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Abstract

Two-dimensional X-ray images, while widely used, have limitations to reflect 3D informa-
tion of the imaged objects. Several studies have tried to recover such information from
multiple X-ray images of the same object. Still, those approaches often fail due to the
unrealistic assumption that the target does not move between views and those two views
are perfectly orthogonal. A problem where 3D information would be highly valuable but is
very difficult to assess from 2D X-ray images is the measurement of the actual 3D fracture
angles in the forearm. To address this problem, we propose a deep learning-based method
that predicts the rotational movement and skeletal posture from biplanar X-ray images,
offering a novel and precise solution. Our strategy comprises the following steps: (1) au-
tomatic segmentation of the ulna and radius bones of the forearm on two X-ray images
by a neural network; (2) prediction of the rotational parameters of the bones by a pose
prediction network; (3) automatic detection of fracture locations and assessment of the
fracture angles on 2D images; and (4) reconstruction of the real 3D fracture angle by infer-
ring it from the 2D fracture information and the skeleton pose parameters collected from
the two images. Our experiments on X-ray images show that our method can accurately
measure 2D fracture angles and infer the pose of the forearm bones. By simulating X-ray
images for various types of fractures, we show that our method could provide more accurate
measurements of fracture angles in 3D. We are the first attempt for the fully automatic
fracture angle measurements on both 2D and 3D versions, and we show the robustness of
our method even in extreme cases where the two views are highly nonorthogonal.
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1. Introduction

X-ray, known for its low radiation and cost, is the primary choice for diagnosing forearm
fractures. However, its 2D projection nature obscures vital details, such as precise fracture
angles and posture variations. Specifically, when patients undergo follow-up X-rays to
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Figure 1: An illustration of a bi-planar view of X-ray images, ideal cases, and real-life
clinical practice. The left shows the ideal case where the AP view and Lateral
views are orthogonal to each other, while in the real case, the object changes
posture across the views and will bring about the misalignment and non-perfect
views.

assess forearm fractures, replicating the exact arm positioning from previous images is
challenging. This complexity makes it difficult for clinicians to discern whether fracture
angulation changes reflect clinical progression or are mere artifacts of different positioning.
Such discrepancies can hinder precise diagnosis, surgical preparation, and post-treatment
evaluation by physicians (Macken et al., 2022).

Some earlier works (Fotsin et al., 2019; Lamecker et al., 2006; Ehlke et al., 2013; Chen and
Fang, 2019; Kasten et al., 2020; Ying et al., 2019; Shrestha et al., 2022; Shiode et al., 2021)
attempted to reconstruct 3D bones from biplanar X-ray images. These 3D reconstruction
methods using the most commonly applied anteroposterior (AP) view and lateral (LAT)
view, rely on the two views being entirely orthogonal to one another and the object
not changing position or moving during the capture (Gu et al., 2024), see Figure 1 (ideal
case). However, in real practice, these two views refer to the anatomical position, which
indicates a relatively fixed X-ray shooting angle, and the object’s own moving and rotating
(see Figure 1 for real cases). Obtaining two views with complete skeletal orthogonality
is impossible, especially the limitation of movement caused by fractures; see Appendix A
(ill-posed cases) for examples. Therefore, it is usually infeasible to reconstruct the forearm
bones from two clinically taken X-ray images with the assumption of orthogonality. A
relevant work (Abe et al., 2019) tried to predict the rotational movements of the healthy
forearm. However, the required 2D–3D X-ray and CT pairs are difficult to obtain, and their
work was limited only to pose estimation.

Meanwhile, fracture assessment is an important task for X-ray-based diagnosis. Some
work automatically detects fractures (Guan et al., 2020; Thian et al., 2019) or provides dif-
ferent types of fracture classification (Yadav and Rathor, 2020). Yet, accurately determin-
ing fracture angles requires more sophisticated information and has not been accomplished
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through a fully automated measurement process. Our algorithm not only achieves the first
automatic fracture angle measurements but also considers the loss of third-dimensional
information caused by X-ray images, which renders forearm posture estimation and recon-
structs the fracture angle in 3D.

