
Under review as submission to TMLR

Investigating the impact of missing value handling on
Boosted trees and Deep learning for Tabular data: A Claim
Reserving case study

Anonymous authors
Paper under double-blind review

Abstract

While deep learning (DL) performance is exceptional for many applications, there is no con-1

sensus on whether DL or gradient boosted decision trees (GBDTs) are superior for tabular2

data. We compare TabNet (a DL model for tabular data), atwo simple neural networks3

inspired by ResNet (a DL model) and Catboost (a GBDT model) on a large UK insurer4

dataset for the task of claim reserving. This dataset contains a high amount of informative5

missing values. We use this application to shed light on the impact of missing value han-6

dling on accuracy. Under certain missing value schemes a carefully optimised simple neural7

network model performed comparably to Catboost with default settings. However, using8

less-than-minimum imputation, Catboost with default settings substantially outperformed9

carefully optimised DL models - achieving the best overall accuracy. We conclude that10

handling missing values is an important, yet often overlooked, step when comparing DL to11

GBDT algorithms for tabular data.12

1 Introduction13

Many machine learning problems involve regressing or classifying with tabular or structured data. Since14

their introduction, GBDTs have performed well on such tabular data (Friedman, 2001). Meanwhile, DL has15

become the state of the art in many problems that involve unstructured data, e.g. images (He et al., 2016;16

Simonyan & Zisserman, 2015; Tao et al., 2020), audio (Ao et al., 2021), text (Baktha & Tripathy, 2017;17

Ziegler et al., 2019; Touvron et al., 2023), and their combinations (Radford et al., 2021; Rombach et al.,18

2022; Ramesh et al., 2021).19

Naturally, with the rise of research in DL, architectures have been proposed that claim to outperform GBDTs20

on tabular data (Somepalli et al., 2021; Shavitt & Segal, 2018; Huang et al., 2020; Kadra et al., 2021).21

However, there is a lack of consensus on whether these architectures really are more accurate. Large studies22

(Grinsztajn et al., 2022; McElfresh et al., 2024; Borisov et al., 2022) have compared DL to GBDTs across23

many datasets, many tasks and different computational budgets and suggest that GBDTs are on average the24

more accurate model for tabular data. The proposed reasons for the performance edge of GBDTs in these25

large studies remains an area of active research. Theories include the ability of GBDTs to ignore irrelevant26

variables and model discontinuous functions (Grinsztajn et al., 2022). Importantly, neither the proposed DL27

architectures nor the large studies investigate the impact of missing values. As missing values are common28

in real tabular data (Van Ness et al., 2023), and missing value handling can significantly impact the results29

of analyses (Jin et al., 2021), this is a significant gap in the literature.30

In the remainder of this paper we use a claim reserving application with data from a large UK car insurer to31

shed light on the comparison of GBDTs to DL. We especially focus on the impact of missing value handling32

in the comparison. Specifically, we investigate Catboost (Prokhorenkova et al., 2018) and two three DL33

architectures: TabNet (Arik & Pfister, 2021) and atwo ResNet-inspired multi layer perceptron (MLP)s.34

TabNet was chosen as a specialised tabular DL architecture with prior validation in insurance (McDonnell35

et al., 2023). Catboost and a ResNet MLP were chosen as the respective best GBDT and DL model from36

McElfresh et al. (2024).37

1



Under review as submission to TMLR

In Section 2 we present background on our application as well as describe the car insurance dataset that we38

analyse. In Section 3 we give a more detailed description of the modelling strategies we compare. In Section39

4 we start with our approach to hyperparameter tuning, where extra care was taken to avoid bias, and then40

describe the experiments used to investigate the impact of missing value handling. In Section 5 we present41

and discuss the results, not only finding Catboost is the superior model for our data, but also highlighting42

the importance of missing value handling in model accuracy.43

2 Background44

Car insurance is an important financial service with a 2024 global value of over 1.9 trillion USD, which is45

estimated to reach over 2 trillion USD by 2028 (Statista, 2024). Car insurance works on the principle that46

insurers charge customers a premium in return for obligations to provide financial support in the event of47

contractually agreed risks. Accurate pricing is vital for both the sustainable profit of the insurer and fair48

prices for customers. The process of determining a price for a prospective customer in car insurance is49

complex (Olivieri & Pitacco, 2015; Werner & Modlin, 2010). It comprises of three core steps i) estimating50

the expected value of payments to the customer over the duration of the contract ii) estimating current51

liabilities for claims that are reported but not settled (RBNS) and iii) somehow sensibly combining the two52

prior estimates into a price. The first step typically comprises finding a model for claim frequency and a53

model for claim severity; the latter estimating the cost of a claim conditional on an accident. The second54

step comprises modelling the cost of claims conditional on them having already occurred and is called claim55

reserving. The third step combines the claim frequency, claim severity and claim reserve estimates using risk56

models and business considerations: such as profit margins, legal requirements, risk appetite and operational57

costs.58

The focus within this work will be on the second step: claim reserving. Specifically, we focus on outstanding59

claim reserve modelling which is the process of predicting costs for claims that have been RBNS.60

Typically, outstanding claim reserve modelling is mainly done on a portfolio level. In other words, insurance61

companies predict the overall reserve requirement for a given time period, say a quarter, across all customers.62

Importantly, these forms of claim reserve modelling use no individual claim information, instead using historic63

data on portfolio claim settlements. This is done with deterministic algorithms such as run-off triangles,64

the chain ladder (CL) method and the Bornhuetter-Ferguson algorithm (Bornhuetter & Ferguson, 1972); or65

stochastic extensions of said algorithms.66

We focus instead on individual claim reserve modelling, or micro-level reserving, an alternative method67

of reserving. Individual claim reserve modelling predicts portfolio reserves from aggregating estimates per68

incident. There is not yet a consensus that individual claim reserving is more or less accurate than aggregate69

modelling. Still, the hypothesised benefits of micro-level reserving are: greater insight into exposure profiles70

within a portfolio; more signal (i.e. relevant covariates) should produce more accurate models; and the71

ability to adapt to trends that can be captured by covariates (Blier-Wong et al., 2021; Lopez et al., 2019;72

Delong & Wüthrich, 2020).73

There is literature investigating the use of older machine learning (ML) algorithms such as CART (Breiman74

et al., 1984) and generalized linear models for individual claim reserving (Lopez et al., 2019; De Felice &75

Moriconi, 2019; Taylor et al., 2008; Wuthrich, 2018). Newer ML methods, such as neural networks (Delong76

& Wüthrich, 2020; Delong et al., 2022; Kuo, 2020) and gradient boosted trees (Duval & Pigeon, 2019) have77

also had some, limited, research. These works analysing micro-level reserving strategies broadly conclude78

that their respective models are either on par or better than an aggregate CL method, validating micro-level79

reserving in principle. However, there are only a few such works; their insurance fields vary; they use small80

sets of covariates and some use simulated data. This makes it difficult to know whether the results are81

relevant to car insurance micro-level reserving. Furthermore, of considerable practical importance is that82

missing data is endemic to real insurance data (Fauzan & Murfi, 2018; Hanafy & Ming, 2021) and none of83

these works give any special focus to missing data. Finally, these works often report benchmarks against84

the CL method instead of overall accuracy which complicates the interpretation of results as disagreement85

with CL could be the consequence of more accurate modelling. To our knowledge, also noted by the survey86

of Blier-Wong et al. (2021), none compare modern ML methods directly to each other on real data. The87

2



Under review as submission to TMLR

lack of direct comparison means no conclusion can be drawn about the relative performance of newer ML88

methods for claim reserving.89

Ultimately, both research in insurance and ML more broadly paints a blurry picture on the relative merits of90

GBDTs and DL for micro-level reserving using tabular data. Furthermore, treatment or influence of missing91

values on accuracy is not investigated when comparing the methods. Although missing value handling has92

been shown to be important in other fields (Herring et al., 2004) and as such could be important to reserving.93

This leaves reserving actuaries dealing with tabular data unclear on whether it is worth the investment to94

investigate and deploy these more modern ML algorithms nor the impact of missing data for said algorithms.95

