THE REASONING", "score": SCORE},

)

- Do NOT include any additional text outside of the JSON format, as **I will directly
use ‘json.loads’ in Python to convert your output to a dictionary object**.

Table 21: The scoring prompt for DS-1000 (Lai et al., 2023) used by QUALEVAL.
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System Prompt
Given a mathematical question and its correct solution, check whether the provided
mathematics skill or capability is required by the key aspects of the solution.

User Prompt
## Question

{input}

## Solution
{output}

## Skill or Capability
{capability}

## Requirement

If the provided mathematics skill or capability is required by the key aspects of the
solution, output YES. Otherwise, output NO.

You should output either YES or NO with no additional text, otherwise, the output
will NOT be accepted.

Table 22: The prompt for determining whether or not a given MATH (Hendrycks et al.,
2021b) benchmark instance tests for a given capability.

System Prompt

Given a user instruction and a reference response to the instruction, check whether
the provided skill or capability is required by the key aspects of responding to the
instruction.

User Prompt

## Instruction

{input}

## Response
{output}

## Skill or Capability
{capability}

## Requirement

If the provided skill or capability is required by the key aspects of responding to the
instruction, output YES. Otherwise, output NO.

You should output either YES or NO with no additional text, otherwise, the output
will NOT be accepted.

Table 23: The prompt for determining whether or not a given WildChat10K (Zhao et al.,
2024a) benchmark instance tests for a given capability.
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System Prompt

Given a Python coding problem (involving data science) and its correct Python
implementation, check whether the provided coding skill or capability is required
by the key aspects of the implementation.

User Prompt
## Problem

{input}

## Implementation

{output}

## Skill or Capability
{capability}

## Requirement

If the provided coding skill or capability is required by the key aspects of the
implementation, output YES. Otherwise, output NO.

You should output either YES or NO with no additional text, otherwise, the output
will NOT be accepted.

Table 24: The prompt for determining whether or not a given DS-1000 (Lai et al., 2023)
benchmark instance tests for a given capability.

for controlling the sampling process. Taking correctness-based accuracy as an example,
for the i-th benchmark instance, we compute the probability of it being solved correctly
(i.e., P[g; = 1]) as p x d™, where m is the number of ground-truth weaknesses in W* for
which the instance is an associated instance. Finally, we independently sample correctness
(1 or 0) for each g; using these computed probabilities, resulting in a synthetic evaluation
result (on the profiling set). By design, the ground-truth weakness profile W* exactly
represents the real weaknesses for this generated synthetic evaluation result, as we were
mimicking the evaluation behavior of a hypothetical LM with exactly these weaknesses.
As we described above, when using correctness-based accuracy as the metric for MATH,
p x d™ represents the probability of an instance’s evaluation result being correct. Similarly,
when using win-rate as the metric for WildChat10K, p x 4™ denotes the probability of the
(hypothetic) evaluated LM being preferred by the LM judge; specifically, we simulate the
judge’s preference by sampling twice, once for the original order of responses and once after
swapping their order (see Appendix C). For each benchmark, we generated three synthetic
evaluation results using the hyperparameters p = 0.7 and d € {0.2,0.4,0.5}.

Given a weakness profile W generated by a method, we measure its similarity to W*. We de-
fine “Precision” as ), ey | A(w;) N (Uw;few*A(w]’f)) |/|A(w;)|/|W]| to measure desideratum
1,1i.e., how precisely identified weaknesses align with ground-truth ones; similarly, we de-
fine “Recall” as Zw;few* | A(w?) N (UwewA(wi))|/|A(w])|/[W*| to measure desideratum

2,i.e., how comprehensively ground-truth weaknesses are covered; finally, their harmonic
mean, F1, provides a balanced measurement. By default, we use the profiling set itself as the
test set for computing A in the formulas above; we also show the results of using a separate
test set distinct from the profiling set in Appendix E.3.3.

E.3.2 Analysis on Experimental Results

This subsection provides additional analysis on the experimental results in Section 5.2.