Figure 2: An illustration of the 3D fracture angle we measure. The 3D-coordination system
applied in our work was to make the projected receptor in the yz plane. It shows
that the rotation around the z-axis and y-axis would influence the 2D angle
measured in the 2D X-ray images. The 2D angle varies a lot between different
positions of bones, which causes inconsistent angle measurements between X-ray
images and possibly inaccurate measurements compared with the real angle.

In our method, we combine (1) the forearm bone segmentation algorithm to extract two
forearm bones separately and (2) the pose regression network to predict the posture of bones
in two randomly collected views. This process establishes a spatial relationship between the
two images in 3D space. (3) a mathematical algorithm to correlate the fracture angles
measured in both images with their real-world 3D counterparts. Our method is the first
to attempt to achieve fully automatic 2D fracture angle measurements and to reconstruct
3D fracture angles from nonorthogonal 2D X-ray images. It is free from X-ray images and
3D image pairs or planar markers during the training stage, which differs from the previous
2D-3D reconstruction works (Shrestha et al., 2022; Shiode et al., 2021). Our work can also
be easily extended to other body parts with 2D X-ray-based fracture angle or bending angle
measurements in clinical usage.

2. Method

We detail our method for 3D fracture angle prediction in this section. Our algorithm
comprised three main components: (1) measure fracture angles in 2D images separately;
(2) get the positioning of bones on these two images; (3) combine this information to
reconstruct the 3D angulation. The pipeline is illustrated in Figure 3. First, we took two
different views of X-ray images from the same patient, segmented the target forearm bones
(radius and ulna), and extracted them separately (Section 2.2). Next, we fed the extracted
bones to the style-transfer network and the rotational pose estimation network (Section 2.3);
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Figure 3: An illustration of the pipeline to get the 3D fracture angle. We represented
different steps with different background colors for better illustration. The branch
for ulna bones is omitted to save space in this figure.

in parallel, we detected and measured 2D fractures (Section 2.4). Finally, we calculated the
3D fracture angle (Section 2.5).

2.1. Datasets Preparation

This retrospective, semi-synthetic study was HIPAA-compliant and approved by the insti-
tutional review board (IRB) of Duke University. We collected 1000 forearm X-ray images
from the Duke University Health System (DUHS). The X-ray dataset contains 502 AP
views and 498 LAT views (dataset X-ray). Annotation details are shown in Appendix D.
For training the network for pose estimation, we acquired 22 additional CT images and
manually segmented the 3D bones (ulna and radius). First, we registered these 3D bones
into our defined same standard pose (details are provided in Appendix B), then generated
11,000 digitally reconstructed radiographs (DRR) as simulated X-ray images (dataset DRR-
pose) by rotating the registered bones around the x-, y-, and z-axes, including rx ∈ [−π, π];
ry ∈ [−π/6, π/6]; rz ∈ [−π, π] to imitate the real-world situations. Obtaining fracture cases
with X-ray and CT image pairs is difficult because such pairs are rarely acquired in clinical
practice. To overcome this challenge, we utilized the Blender software (Community, 2018)
to simulate and synthesize 40 fracture cases from 20 healthy CT exams, which were used to
generate another 4000 DRRs (DRR-fracture-pose). Our synthetic fractures contain differ-
ent conditions with various spins and displacements (shown in Appendix C). More details
of the training/evaluation configurations are in Appendix H (Table H).
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2.2. Segment and extract forearm bones

Considering the necessity to separate two forearm bones with comparable texture, trans-
parency, and potential overlap on an X-ray, we applied instance segmentation, combining
detection and segmentation, for separating the two forearm bones. We employed the Mask-
scoring R-CNN (Huang et al., 2019), which introduced another mask branch compared with
Mask R-CNN (He et al., 2017). When getting the segmented masks Mr and Mu from the
input image I, we extracted the target bones with Ir = I ∗Mr, Iu = I ∗Mu and centralized
the bones into the middle of the image. The segmentation is trained on dataset X-ray, and
results and the bone extraction details are shown in Appendix E.