The most relevant work to ours, comparing DL to GBDTs in insurance, is McDonnell et al. (2023). They96

compare the DL architecture TabNet (Arik & Pfister, 2021) to the GBDT implementation XGBoost. They97

model discretised claim severity classification on a dataset with hundreds of thousands of claims. They98

find TabNet to be comparable to XGBoost, with marginally better F1 score. Although this is modelling99

claim severity, not claim reserving, we note that claim severity and outstanding claim reserve are both costs100

conditional on an accident occurring. However, the severity is estimated before the accident occurs and the101

reserve after. From the perspective of regression, the only difference between micro-level reserving and claim102

severity modelling is the number of covariates. In the work of McDonnell et al. (2023), although TabNet103

performs comparatively well to XGBoost, the models were evaluated on synthetic data generated using a104

neural network (So et al., 2021) thus potentially biasing performance towards DL as the model class was105

more likely to be correct. Furthermore, the casting of the regression problem into discretised classification106

and lack of missing data makes the findings less interpretable and transferable.107

2.1 Data description108

The tabular data we model in Section 4 consists of many hundreds of thousands of insurance claimsclaim109

feature vectors as rows, with hundreds of features as columns. This dataset has never been previously110

studied. The data is a combination of information available at policy issue (e.g. make and model of the111

car) and information available just after the time of claim reporting (e.g. accident date). The settlement112

value (SV) variable gives how much the insurer paid overall to settle a claim; inclusive of vehicle, personal113

and property damage. We aim to accurately predict SV for each claim to build a micro-level reserve, as114

described in Section 1. As we use supervised ML methods we only consider closed claims, i.e. there exists a115

SV to be used as a label.116

Commercial confidentiality prevents us from giving a more detailed description of the data. However, we117

present the missing data properties in the next section. We present other data characteristics and their im-118

plications for modelling and data processing in Appendix A.1.Appendix A.1 includes time varying properties119

and handling of high cardinality categoricals, such as postcode information.120

2.1.1 Missing data121

The dataset we study has extensive missing values. Over 50% of features contain missing values, therefore122

ignoring all features with missing values would drop the number of features by over half. This could drop123

highly informative features, e.g. details of additional drivers on a policy, which are missing in the majority124

of claims.125

Furthermore, due to the interaction of missing values in multiple features there is no complete feature126

vectors , i.e. every row has at least one missing value. This suggests if we wish toTherefore if we directly127

apply a strategy such as complete-case analysis (Little & Rubin, 2019, p. 47), where any row with missing128

values is dropped, the whole dataset would be dropped. More sensibleInstead, we can first drop features129

that are missing in more than a certain proportion of cases and then run a complete-case analysis. This130

latter approach is also used to deal with missing values by Grinsztajn et al. (2022), in one of the broad131

comparative studies mentioned in Section 1. We explore this method, along with alternative imputation132

approaches, calling this missing value handling strategy Drop in Section 4.133

Beyond the extent of missing values, the data presents a dependence of the response, SV, on the missing134

value structure. This can be shown by a large shift in the mean and standard deviation of the SV when135

3



Under review as submission to TMLR

using Drop at various missing value proportion thresholds. Smaller proportions of missing values in a feature136

vector are associated with substantially higher SV. This suggests that the data is not missing completely at137

random (MCAR) (Little & Rubin, 2019, p. 13-23). Therefore, fitting a model under a Drop strategy will138

result in biased predictions, above and beyond any bias introduced by the model or training algorithm. This139

bias also means the accuracy results of a model fit on Drop are not comparable to those of a model fit on140

imputed data.141

To summarise, missing values represent a large portion of our insurance dataset and the SV varies sub-142

stantially conditional on the missing value structure. This highlights the importance of investigating and143

choosing appropriate missing value handling strategies.144

3 Models145

In this section we start by defining notation, outlining some DL terms and then briefly give background on146

the models used: i) Catboost, a GBDT model; ii) our implementation of a ResNet multi layer perceptron,147

a general purpose feed forward DL architecturetwo ResNet multi layer perceptrons, a general purpose feed148

forward DL model: ours and that of Gorishniy et al. (2021); and iii) TabNet, a DL architecture specifically149

designed to accommodate tabular data. Within this section we do not aim to provide comprehensive details.150

Instead we aim to describe methods in sufficient detail to follow the hyperparameters tuned in Section 4.1.151

3.1 Notation152

We denote the dataset D, as a set of tuples, D = {(xk, yk)}N
k=1, where y ∈ R+ denotes the target settlement153

value, N denotes the number of claims and x denotes a feature vector with D features. Subscripts denote154

indexing on an arbitrary ordering of data tuples from the overall dataset.155

We seek a model, F (x), to predict the claim settlement value y. The accuracy of this model is measured by156

some loss function L(y, F (x)), that we wish to minimise.157

3.2 Catboost model158

Catboost (Prokhorenkova et al., 2018) is a GBDT (Friedman, 2001) with a special procedure for categorical159

encoding and gradient estimation. Note that the Catboost algorithm details are complex and have many160

configurable options. Here we only cover the relevant details of the base GBDT algorithm and briefly mention161

the core novel concepts proposed by Prokhorenkova et al. (2018). For removal of ambiguity, as the default162

behaviour can vary depending on the execution hardware, we present details and use defaults for running163

on a CPU opposed to a GPU.164

3.2.1 Gradient boosted decision tree165

Boosted models learn an additive ensemble of ‘weak learner’ models. If T is the total number of weak learners166

we want to use, the boosted model would be:167

FT (x) = G0(x) +
T∑

t=1
ηGt(x), (1)

where Gt(x) is the tth ‘weak learner’, η is a weighting factor, and G0(x) is an initial estimate, such as the168

mean response of the training set.169

Usually boosted models are built in a sequential fashion, e.g. the ith model incorporating i weak learners170

would be Fi = Fi−1 + GP for i = 1, ..., T . The sequential construction of the model enables the procedure171

to be terminated early if validation performance is not improving i.e. return Fi(x) with i < T .172

For gradient boosting, the summands Gt(x), t ∈ {1, ..., T}, are chosen from within a hypothesis class of173

functions G to approximate − ∂L
∂F (y, F (x))

∣∣
Ft−1

, the negative functional derivative of the loss. This negative174

functional derivative of the loss is also called a pseudo-residual and denoted rt−1(y, x) (Friedman, 2001).175

4



Under review as submission to TMLR

To evaluate rt−1(y, x) requires knowledge of both x and y. As y is unavailable outside the training set,176

rt−1(y, x) can only be evaluated on the training data. However we can approximate rt−1 with a given177

summand Gt(x) and measure of function fit, L′(rt−1(y, x):178

Gt = arg min
G∈G

∑
(x,y)∈D

L′(rt−1(x, y), G(x)
)
. (2)

In practice finding the true arg min is infeasible so Gt is some approximation learned following a standard179

algorithm to minimise L′.180

L′ can be different from L as it is used to fit Gt(x) to rt−1(y, F (x)) to enable derivative evaluation on data181

outside the training set. It is the addition of Gt to the ensemble that contributes to the minimisation of L182

given a small enough step size η.183

This results in the boosted ensemble approximating a gradient descent of the loss functional (in the space184

of linear combinations of G) with constant learning rate η:185

Ft = Ft−1 + ηGt ≈ Ft−1 − η
∂L

∂F

∣∣∣∣
Ft−1

(3)

In the context of GBDTs; the weak learner is a decision tree (Breiman et al., 1984). The choice of step size186

η and desired ensemble size T are among the hyperparameters tuned in Section 4.1.187

3.2.2 Catboost: Pseudo-residual calculation and categorical encoding188

Catboost aims to improve performance on unseen data by reducing overfitting. The key innovations of189

Catboost are twofold: i) how the pseudo-residuals, rt−1, are approximated using Gt and ii) how categorical190

variables are encoded. Although we will describe the core idea of the improvement, there are further tech-191

nicalities and engineering modifications present in Prokhorenkova et al. (2018), e.g. to improve speed, that192

we do not describe.193

For the alteration to Gt fitting, the core idea is to fit Gt on data excluding the data point for which it will194

predict rt−1, i.e. to calculate Gt(xk) Catboost would fit Gt on data {xj : j < k}. This excludes the data195

point xk, and also generates different Gt for different data points.196

Likewise, Catboost follows this procedure for generating a categorical encoding. For a given data point xk,197