To better understand why TEXTDIFF and QUALEVAL are outperformed, we show the
Precision and Recall curves in Figure 11 and 12. These curves show that both methods suffer
from poor Precision, indicating that the weaknesses they identify cannot precisely pinpoint
where the LM fails. We present the identified weaknesses from TEXTDIFF, QUALEVAL, and
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Method

Weakness Profile

TEXTDIFF

Solving complex trigonometric equations and identities. (11.11%)

Handling and solving inequalities involving multiple variables. (18.18%)
Solving problems involving optimization and maximizing or minimizing
expressions. (15.79%)

Understanding and applying properties of circles and their tangents. (30.0%)
Understanding and applying properties of vectors and vector operations.
(46.34%)

Understanding and applying properties of matrices and determinants. (60.0%)
Handling and solving problems involving complex numbers and their operations.
(44.44%)

Understanding and applying geometric transformations and properties. (50.0%)
Understanding and applying properties of polynomials and their roots. (36.77%)
Applying the Pythagorean theorem and properties of right triangles. (41.46%)

QUALEvVAL

Applying optimization techniques and inequalities in problem-solving (22.22%)
Utilizing properties of geometric figures, including transformations and conic
sections (41.07%)

Analyzing sequences, series, and their properties (34.92%)

Analyzing and solving inequalities and systems of equations (37.31%)
Calculating combinations, permutations, and applying counting principles
(47.54%)

Applying vector operations and understanding geometric interpretations
(45.45%)

Employing logical reasoning and problem-solving strategies (48.89%)
Calculating areas, volumes, and perimeters of geometric shapes (28.57%)
Understanding and manipulating complex numbers and their properties (44.44%)
Understanding and applying properties of functions, including logarithmic,
exponential, and trigonometric functions (34.57%)

EVALTREE

Analyzing and applying geometric properties, relationships, and transformations
across various contexts and configurations. (37.71%)

Analyzing and applying geometric reasoning to understand spatial relationships
and calculate dimensions in two- and three-dimensional contexts. (35.05%)
Analyzing and applying recursive relationships and mathematical sequences to
identify patterns and solve combinatorial problems. (25.0%)

Analyzing and manipulating numerical properties and representations across
various numeral systems. (46.53%)

Analyzing and manipulating polynomial equations and their complex roots to
evaluate relationships and distances. (16.67%)

Analyzing and optimizing geometric relationships using trigonometric principles
and the Triangle Inequality. (5.56%)

Analyzing polynomial relationships and roots using Vieta’s formulas and
complex number properties. (14.81%)

Applying quadratic equations and trigonometric principles to solve for variable
values and integer solutions. (0.0%)

Formulating, analyzing, and applying combinatorial reasoning to evaluate
mathematical relationships and count objects under constraints. (40.0%)
Optimizing mathematical expressions and relationships through analysis,
inequalities, and constraints. (26.11%)

Table 25: Weakness profiles generated by TEXTDIFF, QUALEVAL, and EVALTREE, along
with the LM performance on the associated instances (in the test set) of each identified
weakness. Methods are run on Llama 3.1 8B Instruct (Dubey et al., 2024) evaluation result
on MATH (Hendrycks et al., 2021b).
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EVALTREE when the weakness profile size is 10 in Table 28, along with their corresponding
Precision, Recall, and F1; they are based on applying the three methods to the synthetic
evaluation result generated for the MATH benchmark, with the probability hyperparameters
setto p = 0.7 and d = 0.2. We observe that EVALTREE achieves significantly higher Precision
compared to the other two methods, while maintaining a quite high Recall, indicating that
EVALTREE can more precisely pinpoint specific areas where the LM underperforms and thus
better satisfy desideratum 1. For example, EVALTREE identified the weakness “Analyzing and
applying relationships among polynomial expressions and their roots using Vieta's formulas,” which
closely aligns with the ground-truth weakness “Solving polynomial equations by analyzing
relationships through Vieta’s formulas;” in contrast, TEXTDIFF and QUALEVAL identified two
much coarser-grained weaknesses, “Handling problems involving the properties of polynomials
and their roots” and “Solving linear, polynomial, and quadratic equations, including factoring and
roots” respectively, failing to capture the critical aspect of Vieta’s formulas.