2.3. Pose estimation

2.3.1. forearm bone pose estimation

To train a network for bone pose estimation without manual labels, we utilized the DRR-
pose and DRR-fracture-pose datasets. The network, Posenet, adopts a standard Resnet-18
as its core, with the output being a three-dimensional rotation parameter R = [rx, ry, rz].
A Tanh activation followed by a π scale is applied post-last layer to normalize the rotation
parameters’ range. Mean Squared Error (MSE) serves as the training’s loss function.

2.3.2. Style-transfer for inference

Our Posenets, trained on DRRs, encountered a challenge due to the differences between
DRRs and real X-ray images, leading to potential drops in performance when applied to
actual X-rays. To address this, we implemented a style-transfer technique using Cycle-GAN
during the inference phase to bridge the gap between DRRs and X-ray images. This process
involved using segmented bone images from X-rays as one domain and DRRs (DRR-pose
and DRR-fracture-pose) as another, enabling the network to adapt X-ray images to the
style of DRRs. Further details and results are in Appendix F.

2.4. 2D fracture angle estimation

We utilized a Faster-RCNN (Girshick, 2015) network to detect fractures (Guan et al., 2020).
When training the fracture detection network, X-ray images (dataset X-ray) and DRRs
(sampled from dataset DRR-fracture-pose) are combined to feed into the network, and the
center of the detected fracture region was referred to as the “fracture point” or “breakpoint”
to be detected. The measurements of 2D fractures consist of the following three parts: (1)
Separate the input image Ir or Iu based on the fracture points; (2) for each view, fit two
lines li1 and li2 using centerline extraction and line fitting; and (3) measure the angle θ2d
between the two lines li1 and li2. This section’s specifics are detailed in Appendix G.

2.5. 3D fracture angle reconstruction

As illustrated in Figure 4, and after previous steps, we got the line segments l11 and l12
for the image I1, and l21 and l22 for the image I2, and the rotational pose parameters
(R1 and R2) for the radius bone in view 1 and view 2, I1 and I2. We calculated the 3D
fracture angle θ3d = ∠(L1, L2) using 3D geometry. The real bone centerline segments are
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Figure 4: A illustration of the 3D fracture angle algorithm. The algorithm uses the pre-
dicted bone postures to reconstruct the 3D bone centerline.

represented in 3D space as L1 ∈ R3 and L2 ∈ R3. The 3D fracture angle was calculated in
the following steps. First, we inversed the bone pose matrices R1 and R2 to reconstruct
the projection planes’ direction according to the object and to calculate the normal vectors
n1 ∈ R3 and n2 ∈ R3 for view 1 and view 2 as the 3D planes P1 ∈ R3 and P2 ∈ R3,
see as Figure 4 (right). Next, we highlighted the bone central line segments in 3D space
by directional vectors for the 3D lines l11, l12, l21 and l22. Then, we enforced the plane
P11 ∈ R3 through the line l11, perpendicular to plane P1, and the plane P21 ∈ R3 through
the line l21, perpendicular to plane P2. The normal vectors n11 and n21 can be calculated
by: n11 = L11 × n1;n21 = L21 × n2.

Because l11 is the projection of L1 on plane P1 and l21 is the projection of L1 on plane
P2, we can infer that L1 is at the intersection of plane P21 and plane P11, thus the directional
vector for L1 can be calculated: L1 = n11 × n21; Similarly, we can get L2 = n12 × n22.
The 3D fracture angle, also known as the angle between three-dimensional lines L1 and L2,
can be calculated as follows: θ3d = cos−1 L1×L2

∥L1∥∥L2∥ .

3. Experiments

3.1. Bone rotational pose estimation

The bone rotational pose estimation was tested on two datasets. The first dataset was
the DRR test set, which consists of 300 simulated X-ray pictures (dataset DRR-pose-test).
This can be used to evaluate the performance of Posenet under varied rotational parameters.
The second dataset includes 10 real X-ray images (dataset Xray-pose-test), which also have
paired CT images (taken within 3 days). We also included a baseline as a comparison
for bone rotational pose estimation (Krönke et al., 2022), which used the segmented bone
contours as the input of the pose estimation network.