Catboost fits a target mean encoding (Pargent et al., 2022) on a discretized target for {xj : j < k} that198

is before the point encoded. Furthermore, when processing categoricals Catboost uses a novel algorithm to199

redefine category labels as the algorithm runs (‘feature combinations’ in the original work).200

We note that there are further important implementation details regarding the categorical encoding, such201

as how the target is discretised prior to mean encoding, that are absent from the original publication. Full202

details can be found in the tool’s documentation (Catboost, 2024b) and codebase (Catboost, 2024a).203

We will compare Catboost with two different categorical encoding schemes: first with target mean encoding,204

and second with Catboost’s novel debiased target encoding, that also employs category redefinition.205

3.3 ResNet MLP206

A ResNet, short for residual network, MLP is a feed-forward neural network (Murphy, 2022, p. 419) with207

additive residual connections that skip layers. Without additional knowledge about the underlying structure208

of the data, an MLP is a simple general purpose DL architecture; and skip connections make training more209

stable (Murphy, 2022, p. 445).210

We implement a ResNet by using residual connections across building blocks, along with skip connections211

to the output. We use a building block layout of BatchNorm, ReLU and Dense as in He et al. (2016). We212

add Dropout following the example of Gorishniy et al. (2021) – which proposed the best performing DL213

model (a ResNet) from McElfresh et al. (2024). For the sake of clarity, our ResNet MLP is not identical in214

5



Under review as submission to TMLR

Figure 1: ResNet MLP model architecture. The architecture consists of a number of blocks, B. The skip
connections in the diagram indicate that the outputs from each block B are all summed together and passed
through a final Dense layer to produce the scalar output ỹ. Each layer B consists of three sub-blocks denoted
as A in the diagram. Each B contains a single residual connection so that the block output is produced by
summing the outputs of the final two sub-blocks A. Each sub-block A consists of feed forward BatchNorm,
ReLU, Dropout and Dense layers.

architecture to Gorishniy et al. (2021), and by extension McElfresh et al. (2024). For details of the differences215

with Gorishniy et al. (2021) see Appendix A.3. To contextualise our findings we also present results using216

the ResNet architecture from Gorishniy et al. (2021), referring to it as ‘RTDL ResNet MLP’.217

Figure 1 shows the layout of our ResNet MLP layers on the far left, with their combination into a sub-block218

denoted by A. The ResNet sub-block, A, is repeated in a residual pattern to form a high level block B –219

shown on the right of Figure 1. This higher level block B is in turn composed using skip connections into an220

overall model. Each block has independently trainable parameters. In the context of deep learning, choosing221

the architecture size (such as number of blocks, size of Dense layers in units etc.) is a part of the broader222

problem of hyperparameter tuning. Our approach involves choosing the number of B blocks to vary depth;223

and choosing the number of units used in every Dense layer to vary the width of the network. This tuning224

is further described in Section 4.1. Apart from architecture, we also use grid search in Section 4.1.3 to select225

the optimiser used, the initial learning rate of the optimiser, learning rate schedule (Murphy, 2022, p. 288),226

Dense layer weight regularisation strategy and regularisation intensity.227

3.4 TabNet model228

TabNet (Arik & Pfister, 2021) is a DL architecture specifically designed for tabular data. TabNet works by229

learning a step that multiplies a subset of features by zero, conditional on the input. Then TabNet uses230

DL layers on the remaining non-zero parts to produce an intermediate decision vector. The architecture231

sequentially applies multiple steps. Each step can determine a different subset of features to set to zero –232

so a feature that is set to zero for one step does not need to be zero for the following steps. In fact, the233

hyperparameters described below control how many distinct features can be selected and their potential for234

reuse across steps. As each step can select different subsets, each step can produce a different decision vector.235

Finally, the decisions from all steps are combined through a DL layer into a final prediction.236

6



Under review as submission to TMLR

Figure 2: Dataset partitioning strategy for both hyperparameter tuning and final evaluation, where DES

and Dtrain are shuffled per replication of a given experiment. DES is a split of data used for early stopping.
DHP is a split of data used for evaluation of hyperparameters. DHP is sampled randomly in time, Dtest is
exclusively future data.

TabNet is a complex architecture for which we defer the detailed description to the original paper (Arik &237

Pfister, 2021). However, there are some key hyperparameters which we are required to tune.238

The number of steps, S, determines the number of different feature subsets that are modelled to produce a239

prediction. With S = 1 only a single subset of the features is used, with more steps resulting in more feature240

subsets. Intuitively, more steps increases the overall number of features used, but also increases the depth241

of the network and destabilises training.242

The so-called ‘relaxation parameter’, γ ≥ 1, is designed to encourage different feature subsets to be selected243

at each step. When γ = 1 TabNet has the special property of being able to prevent reuse of features between244

steps. As γ increases, TabNet is more able to reuse features between steps.245

The sparsity regularisation coefficient, λ ≥ 0, is used to encourage more input features to be zeroed out246

in each step. As λ increases the network can multiply more features by zero, even if it decreases training247

accuracy.248

4 Experimental method249

To investigate the impact of preprocessing schemes for handling missing values, we first tuned the hyper-250

parameters of each model. Preliminary analysis, described in Appendix A.5, suggested the best hyperpa-251

rameters did not vary with preprocessing scheme. Therefore, the hyperparameter tuning process was done252

independently of later missing value investigation.253

To prevent data leakage, the last 15% of the data was set aside into a test set, Dtest, shown in the top panel254

of Figure 2. This Dtest was always withheld from training or validation procedures and only used to report255

the metrics presented in Section 5.256

Early stopping (Murphy, 2022, p. 448) was applied to improve training speed and prevent overfitting in both257

hyperparameter tuning and final model training. Early stopping is a form of regularisation where out-of-258

sample model performance is evaluated at regular intervals on a dataset withheld from training. When the259

performance on the withheld dataset decreases, the training algorithm is terminated. Preliminary analysis260

confirmed there was no decrease in accuracy from using early stopping.261

Section 4.1 describes the tuning of hyperparameters discussed in Section 3. Section 4.2 describes the exper-262

imental setup used to investigate the impact of missing value handling and categorical encoding. The left263

and right panels of Figure 2 illustrate how data was allocated for Section 4.1 and Section 4.2 respectively,264

and will be described in more detail in the relevant sections. Finally, Section ?? touches on training speeds265

as a practical consideration. Practical commentary on the training speeds of the algorithms can be found266

in Appendix A.2.267

7



Under review as submission to TMLR

4.1 Hyperparameter tuning268

Hyperparameter tuning on our ResNet and TabNet consisted of a grid search optimising for accuracy.269

For each modelling strategy a hyperparameter (HP) grid was subjectively chosen after initial trial and270

error. Although grid search may be a common practice in industry, it is also well known to theoretically271

underperform more principled methods of HPO such as Optuna (Akiba et al., 2019). As such, we also reran272

analyses for our ResNet using Optuna with the same upper and lower bounds on numeric hyperparameter273

values. Those results can be found in Appendix A.4 but we note that in this instance Optuna hyperparameter274

optimisation (HPO) did not significantly change performance. For consistency with McElfresh et al. (2024),275

Optuna was used for HPO on the RTDL ResNet model and presented in the results Table 1.276

A single data subset, DHP, was sampled once for accuracy evaluation of all models under any given HP277

configuration. For clarity, DHP was not a future partition of the data, but rather randomly sampled in time.278

For each node in the grid, we randomly split the remaining data (after removing Dtest and DHP) into Dtrain
279

and DES subsets, illustrated in Figure 2. Training was performed solely on Dtrain whilst DES was used to280

trigger early stopping (ES). Once training was completed, the root mean squared error (RMSE) for a given281

node was evaluated on DHP. This random splitting of Dtrain and DES, and subsequent evaluation of RMSE282

on DHP, was independently repeated 10 times for each HP node in the grid. This repeated split sampling is283

called Monte-Carlo cross-validation (Kuhn et al., 2013, p. 71-72).284

The best HPs for a given model were chosen on the basis of the lowest RMSE averaged across the 10285