This example shows the advantage of EVALTREE modeling the capabilities tested within
a benchmark at diverse granularities. By contrast, QUALEVAL, relying on a single-level
categorization, can only represent a fixed-granularity structure, which fails to sufficiently
model the intricate and interrelated structure of capabilities tested within a benchmark. Con-
sequently, it fails to capture the nuanced performance of LMs on fine-grained capabilities,
leading to its inability to detect granular weaknesses. In contrast, EVALTREE successfully
models the complexity of capabilities tested within a benchmark by the hierarchical struc-
ture of capability trees; this lets us analyze capabilities at varying granularities flexibly, from
broad categories to specific skills. By incorporating this flexibility, EVALTREE captures much
more detailed and comprehensive information about LM performance, so it can be superior.

Index Capability Description

1 Solving problems involving complex numbers and trigonometric identities,
including the use of algebraic manipulation, polar forms, and exponentiation of
complex numbers.

2 Analyzing combinatorial problems using counting principles and recurrence
relations to count and analyze complex arrangements.

3 Applying geometric formulas to calculate areas, volumes, and other properties
of three-dimensional shapes.

4 Analyzing numbers using prime factorization to solve problems involving divis-
ibility and coprimality.

5 Solving probability problems using geometric probability.

6 Solving polynomial equations by analyzing relationships through Vieta’s formu-
las.

7 Using trigonometric identities and polynomial identities to reduce complex
expressions.

8 Involving geometric partitioning or area considerations to calculate probabilities.

9 Analyzing quadratic inequalities through factoring.

10 Applying the properties of divisibility to find common factors using the Greatest

Common Divisor.

Table 26: The manually curated ground-truth weakness profile for MATH (Hendrycks et al.,
2021b), used in Ground-Truth Weakness Assessment (Section 5.2).

E.3.3 Computing F1 on a Separate Set

In this subsection, we present the results of Section 5.2 using a separate test set (distinct
from the profiling set) for computing A in the formulas provided in Appendix E.3.1.

Here, for the MATH benchmark (Hendrycks et al., 2021b), the test set is its released training
set (consisting of 7,500 instances). For WildChat10K, we sample another 10K instances
from WildChat (Zhao et al., 2024a) as the test set, using the same construction process as
the profiling set (WildChat10K) and ensuring no overlap with WildChat10K by excluding
previously included instances. The results, shown in Figure 13, demonstrate consistent
observations with those observed on the original results in Figure 4.
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Index Capability Description

Proficiency in designing intuitive, user-friendly interfaces.

Proficiency in editing and proofreading for academic papers.

Financial forecasting and risk analysis.

Proficiency in understanding and/or utilizing object-oriented programming
concepts.

Game mechanics design and balancing.

Crisis communication management by media response crafting.

Synthesis of statistical analysis and data interpretation for business purposes.
Helping the users with their own mental health.

Evaluating complex moral dilemmas and proposing socially responsible solu-
tions.

10 Event planning by logistical coordination.

Table 27: The manually curated ground-truth weakness profile for WildChat10K (Zhao
et al., 2024a), used in Ground-Truth Weakness Assessment (Section 5.2).
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E.4 Experimental Details of Extrinsic Assessment

This section provides additional details about Section 5.3.

We use OpenAl’s gpt-40-mini-2024-07-18 (OpenAl, 2024a) in our experiments to generate
(synthetic) data inputs; the input generation prompts for MATH (Hendrycks et al., 2021b)
and DS-1000 (Lai et al., 2023) are provided in Table 29 and Table 30, respectively; we set the
max new tokens and temperature to 4096 and 1.0 (for generation diversity), respectively.
We also use gpt-40-mini-2024-07-18 to generate outputs for each collected input; the
output generation prompts for MATH and DS-1000 are provided in Table 31 and Table 32,
respectively; we set the max new tokens and temperature to 4096 and 0.0, respectively.