For the dataset DRR-pose-test, since its ground-truth rotational parameters have been
known, we evaluated the model’s performance by calculating the error between the predicted
and ground-truth rotation angles on the x-, y-, and z-axes by the metric of L1-norm among
all the available images. We evaluated the performance on the dataset Xray-pose-test by
visualizing the registered bones (seen in Figure 5). We also analyzed the consistency of the
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object shape extracted from the X-ray and the projected DRR under the predicted posture
by the shape similarity metric Hu-Moments Contours-match-I1 (Hu, 1962).

Figure 5: Qualitative results of the 3D bone pose estimation on xray-pose-test dataset ; The
3D ulna and radius are converted by the estimated 3D transformation matrix and
visualized using the 3D slicer software. The predicted DRRs are generated when
applying the predicted posture to the CT objects.

Table 1: Quantitative results for the bone pose estimation for DRR-pose-test dataset. The
rotational error is measured by the mean absolute error (MAE) and standard
deviation across 3 repeated training; the 3D rotational angle is defined as the 3D
angle to rotate the predicted vector into the ground-truth vector.

Methods Bone
rotational error (MAE) at each axis(◦) 3D rotational angle(◦)
rx ry rz

baseline radius 4.57±0.36 4.12±0.48 7.32±0.68 9.32±0.41
(Krönke et al., 2022) ulna 3.80±0.28 2.46±0.32 5.85±0.47 6.74±0.71

Ours
radius 2.53±0.31 4.26±0.76 5.17±0.64 6.82±0.96
ulna 2.67±0.20 3.34±0.15 5.33±0.43 6.34±0.61

3.2. 3D fracture estimation

To evaluate our algorithms’ effectiveness on 3D fracture angle assessments, we compared our
method with two baselines: (1) Fracture-2D. This algorithm took only one view of images
and measured the 2D fracture angle. This algorithm was similar to (Macken et al., 2022),
and detailed in Appendix G; (2) Fracture-orthogonal, which ideally assumed that the two
input views are orthogonal to each other. The 3D fracture estimation was assessed using
two datasets. The first dataset was the simulated DRRs (3D-fracture-generated-test), and
the ground truth was measured manually by an average of two readers in our institution.
Another dataset contains real-life clinical fracture cases, including patients with forearm
fractures, noted as (3D-fracture-real-test), seen as Table H.
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4. Results and discussion

The data presented in Table 1 indicate that our pose prediction network can achieve less
rotational error than just utilizing the contour information as previous work (Krönke et al.,
2022). These results show that for the prediction of the pose, the rotation along the x-axis,
which is perpendicular to the projection plane and does not affect the 2D-fracture angle
measured during projection, is the easiest to predict. The rotation along the z-axis, as the
factor that most affect the fracture angle shown on X-ray images, as depicted in Figure 2,
is difficult to predict accurately due to the symmetry of the forearm bones concerning their
cylindrical shape (Weinberg et al., 2016). The posture estimation for the ulna exhibits
fewer errors. Figure 5 shows the predicted pose of the radius and ulna based on the bones
extracted from the input X-ray and the DRR generated from these predicted poses. The
average distance between Hu-Moments for the 10 X-ray images is 0.75(±0.14) for the radius
and 0.92 (±0.49) for the ulnas.

