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Abstract

Microscopy enables direct observation of cellular
morphology in 3D, with transmitted-light meth-
ods offering low-cost, minimally invasive imaging
and fluorescence microscopy providing specificity
and contrast. Virtual staining combines these
strengths by using machine learning to predict
fluorescence images from label-free inputs. How-
ever, training of existing methods typically relies
on loss functions that treat all pixels equally, thus
reproducing background noise and artifacts in-
stead of focusing on biologically meaningful sig-
nals. We introduce Spotlight, a simple yet power-
ful virtual staining approach that guides the model
to focus on relevant cellular structures. Spotlight
uses histogram-based foreground estimation to
mask pixel-wise loss and to calculate a Dice loss
on soft-thresholded predictions for shape-aware
learning. Applied to a 3D benchmark dataset,
Spotlight improves morphological representation
while preserving pixel-level accuracy, resulting in
virtual stains better suited for downstream tasks
such as segmentation and profiling.
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1. Introduction
Microscopy is an essential tool for studying cellular states,
enabling direct observation of cell morphology and dynam-
ics with high spatial and temporal resolution. Transmitted-
light microscopy has low cost, straightforward implemen-
tation, and minimal invasiveness, which make it ideal for
long-term and live-cell imaging. However, it is limited by
the inherently low specificity and contrast. Fluorescence
microscopy dramatically improves contrast and enables mul-
tiplexed imaging of several biological structures simultane-
ously by utilizing fluorescent probes that selectively label
cellular targets. However, fluorescence microscopy requires
more complex and costly instrumentation and sample prepa-
ration, frequently induces phototoxicity and photobleaching,
and usually requires samples to be fixed, precluding studies
of living samples over time. Moreover, the limited availabil-
ity of fluorescence spectra restricts its utility for multiplex-
ing. These limitations motivated the development of compu-
tational methods collectively termed ”virtual staining” or ”in
silico labeling” (Ounkomol et al., 2018; Christiansen et al.,
2018). Virtual staining leverages machine learning (ML)
algorithms to predict fluorescent signals from transmitted-
light microscopy images, aiming to integrate the simplicity,
minimal invasiveness, and affordability of transmitted-light
methods with the specificity and contrast of fluorescence
imaging. Thus, virtual staining approaches offer a promis-
ing strategy to enhance throughput, minimize experimental
variability, and facilitate longer-term, minimally invasive
observation of live cells, significantly expanding the appli-
cability and value of microscopy-based cellular studies.

Virtual staining techniques originated from image-to-image
translation research in computer vision, where models map
paired image domains such as sketches to photographs, or
day scenes to night scenes (Isola et al., 2017). Adopting
this idea for virtual staining, Ounkomol et al. (2018) and
Christiansen et al. (2018) introduced U-net–like models
(Ronneberger et al., 2015) trained with pixel-wise losses
for predicting fluorescence signals for multiple subcellular
structures in 3D from brightfield or phase-contrast stacks,
establishing the feasibility of the overall approach. Subse-
quent works have experimented with input modalities and
custom imaging setups (Cheng et al., 2021; Guo et al., 2020)
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Figure 1. A schematic overview of Spotlight. a: Typical virtual staining models are trained using a pixel-wise loss such as mean squared
error (MSE) on the whole image. b: Spotlight uses foreground estimation obtained by histogram thresholding to restrict pixel-wise loss to
foreground areas and also employs soft-thresholding of the prediction to compute segmentation loss.

and enhanced architectures (Wang et al., 2021; Zhou et al.,
2023), but the core training scheme remained supervised
regression against real fluorescence images. The training
objectives in most of these models are dominated by pixel-
wise loss functions such as mean squared error (MSE) or
mean absolute error (MAE), sometimes supplemented with
perceptual or structural similarity terms (Liu et al., 2024).
Adversarial losses have been introduced to improve realism,
yet they are coupled with per-pixel MSE/MAE terms to
stabilize training (Rivenson et al., 2019; Wang et al., 2023).