For the generic-capability-guided data collection strategy, we use a description of the
benchmark’s overall targeted capability as guidance (in the input generation prompt) for
synthetic data generation. The descriptions are “General mathematical reasoning capability
across Prealgebra, Algebra, Number Theory, Counting and Probability, Geometry, and Intermediate
Algebra.” and “General Python coding capability across data science libraries: NumPy, Pandas,
TensorFlow, PyTorch, SciPy, Scikit-learn, and Matplotlib.” for MATH and DS-1000, respectively.

For the EVALTREE-guided data collection strategy, we set the accuracy threshold 7 to 0.4
in the node extraction algorithm described in Section 3.2. This resulted in 9 identified
weaknesses for MATH and 5 for DS-1000; the same number of weaknesses was identified
when using the TEXTDIFF-guided strategy and the QUALEVAL-guided strategy, ensuring
that all weakness-guided data collection strategies use weakness profiles of the same size.
When sampling five in-context examples for input generation given an identified weakness
in a weakness-guided data collection strategy, the examples are sampled from the associated
instances (in the profiling set) of the identified weakness in the TEXTDIFF-guided strategy,
from the instances assigned to the identified weakness in the QUALEVAL-guided strategy,
and from the instances linked to the corresponding node in the EVALTREE-guided strategy.

We provide an example of synthetic data inputs generated for Llama 3.1 8B Instruct on
MATH. One EVALTREE-identified weakness is “Analyzing and optimizing geometric rela-
tionships using trigonometric principles and the Triangle Inequality.” A synthetic data input
generated under the guidance of this weakness is “In triangle ABC, the lengths of sides AB
and AC are 15 cm and 20 cm, respectively. If angle A measures 60°, what is the length of side
BC rounded to the nearest whole number?” In contrast, a synthetic data input guided by the
generic capability is “A trader bought a certain number of apples for $0.75 each and then sold them
for $1.00 each. If he had a total profit of $15 after selling all the apples, how many apples did he sell?”
This example highlights that EVALTREE provides targeted guidance for data collection.

For each data collection strategy, we collect 128 instance inputs for training. We finetune
the models using LoRA (Hu et al., 2022), with a rank of 256, an alpha of 512, and a dropout
rate of 0.1. The batch size is fixed at 8, and the maximum sequence length is set to 1024
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Method

Weakness Profile

TEXTDIFF

Solving problems involving the properties of prime numbers and their
factorizations

Solving equations involving trigonometric identities and simplifications
Handling complex numbers and their operations

Solving problems involving combinatorics and permutations

Applying the Law of Cosines and Law of Sines in non-right triangles

Handling problems involving the calculation of probabilities and combinatorial
counting

Handling problems involving the calculation of areas and volumes of geometric
shapes

Harlfdling problems involving the properties of polynomials and their roots
Understanding and applying the properties of quadratic equations and their roots
Handling problems involving divisibility and modular arithmetic

QUALEVAL

Understanding and applying number theory concepts, including prime
factorization and modular arithmetic

Understanding and manipulating complex numbers and their properties
Calculating combinations, permutations, and applying counting principles
Calculating areas, volumes, and perimeters of geometric shapes

Calculating probabilities and utilizing statistical methods for data analysis
Employing logical reasoning and problem-solving strategies
Understanding and applying properties of functions, including logarithmic,
exponential, and trigonometric functions

Solving linear, polynomial, and quadratic equations, including factoring and
roots

Applying optimization techniques and inequalities in problem-solving
Analyzing and solving inequalities and systems of equations

EVALTREE

Simplifying and solving trigonometric and complex expressions using algebraic
manipulation, identities, and properties of periodic functions

Manipulating complex numbers and applying series and binomial techniques to
derive geometric properties

Analyzing and calculating complex numbers through polar coordinates,
polynomial equations, and algebraic manipulation