The average predicted error for our method on the 3D fracture angle prediction is
3.42 degrees with a 95% confidence interval of [3.11, 3.73] for all 600 pairs of images,
which is less than the method Fracture-2D with an average error of 8.92 and the method
Fracture-orthogonal with an average error of 5.80. Compared to Fracture-2D and Fracture-
orthogonal, our technique provides more accurate fracture angle assessments (p < 0.03). The
results of the angle measurements for all the image pairs are shown in Appendix I. (1) relying
on a single X-ray to predict fracture angles is inadequate; (2) 2D measurements of fractures
vary greatly with the bone’s positioning, leading to unreliable outcomes; (3) using dual-view
X-rays markedly enhances accuracy; and (4) our method significantly increase measurement
precision. This improvement is most notable when the projection angles for the same
bone (either radius or ulna) across two images span between 30 and 90 degrees, indicating
nonorthogonal viewing angles, as detailed in Appendix I. Our algorithm’s measurement of
a 3D fracture in a real patient resulted in a 3D fracture angle of 13.01◦, which was just 2.06
degrees off from the manual measurements of 10.95◦, (seen in Appendix I, Figure 13).

5. Conclusion

In summary, our research improves patient care for those with forearm fractures by address-
ing the challenge of inconsistent arm positioning in two X-rays. This inconsistency can lead
to measurement errors and uncertainty for clinicians in distinguishing real changes in frac-
ture angulation from artifacts due to varied positioning. Such uncertainties can complicate
determining appropriate treatment strategies, potentially resulting in suboptimal care. Our
algorithm uniquely accounts for variations in X-ray positioning, marking a novel approach
in 3D reconstruction by considering objects’ rotational posture. It enhances diagnostic ac-
curacy, enabling clinicians to more reliably identify true changes in fracture angulation and
reduce the risk of recommending unnecessary surgical interventions. We also acknowledged
the limitations and discussed future directions, which are discussed in Appendix K.
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Appendix A. Well-posed cases and ill-posed cases

Obtaining two views of forearm X-ray images requires the patient to rotate their elbow
and wrist to change their posture, which changes the patient’s postural location in both
views. As illustrated in Figure 6, the well-posed AP view requires supination of the patient’s
forearm. Its dorsal surface is to be kept in contact with the cassette while the elbow joint is
extended, and the lateral view requires the elbow to be flexed to 90 degrees and the medial
aspect of the wrist. The improperly posed examples cannot guarantee positional correction.
Therefore, the ulna and radius do not rotate 90 degrees between views.

Appendix B. Steps for standard pose registration

As depicted in Figure 7, four markers were put on the CT-segmented radius bone for
standard pose registration. F1 is set at the end of the styloid process, while F2, and F3 are
at two sides; F4 is located in the center of the head of the radius. The centroid of this bone
is C. The standard pose is registered by first moving the bone so that its center aligns with
the volume center (which is also the rotation center) and then rotating the bone about the
rotational center to ensure that the direction of the vector < F4, C > correlates with the
direction of the z-axis. Finally, we rotate the bone about the z-axis so that the direction of
vectors < F1, F2 > and < F1, F3 > are x-axis symmetric. In Figure 7, the registered bone
and the DRR generated by the standard posture are also displayed (upper row, middle box,
and right box).

To register the ulna bone, F2 is put at the end of the styloid process of the ulna, and F1

is placed at the head of the ulna. We first moved the centroid of this bone C to match the
volume center and then rotated it to make the vector < F1, C > align with the direction of
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Figure 6: Some examples of the well-posed and ill-posed cases; for the well-posed cases, the
ulna and radius bones are nearly orthogonal between AP view and LAT view;
and for the ill-posed cases, the rotations of the radius (ulna) between views are
hard to predict through human’s observation.

Figure 7: An illustration of the registration pipelines. The upper one is the pipeline for
registering a segmented radius into the standard pose, and the lower one is reg-
istering a segmented ulna.
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the z-axis. Finally, we rotate the bone around the z-axis to make vector < F1, F2 > in the
direction of the x-axis, seen in the Figure 7 (bottom pipeline).

The markers are set manually in 3D Slicer (Fedorov et al., 2012), and the registration
is done automatically through Python. The DRRs for a standard pose correspond to the
equation R =< rx, ry, rz >=< 0, 0, 0 >, and the rotation parameters predicted by the pose
prediction network (PoseNet) are all relative to this standard pose.