Monte-Carlo cross-validation samples. This best HP configuration for a given model was then used for the286

model-to-model comparison as described in Section 4.2. See the left panel of Figure 2 for an illustration of287

this data partitioning scheme.288

The use of separate data subsets for early stopping, DES, and accuracy evaluation, DHP, allowed us to289

remove bias associated with evaluation on data that was indirectly used for training. This is an especially290

rigorous process in contrast to what is often done in practice, where one validation set would be used for291

both early stopping and evaluation. However, as we had sufficient data, we opted for separate subsets to292

minimise potential bias.293

Further details of the training algorithm and hyperparameter selection for each modelling strategy follow.294

4.1.1 Catboost hyperparameter tuning295

Initial manual exploration of the hyperparameters gave no significant improvements in DHP RMSE. The step296

size, η, was varied between 0.005 and 0.018. The ensemble size, T , was varied between 1000 and 10000. Mean297

squared error was used as the loss function, L. As no noticeable improvement came from heuristic tuning,298

a complete grid search was not performed and all hyperparameters were left as defaults for evaluation of299

Catboost in model-to-model comparison. The only non-default choice was inclusion of early stopping which300

was used to speed up training, and had no noticeable effect on accuracy in the hyperparameter tuning stage.301

4.1.2 TabNet tuning302

For TabNet we follow the original paper (Arik & Pfister, 2021) in using the Adam optimiser (Kingma &303

Ba, 2014) and a learning rate schedule with a fixed initial learning rate of 0.001. The sparsity regularisation304

coefficient, λ; number of steps, S; and relaxation parameter γ were tuned. Following the recommendations305

and ablations of Arik & Pfister (2021): λ was varied between 0.0001 and 0.01, γ was varied between 1.3 and306

2 and S was varied between 3 and 10.307

4.1.3 ResNet MLP tuning308

Currently, there is no principled way to select a deep learning architecture, such as depth and width, beyond309

intuition and trial and error. Although there is research on generating architectures following an algorithm310

these approaches are computationally expensive and give only slight performance improvements. Since these311

methods are seldom used in practice, the depth and width of our ResNet MLP was selected heuristically. ;trial312

and error; and neural architecture search (Ren et al., 2021). As neural architecture search was prohibitively313

8



Under review as submission to TMLR

Figure 3: Example row undergoing Binarize transformation; where ‘N/A’ represents missing values. Present
covariates map to 1; missing to 0.

expensive from a computational perspective we instead opted for a heuristic trial and error approach for314

choosing out ResNet architecture.315

We began by arbitrarily choosing some expressive high level block, denoted B in Figure 1. We built this316

block from sub-blocks, denoted A in Figure 1. Sub-blocks A utilise a ResNet (He et al., 2016) layout of317

layers as described in Section 3.318

We then chose the depth: i.e. the number of B blocks composed together prior to a Dense layer with a single319

output unit, with no activation, for prediction. A depth of 3 was chosen; subjectively balancing simplicity320

of the model with expressive power.321

We then parameterised the width of a block with d, the number of units in each Dense layer of the ResNet322

block, denoted A in Figure 1. We varied d between heuristically identified limits wherein the model exhibited323

underfitting and the capacity to overfit training data. Underfitting was identified by both the training and324

validation error being similar and approximately constant per training epoch. Capacity to overfit was325

identified by the ability for the model to keep reducing training error whilst validation error is constant or326

getting worse. These criteria were considered fulfilled when the validation loss was not improving whilst327

training loss was still decreasing after 1000 epochs.328

Varying d within the bounds of under and overfitting did not noticeably impact accuracy. As such, d329

was chosen for a total model size of four hundred thousand parameters. This was between the number330

of parameters which under- or overfitted. After the architecture was heuristically selected, grid search331

hyperparameter optimisation followed. The optimisers compared were Adam (Kingma & Ba, 2014) and332

RMSProp (Tieleman & Hinton, 2012). Both L1 and L2 regularisation of kernel weights were comparedused;333

coefficients for each were varied between 0.01 and 1. An Exponential Decay (Murphy, 2022, p. 288) and334

Cosine Decay (Loshchilov & Hutter, 2016) learning rate schedules were both compared; where initial learning335

rate was varied between 0.001 and 0.01 for each.336

4.2 Investigating different preprocessingimputation schemes337

We aimed to investigate the impact of missing value handling through the comparison of each model under338

different preprocessing schemes.339

To enable a pairwise comparison of trained models, the data subsets for these experiments were different340

from those of the hyperparameter tuning in Section 4.1. Instead of sampling different subsets per node in341

a grid search all experiments used the same set of 20 Monte-Carlo cross-validation samples of Dtrain and342

DES (illustrated in the right panel of Figure 2). These were sampled once prior to running any experiments,343

enabling pairwise model comparison. As evaluation was performed on Dtest, there was no need for another344

withheld evaluation partition, like DHP.345

A given Dtrain subset was used for training all models with all missing value handling schemes, described346

below, and the corresponding DES was used to trigger early stopping. After the models were trained, RMSE347

was evaluated on Dtest for each of the 20 Dtrain and DES samples. The mean and standard error of the RMSE348

across the 20 Monte-Carlo cross-validation samples for each model and preprocessing scheme are reported349

in Table 1. These results are discussed in Section 5.350

4.2.1 Missing value handling351

Four missing value handling strategies were investigated. Two of the methods, Drop and Binarize, were352

used in an attempt to disentangle the capability of a model to successfully extract signal from observed353

9



Under review as submission to TMLR

covariates and from missing value structure. The other two, LT Min Impute and Mean Impute, was were354

used to investigate model capability to jointly use covariates and missing value structure through imputation.355

The missing value handling strategies are summarised:356

• Drop: Rows with any missing values were dropped after first removing features with more than 30%357

missing values – as also described in Section 2.1. From this scheme we aimed to isolate the ability358

of each modelling strategy to extract signal from observed covariates.359

• Binarize: The whole dataset was converted into a binary encodingrepresentation of whether the360

covariate was observed or not, see Figure 3. This retained only the signal inherent in the missing361

value structure. With this scheme we isolate the ability of model strategies to regress against missing362

value structure.363

• LT Min Impute: Missing values were imputed using less than the minimum of the numeric feature.364

This is the default missing imputation strategy of Catboost. The use of this strategy allows the365

weak learner trees, Gt in Section 3, to separate the missing values completely from observed values.366

However, this also means that should the tree split on an observed value it will include all missing367

values on the lesser side of the split.368

• Mean Impute: Missing values were imputed using the mean of the corresponding numeric feature.369

This is the default approach used in McElfresh et al. (2024).370

4.2.2 Categorical encoding371

Categorical encoding was performed using target mean encoding for the majority of the experiments, this372

compared the modelling strategies fairly by holding potential confounders in categorical encoding constant.373

In the interests of identifying the best performance, we also evaluated the original Catboost categorical374

encoding with the Catboost GBDT algorithm, described in Section 3.2. We report the model names in375

Table 1 with the suffixes (ME) and (CE) indicating that mean encoding and Catboost encoding were used376

respectively. We report the model names in Table 1 with the suffix(CE) indicating that Catboost encoding377

was used; otherwise mean encoding was used.378

4.2.3 Effects of imputation scheme on other datasets379

To study the broader relevance of results obtained from our insurance dataset, further analyses were per-380

formed on two other datasets under Drop, Mean Impute and LT Min Impute. The leading two GBDT and381

leading two DL algorithms from McElfresh et al. (2024) were compared on two datasets from the same382

paper. The datasets did not contain missing values; so MCAR missing values were simulated by removal.383

As MCAR data are not the focus of this case study we present the results in Appendix A.6. Overall, these384

preliminary TabZilla analyses demonstrate the relevance of our work.385

5 Results and discussion386

The results for various preprocessing strategies are presented in Table 1. As a benchmark, we include a Mean387

prediction row which shows the performance that is obtained by using the mean SV of a given training388

dataset as a constant prediction, using no feature information. Note the performance evaluated with the389

Drop preprocessing scheme is not directly comparable to the performance for other preprocessing schemes,390

i.e. Drop cannot be compared with other strategies across rows in Table 1. This is because the missingness391

mechanism is not missing completely at random and causes a distributional shift within both the training392

and evaluation data when dropping rows. However, due to consistency of the training datasets, these results393

are comparable within modelling strategies, i.e. one can compare down columns of Table 1.394

The TabNet row of Table 1 shows that TabNet substantially underperforms both Catboost and the ResNet395

MLP. Notably, TabNet performs on par with the Mean prediction benchmark. This indicates that TabNet396

is either not suitable for micro-level reserving with this dataset or, at best, that TabNet is very difficult to397

10



Under review as submission to TMLR

Table 1: Dtest RMSE mean and standard error, se, over cross validation partitions. Lower RMSE is better.
RMSE is to the nearest integer, standard error is to 2 significant figures. (ME) and (CE) indicate mean
encoding and Catboost encoding were used for categorical encoding respectively.(CE) indicates Catboost
encoding was used for categorical encoding respectively. † replicates the HPO, architecture and imputation
scheme of McElfresh et al. (2024).‡ corresponds to an Optuna HPO scheme.