Analyzing and applying relationships among polynomial expressions and their
roots using Vieta’s formulas

Solving and manipulating algebraic, quadratic, and probability equations
Analyzing and applying prime factorization, divisibility, and the relationships
between greatest common divisors and least common multiples to solve
mathematical problems

Analyzing and calculating prime factorization and divisibility within factorials
Analyzing and calculating prime numbers and whole numbers through
factorization and divisor techniques

Factoring integers and polynomials to analyze prime components, apply
properties of exponents, and identify valid combinations

Calculating and analyzing geometric properties and volumes of
three-dimensional shapes using formulas and algebraic manipulation

Table 28: Weakness profiles generated by TEXTDIFF, QUALEVAL, and EVALTREE. TEXTDIFF
achieves a Precision of 0.4787, a Recall of 0.9450, and an F1 of 0.6355. QUALEVAL achieves a
Precision of 0.3494, a Recall of 0.9975, and an F1 of 0.5175. EVALTREE achieves a Precision of
0.7064, a Recall of 0.8081, and an F1 of 0.7538. Methods are run on the synthetic evaluation
result generated for the MATH (Hendrycks et al., 2021b) benchmark, with p = 0.7 and
d = 0.2. The ground-truth weakness profile is provided in Table 26.
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System Prompt

You are a creative and logical assistant tasked with generating new mathematics ques-
tions. Your goal is to create a single, clear question aligned with a given mathematical
capability.

User Prompt

## Task

Generate one unique mathematics question demonstrating the following capability:
{capability}

Please ensure the following:

- You will be given {instancenum} example questions for reference. Use the
examples solely to understand the capability, NOT as templates, i.e., the generated
question must not replicate, paraphrase, or directly resemble the example questions
in structure, wording, or context.

- The question must ask for only one result, such as a numerical value, while
adhering to logical constraints (e.g., quantities must be positive, and counts for
people must be integers).

## Provided Examples
{example_inputs}

## Requirements
- Do NOT include a solution in the generated question.
- Ensure the question is plausible, reasonable, and relevant to the given capability.

Table 29: The (synthetic data) input generation prompt for MATH (Hendrycks et al., 2021b).

tokens. Training is conducted using BF16 precision. The optimizer is configured with a
learning rate of 1E-4, a cosine learning rate scheduler, a warmup ratio of 0.1, and no weight
decay. The models are trained for 3 and 2 epochs in the experiments on MATH and DS-1000,
respectively. These configurations are applied consistently across all experiments.

E.5 Details of LM Usage Costs

Let the number of benchmark instances (the size of profiling set) be denoted as N.

The main LM usage cost of EVALTREE is incurred during the Capability Annotation stage,
where each instance requires one LM call, and the Capability Description stage, where each
non-leaf node of the capability tree also requires one LM call. The cost of the sentence
embedding model used in the Capability Embedding stage is negligible in comparison. As
the number of non-leaf nodes in the capability tree is smaller than N, the total number of
LM calls and thus the overall LM usage cost for EVALTREE scale as O(N).

For TEXTDIFF, the main LM usage cost is incurred when determining the associated in-
stances for each potential weakness outputted by the diagnostic LM. Each potential weak-
ness requires O(N) LM calls, causing the total number of LM calls and thus the overall
LM usage cost to scale linearly with the number of potential weaknesses outputted by the
diagnostic LM, which is the upper bound of the weakness profile size.

For QUALEVAL, the main LM usage cost comes from scoring each pair of benchmark
instances and capabilities derived from all benchmark instances. The scoring LM generates
a natural language reasoning for each score (see prompts in Appendix D.2), making the
output token cost a significant component of the total cost. Since the length of the LM’s
output scales linearly with the predefined number of capabilities (which is the upper bound
of the weakness profile size), the overall LM usage cost (roughly) scales accordingly.
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System Prompt

You are a creative and logical assistant tasked with generating new Python program-
ming problems. Your goal is to create a single, clear problem aligned with a given
data science capability.