Appendix C. Example of generated fracture bones

Blender (Beare et al., 2018) is utilized to produce the synthesis fractures. For each bone,
we applied a cut at a random location as the fracture point and then misplaced one side of
the bone using 3D rotation and translation to simulate the displacement and bending that
occurs during bone fracture; examples are shown in Figure 11.

Figure 8: An illustration of the simulated fake fractures, three for ulna and three for ra-
dius bones. The bones are broken at the ‘fracture point,’ and several different
deformities with 3D fracture angles exist.

Appendix D. Details of the annotations

For training segmentation networks, the ulna and radius bones are manually labeled by La-
belme (Russell et al., 2008) with the polygon tool. For the fracture detector, at the center of
each bone fracture, the fracture location is also labeled for training fracture detection algo-
rithms. If the bones are detached and misaligned, we label each end of the separation with
a different marker. The bounding box sizes were set to 50× 50 for all fracture annotations
since we only care about the fracture’s location in the subsequent steps.
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Appendix E. Segmentation results

The segmented bones are centralized by:[
∆xr
∆yr

]
=

[
h
2
w
2

]
−
[
xcr
ycr

]
,

[
∆xu
∆yu

]
=

[
h
2
w
2

]
−
[
xcu
ycu

]
pcr = pr −

[
∆xr
∆yr

]
,pcu = pu −

[
∆xu
∆xu

]
,

(1)

where pr represents each point in the cropped radius bone Ir, and pu represents each point
in the cropped radius bone Iu. h and w are the height and width of the image, respectively.
xcr and ycr represent the centroid of the extracted radius (Ir), and xcu and ycu represent
the centroid of the extracted ulna (Ir).

Figure 9 shows some segmentation results and the cropped and extracted examples of
bones from the X-ray images. The segmentation model achieves a mean average precision
(mAP) (IoU=0.5:0.95) of 0.533 and (mAP) (IoU=0.5) of 0.933 over the evaluation set.

Figure 9: Visualization of the segmentation results for the radius and ulna bones. The first
row is the input images with the segmented bone contours, and the second and
third rows are the extracted and centralized bones.
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Appendix F. Details of the style-transfer using Cycle-GAN

The Cycle-GAN contains two mapping functions, G : A → B and F : B → A, and associated
adversarial discriminators, DB and DA. DB encourages G to translate A into outputs
indistinguishable from domain B , and vice versa for DA and F . Two cycle consistency
losses are introduced to capture the intuition that if we translate from one domain to another
and back again, we should arrive at where we started.

We applied the initial settings of Cycle-GAN, with the extracted bones from X-ray
images as domain X, represented by Figure 10 (row 1), and the DRRs as domain Y, defined
by Figure 10 (row 3). The network adhered to the original model configuration, adding
RandomFlip, RandomRotation, and RandomCropResize to remove the spatial impact of
domain information.

We did not use pix2pix (Isola et al., 2017), which was used in (Shiode et al., 2021), for
the following reasons: (1) unpaired image translation is required for our situation because
2D and 3D image pairs are difficult to obtain; (2) the cycle setting, which regularizes an
inverse pipeline, can ensure the preservation of shape information during style transfer.

The style transfer examples are shown in Figure 10 (row 2) for X-ray images to DRRs
and Figure 10 (row 4) for DRRs to X-ray images. During inference of our method, we only
employed half of the cycle, which is the G : A → B for transferring Xray images to DRR
style for pose estimation.

Appendix G. Details of 2D fracture measurements

After we get the 2D extracted forearm bones, Ir or Iu, we separate it into two parts by the
detected fracture central points. At each part, we applied the Python Fitline library from
OpenCV (noa) to get the equations for l1 and l1; then the 2D fracture angle is the angle
between these two straight lines.

Appendix H. Details of the dataset descriptions

The details of the datasets are shown in Table H, including the dataset collection details and
the networks’ training/validation details. For testing the pose-estimation and 3D-fracture
estimation performance, we collected additional test sets, which are ensured to have no
overlapping of previous patients. The patient demographic covered in our study is shown
in Table 3, where we cover a wide range of patients across different ages or races.