Model Drop (±se) LT Min
Impute

(±se) Mean
Impute

(±se) Binarize (±se)

Catboost (CE) 1969 (±10) 1452 (±6.3) 1519 (±17) 2302 (±0.18)
Catboost 2060 (±1.7) 1574 (±2.1) 1524 (±5.2) 2268 (±0.28)
Our ResNet 2046 (±1.2) 1872 (±4.5) 7855 (±1600) 2288 (±1.8)
RTDL ResNet‡ 2439 (±24) 2007 (±20) 2387 (±270)† 2282 (±2.4)
TabNet 2702 (±8.1) 2748 (±5.3) 3081 (±180) 2754 (±5.1)
Mean prediction 2813 (±0.34) 2764 (±0.020) 2764 (±0.020) 2764 (±0.020)

train. This runs counter to published work on the use of TabNet for claim severity modelling (McDonnell398

et al., 2023), but in line with surveys of DL for structured data (Grinsztajn et al., 2022; McElfresh et al.,399

2024) where TabNet performed poorly. As mentioned in Section 1, this could potentially be explained by the400

fact that the results of McDonnell et al. (2023) could be biased because the modelled data is itself generated401

from a neural network.402

The relative accuracy of the RTDL ResNet MLP row of Table 1 agrees with McElfresh et al. (2024) in403

outperforming TabNet and underperforming CatBoost. Although for Drop, LT Min Impute and Binarize404

the RTDL ResNet has lower accuracy than our ResNet it is interesting to note that under Mean Impute the405

RTDL ResNet performs substantially better than any other DL algorithm. This highlights the sensitivity406

of algorithms to imputation schemes. However, we note that the performance of Mean Impute is still407

generally worse than that of LT Min Impute across most models. Mean Impute demonstrates moderately408

high standard error for the RTDL ResNet and high mean RMSE and standard error for our ResNet and409

TabNet. The cause of the exceptionally high RMSE for our ResNet appears to be the rare prediction of410

low value claims many orders of magnitude larger than they were. It is unclear why this would be the case411

specifically for Mean Impute and our ResNet. We hypothesise this could be due to Mean Impute making it412

difficult to distinguish meaningfully missing data, where absence of data is not due to random lack of records413

but from the reality of the data generating process, e.g. no additional drivers on the policy.414

The Drop and Binarize columns of Table 1 show that both the covariates and the missing value structure415

are important in the performance of both Catboost and ResNet, respectively offering approximately a 27%416

and 18% improvement over a Mean prediction benchmark. Interestingly, neither ResNet nor Catboost is417

practically more accurate than the other when trained on either covariates (Drop) or missing value structure418

(Binarize) alone. This similarity of performance on Drop suggests studies comparing GBDTs and DL,419

mentioned in Section 1, do not have conclusions that are necessarily transferable to the context of claim420

reserve modelling. Those studies found a performance edge for GBDTs, notably either ignoring or in the421

absence of missing data. Whereas we find, for this micro-level reserving dataset, Catboost and ResNet are422

practically the same in terms of accuracy with missing data ignored, due to Drop.423

However, the LT Min Impute and Mean Impute columns of Table 1 shows that Catboost with LT Min Impute424

both achieves the best overall performance and has a clearly superiorbetter accuracy over ResNet with425

LT Min Impute. both Our ResNet and the RTDL ResNet under either imputation scheme. We note that426

this superior performancebetter accuracy is between a well-tuned ResNets against a default Catboost, under-427

scoring the robustness of Catboost. The improved accuracy may be because Catboost better leverages both428

covariate signal and missing value structure, at least under a LT Min Impute or Mean Impute strategy. This429

performance improvement could also be due to the fact that minimum imputation intuitively lends itself to430

the partitioning strategies of a GBDT algorithm. The strongest performance being achieved under LT Min431

Impute could also be due to the fact that minimum imputation intuitively lends itself to the partitioning432

strategies of a GBDT algorithm. It is unclear how minimum imputation would interact with the ResNet433

MLP, nor DL more broadly. This discrepancy in performance suggests an indicator of when Catboost may434

11



Under review as submission to TMLR

outperform ResNet for micro-level reserving: when there is a high proportion of missing values. This indi-435

cator is particularly relevant as missing values are pervasive in real world datasets, and are currently not436

studied in their role in micro-level reserving nor their contribution to GBDT and DL performance.437

These results do not rule out the potential for the ResNetResNets to perform comparably or even better than438

Catboost given a suitable imputation strategy. However, there does not appear to be a scientific consensus on439

simple and robust neural network appropriate imputation strategies. Some generative imputation approaches440

exist (Yoon et al., 2018) but these involve considerable extra complication in the modelling and training and441

have not shown much industry adoption.442

6 Conclusion443

In this paper we investigated Drop, Binarize, and LT Min impute, described in Section 4.2.1, for444

handling missing values using gradient boosted decision tree and deep learning models, in car insurance445

reported but not settled reserving. A thorough experimental method was used to tune hyperparameters446

and under two of the missing value handling schemes there is no noticeable difference between Catboost447

and ResNet. However, using imputation, Catboost substantially outperforms the other models. This result448

highlights the importance of missing value handling in reported but not settled reserving. In this paper we449

investigated four different imputation schemes, described in Section 4.2.1, for handling missing values using450

gradient boosted decision tree and deep learning models. We investigated the impact of these imputation451

schemes using a large, real world insurance dataset with not MCAR missing values. Under two of the missing452

value handling schemes there is no noticeable difference between Catboost and our ResNet. However, using453

imputation, Catboost substantially outperforms the other models. This result highlights the importance of454

missing value handling in claim reserving.455

More broadly, this result adds a case study to the body of evidence that gradient boosted decision trees can456

outperform deep learning for tabular data, but emphasises the importance of data handling in drawing this457

conclusion. The significant impact of missing value handling on accuracy also suggests that when analysing458

datasets with missing values, extra care should be taken choosing the missing value handling method and459

not to just focus on model selection. Furthermore, our results suggest research comparing gradient boosted460

decision trees to deep learning for tabular data could benefit from including more datasets with missing461

values, especially missing values that are not MCAR.462

Based on the analysis in this work we recommend exercising caution when using deep learning models for463

claim reserving as they require thorough tuning and their interaction with imputation schemes is not under-464

stood. Furthermore, using Catboost for claim reserving has some practical advantages, beyond potentially465

better accuracy with the correct missing value handling. Catboost is fast, robust and easy to use off-the-466

shelf. In comparison, deep learning methods require more expertise to deploy successfully: requiring both467

architecture selection and hyperparameter tuning. Even with the expertise required to select, implement468

and optimise deep learning models there is no compelling empirical or theoretical evidence that they are469

likely to produce better results for claim reserving.470

References471

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A472

next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD473

International Conference on Knowledge Discovery and Data Mining, 2019.474

Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang,475

Zhihua Wei, Yao Qian, Jinyu Li, and Furu Wei. Speecht5: Unified-modal encoder-decoder pre-training476

for spoken language processing. arXiv preprint arXiv:2110.07205, 2021.477

Sercan Arik and Tomas Pfister. TabNet: Attentive interpretable tabular learning. Proceedings of the AAAI478