User Prompt

## Task

Generate one unique Python programming problem demonstrating the following
capability:

{capability}

Please ensure the following:

- You will be given {instance num} example problems for reference. Use the
examples solely to understand the capability and the desired problem format. The
generated problem must not replicate, paraphrase, or directly resemble the example
problems in structure, wording, or context.

- The problem must ask for one piece of Python code that fills in a blank, ensuring
clarity and conciseness while being grounded in real-world data science scenarios.

## Provided Examples
{example_inputs}

## Requirements

- Do NOT include a solution in the generated problem. Please output the generated
problem directly, without any additional text, explanation, or commentary.

- Ensure the problem is plausible, reasonable, and relevant to the given capability.

- Adhere to logical programming constraints, such as correct syntax and realistic
data or outcomes.

Table 30: The (synthetic data) input generation prompt for DS-1000 (Lai et al., 2023).

System Prompt

You are a precise and logical assistant. Solve the following mathematics problem
step by step, explaining each step clearly.

Enclose the final answer to the mathematics question within \boxed{}.

User Prompt
{input}

Table 31: The output generation prompt for MATH (Hendrycks et al., 2021b).

System Prompt

Write a short code following the given format and indentation. Place the executable
code between <code> and </code> tags, without any other non-executable things.
Please provide ONLY the code completion needed. Do NOT repeat the context code.

User Prompt
{input}

Table 32: The output generation prompt for DS-1000 (Lai et al., 2023).
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As analyzed above, the scale coefficients of TEXTDIFF and QUALEVAL grow linearly with the
(maximum) weakness profile size, making their costs significantly higher than EVALTREE,
which maintains a linear cost scaling with the number of benchmark instances regardless of
the weakness profile size. This difference makes EVALTREE substantially more cost-efficient
in terms of LM usage cost, especially when the weakness profile size is large.

F Quantitative Analysis of Flaws in Chatbot Arena’s Evaluation Practice

This section provides additional quantitative analysis of the flaws in Chatbot Arena’s human-
voter-based evaluation practice, discussed in Section 6. We use the OpenAl Moderation

API' with the model omni-moderation-2024-09-26 to assess toxicity in the following; this
is a tool that evaluates whether or not a given text contains toxic content.

We first examine the user instructions for instances linked to the node “Facilitating inclu-
sive, ethical, and strategic communication and engagement across diverse and sensitive contexts”.
Across the entire Chatbot Arena benchmark, 4.72% of instances have toxic user instructions;
however, at this specific node, the proportion rises sharply to 19.50%. It is worth noting that
people found that the OpenAl Moderation API may have a low recall (Zhao et al., 2024a),
resulting in numerous false negatives (toxic instructions not flagged as such), so the actual
proportion of toxic user instructions should be higher. Despite this limitation, the observed
toxicity rate at this node is significantly higher than the benchmark average, confirming that
it contains a disproportionate number of user instructions with toxic requests, which aligns
with the natural language description of the capability represented by the node.

We then examine the trend of human voter preferences when comparing two responses, one
providing a toxic response and the other providing a non-toxic response (often by refusing
to answer). We focus on human comparison pairs where one response is flagged as toxic and
the other is not. Across all such comparison pairs, the proportion where the toxic response is
preferred is 50.89%; when also counting “tie” cases to consider all cases where the non-toxic
response is not preferred, the proportion rises to 71.98%. This issue is even more serious
at the node “Facilitating inclusive, ethical, and strategic communication and engagement across
diverse and sensitive contexts”; among comparison pairs for the node’s instructions, these two
numbers rise significantly to 86.84% and 97.37%, respectively. These results confirm the
observation that human voters tend to prefer toxic responses (that do not refuse to answer),
diverging from the intended values. They underscore the need for careful refinement of
evaluation practices to ensure alignment with the desired principles.