Appendix I. Visualization of the predicted 3D angles among all the
image pairs

Although our method may produce some outliers when the difference between the two
views is small (see in Figure 12), i.e., the pose of the bone on the two views varies very
little, we believe that these outliers are not a concern considering that in medical practice
the views are often provided with an AP view and a LAT view. Even if they are not
perfectly perpendicular, image pairs from the AP and LAT views with a bone angle of
fewer than 30 degrees are uncommon. The real-patient case is shown in Figure 13, and the
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Figure 10: Style-transfer results on both generated DRR and Xray images. The first row
is raw X-ray images, and the second is transferred DRRs from X-ray images.
The third row is the average histogram of X-ray; our transferred DRR and real-
DRRs.
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Table 2: The dataset description and the details of dataset split for training/validation.
datasets descriptions stage
dataset X-ray 502 AP views and 498 LAT views

real xray images
train & validation

DRR-pose 11000 DRRs generated from 22 CTs train & validation
DRR-fracture-pose generate 40 fracture cases from 20

healthy bones
train & validation

DRR-pose-test 300 simulated X-ray images from 5
untouched CT images

test

xray-pose-test 10 actual X-ray images, which also
have corresponding untouched CT
image pairs

test

3D-fracture-generated-test 600 pairs of generated X-ray images
of 20 extra simulated fracture in-
stances. The 20 healthy bones are
extracted from 10 CTs from 10 new
patients

test

3D-fracture-real-test 1 real-world fracture X-ray and the
CT taken on the same day

test

networks dataset used in training stage dataset used in validation stage
segmentation (Mask-scoring R-
CNN)

0.85 * (dataset-Xray) 0.15 * (dataset-Xray)

pose estimation network (Posenet) 0.85 * (DRR-Pose+DRR-fracture
pose)

0.15 * (DRR-Pose + DRR-fracture
bone)

style-transfer (Cycle-Gan) 0.85 * (DRR-Pose+DRR-fracture
pose) + 0.85 * (segmented dataset
X-ray)

0.15 * (DRR-Pose+DRR-fracture
pose)+0.15*(segmented dataset X-
ray)

fracture detection network (Faster-
RCNN)

0.85*(dataset-Xray+1000 samples
from DRR-fracture-pose)

0.15 * (dataset-Xray+1000 samples
from DRR-fracture-pose)

Features Percentages

Sex (male vs. female) 46.0%

Age
- 0-18 27.2 %
- 19-30 13.2 %
- 31-40 12.0 %
- 41-60 20.0 %
- 61-80 17.2 %
- 81-100 10.4 %

First Race
- Caucasian/white 59.6 %

- black 27.2 %
- Asian 1.6 %
- other 8.8 %

- not reported/declined 2.8 %

Table 3: Patient Demographic Covered in our Study.
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Figure 11: The pipeline for 2D angle measurements. After getting the detected fracture,
the bone is separated into two parts, and we do line fitting at each part.

2D measurements of the fracture angle of the ulna bone are 3.54◦ for view 1 and 12.73◦ for
view 2. The predicted results for method fracture-orthogonal is 13.18◦.

Figure 12: Visualization of the 3D fracture angle prediction performance on dataset DRR-
fracture-generated-test. From left to right are the (1) prediction on 1-view of
the image as a 2D fracture, (2) prediction on 2-view of the image based on an
orthogonal assumption, and (3) Our algorithm. For each plot, the x-axis is the
angle between two views, and the y-axis is the distance of the predicted angle
from the real-measured angle (L1-distance)

.
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Figure 13: The two view X-ray images of 1 real patient case for fracture measurements.
The segmented and extracted ulna bones and fitted lines are on the right side
of each image.

Appendix J. Error Estimation and algorithm robustness analysis

We acknowledge two potential types of noise that might be generated in this study. The
first is the “hardware noise” from X-ray imaging, saying incorrect exposure, positioning,
and technical competence bring low-quality X-ray images (Waaler and Hofmann, 2010).
To evaluate our algorithm’s robustness across these “hardware noises,” we (1) evaluated
the segmentation algorithm across several low-quality images, and as shown in Figure 14,
our algorithm could achieve robustness across various qualities of X-rays; and (2) added
additional noises into simulated DRRs to evaluate the robustness of the Pose Estimation
network. We added Gaussian noise with a σ ∼ [0, 0.05] distribution. It finally yields 6.46
degrees of error of 3D rotational angle on the ulna bones under a comparable level of clean
DRRs.