Conference on Artificial Intelligence, 35(8):6679–6687, 2021.479

Kiran Baktha and BK Tripathy. Investigation of recurrent neural networks in the field of sentiment analysis.480

2017 International Conference on Communication and Signal Processing, pp. 2047–2050, 2017.481

12



Under review as submission to TMLR

Christopher Blier-Wong, Hélène Cossette, Luc Lamontagne, and Etienne Marceau. Machine learning in482

P&C insurance: A review for pricing and reserving. Risks, 9(1):4, January 2021. ISSN 2227-9091. doi:483

10.3390/risks9010004.484

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji Kasneci.485

Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Networks and Learning486

Systems, pp. 1–21, 2022.487

Ronald L Bornhuetter and Ronald E Ferguson. The actuary and IBNR. Casualty Actuarial Society, 59(112):488

181–195, 1972.489

Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone. Classification and Regression Trees.490

Wadsworth and Brooks/Cole Monterey, CA, USA, 1984.491

Catboost. Codebase tutorial on Catboost encoding, Feb 2024a. https://github.com/catboost/catboost/492

blob/master/catboost/tutorials/categorical_features/categorical_features_parameters.493

ipynb, Accessed on April 2024.494

Catboost. Transforming categorical features to numerical features | Catboost, Feb 2024b. https://495

catboost.ai/en/docs/concepts/algorithm-main-stages_cat-to-numberic, Accessed on April 2024.496

Massimo De Felice and Franco Moriconi. Claim watching and individual claims reserving using classification497

and regression trees. Risks, 7(4):102, December 2019. ISSN 2227-9091. doi: 10.3390/risks7040102.498

Łukasz Delong and Mario V. Wüthrich. Neural networks for the joint development of individual payments499

and claim incurred. Risks, 8(2):33, June 2020. ISSN 2227-9091. doi: 10.3390/risks8020033.500

Łukasz Delong, Mathias Lindholm, and Mario V. Wüthrich. Collective reserving using individual claims data.501

Scandinavian Actuarial Journal, 2022(1):1–28, January 2022. ISSN 0346-1238. doi: 10.1080/03461238.502

2021.1921836.503

Francis Duval and Mathieu Pigeon. Individual loss reserving using a gradient boosting-based approach.504

Risks, 7(3):79, September 2019. ISSN 2227-9091. doi: 10.3390/risks7030079.505

Muhammad Arief Fauzan and Hendri Murfi. The accuracy of XGBoost for insurance claim prediction.506

International Journal of Advances in Soft Computing and its Applications, 10(2):159–171, 2018.507

Jerome Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statistics,508

29(5), October 2001. ISSN 0090-5364. doi: 10.1214/aos/1013203451.509

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning models510

for tabular data. Advances in Neural Information Processing Systems, 34:18932–18943, 2021.511

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep512

learning on typical tabular data? Advances in Neural Information Processing Systems, 35:507–520, 2022.513

Mohamed Hanafy and Ruixing Ming. Machine learning approaches for auto insurance big data. Risks, 9(2),514

2021. ISSN 2227-9091. doi: 10.3390/risks9020042. URL https://www.mdpi.com/2227-9091/9/2/42.515

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks.516

European Conference on Computer Vision, pp. 630–645, 2016.517

Amy H. Herring, Joseph G. Ibrahim, and Stuart R. Lipsitz. Non-ignorable missing covariate data in survival518

analysis: A case-study of an international breast cancer study group trial. Journal of the Royal Statistical519

Society Series C: Applied Statistics, 53(2):293–310, 03 2004. ISSN 0035-9254. doi: 10.1046/j.1467-9876.520

2003.05168.x. URL https://doi.org/10.1046/j.1467-9876.2003.05168.x.521

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data modeling522

using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.523

13

https://github.com/catboost/catboost/blob/master/catboost/tutorials/categorical_features/categorical_features_parameters.ipynb
https://github.com/catboost/catboost/blob/master/catboost/tutorials/categorical_features/categorical_features_parameters.ipynb
https://github.com/catboost/catboost/blob/master/catboost/tutorials/categorical_features/categorical_features_parameters.ipynb
https://github.com/catboost/catboost/blob/master/catboost/tutorials/categorical_features/categorical_features_parameters.ipynb
https://github.com/catboost/catboost/blob/master/catboost/tutorials/categorical_features/categorical_features_parameters.ipynb
https://catboost.ai/en/docs/concepts/algorithm-main-stages_cat-to-numberic
https://catboost.ai/en/docs/concepts/algorithm-main-stages_cat-to-numberic
https://catboost.ai/en/docs/concepts/algorithm-main-stages_cat-to-numberic
https://www.mdpi.com/2227-9091/9/2/42
https://doi.org/10.1046/j.1467-9876.2003.05168.x


Under review as submission to TMLR

Liang Jin, Yingtao Bi, Chenqi Hu, Jun Qu, Shichen Shen, Xue Wang, and Yu Tian. A comparative study524

of evaluating missing value imputation methods in label-free proteomics. Scientific Reports, 11(1):1760,525

January 2021. ISSN 2045-2322. doi: 10.1038/s41598-021-81279-4.526

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on tabular527

datasets. Advances in Neural Information Processing Systems, 34:23928–23941, 2021.528

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint529

arXiv:1412.6980, 2014.530

Max Kuhn, Kjell Johnson, et al. Applied predictive modeling, volume 26. Springer, 2013.531

Kevin Kuo. Individual Claims Forecasting with Bayesian Mixture Density Networks. arXiv preprint532

arXiv:2003.02453, March 2020. doi: 10.48550/arXiv.2003.02453.533

Roderick JA Little and Donald B Rubin. Statistical analysis with missing data, 3rd Edition. John Wiley &534

Sons, 2019.535

Olivier Lopez, Xavier Milhaud, and Pierre-E Thérond. A tree-based algorithm adapted to microlevel reserv-536

ing and long development claims. ASTIN Bulletin: The Journal of the International Actuarial Association,537

49(3):741–762, 2019.538

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. arXiv preprint539

arXiv:1608.03983, 2016.540

Kevin McDonnell, Finbarr Murphy, Barry Sheehan, Leandro Masello, and German Castignani. Deep learning541

in insurance: Accuracy and model interpretability using TabNet. Expert Systems with Applications, 217:542

119543, 2023. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2023.119543. URL https://www.543

sciencedirect.com/science/article/pii/S0957417423000441.544

Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Ganesh Ramakrishnan, Micah545

Goldblum, and Colin White. When do neural nets outperform boosted trees on tabular data? Advances546

in Neural Information Processing Systems, 36, 2024.547

Kevin P. Murphy. Probabilistic machine learning: An introduction. MIT Press, 2022. URL probml.ai.548

Robert Nisbet, John Elder, and Gary D Miner. Handbook of statistical analysis and data mining applications.549

Academic press, 2009.550

Annamaria Olivieri and Ermanno Pitacco. Introduction to insurance mathematics: technical and financial551

features of risk transfers. Springer, 2015.552

ONS. Postal geographies - office for national statistics, Feb 2024. https://www.ons.gov.uk/methodology/553

geography/ukgeographies/postalgeography, Accessed Feb 2024.554

Florian Pargent, Florian Pfisterer, Janek Thomas, and Bernd Bischl. Regularized target encoding outper-555

forms traditional methods in supervised machine learning with high cardinality features. Computational556

Statistics, 37(5):2671–2692, November 2022. ISSN 1613-9658. doi: 10.1007/s00180-022-01207-6.557

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Dorogush, and Andrey Gulin. Catboost:558

unbiased boosting with categorical features. Advances in Neural Information Processing Systems, 31, 2018.559

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish560

Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from561

natural language supervision. International Conference on Machine Learning, pp. 8748–8763, 2021.562

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and563

Ilya Sutskever. Zero-shot text-to-image generation. International Conference on Machine Learning, 139:564

8821–8831, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/ramesh21a.html.565