G Ablation Study: Alternative Approach to Tree Construction

In this section, we explore an alternative approach to the tree construction pipeline in-
troduced in Section 3.1. In this approach, we still follow the four-stage pipeline. For the
stage (3), instead of recursively building the hierarchical structure in a top-down, recur-
sive way, we use the hierarchical clustering algorithm (Miillner, 2011), implemented with
scipy.cluster.hierarchy.linkagell. The other stages remain unchanged. We did not
adopt this approach because it always produces a binary tree, where the optimal number of
each node’s children could be more than two and diverse; a binary tree cannot meet this
need, whereas our default approach can automatically determine a (potentially) optimal
number of children at each node. We also empirically observed that trees constructed by
hierarchical clustering sometimes have unbalanced structures; for example, the left subtree
of the root may contain very few instances while the right subtree contains many.

We compare EVALTREE using the default capability tree construction pipeline with EVAL-
TREE using the capability tree built with the hierarchical clustering algorithm in the experi-

1Ohttps ://platform.openai.com/docs/api-reference/moderations

Whttps://docs. scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.
html. The method is set to average, the metric to cosine, and all other hyperparameters are set to their
default values.
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MATH DS-1000
Initial LM 48.70 29.20
EVALTREE 52.42(+0.28) 36.90(+0.34)

EVALTREE (Hierarchical Clustering)  52.88(+0.65)  33.36(+0.36)

Table 33: Accuracy (%) of different LMs on MATH and DS-1000 test sets. The initial LM is
Llama 3.1 8B Instruct (Dubey et al., 2024) for MATH and DeepSeek-Coder-Base 6.7B (Guo
et al., 2024) for DS-1000, respectively. See Section 5.3 for the experimental setup. We compare
EVALTREE using the default capability tree construction pipeline with EVALTREE using the
capability tree built with the hierarchical clustering algorithm here. Synthetic data (used to
train the initial LM) are generated under the guidance of the weakness profiles produced by
the two versions of EVALTREE, respectively. The accuracy (of a trained LM) is reported as
meanzstderr (“stderr” refers to standard error) across five random seeds.