These approaches overlook a fundamental difference be-
tween biological microscopy images and natural images:
translating transmitted-light microscopy into fluorescence
images is not merely stylistic but must accurately capture
underlying biological structures. Unlike natural images,
where even background pixels typically convey semantic
information such as representing the sky, trees, or build-
ings, microscopy images often have biologically irrelevant
backgrounds. Because most existing virtual staining models
are trained with pixel-wise losses (Figure 1a), they treat all
pixels as equally important and learn to reproduce noise and
artifacts from biologically irrelevant background regions of
original fluorescence images, making downstream analysis
challenging. This limitation becomes even more critical
in 3D imaging, where axial aberrations and elongation dis-
tort cellular structures. As a result, predicted fluorescence
images often inherit the segmentation difficulties of the orig-
inal fluorescence data, complicating the segmentation of
individual cells, which is a common downstream task.

Here, we introduce a new method, termed Spotlight, to ad-
dress these challenges by explicitly guiding virtual staining
models to focus on predicting cellular structures in the fore-
ground (FG), while ignoring background (BG). Spotlight in-
corporates two key components (Figure 1b). First, we apply
a simple histogram thresholding procedure to approximate
the location of FG structures, using this to mask traditional
pixel-wise loss functions and restrict supervision to informa-

tive regions of the image. Second, we encourage accurate
modeling of cell shape by soft-thresholding the predicted
fluorescence output and computing a segmentation loss with
respect to the FG mask. The combined training objective
balances precise FG intensity prediction with geometric
fidelity, enabling the model to generate morphologically ac-
curate virtual stains, thereby facilitating downstream tasks
such as segmentation and profiling. We demonstrate Spot-
light on a benchmark dataset and show that it improves 3D
morphological representation compared to standard training
approaches.

2. Spotlight
Training virtual staining models with pixel-wise loss func-
tions is especially limiting in 3D microscopy, where the
background dominates the voxel count, while containing
noise and optical aberration artifacts without real biological
signal. Our main insight is that even a weak approxima-
tion of FG is sufficient to prioritize training on meaningful
content and suppress irrelevant noise from BG regions.

Two components of Spotlight incorporates use the FG ap-
proximation to guide the training process (Figure 1b). The
first component applies FG mask to a traditional pixel-wise
loss function (e.g., MSE), thereby restricting supervision to
pixels likely to correspond to cellular structures. The sec-
ond soft-thresholds the model’s predicted output and com-
putes Dice loss (Milletari et al., 2016) against the binary FG
mask, encouraging preservation of shape and structure in
the predicted fluorescence. The masked pixel loss enables
the model to ignore uninformative BG regions, while the
Dice loss promotes spatial coherence and reduces noise and
artifacts in predictions. Together, these losses create a train-
ing signal that emphasizes morphological fidelity without
compromising pixel-level accuracy.

Foreground estimation: To restrict supervision to bio-
logically informative regions, Spotlight uses a FG mask
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Figure 2. Performance evaluation on the Allen Cell Label-free Imaging dataset. a: Visualizations of F-net and Spotlight predictions
demonstrate differences in BG prediction. b: Image quality metrics indicate that Spotlight preserves the same level of detail in FG
intensities. c,e: Visualizations of wathershed and Cellpose segmentation results show artifacts when segmenting F-net predictions. d,f:
Segmentation and feature-level metrics indicate that less noisy predictions by Spotlight produce more accurate morphologies.

derived from the target fluorescence image using Otsu’s
method (Otsu, 1979).

Let Y denote the ground truth fluorescence image, Ŷ the
predicted image, and T the Otsu threshold computed from
the histogram of Y as the intensity value that maximizes
inter-class variance. We then define the binary foreground
mask M ∈ 0, 1H×W×D by thresholding Y at T , such that
Mi,j,k = 1 if Yi,j,k ≥ T , and 0 otherwise. Using this mask,
we compute the masked mean squared error (MMSE) loss:

LMMSE =
1∑
M

∑
i,j,k

Mi,j,k

(
Yi,j,k − Ŷi,j,k

)2

Morphology-preserving component: To encourage
morphological fidelity, we apply a differentiable soft-
thresholding function to the prediction. We use a normalized
tunable sigmoid (Emery, 2022) defined as:

σk(x) =
x− kx

k − 2k|x|+ 1

where k controls sharpness and nonlinearity.