14

https://www.sciencedirect.com/science/article/pii/S0957417423000441
https://www.sciencedirect.com/science/article/pii/S0957417423000441
https://www.sciencedirect.com/science/article/pii/S0957417423000441
probml.ai
https://www.ons.gov.uk/methodology/geography/ukgeographies/postalgeography
https://www.ons.gov.uk/methodology/geography/ukgeographies/postalgeography
https://www.ons.gov.uk/methodology/geography/ukgeographies/postalgeography
https://proceedings.mlr.press/v139/ramesh21a.html


Under review as submission to TMLR

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-yao Huang, Zhihui Li, Xiaojiang Chen, and Xin Wang. A566

comprehensive survey of neural architecture search: Challenges and solutions. ACM Computing Surveys,567

54(4), may 2021. ISSN 0360-0300. doi: 10.1145/3447582. URL https://doi.org/10.1145/3447582.568

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjarn Ommer. High-resolution569

image synthesis with latent diffusion models. Proceedings of the IEEE Conference on Computer Vision570

and Pattern Recognition, 2022. URL https://github.com/CompVis/latent-diffusionhttps://arxiv.571

org/abs/2112.10752.572

Ira Shavitt and Eran Segal. Regularization learning networks: Deep learning for tabular datasets. Advances573

in Neural Information Processing Systems, 31, 2018.574

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.575

International Conference on Learning Representations, 2015.576

Banghee So, Jean-Philippe Boucher, and Emiliano A. Valdez. Synthetic dataset generation of driver telem-577

atics. Risks, 9(4), 2021. ISSN 2227-9091. doi: 10.3390/risks9040058. URL https://www.mdpi.com/578

2227-9091/9/4/58.579

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein. SAINT:580

Improved neural networks for tabular data via row attention and contrastive pre-training. arXiv preprint581

arXiv:2106.01342, 2021.582

Statista. Motor vehicle insurance - global: Statista market forecast, Feb 2024. https://www.statista.com/583

outlook/fmo/insurances/non-life-insurances/motor-vehicle-insurance/worldwide, Accessed on584

Feb 2024.585

Andrew Tao, Karan Sapra, and Bryan Catanzaro. Hierarchical multi-scale attention for semantic segmenta-586

tion. arXiv preprint arXiv:2005.10821, 2020.587

Greg Taylor, Gráinne McGuire, and James Sullivan. Individual claim loss reserving conditioned by case588

estimates. Annals of Actuarial Science, 3(1-2):215–256, 2008.589

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of590

its recent magnitude. Coursera: Neural networks for machine learning, 4(2):26–31, 2012.591

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,592

Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard593

Grave, and Guillaume Lample. Llama: Open and efficient foundation language models. arXiv preprint594

arXiv:2302.13971, 2023.595

Mike Van Ness, Tomas M. Bosschieter, Roberto Halpin-Gregorio, and Madeleine Udell. The Missing Indicator596

Method: From Low to High Dimensions. Proceedings of the 29th ACM SIGKDD Conference on Knowledge597

Discovery and Data Mining, pp. 5004–5015, August 2023. doi: 10.1145/3580305.3599911.598

Geoff Werner and Claudine Modlin. Basic ratemaking. Casualty Actuarial Society, 4:1–320, 2010.599

Mario V. Wuthrich. Machine learning in individual claims reserving. Scandinavian Actuarial Journal, 2018600

(6):465–480, July 2018. ISSN 0346-1238. doi: 10.1080/03461238.2018.1428681.601

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GAIN: Missing data imputation using generative602

adversarial nets. International Conference on Machine Learning, 80:5689–5698, 10–15 Jul 2018. URL603

https://proceedings.mlr.press/v80/yoon18a.html.604

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Chris-605

tiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv preprint606

arXiv:1909.08593, 2019.607

15

https://doi.org/10.1145/3447582
https://github.com/CompVis/latent-diffusionhttps://arxiv.org/abs/2112.10752
https://github.com/CompVis/latent-diffusionhttps://arxiv.org/abs/2112.10752
https://github.com/CompVis/latent-diffusionhttps://arxiv.org/abs/2112.10752
https://www.mdpi.com/2227-9091/9/4/58
https://www.mdpi.com/2227-9091/9/4/58
https://www.mdpi.com/2227-9091/9/4/58
https://www.statista.com/outlook/fmo/insurances/non-life-insurances/motor-vehicle-insurance/worldwide
https://www.statista.com/outlook/fmo/insurances/non-life-insurances/motor-vehicle-insurance/worldwide
https://www.statista.com/outlook/fmo/insurances/non-life-insurances/motor-vehicle-insurance/worldwide
https://proceedings.mlr.press/v80/yoon18a.html


Under review as submission to TMLR

A Appendices608

A.1 Data properties609

This appendix presents further properties of the data.610

A.1.1 Missing value concentration611

Tables 2 and 3 characterise the concentration of missing values in our dataset.612

Fraction f missing Percentage of columns with given fraction missing
f = 0 45

0 < f ≤ 0.2 17
0.2 < f ≤ 0.4 13
0.4 < f ≤ 0.6 11
0.6 < f ≤ 0.8 7
0.8 < f ≤ 1.0 6

Table 2: Missingness distribution by column, to nearest %

Fraction f missing Percentage of rows with given fraction missing
0 < f ≤ 0.2 46

0.2 < f ≤ 0.4 19
0.4 < f ≤ 0.6 12
0.6 < f ≤ 0.8 11
0.8 < f ≤ 1.0 11

Table 3: Missingness distribution by row, to nearest %

A.1.2 Time-varying properties613

Figure 4 depicts the mean claim value per month, with claim value and year of incident anonymised for614

commercial confidentiality. The figure shows that mean claim value is clearly dependent on the time of615

the claim – exhibiting both seasonality and trend. This has implications for both the evaluation of model616

accuracy and encoding of time data.617

When evaluating the accuracy of the ML models, described in Section 3, the time series nature of the data618

requires the definition of the test set data to be in the future relative to all training and validation data.619

This is to prevent bias in the estimation of performance, a form of data leakage (Nisbet et al., 2009, p. 742).620

When considering how to encode the time variables, we aim to encode in such a way as to make it easier to fit621

seasonality and trend. To explicitly encode cyclic timestamp properties, we encode month and day-of-month622

variables separately. Having cyclic values in the input data, like month and day-of-month, intuitively makes623

it easier to fit conditional on cyclic seasons. In order to fit overall trend, we chose to also encode timestamps624

as a monotonic value, enabling the model to order claims in time from a single numeric value. We did this625

at two resolutions: i) year and ii) seconds since the epoch, also known as Unix time. The goal of encoding626

in years is to allow a fit to large scale trends such as inflation. The goal of encoding in seconds is to enable627

more granular ordering in time. Therefore, overall we encode a single timestamp feature into 4 variables:628

year, month, date and seconds since the epoch.629

A.1.3 High-cardinality categorical variables630

The dataset contains some high-cardinality categorical variables: insuree car make with hundreds of cat-631

egories, insuree car model with thousands of categories and first half of insuree postcode with thousands632

of categories. The typical one-hot encoding (Murphy, 2022, p. 23) of these features would dramatically633

16



Under review as submission to TMLR

Figure 4: Time series plot of mean standardised claim values against anonymised time. Claim values were
aggregated on a month. Claim values and years of data are anonymised for confidentiality.

blow up the dataset size in number of features. Therefore, we applied numeric encoding strategies such as634

impact encoding (Pargent et al., 2022), also known as target mean encoding, and Catboost’s novel categorical635

encoding, described in Section 3.2.2.636

As the UK has 1.7 million postcodes (ONS, 2024), attempting to treat full postcodes as a categorical637

variable would give rise to at least hundreds of thousands of categories. Even target mean encoding such638

a high cardinality categorical could exhibit high bias and high variance due to the low number of samples639

per category; following the intuition outlined in Prokhorenkova et al. (2018). Only modelling the first half640

of postcodes was used to decrease the cardinality of the variable to thousands of categories to potentially641

reduces the bias and variance of the mean encoding.642

A.2 Training speed643

Using 12 Intel Xeon 6136 CPUs and approximately 60GB of RAM: Catboost trains on our dataset in644

the order of 3 minutes per training run and the ResNet MLP architecture trains in the order of 45-120645

minutes per training run. TabNet trains in the order of 300 minutes per training run. Although both646