mental setup of Sections 5.1, 5.2 and 5.3. The results, shown in Figure 14 and 15 and Table 33,
show that the default version outperforms the hierarchical-clustering-based version.
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Figure 6: Accuracy curves of weakness instances and strength instances (from the test
set) extracted using the random profiling/test split of the MATH benchmark (Hendrycks
et al., 2021b). Experiments were conducted with GPT-40 mini (OpenAl, 2024a), Llama 3.1
8B Instruct (Dubey et al., 2024), and DART-Math-Llama3-8B (Uniform) (Tong et al., 2024).
“All Instances” in the legend refers to all instances in the test set. A y = x line is included in
all figures to indicate the threshold T. The number of weakness/strength instances is shown
as a reference; when the number is very low, the curve may exhibit significant fluctuations,
affecting the general trend.
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Figure 7: Accuracy curves of weakness instances and strength instances (from the test
set) extracted using the random profiling/test split of the MMLU benchmark (Hendrycks
et al., 2021a). Experiments were conducted with GPT-40 mini (OpenAl, 2024a), Llama 3.1
8B Instruct (Dubey et al., 2024), and TULU 3 8B (Lambert et al., 2024). “All Instances” in the
legend refers to all instances in the test set. A y = x line is included in all figures to indicate
the threshold 7. The number of weakness/strength instances is shown as a reference; when
the number is very low, the curve may exhibit significant fluctuations, affecting the general
trend.
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Figure 8: Accuracy curves of weakness instances and strength instances (from the test set)
extracted using the random profiling/test split of the DS-1000 benchmark (Lai et al., 2023).
Experiments were conducted with GPT-4o0 (OpenAl, 2024b), GPT-3.5 Turbo (OpenAl, 2022),
and DeepSeek-Coder-Base 6.7B (Guo et al., 2024). “All Instances” in the legend refers to all
instances in the test set. A y = x line is included in all figures to indicate the threshold .
The number of weakness/strength instances is shown as a reference; when the number is
very low, the curve may exhibit significant fluctuations, affecting the general trend.
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Figure 9: Accuracy curves of weakness instances and strength instances (from the test set)
extracted using the MATH benchmark (Hendrycks et al., 2021b) as the profiling set and
the CollegeMath benchmark (Tang et al., 2024) as the test set. Experiments were conducted
with GPT-40 mini (OpenAl, 2024a), Llama 3.1 8B Instruct (Dubey et al., 2024), and DART-
Math-Llama3-8B (Uniform) (Tong et al., 2024). “All Instances” in the legend refers to all
instances in the test set. Note that the y = x line of the threshold 7 used in the node
extraction algorithm is not drawn here, as comparing accuracies with the threshold directly
is not meaningful due to the differing distributions of the profiling and test sets, which are
from two different benchmarks. The number of weakness/strength instances is shown as
a reference; when the number is very low, the curve may exhibit significant fluctuations,
affecting the general trend.
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Figure 10: (a) Win-rate curves of weakness instances and strength instances (from the test
set) extracted using the random profiling/test split of the WildChat10K benchmark (Zhao
etal.,, 2024a). (b) Win-rate curves of weakness instances and strength instances (from the test
set) extracted using the WildChat10K benchmark as the profiling set, with the ShareGPT10K
and Chatbot Arena (Chiang et al., 2024) benchmarks serving as the respective test sets. The
win-rate refers to the win-rate of Llama 3.2 3B Instruct (Meta, 2024) compared to Gemma
2 IT 2B (Riviére et al., 2024), as evaluated by the LM judge (Zheng et al., 2023; Dubois
et al., 2023). “ID” indicates that the profiling and test sets are from the same benchmark
(WildChat10K), whereas “OOD” indicates that they are from different benchmarks. The
number of weakness/strength instances is shown as a reference; when the number is very
low, the curve may exhibit significant fluctuations, affecting the general trend.
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Figure 11: Precision score curves of TEXTDIFF, QUALEVAL, and EVALTREE, with the
weakness profile size varying from 1 to 20. d is a hyperparameter to control the sampling
probability (see Appendix E.3.1).
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Figure 12: Recall score curves of TEXTDIFF, QUALEVAL, and EVALTREE, with the weakness
profile size varying from 1 to 20. d is a hyperparameter to control the sampling probability
(see Appendix E.3.1).
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Figure 13: F1 score curves of TEXTDIFF, QUALEVAL, and EVALTREE, with the weakness
profile size varying from 1 to 20. Precision, Recall, and thus F1 (more specifically, A in the
formulas provided in Appendix E.3.1) are computed on a separate test set, distinct from the
profiling set used to generate the synthetic evaluation results. A horizontal line indicates
each method’s highest score. d is a hyperparameter to control the sampling probability.
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Figure 14: Curves of min{Y_,, cw, F(A(w;))/|[Wz| | VT, |We| > M’} (the first row) and
min{F(S7) | V7,|Sz| > N’} (the second row). See Section 5.1 for the experimental setup.
Experiments in (a) were conducted on MATH with Llama 3.1 8B Instruct (Dubey et al.,,
2024) and DART-Math-Llama3-8B (Uniform) (Tong et al., 2024), and experiments in (b) were
conducted on WildChat10K, where the win-rate is the percentage of instances in which
Llama 3.2 3B Instruct (Meta, 2024) is preferred over Gemma 2 IT 2B (Riviere et al., 2024). We
compare EVALTREE using the default capability tree construction pipeline with EVALTREE
using the capability tree built with the hierarchical clustering algorithm here.
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Figure 15: F1 score curves of EVALTREE using two different capability tree construction
pipelines, with the weakness profile size varying from 1 to 20. See Section 5.2 for the experi-
mental setup. A horizontal line indicates each method’s highest score. d is a hyperparameter
to control the sampling probability (see Appendix E.3.1). We compare EVALTREE using the
default capability tree construction pipeline with EVALTREE using the capability tree built
with the hierarchical clustering algorithm here.
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