Applying this to Ŷ , we compute the Dice loss against the
binary foreground mask:

LDice = 1− 2
∑

σk(Ŷ ) ·M∑
σk(Ŷ ) +

∑
M + ϵ

The total loss used for training is a weighted combination:

LSpotlight = λ · LMMSE + (1− λ) · LDice

This loss formulation emphasizes accurate reconstruction of
informative regions and structurally coherent fluorescence
predictions.

3. Experiments
3.1. Experimental setup

We used the “DNA” subset (Hoechst-lebeled nuclei) of the
Allen Institute for Cell Science Label-free Determination
dataset (Ounkomol et al., 2018). As a baseline, we re-trained
the commonly used 3D F-net model proposed by Ounkomol
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Figure 3. Performance comparison on thresholded predictions. a: Intensity histograms for F-net and Spotlight test predictions. (black
dashed lines: tested post-processing thresholds). b: Segmentation and image-quality metrics calculated on thresholded F-net and Spotlight
predictions. Colored dashed lines correspond to evaluation of F-net and Spotlight predictions without any thresholding.

et al. (2018). We evaluated predictions at the pixel, segmen-
tation, and feature levels. At the pixel level, we compute
prediction image quality metrics both on the whole image
and only the foreground, including peak signal-to-noise ra-
tio (PSNR), microscopy-specific 3D structural similarity
(MicroMS3IM) (Ashesh et al., 2025), and the Fourier ring
correlation-based (FRC) image resolution estimate (Koho
et al., 2019). We tested two separate segmentation ap-
proaches: Otsu’s thresholding (Otsu, 1979) followed by the
watershed algorithm (Soille & Ansoult, 1990) and Cellpose
with the pre-trained “nuclei” model (Stringer et al., 2021),
and reported average precision (AP) calculated at different
intersection over union (IoU) levels against the manually
curated ground-truth segmentation masks provided with the
dataset (Ounkomol et al., 2018). At the feature level, we
report cosine distance between 3D measurement profiles
extracted from the target fluorescence images and profiles
extracted from the model predictions.

3.2. Results

Our results show that incorporating a foreground-aware loss
substantially improves virtual staining of nuclei compared
to the baseline F-net by reducing artifacts such as axial elon-
gation (Figure 2). Trained with MSE loss, F-net predictions
are smoothed compared to the original fluorescence images
(Figure 2a). While this suppressed noise, cell edges remain
blurred and the “halo” of axial elongation is clearly present.
In contrast, Spotlight preserves nuclear boundaries and pro-
duces predictions free of these artifacts (Figure 2a). Quanti-
tatively, image-quality metrics worsen when computed over
the entire volume but are consistent when restricted to the
FG mask (Figure 2b). This improved FG/BG separation

translates directly into more accurate segmentations—using
both watershed (Figure 2c) and Cellpose(Figure 2e)—and
yields morphological measurements that align more closely
with the ground truth (Figure 2d,f).

We also compared the voxel-intensity distributions of F-
net and Spotlight predictions (Figure 3a). Whereas F-
net produces a clear bimodal BG/FG histogram, Spotlight
sharply collapses background variability toward zero, cre-
ating a tighter separation between background and fore-
ground. To test how this affects segmentation, we thresh-
olded each prediction volume at a range of intensity values
spanning both BG/FG modes, and then ran two segmen-
tation pipelines (watershed and Cellpose). For F-net, fil-
tering out BG intensities improved both segmentation and
image-quality scores—bringing them nearly up to Spot-
light’s levels—whereas Spotlight’s metrics stayed consis-
tent (Figure 3b). We show how learning from informative
foreground regions in virtual staining acts allows to avoid
complicated post-processing, to simplify segmentation and
to improve its utility for 3D nuclear morphometry.