Catboost and ResNet exhibited training times low enough to be retrained many times a day to keep up647

with changes in underlying distribution; the significantly faster training time of Catboost enables greater648

experimentation. This is potentially relevant for other applications as it has been shown that the difference649

in modelling strategies without hyperparameter tuning is just as great as the difference within a model class650

with hyperparameter tuning when training on tabular data (Kadra et al., 2021).651

A.3 Differences with McElfresh652

There are a few key differences between Our ResNet MLP and the RTDL ResNet MLP:653

• Our ResNet MLP HPO tunes more HPs; McElfresh et al. (2024) only tunes learning rate whereas our654

ResNet uses an HPO grid containing learning rate, weight decay, regularisation coefficient, learning655

rate schedule and optimizer.656

17



Under review as submission to TMLR

• Our ResNet MLP does not attempt to embed categorical features, as target mean encoding was used657

to convert all categories into scalar representations.658

• Our ResNet MLP has skip/residual connections from output of each block to the overall model659

output; whereas residual connection only skip blocks in McElfresh et al. (2024).660

• We use three repeating blocks prior to the regression head layer; McElfresh et al. (2024) use two.661

• Our ResNet MLP does not vary dimensionality of the hidden state - we keep constant dimensionality662

of 256, in comparison to McElfresh et al. (2024) who step down to 128 and back up to 256 throughout663

the network. Ultimately, this and the above point result in our model having approximately 2.25x664

the parameters of McElfresh et al. (2024).665

A.4 Optuna HPO Results666

Table 4 shows a table analogous to Table 1 comparing results obtained using Optuna for the HPO instead667

of grid search. It can be seen that there is no substantive difference to the conclusions in Table 1 of the work668

from swapping to Optuna HPO; as core points are made in comparison of Our ResNet MLP and Catboost669

(which did not undergo HPO).

Table 4: Results when using Optuna HPO
Model Drop (±se) LT

Min
Impute

(±se) Mean
Impute

(±se) Binarize(±se)

Our ResNet MLP + Grid Search (ME) 2046 (±1.2) 1872 (±4.5) 7855 (±1600) 2288 (±1.8)
Our ResNet MLP + Optuna HPO (ME) 2039 (±5.1) 1887 (±6.5) 7673 (±1600) 2283 (±1.3)

670

A.5 Impact of imputation scheme on HPO671

This appendix presents preliminary experimental data used to justify the process of performing HPO in-672

dependently of imputation scheme; as described in the beginning of Section 4. The closeness in parameter673

magnitude value and the robustness of HPO performance to varying hyperparameters suggested it was ac-674

ceptable to reduce the computational complexity of experiments by performing HPO under one imputation675

scheme and evaluating on all. The LT Min Impute scheme was chosen as initial results suggested it would676

be the scheme with the best performance; and as such chosen in an attempt to give a level playing field for677

best performance across models.678

A.5.1 Grid search based679

The optimum hyperparameters obtained using grid search with LT Min Impute and Drop for our ResNet from680

preliminary analysis are presented in Table 5. Due to similarity in the optimal hyperparameters obtained681

it was concluded from this preliminary analysis that HPO could be performed independent of imputation682

scheme; keeping overall computational cost down.

Table 5: Best performing hyperparameters under different imputation schemes; following a grid search HPO
procedure.

Hyperparameter LT Min Impute Drop
Regularisation coefficient 0.01 0.01
Initial learning rate 0.01 0.01
Learning rate schedule CosineDecay CosineDecay
Optimiser RMSProp RMSProp
Weight Decay 0.01 0.0001

683

18



Under review as submission to TMLR

A.5.2 Optuna based684

The optimum hyperparameters obtained using Optuna with LT Min Impute and Drop for our ResNet are685

presented in Table 6. With corresponding final outcomes presented in Table 7. It can be seen from 7 that686

although tuning with Drop gives somewhat different hyperparameters; and gives our ResNet more stable687

results for Mean Impute; the positioning in the final Table 1 would be unaffected.

Table 6: Best performing hyperparameters under different imputation schemes; following an Optuna HPO
procedure.

Hyperparameter LT Min Impute Drop
Regularisation coefficient 0.017 0.68
Initial learning rate 0.009 0.006
Learning rate schedule CosineDecay ExponentialDecay
Optimiser RMSProp RMSProp
Weight Decay 0.0002 0.0002

688

Table 7: Results when using Optuna HPO
Model Drop(±se) LT

Min
Impute

(±se) Mean
Impute

(±se) Binarize(±se)

Our ResNet MLP + LT Min Impute Optuna HPO 2039(±5.1) 1887(±6.5) 7673(±1600) 2283(±1.3)
Our ResNet MLP + Drop Optuna HPO 2047(±4.3) 1885(±4.6) 4548(±680) 2292(±2.0)

A.6 TabZilla replication689

This appendix details the results obtained from comparing LT Min Impute, Mean Impute and Drop on some690

extra datasets and algorithms from the TabZilla Benchmark (McElfresh et al., 2024). Source code can be691

found at https://github.com/paper3193/tabzilla.692

30% of numeric values were randomly replaced with missing values from each dataset and then imputed693

using the imputation schemes studied. Then the correpsonding OpenML task was performed using Catboost,694

XGBoost, FTTransformer (Gorishniy et al., 2021) and the RTDL ResNet. We present the results by dataset695

in Table 8.696

From Table 8 we can see that the overall impact of imputation schemes is not large and in some cases697

causes no performance difference between certain imputation schemes. However, the changes in accuracy698

rankings of the datasets under different imputation schemes demonstrates that in principle it is possible for699

the rankings, and therefore results such as those in McElfresh et al. (2024), to be influenced by imputation700

scheme. We note that, by design, Table 8 shows results from injected MCAR missing values and as such we701

do not attempt to interpret the absolute performance of any imputation scheme as MCAR data is not the702

focus of our work.703

In summary, the TabZilla replication with different imputation schemes demonstrates the principle that704

handling missing values could be important; but the MCAR nature of the injected missing values and low705

signal value of the numerics in the chosen datasets produces a less pronounced effect as in our work with706

non MCAR claim reserving. This indicates the importance of analyses using real world large datasets with707

not MCAR missing value structure in comparing GBDTs and DL models.708

19

https://github.com/paper3193/tabzilla


Under review as submission to TMLR

Table 8: Relative accuracy and ranking per dataset per algorithm using the TabZilla repository under
different imputation schemes. We report TabZilla mean 10-fold cross-validation test accuracy; as extracted
from the tuned aggregated results output.

Dataset Model Mean
Impute

Drop LT Min
Impute

Accuracy Rank Accuracy Rank Accuracy Rank
ada_agnostic CatBoost 0.857 1 0.854 2 0.857 1
ada_agnostic FTTransformer 0.844 4 0.845 3 0.846 3
ada_agnostic RTDL ResNet 0.846 3 0.842 4 0.841 4
ada_agnostic XGBoost 0.855 2 0.855 1 0.855 2
LED-display CatBoost 0.716 2 0.714 3 0.716 3
LED-display FTTransformer 0.708 4 0.728 1 0.728 1
LED-display RTDL ResNet 0.724 1 0.724 2 0.722 2
LED-display XGBoost 0.710 3 0.706 4 0.710 4

20


	Introduction
	Background
	Data description
	Missing data


	Models
	Notation
	Catboost model
	Gradient boosted decision tree
	Catboost: Pseudo-residual calculation and categorical encoding

	ResNet MLP
	TabNet model

	Experimental method
	Hyperparameter tuning
	Catboost hyperparameter tuning
	TabNet tuning
	ResNet MLP tuning

	Investigating different preprocessingimputation schemes
	Missing value handling
	Categorical encoding
	Effects of imputation scheme on other datasets


	Results and discussion
	Conclusion
	Appendices
	Data properties
	Missing value concentration
	Time-varying properties
	High-cardinality categorical variables

	Training speed
	Differences with McElfresh
	Optuna HPO Results
	Impact of imputation scheme on HPO
	Grid search based
	Optuna based

	TabZilla replication