Another is the “Software noise”, which we acknowledge as the main error source from
rotational pose estimation, which would influence the norm vector of n1 and n2. Say, we
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Figure 14: Evaluation of the robustness of bone extraction using various quality Xray im-
ages, including (1) images with artifacts; (2) images with low contrasts; (3)
images with hardware. We did a postprocessing to smooth the contour for bet-
ter visualization.

had a perturb υ as predicted noise on n2:

n21∗ = L21 × (n2 + υ)

= L21 × n2 + (L21 × υ)

n12∗ = L12 × (n2 + υ)

= L12 × n2 + (L12 × υ)

n22∗ = L22 × (n2 + υ)

= L22 × n2 + (L22 × υ)

L1∗ = n11 ∗ ×n21∗
= n11 × (L21 × n2 + (n1 × υ))

L2∗ = n12 ∗ ×n22∗
= (L12 × n2 + (L12 × υ))× (L22 × n2 + (n1 × υ))

= L12 × n2 × L22 × n2 + L12 × υ × L22 × n2 + L12 × n2 × n1 × υ + σ(◦).

(2)

As our derived 3D angle is calculated, this noise might be accumulated to our final
results θ3d∗ = cos−1 L1∗×L2∗

∥L1∗∥∥L2∗∥ . Based on the empirical results shown in Figure 12, this
error is more influential when θ = n1 × n2 → 1, where AP view and LAT are almost
identical to each other. It is quite a rare case in real life.

Appendix K. Limitations of our work and future directions

We are conscious of the following facts: (1) Initially, the procedure’s complexity and de-
tection and segmentation are necessary to measure 2D angles, to which our method adds
the measurement of 3D posture and 3D reconstruction. Compared to the end-to-end pro-
cess, our method does not require many X-ray inputs and 3D output data pairs (which are
also essentially unobtainable). It has medically applicable interpretability at each step. (2)
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many 3D fracture angles are evaluated based on synthetic fractures with minimal real data.
This is because we cannot seek eligible X-ray and CT pairs, and patients do not typically
get both modalities simultaneously when fractures occur. We acknowledge this might bring
limitations that the types of fractures covered in our study might not be comprehensive,
such as the Comminuted Fracture (Rafi and Tiwari, 2023). We found this limitation accept-
able because the comminuted fracture would require additional surgical treatment anyway,
and the fracture angle measurements would less influence the diagnosis decision. Future
expansion of the test set may involve creating phantoms that capture our image pairs. (3)
Thirdly, our data was collected mainly on the Duke Health System, which would introduce
some bias in the patient population distribution; we would release our codes in the future
to get more potential applications and evaluations from different institutions. (4) Lastly,
while our 3D fracture measurements are now limited to 3D angle measurements, one of the
most important topics for orthopedic practice, we will expand our work to include bone
misplacement and even 3D shape reconstruction.

We put our preliminary analysis of measuring bone displacement, as shown in Figure 15.
Our current 3D angle estimation shown in Figure 4 mainly considers the angulation rela-
tionship between the bone and projection planes, using the plane norm vector. To add the
displacement measurement in 3D, as shown in illustration Figure 15 here, we could add the
measured distance of two break points in each projection plane (D2D), as well as combine
the beam to receptor distance Ds and object to source distance (Do) to get the ratio of real
distance to distance unit in the projected plane. We have two potential solutions for 3D
bone shape reconstruction: one relies on an additional network for bone shape reconstruc-
tion, and another solely relies on similar mathematical solutions considering bone thickness
when doing the 3D reconstruction (we currently only do centerline).
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Figure 15: Insights about how to measure the bone displacement in 3D.
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