4. Conclusion
Less invasive, cost-effective computational imaging will be
valuable for a wide range of applications in biomedicine,
such as live-cell assays. Methods that do not compromise
on morphological detail and preserve cellular geometry and
structure can be helpful for downstream tasks such as seg-
mentation, phenotyping, and profiling. As ML methods
continue to shape biological imaging, it is essential to con-
sider the statistical, structural, and physical properties of the
data—not just to improve prediction accuracy, but to ensure
that models yield biologically relevant results.
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A. Appendix
A.1. Dataset details

We used the “DNA” subset (Hoechst-lebeled nuclei) of the
Allen Institute for Cell Science Label-free Determination
dataset (Ounkomol et al., 2018). This dataset includes man-
ually curated ground truth segmentation masks, which we
use to evaluate the segmentation quality of nuclei. Masks
that did not pass quality control were removed, which led
to some cells missing the ground truth segmentation masks
(see Figure 2c, ”Curated ground truth”).

A.2. Baseline details

F-net: F-net (Ounkomol et al., 2018) is a fully convolutional
U-Net variant that consists of layers that perform one of
three convolution types, followed by a batch normalization
and rectified linear unit (ReLU) operation. The convolutions
are either 3-pixel convolutions with a stride of 1 pixel on
zero-padded input (such that the input and output of that
layer are the same spatial area), 2-pixel convolutions with
a stride of 2 pixels (to halve the spatial area of the output),
or 2-pixel transposed convolutions with a stride of 2 pixels
(to double the spatial area of the output). There are no
normalization or ReLU operations on the last layer of the
network.

A.3. Training and evaluation

Training protocol: We followed the original data split,
preprocessing, and training protocols from Ounkomol et
al. (2018). Specifically, we resized all z-stacks using cu-
bic interpolation to achieve isotropic voxel dimensions of
0.29×0.29×0.29µm³. We trained models on batches of 3D
patches (32×64×64 px³, ZYX), which were randomly sub-
sampled uniformly both across all training images and spa-
tially within an image. All models were trained using the
Adam optimizer (Kingma & Ba, 2015) with a learning rate
of 0.001, a batch size of 24, and with beta values of 0.5 and
0.999 for 50,000 mini-batch iterations. All models were
implemented in Python using the PyTorch package (Paszke
et al., 2019).

Evaluation protocol: Evaluation followed Ounkomol et
al. (2018), including cropping the input image such that its
size in any dimension is a multiple of 16.

When calculating pixel-level image quality metrics, pre-
dicted intensities were rescaled into the original fluores-
cence image intensity range using maximum and minimum
values of the combined training set. The FRC resolution
was calculated using the miplib package (Koho et al., 2019)
with image zero-padding and parameter bin delta=5.

Segmentation was performed on images downscaled by
half in all dimensions. Hyperparameters for both segmen-

tation pipelines were chosen to optimize segmentation re-
sults on the real fluorescence images. Watershed segmenta-
tion roughly followed the CellProfiler’s 3d monolayer tuto-
rial (Stirling et al., 2021), with the additional step of contrast-
limiting adaptive histogram equalization (Pizer et al., 1987).
Segmentation post-processing included removing nuclei at
image edges, filling holes, and filtering out nuclei by size at
the empirically chosen cutoffs.

Morphological feature extraction was performed using
a combination of regionprops method from scikit-
image (Van der Walt et al., 2014) and mesh proper-
ties (Kalinin et al., 2021).

Implementation of the evaluation protocol relied on popu-
lar Python libraries, including numpy (Harris et al., 2020),
scipy (Virtanen et al., 2020), pandas (Wes McKinney,
2010), and RAPIDS cuCIM (RAPIDSAI contributors,
2025). Figures were made using matplotlib (Hunter, 2007)
and seaborn (Waskom, 2021).

A.4. Spotlight details

Spotlight uses the same model architecture as F-net. The
only differences are introduced in data preprocessing, patch
selection, and the loss function.

Preprocessing: While F-net training standardizes 3D
patches using mean and standard deviation, we replaced
mean with the threshold value calculated using Otsu’s
method to simplify soft-thresholding of predictions in the
calculation of the Dice loss.

Patch selection: In order to facilitate foreground-aware
training, we also implemented patch selection during train-
ing such that only 3D patches containing at least 0.1% of
foreground voxels were used for training.

Loss function: The overall loss function design is described
in Figure 1 and Section 2. We empirically set sharpness
parameter k in the normalized tunable sigmoid function
equal to -0.95 and weight λ equal to 0.5.
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